
Technical Report
Number 568

Computer Laboratory

UCAM-CL-TR-568
ISSN 1476-2986

Dynamic rebinding for marshalling and
update, with destruct-time λ

Gavin Bierman, Michael Hicks, Peter Sewell,
Gareth Stoyle, Keith Wansbrough

February 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Gavin Bierman, Michael Hicks, Peter Sewell,
Gareth Stoyle, Keith Wansbrough

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Dynamic Rebinding for Marshalling and Update,

with Destruct-time λ

Gavin Bierman† Michael Hicks‡ Peter Sewell† Gareth Stoyle†

Keith Wansbrough†

†University of Cambridge ‡University of Maryland, College Park
{First.Last}@cl.cam.ac.uk mwh@cs.umd.edu

Abstract

Most programming languages adopt static binding, but for distributed programming an exclusive
reliance on static binding is too restrictive: dynamic binding is required in various guises, for example
when a marshalled value is received from the network, containing identifiers that must be rebound to
local resources. Typically it is provided only by ad-hoc mechanisms that lack clean semantics.

In this paper we adopt a foundational approach, developing core dynamic rebinding mechanisms
as extensions to the simply-typed call-by-value λ-calculus. To do so we must first explore refinements
of the call-by-value reduction strategy that delay instantiation, to ensure computations make use of
the most recent versions of rebound definitions. We introduce redex-time and destruct-time strategies.
The latter forms the basis for a λmarsh calculus that supports dynamic rebinding of marshalled values,
while remaining as far as possible statically-typed. We sketch an extension of λmarsh with concurrency
and communication, giving examples showing how wrappers for encapsulating untrusted code can be
expressed. Finally, we show that a high-level semantics for dynamic updating can also be based on
the destruct-time strategy, defining a λupdate calculus with simple primitives to provide type-safe
updating of running code. We thereby establish primitives and a common semantic foundation for a
variety of real-world dynamic rebinding requirements.

3

CONTENTS CONTENTS

Contents

1 Introduction 7

2 Call-by-value λ-calculus revisited 9
2.1 Construct-time . 10
2.2 Redex-time . 10
2.3 Destruct-time . 11
2.4 Properties . 12

3 A Dynamic Rebinding Calculus: λmarsh 15
3.1 Syntax . 16
3.2 Example . 17
3.3 Semantics . 17
3.4 Typing and Run-Time Errors . 20
3.5 Implementation . 22
3.6 Adding Distributed Communication . 23
3.7 Discussion . 29

4 Simple Update Calculus: λd + update 30

5 Related Work 32
5.1 Lambda Calculi . 32
5.2 Dynamic Rebinding and λmarsh . 32
5.3 Dynamic Update . 34

6 Conclusions and Future Work 34

A λc, λr and λd: Sanity Properties 36
A.1 Unique redex/context decomposition . 36
A.2 Type preservation and safety . 42

B λc, λr and λd: Obs. equiv. 46
B.1 Observational equivalence between λr and λc . 46

B.1.1 Properties of substitute-instantiate correspondence . 51
B.1.2 Erase properties . 56

B.2 Bisimulation . 59
B.2.1 c-r correspondence . 60
B.2.2 c-r correspondence . 64

B.3 Equivalence . 67
B.4 Observational equivalence between λd and λc . 71

C λmarsh: Sanity Properties 79
C.1 Unique redex/context decomposition . 79
C.2 Type preservation and partial safety . 80

References 83

4

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Lambda Calculi – Typing . 10
2 Call-by-Value Lambda Calculi Examples . 12
3 Three Call-by-Value Lambda Calculi . 13
4 Three Call-by-Value Lambda Calculi – Error Rules . 14
5 Dynamic Rebinding Calculus λmarsh: Syntax and Example . 16
6 Dynamic Rebinding Calculus λmarsh: Semantics . 18
7 Dynamic Rebinding Calculus λmarsh: Auxiliary Functions . 19
8 Dynamic Rebinding Calculus λmarsh: Error Rules . 21
9 Dynamic Rebinding Calculus λmarsh: Typing . 21
10 Distributed λmarsh: λio

marsh – Syntax . 23
11 Dynamic Rebinding with IO and Communication: λio

marsh Examples 24
12 Dynamic Rebinding with IO and Communication: Further λio

marsh Examples 25
13 Distributed λmarsh: λio

marsh – Typing . 27
14 Distributed λmarsh: λio

marsh – Semantics . 28
15 Simple Update Calculus: λupdate . 30
16 Annotated syntax λ′ . 46
17 λr′ calculus . 47
18 instantiate-substitute correspondence . 49
19 Operational reasoning of rc-simulation . 59
20 Operational reasoning of cr-simulation . 60
21 Operational reasoning of r-c equivalence . 67

5

LIST OF FIGURES LIST OF FIGURES

6

1 INTRODUCTION

1 Introduction

Most programming languages employ static binding, with the meaning of identifiers determined by their
compile-time context. In general, this gives more comprehensible code than dynamic binding alternatives,
where the meanings of identifiers depend in some sense on their ‘use-time’ contexts; static binding is also
a requirement for conventional static type systems. Modern software, though, is becoming increasingly
dynamic, as it becomes ever more modular, extensible, and distributed. Exclusive use of static binding
is too limiting in many ways:

• When values or computations are marshalled from a running system and moved elsewhere, either by
network communication or via a persistent store, some of their identifiers may need to be dynamically
rebound. These may be both ‘external’ identifiers of system-calls or language run-time library functions,
and, more interestingly, ‘internal’ identifiers from application libraries which exist in the new context.
Such libraries should not be automatically copied with values that use them, both for performance reasons
and as they may have location-dependent behaviour (e.g., routing functions). Moreover, a value may be
moved repeatedly, and the set of identifiers to be rebound may change as it moves. For example, it may
be desirable to acquire an organisation-specific library that, once resolved, should be fixed and carried
with code moved within that organisation.

• Flexible control of dynamic rebinding can support secure encapsulation of untrusted code, by allowing
access only to sandboxed resources. For example, when loading an untrusted applet, we may bind its
open identifier to a safe open function that only opens files in the /tmp directory. On the other hand,
we want the flexibility to link trusted code with the unconstrained open function.

• Systems that must provide uninterrupted service (e.g., telephone switches) must be dynamically up-
dated to fix bugs and add new functionality – essentially by loading new code into the program and then
dynamically rebinding some of the existing identifiers to the new definitions.

While dynamic rebinding is clearly useful in practice, most modern programming languages provide
only rather limited and ad-hoc mechanisms. Moreover, no adequate semantic understanding of rebinding
currently exists. Our goal in this paper is to identify core mechanisms for dynamic rebinding, as a step
towards the design of improved languages for distributed computation.

We are focussing on distributed ML-like languages: with higher-order functions, for expressiveness;
with call-by-value (CBV) reduction, for a simple evaluation order (desirable in the presence of either
communication effects or dynamic updates); and where possible with static typing, as early detection of
errors is particularly important in both distributed and long-running systems.

