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Abstract somewhat application-specific — any given algorithm will
only have satisfactory performance for some range of mi-
We study the distributed infrastructures required for gration and communication behaviour; the algorithms must
location-independent communication between migrating be matched to the expected properties (and robustness and
agents. These infrastructures are problematic: diffemmt  security demands) of applications.
plications may have very different patterns of migratiod an In theNomadic Piciproject [SWP98, SWP99] we are ad-
communication, and require different performance and ro- dressing these issues in the context of the eponymous mo-
bustness properties; algorithms must be designed witlethes bile agent programming language. Nomadic Pict is based
in mind. To study this problem we introduce an agent pro- on a small core calculus —the Nomadicalculus—that has
gramming language Nomadic Pict It is designed to allow  aclear rigorous operational semantics, tightly relatae &
infrastructure algorithms to be expressed as clearly as pos network communication. This permits infrastructure algo-
sible, as translations from a high-level language to a low rithms to be expressed precisely and concisely in an exe-
level. The levels are based on rigorously-defined processcutable form, aiding design and supporting ongoing work
calculi, they provide sharp levels of abstraction. Inthisp  on correctness and robustness proofs.
per we describe the language and use it to develop an in- The language has a two-level architecture. The low level
frastructure for an example application. The language and consists of well-understood, location-dependent pries;
examples have been implemented; we conclude with a deincluding communication and agent migration. The high
scription of the compiler and runtime. level, in which applications can be written, extends these
with location-independent communication. An infrastruc-
ture can be expressed as an implementation of the high-
level primitives in terms of the low-level language; only
the low level need be supported by a widespread runtime
system (the distributed parts of the infrastructure candse d
Mobile agents, units of executing computation that can ployed dynamically, on application start-up, using ageirt m
migrate between machines, have been widely argued to beyration).
an important enabling technology for future distributed-sy The ease of writing infrastructure algorithms, and the
tems [CHK97, KR98, VE97]. They introduce a new prob- fact that an arbitrary infrastructure can be provided for an
lem, however. To ease application writing one would like to application at compile time, make it straightforward to ex-
be able to use high-levidcation independerdommunica- periment with a wide range of infrastructures for applica-
tion facilities, allowing the parts of an application toénact tions with different migration and communication patterns
without explicitly tracking each other's movements. To{pro In our earlier work we focussed on the design of the No-
vide these above standard network technologies (which di-madicr-calculus, in [SWP99] giving its operational seman-
rectly support only location-dependent communication) re tics and expressing two simple infrastructure algorithsis a
quires some distributed infrastructure, problematic ne¢h  translations from a high-level to a low-level calculus. Hist
ways. Firstly, the distributed algorithms needed are d&dic ~ paper we introduce the programming language in more de-
Secondly, flexible structuring mechanisms are required totail (§2). We discuss a small example application and the de-
support clean factorisation of a system into its high-leyel sign of an infrastructure suited to §3,4), and describe the
plication component and the infrastructure implemeniatio language implementatio§g). The focus is on demonstrat-
Thirdly, the choice or design of an infrastructure must be ing the benefits of a multi-level architecture based on tfear
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defined levels of abstraction; we have therefore chosen aasynchronous messages. To these Low-Level Nomadic
somewhat idealised example application. The required in-Pict adds primitives for agent creation, the migration of
frastructure is still far from trivial, however. Expresgiit agents between sites, and the communication of location-
as a Nomadic Pict translation allows us to include an al- dependent asynchronous messages between agents. The
most complete executable description, making the detailshigh-level language adds location-independentcommeinica
of concurrency, synchronisation and distribution cleat an tion; an arbitrary infrastructure can be expressed as a user
precise. By considering the migration and communication defined translation into the low-level language. The com-
patterns of the application we can argue that this infrastru bination of low-level language and facilities for defining a
ture algorithm is a practicable choice, whereas many otherstranslation thus embody the design principle:

including those in [SWP99], would not be.

A number of other mobile agent systems provide a form
of location independence; we briefly review some of them
below. Comparisons are difficult, in part because of the lack
of clear levels of abstraction and descriptions of algongh
— without these, it is hard to understand the performance
and robustness properties of the infrastructures.