The motivations for dynamic rebinding arise from distribution, but it turns out that the essential
problems come from the interaction between rebinding and sequential computation. We therefore begin
with the simply-typed CBV lambda-calculus and develop calculi that support rebinding for marshalling
and update. To demonstrate feasibility we sketch an extension of the former with inter-machine commu-
nication, and discuss a possible implementation.

We express the semantics of these calculi with direct operational semantics, defining reductions over
the calculus syntax. This approach provides clarity, and should scale well to full language designs; it
avoids commitment to any particular implementation strategy. We find this preferable to the lower-level
alternatives of expressing semantics using abstract machines or encodings (into languages with references),
which we believe would lead to rather complex definitions.

In the remainder of the introduction we give an overview of our work, presented in §2–4. Relationships
with prior work, and further discussion of the design space, are in §5; in §6 we comment on future work
and conclude. Proofs of results are given in the Appendices. This technical report is an extended version
of the paper [BHS+03], with differences as follows: in §2 the typing and runtime error rules are included,
and additional examples given; in §3 the error rules for λmarsh are included and the extension with

7

1 INTRODUCTION

distributed communication is fleshed out with examples, typing and semantics; and the appendices give
proofs of the results for λc, λr, λd and λmarsh.

Corrigendum Theorem 4 of the paper [BHS+03] asserted the observational equivalence of the three
calculi λc, λr, and λd, as a check that the latter two are essentially call-by-value despite their rather
different evaluation strategies. After publication, we discovered a technical flaw in the proof, which was
based on an intricate operational correspondence argument. We conjecture that the original statement
does hold, but have not proved it. Instead, in this Technical Report we state and prove the property for
a simpler language, replacing letrec by a nonterminating Ω (with Ω −→ Ω).

Revisiting CBV λ-Calculus Consider the CBV λ-calculus, a model fragment of ML, and in particular
the way in which identifiers are instantiated. The usual operational semantics substitutes out binders –
the standard construct-time (app) and (let) rules

(app) (λz :T .e)v −→ {v/z}e
(let) let z :T = v in e −→ {v/z}e

instantiate all instances of z as soon as the value v that it has been bound to has been constructed.

This semantics is not compatible with dynamic rebinding, as it loses too much information. To see
this, suppose that e in let z = v in e transmits a function containing z to some other machine, and we
have indicated somehow that z should be dynamically rebound to the local definition when it arrives.
With the (let) rule this would be futile, as the z is substituted away before the communication occurs.
Similarly, a dynamic update of z after a (let) would be vacuous.

We therefore need a more refined semantics that preserves information about the binding structure
of terms, allowing us to delay ‘looking up’ the value associated with an identifier as long as possible
so as to obtain the most relevant/recent version of its definition. This should maintain the essentially
call-by-value nature of the calculus, however (we elaborate below on exactly what this means).

We present two reduction strategies with delayed instantiation in §2. The redex-time (λr) semantics
resolves identifiers when in redex position. While this is clean and simple, it is still unnecessarily eager,
and so we formulate the destruct-time (λd) semantics to delay resolving identifiers until their values must
be destructed.

Dynamic Rebinding: the λmarsh Calculus With λd in place we can consider dynamic rebinding of
marshalled values. The key question is this: when a value is moved between scopes, how can the user
specify which identifiers should be rebound and which should be fixed? Our answer is embodied in the
λmarsh calculus of §3, which contains primitives for packaging a value such that some of its identifiers are
fixed to bindings in the current context, while others will be rebound when unpackaged in a new scope
(e.g., when the value is moved). Which bindings will be fixed is dynamically determined with respect to
a mark. Marking is done with an expression form

e ::= ... |mark M in e

Here the mark name M is taken from a new syntactic class (not subject to binding); it names the
surrounding declaration context. Packaging and unpackaging is done by expressions

e ::= ... |marshal M e | unmarshal M e

which are both with respect to a mark. An expression marshal M e will first reduce e to a value u, and
copy all bindings within the nearest enclosing mark M ; these bindings are essentially static. Identifiers

8

2 CALL-BY-VALUE λ-CALCULUS REVISITED

of u not bound within the mark are recorded in a type environment within the packaged value, which
has form marshalled Γ u, and can be rebound. For example:

let x1:int = 5 in −→ let x1:int = 5 in
mark M in mark M in
let y1:int = 6 in let y1:int = 6 in
marshal M (x1, y1) marshalled (x1:int)(

let y1:int = 6 in (x1, y1))

Because y1 is defined within the mark M , its definition is copied into the package, while x1 is defined
outside of M , so it is simply noted in the captured type environment. When this package is unmarshalled
using unmarshal with respect to some mark M ′, x1 will be rebound to a definition outside M ′, subject
to a dynamic type environment check.

To indicate more concretely how λmarsh can form the basis for a distributed programming language
that supports mobile code, we sketch an extension with concurrency, communication and external library
functions, giving examples showing how wrappers for encapsulating untrusted code can be expressed. We
also sketch an implementation strategy.

Dynamic Update: the λupdate Calculus Dynamic updating also requires dynamic rebinding and delayed
variable instantiation. We again extend λd, here with a simple update primitive that allows a program
variable to be rebound to a new expression. The resulting λupdate calculus is given in §4. As an example,
consider the expression on the left below:

let x1 = 5 in
{y⇐(x1,6)}−−−−−−−→ let x1 = 5 in

let y1 = (4, 6) in let y1 = (x1, 6) in
let z1 = update in let z1 = () in
π1 y1 π1 y1

The update expression indicates that an update is possible at the point during evaluation when update
appears in redex position. At that run-time point the user can supply an update of the form {w ⇐ e},
indicating that w should be rebound to expression e. In the example this update is {y ⇐ (x1, 6)}; the
let-binder for y1 is modified accordingly yielding the expression on the right above, and thence a final
result of 5. Here any identifier in scope at the update point can be rebound, to an expression that may
mention identifiers in scope at its binding point. We define what it means for an update to be well-typed
with respect to a program; applying well-typed updates preserves typing. The use of λd enables us to
deal simply and cleanly with higher-order functions, largely ignored in past work. We imagine λupdate

will form the core of future calculi that include other desirable features, such as state transformation,
abstract types, changing the types of variables, multi-threading, etc. As a first step, in [BHSS03] we
develop a model of updating in the style of Erlang [AVWW96].

2 Call-by-value λ-calculus revisited

This section reconsiders the call-by-value lambda calculus, exploring refined operational semantics that
instantiate identifiers at different times. We take a standard syntax:

Identifiers x , y , z
Integers n
Types T ::= int | unit | T ∗ T ′ | T → T ′

Expressions e ::= z | n | () | (e, e ′) | πr e
| λz :T .e | ee ′ | let z = e in e ′

| letrec z = λx :T .e in e ′

9

2.1 Construct-time 2 CALL-BY-VALUE λ-CALCULUS REVISITED

Γ ` e:T

Γ, z :T ,Γ′ ` z :T

Γ ` n:int
Γ ` ():unit

Γ ` e:T
Γ ` e ′:T ′

Γ ` (e, e ′):T ∗ T ′
Γ ` e:T1 ∗ T2

Γ ` πr e:T1

Γ, z :T ` e:T ′

Γ ` λz :T .e:T → T ′

Γ ` e ′:T → T ′

Γ ` e:T

Γ ` e ′e:T ′

Γ ` e:T
Γ, z :T ` e ′:T ′

Γ ` let z = e in e ′:T ′

Γ, z :T → T ′, x :T ` e:T ′

Γ, z :T → T ′ ` e ′:T ′′

Γ ` letrec z = λx :T .e in e ′:T ′′

Figure 1: Lambda Calculi – Typing

where r ranges over {1, 2}. Expressions are taken up to alpha equivalence (though contexts are not). It
is simply-typed, with a typing judgement Γ ` e:T defined as usual, where Γ ranges over sequences of z :T
pairs containing at most one such for any z . The (standard) typing rules are given in Figure 1.

2.1 Construct-time

The standard semantics, here called the construct-time semantics, is recalled at the top of Figure 3.
We define a small-step reduction relation e −→ e ′, using evaluation contexts E , and a run-time-error
predicate e err defined in Figure 4. Context composition and application are both written with a dot,
e.g., E .E ′ and E .e, instead of the usual heavier brackets E [e]. Standard capture-avoiding substitution of
e for z in e ′ is written {e/z}e ′. We write hb(E), defined below, for the list of binders around the hole of
E . For now we will be concerned only with the behaviour of closed expressions, without external library
functions. The choice of a small-step semantics will be important when we add dynamic rebinding and
communication later.

2.2 Redex-time

The redex-time and destruct-time semantics are also shown in Figure 3. Instead of substituting bindings
of identifiers to values, as in the construct-time (app) and (let), both semantics introduce a let to record
a binding of the abstraction’s formal parameter to the application argument, e.g.,

(λz :T .e)u −→ let z = u in e

This is reminiscent of an explicit substitution [ACCL90], save that here the let will not be percolated
through the term structure, and also of the λlet-calculus [AFM+95], though we are in a CBV not CBN
setting, and do not allow commutation of lets. In contrast, we must preserve let-binding structure, since
our later rebinding and update primitives will depend on it.

Example (1) in Figure 2 illustrates (app), contrasting it with the substitution approach of the
construct-time semantics. Note that the resulting let z = 8 in 7 is a λr (and λd) value. Because

10

2 CALL-BY-VALUE λ-CALCULUS REVISITED 2.3 Destruct-time

values may involve lets, some clean-up is needed to extract the usual final result, for which we define

[|n |] = n
[| () |] = ()

[| (u, u ′) |] = ([| u |], [| u ′ |])
[|λx :T .e |] = λx :T .e

[| let z = u in u ′ |] = {[| u |]/z}[| u ′ |]
[| letrec z = λx :T .e in u |] = {λx :T .letrec z = λx :T .e in e/z}[| u |] if z 6= x

[| z |] = z

taking any value (λr or λd) and substituting out the lets.

The semantics must allow reduction under lets – in addition to the atomic evaluation contexts A we
had above (here A1) we now have the binding contexts A2 ::= let z = u in . Reduction is closed under
both. Redex-time variable instantiation is handled with the (inst) rule, which instantiates an occurrence
of the identifier z in redex position with the innermost enclosing let that binds that identifier. The side-
condition z /∈ hb(E3) ensures that the correct binding of z is used. Here hb(E) denotes the list of identifiers
that bind around the hole of a context E , is defined by hb() = []; hb(E .(let z = e in)) = hb(E), z ;
hb(E .(letrec z = λx :T .e in)) = hb(E), z ; and hb(E .A) = hb(E) for any other atomic context A.
We overload ∈ for lists. The other side-condition, fv(u) /∈ z ,hb(E3), which can always be achieved by
alpha conversion, prevents identifier capture, making E3 and let z = u in transparent for u. Here fv()
denotes the set of free identifiers of an expression or context.

Example (2) in Figure 2 illustrates identifier instantiation. While the construct-time strategy substi-
tutes for x immediately, the redex-time strategy instantiates x under the let, following the evaluation
order. Both this and the first example also illustrate a further aspect of the redex-time calculus: values
u include let-bindings of the form let z = u in u ′. Intuitively, this is because a value should ‘carry
its bindings with it’ preventing otherwise stuck applications, e.g., (λx :int.x)(let z = 3 in 5) or (for an
example where the let is not garbage) (λf :(int → int).x 2)(let z = 3 in λx :int.z). Note that identifiers
are not values, so z , (z , z) and let z = 3 in (z , z) are not values. Values may contain free identifiers
under lambdas, as usual, so λx :int.z is an open value and let z = 3 in λx :int.z is a closed value.

The (proj) and (app) rules are straightforward except for the additional binding context E2. This is
necessary as a value may now have some let bindings around a pair or lambda; terms such as π1 (let z =
3 in (4, 5)) or (more interestingly) π1 (let z = 3 in (λx :int.z , 5)) would otherwise be stuck. The side
condition for (app) can always be achieved by alpha conversion; it prevents capture.

2.3 Destruct-time

The redex-time strategy is appealingly simple, but it instantiates earlier than necessary. In example (2)
in Figure 2, both occurrences of x are instantiated before the projection reduction. However, we could
delay resolving x until after the projection; we see this behaviour in the destruct-time semantics in the
third column. In many dynamic rebinding scenarios it is desirable to instantiate as late as possible.1 For
example, in repeatedly-mobile code, we want to instantiate each identifier only as needed to always pick
up local definitions. Similarly, for dynamically updateable code we want to delay looking up a variable
as long as possible, so as to acquire the most recent version.

To instantiate as late as possible, while remaining call-by-value, we instantiate only identifiers that are
immediately under a projection or on the left-hand-side of an application. In these ‘destruct’ positions
their values are about to be deconstructed, and so their outermost pair or lambda structure must be made
manifest. The destruct contexts R ::=πr | u can be seen as the outer parts of the construct-time (proj)

1“It is the conventional wisdom of distributed programming that in any cases of this sort early binding is extremely
wicked, and every opportunity must be taken to allow for variability.” [Nee93].

11

2.4 Properties 2 CALL-BY-VALUE λ-CALCULUS REVISITED

Construct-time λc Redex-time λr Destruct-time λd

(1) (λz .7)8 (λz .7)8 (λz .7)8
−→ 7 let z = 8 in 7 let z = 8 in 7

(2) let x = 5 in π1 (x , x) let x = 5 in π1 (x , x) let x = 5 in π1 (x , x)
−→ π1 (5, 5) let x = 5 in π1 (5, x) let x = 5 in x
−→ 5 let x = 5 in π1 (5, 5)
−→ let x = 5 in 5

(3) let x = (5, 6) in let y = x in π1 y let x = (5, 6) in let y = x in π1 y let x = (5, 6) in let y = x in π1 y
−→ let y = (5, 6) in π1 y let x = (5, 6) in let y = (5, 6) in π1 y let x = (5, 6) in let y = x in π1 x
−→ π1 (5, 6) let x = (5, 6) in let y = (5, 6) in π1 (5, 6) let x = (5, 6) in let y = x in π1 (5, 6)
−→ 5 let x = (5, 6) in let y = (5, 6) in 5 let x = (5, 6) in let y = x in 5

(4) π1 (π2 (let x = (5, 6) in (4, x)) π1 (π2 (let x = (5, 6) in (4, x)) π1 (π2 (let x = (5, 6) in (4, x))
−→ π1 (π2 (4, (5, 6))) π1 (π2 (let x = (5, 6) in (4, (5, 6))) π1 (let x = (5, 6) in x)
−→ π1 (5, 6) π1 (let x = (5, 6) in (5, 6)) π1 (let x = (5, 6) in (5, 6))
−→ 5 let x = (5, 6) in 5 let x = (5, 6) in 5

Figure 2: Call-by-Value Lambda Calculi Examples

and (app) redexes. The choice of destruct contexts is determined by the basic redexes – for example, if
we added arithmetic operations, we would need to instantiate identifiers of int type before using them.