The Join Language [FGt96] provides location-
independent messages using a built-in infrastructur@das  Such a language can have a standardized low-level runtime
on forwarding pointer chains that are collapsed when pos-that is common to many machines, with divergent high-
sible. Voyager [Obj97] supports location-independent-mes |evel facilities chosen and installed at run time. The Isvel
sages, both synchronous and asynchronous messages aaflabstraction can be made precise by giving process calculi
multicasts, again using forwarding pointer chains that are equipped with rigorous operational semantics. Prelinyinar
collapsed when possible. A directory service is also pro- definitions of the (low and high-level) Nomadiccalculi
vided. The Mobile Object Workbench [BHDH98] provides were in [SWP99]. They have since been extended to large
location independent interaction, using a hierarchia@ilai  fragments of the language, for use in correctness proofs, bu
tory service for locating clusters of objects that have ndove are not described here.

There is a single infrastructure, although it is stated thext We have focussed on the simplest language that allows
architecture is flexible enough to allow others. The infras- us to study the core problem &1, rather than attempting
tructure work of Aridor and Oshima [AO98] provides three to produce an industrial-strength language. In partigular
main forms of message delivery: location-independent us-we study a single representative location-independemt-pri
ing either forwarding pointers or location servers, and lo- itive, that of delivering a message to an agent on an arigitrar
cation dependent (they also provide other mechanisms forsite. We believe that analogous work could be carried out
locating an agent). Mobile Objects and Agents (MOA) for other high-level primitives, e.g. multicasts, and fcamy
[MLC98] supports four schemes for locating agents; these other concurrent languages.
are used as required to deliver location-independent mes- A further simplification is the adoption of a fixed two-
sages. Stream communication between agents is also deevel architecture, rather than a general purpose modatle sy
scribed, with communicating channel managers informing tem. The utility of a rich module system for structuring
each other on migration. The MASIF proposal [MB&8] communication protocols, in the absence of mobility, has
also involves four locating schemes, but appears to buildbeen demonstrated in the FOX project [HLP98]; see also
communication facilities on top. This excludes a number Ensemble [Hay98]. In future work we intend to integrate
of reasonable infrastructures; it contrasts with our appho  an ML-style module system with a Nomadic Pict language.
here, in which location-independent message delivery is In this section we introduce enough of the language for
taken as primary (some infrastructures do not support a lo-the example application and infrastructure following. We
cation service). begin with an example. Below is a program in the low-level
language showing how an applet server can be expressed. It
R can receive (on the channel na Applet ) requests
2 TheNomadic Pict Language foran appletg the requests cont;ﬁ pgipr (bou)md d(xqmds)
consisting of the name of the requesting agent and the name

We have designed and implemented Nomadic Pict as aof its site.

vehicle for exploring distributed infrastructure. It ksl

A wide-area programming language should pro-
vide a level of abstraction that makes distribu-
tion and network communication clear; higher
levels should be provided and implemented us-
ing the modularisation facilities of the language.
It should be possible to deploy such infrastructure
dynamically.

getApplet ?* [a s] =

on the Pict language of Pierce and Turner [PT97, Tur96], agent b =
a concurrent (but not distributed) language based on the migrate toto s
asynchronousr-calculus [MPW92, HT91, Bou92]. Pict ( <a@s>acklb | B)

supports fine-grain concurrency and the communication of in ()



When a request is received the server creates an appletaking two types and giving the type of maps, or lookup ta-
agent with a new name boundtio This agentimmediately  bles, from one to the other.
migrates to sites. It then sends an acknowledgement to

the requesting ageat (which is assumed to be on sk ) Values Channels allow the communication of first-order

containing its name. In parallel, the bo@&yof the applet 5 ,es: namesab. ... strings, tuplegvl .. vn]
commences execution. . N of the n valuesvl .. vn , packages of existential
The example illustrates the main entities of the Ianguage:types [#T vl .. vn] and elements of variant types

sites, agents and channelSitesshould be thought of as {Label>v} . The language does not support communica-

physical machines or, more accurately, as instantiatiéns o jon, of processes (except for the migration of whole agents)
the Nomadic Pict runtime system on machines; each site hag), ¢ higher-order functionsPatterns p are of the same
a unique name. This paper does not explicitly address queSghapes as values.