The essential change from the redex-time semantics is that now any identifier is a value (u ::= ... | z).
The (proj) and (app) rules are unchanged. The (inst) rule is replaced by two that together instantiate
identifiers in destruct contexts R. The first (inst-1) copes with identifiers that are let-bound outside a
destruct context, e.g.:

let z = (1, 2) in π1 z −→ let z = (1, 2) in π1 (1, 2)

whereas in (inst-2) the let-binder and destruct context are the other way around:

π1 (let z = (1, 2) in z) −→ π1 (let z = (1, 2) in (1, 2))

Further, we must be able to instantiate under nested bindings between the binding in question and its
use. Therefore, (inst-2) must allow additional bindings E2 and E ′2 between R and the let and between
the let and z . Similarly, (inst-1) must allow bindings E2 between the R and z ; it must allow both
binding and evaluation contexts E3 between the let and the R, e.g., for the instance

let z = (1, (2, 3)) in π1 (π2 z)
−→ let z = (1, (2, 3)) in π1 (π2 (1, (2, 3)))

with E3 = π1 , R = π2 and E2 = . The conditions z /∈ hb(E3,E2) and z /∈ hb(E ′2) ensure that the
correct binding of z is used; the other conditions prevent capture and can always be achieved by alpha
equivalence.

Example (3) illustrates a chain of instantiations, from outside-in for λr and from inside-out for λd.

2.4 Properties

This subsection gives properties of our various λ-calculi: sanity checks to confirm that our definitions are
coherent and more substantial results showing that λr and λd are essentially CBV. Details of the proofs
can be found in the appendices.

12

2 CALL-BY-VALUE λ-CALCULUS REVISITED 2.4 Properties

Construct-time λc

Values v ::= n | () | (v , v ′) | λz :T .e
Atomic evaluation contexts A ::= (, e) | (v ,) | πr | e | v | let z = in e
Evaluation contexts E ::= | E .A

(proj) πr (v1, v2) −→ vr
e −→ e ′

E .e −→ E .e ′(app) (λz :T .e)v −→ {v/z}e
(let) let z = v in e −→ {v/z}e
(letrec) letrec z = λx :T .e in e ′ −→ {λx :T .letrec z = λx :T .e in e/z}e ′ if z 6= x

Redex-time λr

Values u ::= n | () | (u, u ′) | λz :T .e | let z = u in u ′ |
letrec z = λx :T .e in u

Atomic evaluation contexts A1 ::= (, e) | (u,) | πr | e | u | let z = in e
Atomic bind contexts A2 ::= let z = u in | letrec z = λx :T .e in
Evaluation contexts E1 ::= | E1.A1

Bind contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2
e −→ e ′

E3.e −→ E3.e
′

(proj) πr (E2.(u1, u2)) −→ E2.ur
(app) (E2.(λz :T .e))u −→ E2.let z = u in e if fv(u) /∈ hb(E2)
(inst) let z = u in E3.z −→ let z = u in E3.u

if z /∈ hb(E3) and fv(u) /∈ z ,hb(E3)
(instrec) letrec z = λx :T .e in E3.z −→ letrec z = λx :T .e in E3.λx :T .e

if z /∈ hb(E3) and fv(λx :T .e) /∈ hb(E3)

Destruct-time λd

Values u ::= n | () | (u, u ′) | λz :T .e | let z = u in u ′ |
letrec z = λx :T .e in u | z

Atomic evaluation contexts A1 ::= (, e) | (u,) | πr | e | u | let z = in e
Atomic bind contexts A2 ::= let z = u in | letrec z = λx :T .e in
Evaluation contexts E1 ::= | E1.A1

Bind contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Destruct contexts R ::= πr | u
e −→ e ′

E3.e −→ E3.e
′

(proj) πr (E2.(u1, u2)) −→ E2.ur
(app) (E2.(λz :T .e))u −→ E2.let z = u in e if fv(u) /∈ hb(E2)
(inst-1) let z = u in E3.R.E2.z −→ let z = u in E3.R.E2.u

if z /∈ hb(E3,E2) and fv(u) /∈ z ,hb(E3,E2)
(inst-2) R.E2.let z = u in E ′2.z −→ R.E2.let z = u in E ′2.u

if z /∈ hb(E ′2) and fv(u) /∈ z ,hb(E ′2)
(instrec-1) letrec z = λx :T .e in E3.R.E2.z −→ letrec z = λx :T .e in E3.R.E2.λx :T .e

if z /∈ hb(E3,E2) and fv(λx :T .e) /∈ hb(E3,E2)
(instrec-2) R.E2.letrec z = λx :T .e in E ′2.z −→ R.E2.letrec z = λx :T .e in E ′2.λx :T .e

if z /∈ hb(E ′2) and fv(λx :T .e) /∈ hb(E ′2)

Figure 3: Three Call-by-Value Lambda Calculi

13

2.4 Properties 2 CALL-BY-VALUE λ-CALCULUS REVISITED

Construct-time λc

(proj-err) E .πr v err if not exists v1, v2.v = (v1, v2)
(app-err) E .v ′v err if not exists (λz :T .e).v ′ = λz :T .e

Redex-time λr

Outermost-structure-manifest values w ::= n | () | (u, u ′) | λz :T .e

(proj-err) E3.πr (E2.w) err if ¬∃u1, u2.w = (u1, u2)
(app-err) E3.(E2.w)u err if ¬∃(λz :T .e).w = λz :T .e

Destruct-time λd

Outermost-structure-manifest values w ::= n | () | (u, u ′) | λz :T .e | z

(proj-err) E3.πr (E2.w) err if ¬∃u1, u2.w = (u1, u2) and ¬∃z ∈ hb(E3,E2).w = z
(app-err) E3.(E2.w)u err if ¬∃(λz :T .e).w = λz :T .e and ¬∃z ∈ hb(E3,E2).w = z

Figure 4: Three Call-by-Value Lambda Calculi – Error Rules

First, we recall the important unique decomposition property of evaluation contexts for λc, essentially
as in [FF87, p. 200], and generalise it to the more subtle evaluation contexts of λr and λd:

Theorem 1 (Unique decomposition for λr and λd) Let e be a closed expression. Then, in both the
redex-time and destruct-time calculi, exactly one of the following holds: (1) e is a value; (2) e err; (3)
there exists a triple (E3, e

′, rn) such that E3.e
′ = e and e ′ is an instance of the left-hand side of rule rn.

Furthermore, if such a triple exists then it is unique.

Note that the destruct-time error rules defining e err, given in Figure 4, must include cases for identifiers
in destruct contexts that are not bound by enclosing lets and so are not instantiable, giving stuck non-
value expressions. Determinacy is a trivial corollary. We also have type preservation and type safety
properties for the three calculi.

Theorem 2 (Type preservation for λc, λr and λd) If Γ ` e:T and e −→ e ′ then Γ ` e ′:T .

Theorem 3 (Safety for λc, λr and λd) If ` e:T then ¬(e err).

Finally we would like to show that all three calculi are observationally equivalent, and hence that
both λr and λd are essentially call-by-value. As stated in the introduction, after publication of [BHS+03]
we discovered a technical flaw in the proof of our original theorem, which was based on an intricate
operational correspondence argument. We conjecture that the original statement does hold, but have
not proved it. Instead, in this Technical Report we state and prove the property for a simpler language,
replacing letrec by a nonterminating Ω (with Ω −→ Ω). The proof remains non-trivial; it involves
constructing a tight correspondence between reduction steps in the three calculi. As we noted earlier,
values in λr and λd may need to be ‘cleaned-up’ to exactly correspond to λc values.

Theorem 4 (Observational Equivalence) For the calculi with Ω replacing letrec :

1. If ` e:int and e −→∗c n then e −→∗r u and e −→∗d u′ for some u and u ′ with [| u |] = [| u ′ |] = n.

2. If ` e:int and e −→∗r u (or e −→∗d u) then for some n we have e −→∗c n and [| u |] = n.

14

3 A DYNAMIC REBINDING CALCULUS: λMARSH

Proof Sketch The proof technique is the same for both claims: generalise the claim to arbitrary type and
proceed to construct a bisimulation that captures a tight operational correspondence between reductions
in the different calculi. To do so, we introduce intermediate caluli with annotated lets, distinguishing
lets that, in the λc reduction sequence, correspond to substitutions from those that have yet to be
reached. Additional transitions move value-lets from the latter to the former. Bisimulations can then be
constructed by factoring simulations through these intermediate calculi. A key notion in the simulation
proofs is that of instantiation normal form. Essentially a term is in instantiation normal form if it can
not do an instantiation reduction. It is important that this form is always finitely reachable by reduction
from any term. Finally, we use the bisimulation and some auxiliary lemmas to prove the generalised
claim.

3 A Dynamic Rebinding Calculus: λmarsh

Many applications require a mix of dynamically and statically bound variables. Consider sending a
function value between machines. It might contain identifiers for

(1) ubiquitous standard library calls, e.g., print , which should be rebound at the destination;
(2) application-specific location-dependent library calls, e.g., routing functions, which should be re-

bound at the destination;
(3) application code which is not location-dependent but (for performance) should be rebound rather

than sent; and
(4) other let-bound application values, which should be sent with it.

Moreover, for both (1) and (2) one may wish the rebinding to be to non-standard definitions, to securely
encapsulate (sandbox) untrusted code.

In this section we develop a calculi to support all of the above. The calculus λmarsh extends the
destruct-time λd-calculus of §2.3 with high-level representations of marshalled values and primitives to
manipulate them. We make two main choices. First, to have as intuitive a semantics as possible we want
dynamic rebinding to only occur when unmarshalling values, not during normal computation. Second, to
allow the programmer to cleanly and flexibly notate which definitions should be fixed and which should
be rebindable, we introduce marks

e ::= ... |mark M in e

which name contexts. Marshal and unmarshal operations

e ::= ... |marshal M e | unmarshal M e

are each with respect to a mark: a marshal M u packages the value u together with all the bindings
within the closest enclosing mark M (thus fixing them); it cuts any bindings of identifiers in u that
cross that mark M (thus making them rebindable). When the packaged value is unpackaged by an
unmarshal M ′ , the latter identifiers are rebound to binders outside the closest enclosing mark M ′.

The mark M in e construct does not bind M ; marks have global meaning across a distributed
system. Allowing the choice of context to be made differently for each marshal and unmarshal provides
important flexibility, especially for implementing secure encapsulation; note that we have just a single
class of identifiers, rather than dynamic and static forms. In the simplest practical case each program
might have a single mark Lib in , distinguishing library code, defined above the mark, from application
code, defined below it.

For simplicity, λmarsh simulates communication using beta-reduction (in fact, λd (inst) reduction), and
omits treatment of (1), focusing on the more interesting cases of rebinding application-specific libraries.
At the end of this section we sketch λio

marsh, which straightforwardly extends λmarsh with communication
and external identifiers, and discuss alternative design choices.

15

3.1 Syntax 3 A DYNAMIC REBINDING CALCULUS: λMARSH

Syntax

Integers n Identifiers x , y , z Tags i , j , k Context marks M

Type environments Γ finite partial functions from (identifier,tag) pairs to types
Types T ::= int | unit | T ∗ T ′ | T → T ′ | Marsh T
Expressions e ::= zi | n | () | (e, e ′) | πr e | λxi:T .e | ee ′ |

let zk:T = e in e ′ | letrec zk:T ′ = λxi:T .e in e ′|
mark M in e |marshal M e |marshalled Γ u | unmarshal M e

Example

let y1:int = 6 in
mark M in
let x1:Marsh (int ∗ int) = (

let z1:int = 3 in

marshal M (y1, z1)) in

let y2:int = 7 in
mark M ′ in
unmarshal M ′ x1

where T = Marsh (int ∗ int)

(marshal)−→
let y1:int = 6 in
mark M in

let x1:T = (

let z1:int = 3 in

marshalled (y0:int) (
let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in
unmarshalM ′ x1

(inst-1)−→
let y1:int = 6 in
mark M in
let x1:T = (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in

unmarshal M ′ (

let z1:int = 3 in

marshalled (y0:int) (
let z1:int = 3 in
(y0, z1)))

(unmarshal)−→
let y1:int = 6 in
mark M in
let x1:T = (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in

let z1:int = 3 in
(y2, z1)

Figure 5: Dynamic Rebinding Calculus λmarsh: Syntax and Example

3.1 Syntax

The λmarsh syntax and an example, discussed below, are given in Figure 5; the new semantic rules are
given in Figures 6 and 8. The calculus requires a more elaborate treatment of alpha equivalence than
λd. There – as usual for λ-calculi – we had to use alpha equivalence during normal computation steps, to
avoid mistaken capture of identifiers as the rules move subterms between different scopes. Here that is
still required, but occurrences of the ‘same’ identifier under different bindings must be related so that the
identifier can be marshalled with respect to one and unmarshalled with respect to another. Accordingly,
instead of working with identifiers x , we work with variables xi that are pairs of an identifier x and a tag
i , similar to the external and internal names used in some module systems. Alpha equivalence changes
only the tags; tags for different identifiers lie in different namespaces, so e.g.,

λx1:T .x1 = λx2:T .x2 6= λy2:T .y2 and
λx1:T .λy1:T .(x1, y1) = λx2:T .λy3:T .(x2, y3)

16

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.2 Example

In practice tags would not appear in source programs; they are needed only for the semantics. The fv()
and hb() functions now give sets and lists of variables, respectively, not identifiers. Binding is as follows:

Term Binding
λxi:T .e xi binds in e
let zk:T = e ′ in e zk binds in e
letrec zk:T ′ = λxi:T .e

′ in e xi binds in e ′ and the zk binds in λxi:T .e
′ and e

marshalled Γ u Free zk of u are bound by occurrences of
zk in the domain of Γ (for well-typed terms
fv(marshalled Γ u) will always be empty).