tions of network failure and reconfiguration, or of security

Sites are therefore unstructured; neither network topolog ) , )

nor administrative domains are represented in the IanguageL ow-Level Language The main syntactic category IS that
Agentsare units of executing code: an agent has a uniqueOf processeqwe confuse processes and declarations for

name and a body consisting of some Nomadic Pict pro_breV|ty). We will introduce the main low-level primitives

cess; at any moment it is located at a particular <ean- ' 9rOUPS.
PP IS A S LBV g 1 @ syt
argets for inter-agent communication—an INter-agentmes - giyate 1ot0 s p agent migration

sage will be sent to a particular channel within the desti-

nation agent. Channels also have unique names. The lanThe execution of the construagent a=P irin Q spawns
guage is built above asynchronous messaging, both withing ey agent on the current site, with bdlyAfter the cre-

and between sites; in the current mplementatlon Intér-sit ation, Q commences execution, in parallel with the rest of
messages are sent on TCP connections, created on dem_anlqi,,e body of the spawning agent. The new agent has a unique
but our algorithms do not depend on the message orderinghame which may be referred to both in its body and in the
that could be provided by TCP. . . spawning agent (i.ea is binding inP andQ. Agents can

_ The inter-agent messaga@s>ack!b is characteris-  mjgrate to named sites — the executiorntigrate toto

tic of the low-level language. It is location-dependent—if ¢ p 55 part of an agent results in the whole agent migrating

agenta is in fact on sites then the messagde will be de- 5 sjtes. After the migrationP commences execution in
livered, to channeack in a; otherwise the message will parallel with the rest of the body of the agent.

be discarded. In the implementation at most one inter-site
message is sent. P|Q parallel composition

0 nil

Jhe body of an agent may consist of many process terms in
parallel, i.e. essentially of many lightweight threadseyh
will interact only by message passing.

Names As in ther-calculus, names play a key role. New
names of agents and channels can be created dynamicall
These names angure, in the sense of Needham [Nee89];
no information about their creation is visible within thada
guage (in our current implementation they do contain site

. ; :T P new channel name creation
IDs, but could equally well be implemented by choosing new c ew channel name creatio

clv outputv on channet
large random numbers). in the current agent
c?p = P input from channet

Types The language inherits a rich type system from  c72*p = p replicated input from channel

Pict, including higher-order polymorphism, simple recur-

sive types and subtyping. It has a partial type inference al-To express computation within an agent, while keep-
gorithm. It adds new base typ&ite andAgent of site ing a lightweight implementation and semantics, we in-
and agent names, and a typgnamic (to date only par-  cluden-calculus-style interaction primitives. Execution of

tially implemented) for implementing traders. In this pape new c:"T P creates a new unique channel name for car-

we make most use &ite , Agent , the base typ8tring rying values of typeT; c is binding inP. An outputclv
of strings, the typ€T of channel names that can carry val- (of valuev on channet) and an input?p=P in the same
ues of typeT, tuples[T1 .. Tn] ,and existential poly- agent may synchronise, resulting fhwith the appropri-

morphictypessuchdgX T1 .. Tn] inwhichthetype ate parts of the value bound to the formal parameters in
variableX may occur in the field type$l .. Tn . We the patternp. A replicated inputc?*p=P behaves simi-
also use variants and a type operaflapfrom the libraries, larly except that it persists after the synchronisatio, sm



may receive another value. In botRp=P andc?*p=P The intended semantics of an out@@alv is that its ex-

the names ip are binding inP. ecution will reliably deliver the messag#v to agenta,
We require a clear relationship between the semanticsirrespective of the current site af and of any migrations.

of the low-level language and the inter-machine messagesThe low-level communication primitives are also available

that are sent in the implementation. To achieve this we al- for interacting with application agents whose locatiors ar

low direct communication between outputs and inputs on a predictable.

channel only if they aren the same agentntuitively, there

is a distinctr-calculus-style channel for each channel name gxpressing Encodings  The language for expressing en-

In every agent. codings allows the translation of each interesting phralbe (
iflocal <a>clv then then P etdge Q those involving agents or communication) to be specified,;
test-and-send to ageaton this site the translation of a whole program can be expressed using
<a>clv send to agerd on this site this compositional translation. A translation of types can
<a@s>clv send to agerd on sites also be specified, and parameters can be passed through the