Note that the argument u of marshalled Γ u is required to be a value.
As a minor variant, one could take a single namespace of tags, e.g. for λxi:T .e having i binding in e.

That would be technically slightly simpler, but examples would be cluttered by many different tags.

3.2 Example

As an example, consider the expression on the left of Figure 5. The value (y1, z1) is marshalled with
respect to the context marked M , where y = 6, but unmarshalled with respect to the context M ′, where
y = 7. The z1, on the other hand, is bound below mark M , so its binding z1 = 3 is grabbed and carried
with it.

The reduction sequence is shown in the Figure, boxing key parts of redexes and contracta.
The first reduction step copies the bindings that are inside mark M and around the marshal expression
(here just z1 = 3), ensuring that these have static-binding semantics. This gives a value

marshalled (y0:int) (let z1 = 3 in (y0, z1))

This marshalled Γ u form would not occur in source programs. The free variables of u are subject to
rebinding when this is unmarshalled, so we regard all of fv(u) as bound by Γ in marshalled Γ u. This
is emphasised in the example by showing a y0 alpha-variant.

The second step instantiates the x1 under the (unmarshal M ′) with its value let z1 =
3 in ...marshalled.... (In this case the outer z1 let is redundant but in more complex cases it would not
be, e.g., if x1 were bound to a pair of the marshalled value and some other value mentioning z1.)

The third step performs the unmarshal, rebinding the y0 in the packaged value let z1 = 3 in (y0, z1)
to the innermost yi binder outside mark M ′ – here, to y2. It also discards the now-redundant bindings.

Modulo final instantiation, the result is (7, 3) not (6, 3), showing the y1 and z1 have been treated
dynamically and statically respectively. For contrast, putting the first let y1 = 6 inside the first mark M
would give (6, 3).

3.3 Semantics

Turning now to the details of the rules, the (proj), (app) and (inst-r) rules are as in λd but with zk instead
of z . In the (marshal) and (unmarshal) rules we abuse notation, writing the context mark M in as
mark M . The (marshal) rule copies all bindings and marks between the marshal M and the closest
enclosing mark M , using the bindmark() auxiliary to extract the bind and mark components of a context
E3, discarding the evaluation context components: bindmark() = , bindmark(E3.A1) = bindmark(E3),
and bindmark(E3.A2) = bindmark(E3).A2. The predicate dhb(E3) holds iff the hole-binders of E3 are
all distinct (which can always be made so by alpha conversion). The auxiliary env(E3) extracts the type
environment of the hole-binders of E3, so they can be recorded in the marshalled value. This and other
auxiliary functions are collected in Figure 7.

17

3.3 Semantics 3 A DYNAMIC REBINDING CALCULUS: λMARSH

Values u ::= n | () | (u, u ′) | λxi:T .e | let zk:T = u in u ′

| letrec zk:T ′ = λxi:T .e in u | zi
| mark M in u |marshalled Γ u

Atomic evaluation contexts A1 ::= (, e) | (u,) | πr | e | (λxi:T .e) | let zk:T = in e
| marshal M | unmarshal M

Atomic bind and mark contexts A2 ::= let zk:T = u in | letrec zk:T ′ = λxi:T .e in
| mark M in

Evaluation contexts E1 ::= | E1.A1

Bind and mark contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Destruct contexts R ::= πr | u | unmarshal M

The new rules are:

(marshal) E3.mark M .E ′3.marshal M u −→ E3.mark M .E ′3.marshalled (env(E3)) (bindmark(E ′3).u)
if dhb(E3) and mark M not around in E ′3

(unmarshal) E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u −→ E3.mark M .E ′3.S[u]
if dhb(E3), dhb(E ′3,hb(E3)), S[=]rebind(Γ, thb(E3)) is defined,
and mark M not around in E ′3.

In addition we have rules (proj), (app), (inst-r), (instrec-r) exactly as in λd except for zk replacing z , the
addition of explicit types, and ⇀ replacing −→ . These reductions are closed under E3, whereas the (marshal)
and (unmarshal) rules are global.

(proj) πr (E2.(u1, u2)) ⇀ E2.ur
(app) (E2.(λzk:T .e))u ⇀ E2.let zk:T = u in e

if fv(u) /∈ hb(E2)
(inst-1) let zk:T = u in E3.R.E2.zk ⇀ let zk:T = u in E3.R.E2.u

if zk /∈ hb(E3,E2) and fv(u) /∈ zk,hb(E3,E2)
(inst-2) R.E2.let zk:T = u in E ′2.zk ⇀ R.E2.let zk:T = u in E ′2.u

if zk /∈ hb(E ′2) and fv(u) /∈ zk,hb(E ′2)

(instrec-1)
letrec zk:T ′ = λxi:T .e in E3.R.E2.zk ⇀ letrec zk:T ′ = λxi:T .e in E3.R.E2.λxi:T .e

if zk /∈ hb(E3,E2) and fv(λxi:T .e) /∈ hb(E3,E2)
(instrec-2)
R.E2.letrec zk:T ′ = λxi:T .e in E ′2.zk ⇀ R.E2.letrec zk:T ′ = λxi:T .e in E ′2.λxi:T .e

if zk /∈ hb(E ′2) and fv(λxi:T .e) /∈ hb(E ′2)

e ⇀ e ′

E3.e −→ E3.e
′

Figure 6: Dynamic Rebinding Calculus λmarsh: Semantics

18

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.3 Semantics

Define the list of hole-binders of E3, written hb(E3), by:

hb() = []
hb(E3.A1) = hb(E3)
hb(E3.(let zk:T = u in)) = hb(E3), zk
hb(E3.(letrec zk:T ′ = λxi:T .e in)) = hb(E3), zk
hb(E3.(mark M in)) = hb(E3)

(writing snoc with a comma).
Define the list of typed hole-binders of E3, written thb(E3), by:

thb() = []
thb(E3.A1) = thb(E3)
thb(E3.(let zk:T = u in)) = thb(E3), (zk:T)
thb(E3.(letrec zk:T ′ = λxi:T .e in)) = thb(E3), (zk:T ′)
thb(E3.(mark M in)) = thb(E3)

Say dhb(E3) iff the list hb(E3) contains no two equal elements. For such E3 write env(E3) for the
obvious type environment.
Define a generalisation of the dhb() predicate as follows. For a set X of (identifier,tag) pairs take
dhb(E2,X) to be the least such that

• dhb(,X)

• dhb(E2,X) ∧ zk /∈ hb(E2) ∪X =⇒ dhb(E2.let zk:T = u in ,X)

• dhb(E2,X) ∧ zk /∈ hb(E2) ∪X =⇒ dhb(E2.letrec zk:T ′ = λxi:T .e in ,X)

• dhb(E2,X) =⇒ dhb(E2.mark M in ,X)

and define dhb(E3,X) by similar clauses together with dhb(E3,X) =⇒ dhb(E3.A1,X).