) ) o ~ translation. We omit the concrete syntax; the example in-
Finally, the low-level language includes primitives for in  frastructure irg4 should give the idea.
teraction between agents. The executioniftzical
<a>clv titeen P e#iee Q inthebodyofanagethas | oy methods and objects The language inherits a

two possible outcomes. If ageatis on the same site s common idiom for expressing concurrent objects from Pict
b, then the messagelv will be delivered toa (where it [PT95]. The process

may later interact with an input) arfflwill commence ex-

ecution in parallel with the rest of the body bf other- new lock:"StateType
wise the message will be discarded, @il execute as ( locklinitialState
| methodl?*arg =

part ofb. The construct is analogous to test-and-set opera-

. . . . ? = | ’
tions in shared memory systems — delivering the message (lock?state = ... lockistate’ ...)
and startingP, or dl_scardlng it and sta_lrtm@, atom|cally. | methodn?*arg =

It can greatly simplify algorithms that involve communica- (lock?state = ... lockistate”...)

tion with agents that may migrate away at any time, yet is )

still implementable locally, by the runtime system on each

site. Two other useful constructs can be expressed in thgs analogous to an object with  methods

language introduced so faka>clv and<a@s>c!v at- methodl ...methodn and a state of typeState-

tempt to deliveclv to agenta, on the current site and on Type. Mutual exclusion between the bodies of the

s respectively. They fail silently if is not where expected methods is enforced by keeping the state as an output on a

and so are usually used only wherés predictable. lock channel; the lock is free if there is an output and taken
Note that the language primitives are almost entirely otherwise.

asynchronous — onlmigrate and<a@s>clv can in-

volve network communication; they require at most one 3 Example Application

message to be sent between machines.

try c?p=P tirtiew@gut n -> Q In this section we discuss a small application that makes
input with timeout use of mobility and location-independent communication.
Our primary goal is to present an example of the choice of a
communication infrastructure based on a specific migration
and communication pattern, together with the use of our
two-level architecture. In Section 4 we give the key parts
of the infrastructure encoding, providing an executable de
scription of the algorithm. The application and infrastruc
ture have been prototyped in Nomadic Pict. The example
algorithm design assumes a large essentially-reliable LAN
rather than the wide-area unreliable case that we are most

) ) ) interested in, but it should give the feel of this style of iwor
High-Level Language The high-level language is ob- ing.
tained by extending the low-level with a single location-
independent communication primitive:

For implementing infrastructures that are robust underesom
level of failure, or support disconnected operation, some
timed primitive is required. The low-level language in-
cludes a single timed input as above, with timeout value
n. If a message on channelis received withim seconds
thenP will be started as in a normal input, otherwiQavill

be. The timing is approximate, as the runtime system may
introduce some delays.

The PA Application We consider the support of collab-
c@alv location-independent output to agent orations within (say) a large computer science department,



spread over several buildings. Most individuals will be in- (sswitth (map.lookup m descr) of  of

volved in a few collaborations, each of 2-10 people. In- {Found>PA:Agent } -> moveOn@PAl!s
dividuals move frequently between offices, labs and pub- {NotFound>_:[] } -> notFound@sSul]
lic spaces; impromptu working meetings may develop any- end | names!m))

where. Individuals would therefore like to be able to sum- 1 5ymmoner at site is as below. It gets strings from the
mon their working state (which may be complex, consisting |ocal console, sending them as requests to the name server.
of editors, file browsers, tests-in-progress etc) to any ma-
chine. These summonings should preserve any communiagent Summoner =
cations that they are engaged in, for example audio/video ~ val PAname = (sys.read_line [])
links with other members of the project. ( summonPA@NamesServer![PAname
To achieve this, the user’s working state can be encap- o Summoner s]
sulated in a mobile agent, an electrop&rsonal assistant | notFound?_= pmt!(tﬂgﬁ?ﬁgﬁ,u))
that can migrate on demand. '

In the actual implementation the top-level encoding
High-Level Architecture We implement the PA applica- launches summoners dynamically, using the standard mi-
tion with three classes of agents: the PAs themselves, whichgration primitive, onto the list of active sites. For singity
migrate from site to sittsummonengents, which are static  the implementation uses location-independent communica-

(one per site) and are used to call the PAs; and a singletion throughout, despite the fact that the name server and
name serverlgent, also static, which maintains a lookup symmoners are static.

table from the textual keys of PAs to their internal agent
names. They interact using location-independent commu-

nication on channel names Migration and Communicqtioq Pattern A usablg in- _
frastructure for the PA application can only be designed in
registPA : [ String_ Agent ] _ the context of detailed assumptions, both about the system
summonPA : [ String Agent Site ] properties and about the expected behaviour of the high-
moveOn  : “Site level agents.
notFound : 7| For the former, we assume that the application is run-
mid : "String

ning over a large LAN, in which reliable messaging can be
Asample PAis below. It has 4 parallel components; a regis- Provided by lower-level protocols and all machines are at
tration message, a message sent to another PA, a replicatgg@ughly the same communication cost distance from each
input that receives data from other PAs and prints it, and aother. Machines are also basically reliable, although from
replicated input that receives migration commands and ex-time to time it is necessary to reboot or turn off. The LAN
ecutes them. is under a single management, with no internal firewalls.
For the latter, we suppose that the number of PA agents

ag‘(an:e;sAt}DA_@NameServer!["pawelsPA" PA1] is of the same orc_ier asthe number of _people in the lab. Each
| mid@PA2!"Outgoing data stream” PA will migrate infrequently, with minutes or hours be-
| mid?*d = printl(+$ "Incoming:” d) tween migrations. The path of migrations is unpredictable
| moveOn ?* s = — it may range over the whole LAN. The migrations of
( midgeate toto s (print!"Hello Pawel! different PAs are essentially uncorrelated in time. It iBxeo
Your PA has arrived..."))) mon for people to work for extended periods at machines

out of their offices. PAs communicate between each other
frequently, with significant bandwidth — eg audio/video
map is stored as an output on the internal chanaetes. messages or streams, and other data (that must be delivered

Summon requests are receivedsammonPA containing  '¢liably). _

a textual key and the name/site of the summoner. If the key These assumptions are not wholly accurate — the ap-
has been registered the name server sends a migration conilication also demands disconnected operation (on laptops
mand to the corresponding PA agent, otherwise it nacks toand a higher level of fault-tolerance. We discuss infrastru

The name server below maintains a map from strings to
agent names; it receives new mappingsegistPA . The

the summoner. ture design addressing these briefly, at the erf@pbut for
the sake of a clear example infrastructure we neglect them
agent NameServer = for now.
new names : “(Map String Agent) ‘
( names ! (Map.make ==) ] ]
| registPA?*[descr PA] = names?m = Design of Appropriate Infrastructure We develop our
(names!(map.add m descr PA)) infrastructure in several steps, beginning with the two ex-

| summonPA?*[descr Su s] = names?m = tremely simple algorithms described precisely in [SWP99].



The Central Serveralgorithm has a single server that infrastructures might use some heuristics to take advantag
records the current site of every agent; agents synchro-of this. For a critical application a quantitative analysiay
nise with the server before and after migrations; applica- be required.

tion (location-independent) messages are sentviatherserv A closely related application for multimedia CSCW is
The Forwarding Pointersalgorithm has a daemon on each described in [BHB97], implemented (with real video sup-
site; when an agent migrates away it leaves a pointer toport) using theTube Mobile Agent System. A low-level
the site that it is going to (and the daemon there). Appli- multimedia stream library was used; streams were recon-
cation messages are delivered by the daemons, followingnected on movement at the application level. Moving this
the pointers. Neither of these algorithms suffice for the into the infrastructure would involve synchronisations be
PA application. The central server is a bottleneck for all tween the source and all sinks of a stream on any migration.
inter-PA communication; further, all application message

must make two hops (and these mes;ages_make up th_e maigl] Example Infrastructure

source of network load). The forwarding pointers algorithm

removes the bottleneck, but there application messages may In thi i d ibe th S ith
have to make many hops, even in the common case. n this section we describe the Query >erver wi
Adating the Central S o red h b Caching algorithm as a Nomadic Pict encoding, thereby
f alp Intg € tentra herver S0 ‘tisdo re l;ce (Enum ermaking all the details of concurrency and synchronisation
g app 'Ta |qtr;]—me§sat?ef Opi rr]equwe ' Weth a;/eQ e(rjy th precise. At first sight the code fragments may seem im-
erver? gtorl f m. AS be otre, Id as atserverh a Tecor.ﬁf it N penetrable, as space for a full exposition is lacking, but
currentsite ot every agent, and agents synchronisSe With it 0, o, g jeve they repay study — almost the entire encod-
migrations. In addition, each site has a daemon. An appli-

i ; ttothe d hich th . thing can be given in 1.5 pages, rather concise for a non-
cation message Is sent to the daeémon which then qUENes Nk, ;o1 executable distributed infrastructure. In our exp

is th t 10 the d the t tsite. If th Bnce with designing such algorithms we have found that the
IS then sent 1o the daemon on the target site. € agen anguage provides a good level of abstraction at which po-
has migrated away, the message is returned to the origin

d " ential problems (such as deadlocks and lost messages) can
daemon to try again. In the common case application mes-,

il here tak | hop. The obvi defectis th be seen rather clearly. The uniform treatment of concur-
Sages will here 1ake only oneé nop. 1he obvious detect1s erency and asynchronous messages both within agents and
large number of control messages between daemons and thg