Figure 7: Dynamic Rebinding Calculus λmarsh: Auxiliary Functions

19

3.4 Typing and Run-Time Errors 3 A DYNAMIC REBINDING CALCULUS: λMARSH

The (unmarshal) rule rebinds the fv(u) to the let-binders in E3 around the nearest enclosing mark M ,
using the auxiliary function rebind(,) to construct the appropriate substitution. Here dhb(E ′3,hb(E3))
holds iff the hole-binders of E ′3 are distinct from each other and from all the variables in hb(E3) (always
possible by alpha conversion). The thb(E3) gives the list of (variable,type) pairs, which are the typed
hole-binders of E3 (type annotations were added to lets to facilitate this). Finally, rebind(Γ,L), for a
type environment Γ and list of typed hole-binders L, is a substitution taking each xi in dom(Γ) to the
rightmost xj in L, if the types correspond appropriately. It is defined by

rebind(Γ, []){
undefined if Γ nonempty
= {} otherwise

rebind(Γ, (L, (xi:T))){
undefined, if ∃j ,T ′.(xj :T ′) ∈ Γ ∧ T ′ 6= T
= {xi/xJ} ∪ rebind(Γ− xJ ,L), otherwise

where xJ = {xj | (xj :T) ∈ Γ}

(abusing notation to treat the partial function Γ as a set of tuples and writing {xi/xJ} for the substitution
of xi for all the xj ∈ xJ). To keep a unique decomposition property the (unmarshal) rule is global, not
closed under additional E3. We briefly justify why the (unmarshal) rule discards its E2 context: observe
the right hand side of the rule and notice that the binders in the E2 context can no longer be referenced
after unmarshalling, the only possible references to the enclosing E2 are the free variables of u, but
subsequent to this reduction these variables are rebound to binders in E3.

Reduction must take place under a mark so A2 now contains mark M in . To maintain a CBV
semantics both marshal and unmarshal should fully reduce their arguments, so they are included in
the evaluation contexts A1. The (unmarshal) rule can only fire if the argument to unmarshal is of the
form marshalled Γ u, so the destruct contexts must include unmarshal M .

There are several choices embodied in the semantics. First, in (marshal) bindmark(E ′3) records the
marks of E ′3 as well as its let-bindings, so that uses of marshal and unmarshal within u will behave
as expected. Second, in (marshal) we record the full type environment env(E3), not just its restriction
to fv(u). The latter would be more liberal (more unmarshals would succeed) but we believe would lead
to code that is hard to maintain: success of an unmarshal would depend on the free variables of the
marshalled value, instead of simply on the binders above the mark used for marshalling. Third, if there
is shadowing of identifiers outside a mark then a marshalled Γ u may have Γ with xi:T and xj :T

′ for
T 6= T ′, in which case (unmarshal) will always fail. One could check this at (marshal)-time, or indeed
forbid shadowing outside marks.

3.4 Typing and Run-Time Errors

In some cases one would expect dynamic rebinding to require a run-time check to ensure safety, e.g.,
if code is sent to a site that may or may not provide some resource it requires. For λmarsh we have
new run-time errors, if a marshal or an unmarshal refers to a mark which is not in scope, or if at
(unmarshal)-time the environment does not have the required binders at the correct types. At the very
least, however, one would like a type system to exclude all run-time errors except these. This can be
done by a simple type system (collected in Figure 9), as usual but with a type Marsh T of marshalled

20

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.4 Typing and Run-Time Errors

Outermost-structure-manifest values w ::= n | () | (u, u ′) | λz :T .e | zk |marshalled Γ u

(proj-err) E3.πr (E2.w) err
if ¬∃u1, u2.w = (u1, u2) and ¬∃zk ∈ hb(E2,E3).w = zk

(app-err) E3.(E2.w)u err
if ¬∃(λxi:T .e).w = λxi:T .e and ¬∃zk ∈ hb(E2,E3).w = zk

(grab-err) E3.marshal M u err′

if mark M not around in E3

(ungrab-err1) E3.unmarshalM .E2.w err
if ¬∃u,Γ.w = marshalled Γ u and ¬∃zk ∈ hb(E2,E3).w = zk

(ungrab-err2) E3.unmarshalM .E2.marshalled Γ u err′

if mark M not around in E3

(ungrab-err3) E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u err′

if rebind(Γ, thb(E3)) is not defined

Figure 8: Dynamic Rebinding Calculus λmarsh: Error Rules

Γ ` e:T

Γ, xi:T ` xi:T

Γ ` n:int
Γ ` ():unit

Γ ` e:T
Γ ` e ′:T ′

Γ ` (e, e ′):T ∗ T ′
Γ ` e:T1 ∗ T2

Γ ` π1 e:T1

Γ ` π2 e:T2

Γ, xi:T ` e:T ′

Γ ` λxi:T .e:T → T ′

Γ ` e ′:T → T ′

Γ ` e:T

Γ ` e ′e:T ′

Γ ` e:T
Γ, xi:T ` e ′:T ′

Γ ` let xi:T = e in e ′:T ′

Γ, zk:T → T ′, xi:T ` e:T ′

Γ, zk:T → T ′ ` e ′:T ′′

Γ ` letrec zk:T → T ′ = λxi:T .e in e ′:T ′′

Γ ` e:T
Γ `mark M in e:T

Γ ` e:T
Γ `marshal M e:Marsh T

Γ ` e:Marsh T
Γ ` unmarshal M e:T

Γ′ ` u:T

Γ `marshalled Γ′ u:Marsh T

Figure 9: Dynamic Rebinding Calculus λmarsh: Typing

21

3.5 Implementation 3 A DYNAMIC REBINDING CALCULUS: λMARSH

type-T values, and rules

Γ ` e:T
Γ `mark M in e:T

Γ ` e:T
Γ `marshal M e:Marsh T

Γ ` e:Marsh T
Γ ` unmarshal M e:T

Γ′ ` u:T

Γ `marshalled Γ′ u:Marsh T

Partitioning the run-time errors into e err for the usual projection/application errors, together with
unmarshalling of values not of the form marshalled Γ u, and e err′ for the new errors above (defined in
Figure 8), we have:

Theorem 5 (Unique redex/context decomposition) Let e be a closed λmarsh expression. Then ex-
actly one of the following holds: (1) e is a value; (2) e err; (3) e err′; (4) there exist E3, e0, rn such that
E3.e0 = e and e0 is an instance of the left-hand side of rule rn ∈ (proj,app,inst-r,instrec-r). (5) there
exists rn ∈(marshal),(unmarshal) such that e is an instance of the left-hand side of rule rn. Furthermore,
if such a triple or rn exists then it is unique.