1o red th h site’s d intai etween machines is a significant gain. To give a feeling
SEIVET, 10 reduce Iese each site's daemon can maintain g, g,ch design the code fragments are taken almost verba-
cache of location data.

] _ ) tim from the executable source, with some minor sugar.

The Query Server with Cachindoes this. When a dae- An encoding consists of three parts, a top-level trans-
mon receives a mls-dehver.ed message, for an agent that hagtjon (applied to whole programs), an auxiliary composi-
left its site, the message is forwarded to the server. Thejjgnal translatiorfP] of subprogram®, defined phrase-by-
server both forwards the message on to the agent’s CUrphrase, and an encoding of types. The QSC encoding in-
_rent site and sends a cache-update message to the originali|yes three main classes of agents: the query s@ver
ing daemon._ln the_common case application messages argg (on a single site), the daemons (one on each site), and
therefore delivered in only one hop. the translations of high-level application agents (whiciym

This may seem well-suited to the PA application, but the migrate). The top-level translation of a progr@taunches
textual description omits many critical points — it does not the query server and all the daemons before exec{ifhg
unambiguously identify a single algorithm. To do so, and to The query server, and the code which launches daemons,
develop reasonable confidence in its correctness and perforare given in Figure 1; the interesting clauses of the compo-
mance, a more precise description is required, ideally in ansijtional translation are in the text below.
executable form. We give such a description, as a Nomadic  The messages sent between agents fall into three groups,
Pict encoding, in Section 4. implementing the high-level agent creation, agent migra-

These algorithms clearly explore only a part of the de- tion, and location-independent messages. Typical execu-
sign space — one can envisage e.g. splitting the servers intdions are illustrated in Figure 2 and below. Correspond-
many parts (one dealing with agents created for each user)ingly, only these cases of the compositional translati@n ar
forwarding pointers in which long chains are collapsed, and non-trivial.
server-less algorithms in which the agents of a collabora- Each class of agents maintains some explicit state as an
tive group synchronise among themselves. An exhaustiveoutput on a lock channel. The query server maintains a map
discussion is beyond the scope of this paper. One can alsdrom each agent name to the site (and daemon) where the
analyse the application further — in fact, the migrations of agentis currently located. This is kept accurate when agent
each user’s PA may usually be within a small group of ma- are created or migrate. Each daemon maintains a map from
chines, e.g. those of a research group. More sophisticatedome agent names to the site (and daemon) that they guess



the agent is located at. This is updated only when a mes-The query server’s lock is kept during the migration. The
sage delivery fails. The encoding of each high-level agentagent’s own record of it's current site and daemon must also

records its current site (and daemon).

be updated with the new dafdl DU] when the agent’s

To send a location-independent message the translationock is released. Note that in the body of the encoding the
of a high-level agent simply asks the local daemon to sendnameDUof the daemon on the target site must be available.

it. The compositional translation af@b!v, ‘sendv to
channek in agentb’, is below.

def

[c@b! V]a o sy
currentloc?[S DS]=
iflocal <DS>try_message![b ¢ v] then
currentloc![S DS]
else ()

then

This first reads the nam8& of the current site and the
nameDS of the local daemon from the agent’s lock chan-
nel currentloc  , then sendgb ¢ v] on the channel
try _message to DS replacing the lock after the message
is sent. The translation is parametric on the trifdeQ
SQ] of the namea of the agent containing this phrase, the
nameQ of the query server, and the si&Q of the query

server — for this phrase, none are used. We return later to

the process of delivery of the message.

To migrate while keeping the query server’'s map accu-

rate, the translation of migrate in a high-level agent

synchronises with the query server before and after actu-

ally migrating, with migrating
messages.

, migrated , andack

) f
[migrate toto u P ] g sq =

currentloc?[S DS]=
val [U DU] = u
( <Q @ SQ>migrating'a
| ack?_ = migigtate toto U
( <Q @ SQ>migrated![U DU]
| ack?_ = ( currentlocl[U DU]

| [Pl o sa))

A sample execution is below.

a@s Q@SsQ

migrating'a

ack!

migrate toto U

migrated![U DU]

ack!

This is achieved by encoding site names in the high-level
program by pairs of a site name and the associated daemon
name; there is a translation of types

[Agent ] ot Agent
[Site ] ot [Site Agent]

Similarly, a high-level agera must synchronise with the
guery server while creating a new agéntwith messages
onregister  andack .

[agent b = P irin P’ [, g sg def
currentloc?[S DS]=
agent b =
( <Q @ SQ>register![b [S DS]]
| ack? = iflflemal <a>ack![] then then
( currentloc![S DS]
| [Ple o sap)
else () )
in
ack?_= ( currentloc![S DS]

| [P la 0 s)

The current site/daemon data for the new agent must be ini-
tialised to[S DS] ; the creating agent is prevented from
migrating away until the registration has taken place by
keeping itscurrentloc lock until anack is received
fromb. A sample execution is below.

a@s b@S Q@SQ
cre:l'alte
o registerl[b [S DSJ]
ack!
ack!

Returning to the process of message delivery, there are
three cases (see Figure 2). Consider the implementation of
c@bl!v in agenta on siteS, where the daemon B. Sup-
poseb is on siteR, where the daemon BR EitherD has the
correct site/daemon dif cached, oD has no cache data for
b, or it has incorrect cache data. In the first cBsgends a
try _deliver message tDRwhich delivers the message
tob usingiflocal . For the PA application this should be
the common case; it requires only one network message.



agent Q = (* the query server *)
new lock : “(Map Agent [Site Agent])

(lock!(map.make == (* initialise the lock *)
| register?*[a [S DS]]= (* register a new agent *)
lock?m=

( lock!(map.add m a [S DS])
| <a@S>ack![])
| migrating?*a= (* lock during a migration *)
lock?m= ssutitbh (map.lookup m a) of of
{Found> [ S:Site DS:Agent ] } >
( <a@S>ack![]
| migrated?[S’ DS’] =
( lock!(map.add m a [S’ DS’)
| <a@S’>ack![]))
{NotFound> _:[I } -> ()
end
| message?*[#X DU U a:Agent ¢:"X v:X]=  (* deal with a lost mess age *)
lock?m= ssuititbh (map.lookup m a) of of
{Found> [R : Site DR : Agent] } >
( <DU @ U>updatel[a [R DRI]]
| <DR @ R>try_deliver![Q SQ a c v true true]

| dack?_ = lock!m)
{NotFound> _: } -> ()
end )
daemondaemon?*S:Site= (* launch a daemon on site S *)

agent D =
migrate toto S
new lock : “(Map Agent [Site Agent]) (* the daemon body *)
( <toplevel@firstSite>ndack![S D]
| lock!(map.make ==)
| try_message?*[#X a:Agent c:"X v:X]=
lock?m= ssutitbh (map.lookup m a) of of
{Found> [R : Site DR : Agent] } >
( <DR @ R>try_deliver![D S a c v falsefalse]
| lock!m )
{NotFound> _:[] } ->
( <Q @ SQ>messagellD S a c V]
| lock!m )
end
| try_deliver?*[#X DU:Agent U:Site a:Agent c:"X v:X ackme: Bool] =
iflocal <a>c!v then then
if ackme ththen <DU @ U>dack![] elsdse ()
else <Q @ SQ>message!/[DU U a c V]
| update?*[a s] = lock?m= lock!(map.add m a s) )

Figure 1. Parts of the Top Level — the Query Server and Daemon D  aemon



The best scenario: good guess in Bheache. This should be the common case.

a@SsS

No guess in thé® cache.

a@SsS

try _messagel![b ¢

D@S

vl

D@S

try _message![b c|V]

The worst scenario: wrong

a@S

update![b [R

try _messagellb c|v

DR]]

guess in heache.

D@S

] try _deliver![D S

update![b [R

Horizontal arrows are synchronised communications withsingle machine (usiniflocal

chronous messages.

V

message![D S b

DU@U Q@SQ
b c v false]
message!/[D S b|c V]

DR@R

try _deliverl[D S

clv

b ¢ v false]

b@R

Q@sQ

c V]

try _deliver![Q S

DR@R

D b c v true]
clv

dack!

dack!

Figure 2. The Delivery of Location-Independent Message

try _deliver![Q S

DR@R

clv

D b c v true]

b@R

c@bl!v from ato b.

b@R

); slanted arrows are asyn-



In the cache-miss cag@sends anessage message to  written in Nomadic Pict, the runtime has a very simple ar-
the query server, which both sendgy _deliver  mes- chitecture. It consists of two layers: the Virtual Machine
sage toDR(which then delivers successfully) and ap- and /O server, above TCP. It is written in Objective Caml
date message back tb (which updates its cache). The [Ler95]. The implementation of the virtual machine builds
query server's lock is kept until the message is delivered, on the abstract machine designed for Pict [Tur96].

thus preventindgy from migrating until then. The virtual machine maintains a state consisting of an
Finally, the incorrect-cache-hit case. Supp@sbkas a agent storeof agent closures; the agent names are parti-
mistaken pointer tdU@WUIt will send atry _deliver tioned into anagent queugof agents waiting to be sched-

message t®Uwhich will be unable to deliver the message. uled, and awaiting room of agents whose process terms
DUwill then send anessage to the query server, much as are all blocked. An agent closure consists atia queue
before (except that the cache update message still gies to of Nomadic # process/environment pairs waiting to be
not toDU). scheduled (round-robinghannel queuesf terms that are
The algorithm is very asynchronous; some additional op- blocked on internal or inter-agent communication, and an
timisations are feasible (e.g. updating the daemon’s cacheenvironment. Environments record bindings of variables to
more frequently). It should have good performance for the channels and basic values. The virtual machine executes in
PA application, with most application-level messagessdeli  steps, in each of which the closure of the agent at the front
ered in a single hop and none taking more than three hopf the agent queue is executed for a fixed number of inter-
(though 5 messages). The query server is involved only be-actions. This ensures fair execution of the fine-grain par-
tween a migration and the time at which all relevant dae- allelism in the language. Agents with an empty run queue
mons receive a cache update; this should be a short intervalwait in the waiting room. They stay suspended until some
The algorithm does, however, depend on reliable ma- other agent sends an output term to them. The only oper-
chines. The query server has critical state; the daemongtions that remove agent closures from the agent store are
do not, and so in principle could be re-installed after a site terminate  andmigrate . A migrate moves an agent
crash, but it is only possible to reboot a machine when noto a remote site. On the remote site, the agent is placed at
other daemons have pointers (that they will use) to it. In a the end of the agent queue.
refined version of the protocol daemons and the QS would The multithreaded 1/O server receives incoming agents,
use a store-and-forward protocol to deliver all messages re consisting of an agent name and an agent closure; they are
liably in spite of failures; the QS would be replicated. In unmarshalled and placed in the agent store. Note that an
order to extend collaboration between clusters of domainsagent closure contains the entire state of an agent, akpwin
(e.g. over a wide-area network), a federated architecture o agent execution to be resumed from the point where it was
interconnected servers must be adopted. In order to avoidsuspended.
long hops, the agents should register and unregisterwethth  The runtime does not support any reliable protocols that
local QS on changing domains. are tailored for agents, such as the Agent Transfer Proto-
col of [LA97]. Such protocols must be encoded explicitly
in an infrastructure encoding — the key point in our experi-
ments is to understand the dependencies between machines
(both in the infrastructure and in application programs; w
Architectureof the Compiler  Programsin Nomadic Pict  want to understand exactly how the system behaves under
are compiled in the same way as they are formally specified,failure, not simply to make things that behave well under
by translating the high-level program into the low-leveida  very partial failure. The purely local implementability of
guage, which in turn is compiled to the intermediate code the runtime is good for this.
executed by the runtime. The typechecker performs partial

type inference. Typechecking is performed twice, before

and after an encoding is applied. In the last phases, any sep\cknowledgements  Wojciechowski was supported by
arately compiled modules are joined and the compiler incre- the Wolfson Foundation, Sewell was supported by EPSRC

mentally optimises the resulting intermediate code. The in 9rant GR/L 62290Calculi for Interactive Systems: The-
termediate code is architecture-independent; its cortstru  ©"Y @and Experimenand by a Royal Society University Re-
correspond approximately to those of the Low Level No- Séarch Fellowship.
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