Theorem 6 (Type Preservation for λmarsh)
If ` e:T and e −→ e ′ then ` e ′:T

Theorem 7 (Partial Safety for λmarsh)
If ` e:T then ¬(e err).

A full language would raise catchable exceptions in the e err′ cases, thereby allowing code to dynam-
ically check the presence of resources.

Ideally, of course, one would like a type system that could statically prevent all run-time errors, in
the case where all parts of the (distributed) system can be type-checked coherently. Unfortunately static
typing and dynamic rebinding seem to be at odds. Any sound type system for λmarsh must constrain
the contexts around marks, ensuring that when unmarshalling a marshalled value the context of the
unmarshal mark contains bindings for all identifiers that were in the context of the marshal mark. The
problem is that reduction moves subterms, in particular subterms containing marks, so the shape of the
context around a mark can change dynamically. One can devise rather draconian systems that prevent
some run-time errors, but it is hard to see what a really useful system could be like. Moreover, in the
wide-area setting it is generally impossible to guarantee that all parts are type-checked together, so we
believe that the limited guarantees of the simple type system above may have to suffice.

In practice one would expect programs to contain only a few marks. For ML-like languages with
second-class module systems it may be desirable to allow marks only between module declarations – a
considerable simplification.

3.5 Implementation

The reduction semantics as presented is not proposed as a realistic implementation strategy. Instead
of representing bindings by nested let terms, and preserving binding scopes in the instantiation rules
by copying and α-conversion, we propose to use linked environment frames with sharing, as is done to
implement function closures. A function closure consists of the binding variable name, function body,
and a pointer to the enclosing environment. The environment consists of frames, each containing a
variable name, value, and a link pointer to the parent frame. For λd, variables as well as functions are
values; therefore we introduce variable closures, consisting of a variable name and an environment pointer
through which to look it up. Only when the variable closure appears in a destruct context is the pointer
followed to obtain its value. For λmarsh, the marshal operation captures the linked environment between

22

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.6 Adding Distributed Communication

the environment pointers of its argument and the relevant mark, and the unmarshal operation attaches
the captured environment to the current environment. We have sketched an abstract machine semantics
for the above, but leave an actual implementation for future work.

3.6 Adding Distributed Communication

We now extend λmarsh just enough to show examples of the rebinding scenarios from §1, defining a λio
marsh

calculus. Some examples are given in Figures 11 and 12, with the syntax of the calculus in Figure 10.

λio
marsh: Syntax

Integers n Identifiers x , y , z Tags i , j , k Context marks M
Strings s Channels c Thread ids t

Type environments Γ finite partial functions from (identifier,tag) pairs to types
Channel typings ∆ finite partial functions from channels to Chan T types
Types T ::= int | unit | T ∗ T ′ | T → T ′ | Marsh T | Chan T | string
Expressions e ::= zi | n | () | (e, e ′) | πr e | λxi:T .e | ee ′

| let zk:T = e in e ′ | letrec zk:T ′ = λxi:T .e in e ′

| mark M in e |marshal M e |marshalled Γ u | unmarshal M e
| retT | c | e!e ′ | e?e ′ | s

Configurations P ::= 0 | t :e | (P | P ′)

Binding and alpha equivalence as in λmarsh.

Figure 10: Distributed λmarsh: λio
marsh – Syntax

Overview and Examples Two extensions are required: semantics for open terms, to admit programs
that use external library calls such as print ; and communication, to support code movement. There
are many design choices in combining functional and concurrent computation. Here we adopt a simple
language, just to illustrate the application of λmarsh and demonstrate what is required – the exact choice
of primitives is therefore rather arbitrary.

We consider parallel compositions of expressions e, each with a thread ID t . One should think of
threads as partitioned among a set of machines, although that structure has been omitted from the
formalisation. We suppose for simplicity that all machines provide the same external library calls, with
types given by a Γlib, and that there are global channels c for communication between threads, with types
given by a ∆.

The semantics (given in Figure 13 and discussed in more detail below) defines a transition relation

P
l−→P ′ over configurations where the labels l are either empty, t :f u for an invocation by thread t of

library call f :T → T ′ from Γlib, with argument u, or t :u for a return of value u from the OS to such
an invocation. The (marshal) and (unmarshal) rules must be modified slightly to deal with external
identifiers.

Communication between threads is by asynchronous message passing on typed channels c, with output
and input forms e!e ′ and e?e ′. Only marshalled values should be communicated, so communications are
typed as below (the full type system is in Figure 13).

∆,Γ ` e:Chan T
∆,Γ ` e ′:Marsh T

∆,Γ ` e!e ′:unit

∆,Γ ` e:Chan T
∆,Γ ` e ′:(Marsh T)→ T ′

∆,Γ ` e?e ′:T ′

23

3.6 Adding Distributed Communication 3 A DYNAMIC REBINDING CALCULUS: λMARSH

Simple: P =




t1:
let here0 = “site 1” in
mark AppLib in
let = print0here0 in
c!marshal AppLib (λx0:unit.print0here0)




∣∣∣∣




t2:
let here0 = “site 2” in
mark AppLib in
c?(λf0:Marsh (unit→ unit).(unmarshal AppLib f0)())




Secure encapsulation: Q =




t1:
let here0 = “site 1” in
mark AppLib in
let = print0here0 in
c!marshal AppLib (λx0:unit.print0here0)




∣∣∣∣




t2:
let here0 = “site 2” in
mark TrustedAppLib in
let print3 = (λs0:string.

let = print0“sandboxed: ” in print0s0) in
let here3 = “site 33” in
mark UntrustedAppLib in
c?(λf0:Marsh (unit→ unit).

let g0 = (if trusted() then unmarshal TrustedAppLib f0
else unmarshal UntrustedAppLib f0) in g0())




Repeated rebinding: R =

t1: let here0 = “site 1” in
mark AppLib in
letrec f0:unit→ unit =
λx0:unit.

let = print0“leaving: ” in
let = print0here0 in
c!marshal AppLib f0 in

f0()

| t2:let here0 = “site 2” in
mark AppLib in
c?(λg0:Marsh (unit→ unit).(unmarshal AppLib g0)())

| t3:let here0 = “site 3” in
mark AppLib in
c?(λg0:Marsh (unit→ unit).(unmarshal AppLib g0)())

Figure 11: Dynamic Rebinding with IO and Communication: λio
marsh Examples

Example P in Figure 11 shows rebinding to an external print and an internal (application library)
here, together delimited by AppLib, on a communication from the left thread to the right. It has a
transition sequence with labels

t1:print“site 1”, t1:(), t2:print“site 2”, t2:()

for the invocations and returns of the two external print calls.
Our rebinding calculus is powerful enough to perform customized linking, useful for implementing

secure encapsulation. Example Q is similar to P but the receiver defines two marks to be linked against,
TrustedAppLib and UntrustedAppLib. The former is for trusted programs, whereas the latter is an
‘encapsulated context,’ which reimplements both print and here with ‘safe’ versions. The safe print
prints the warning string “sandboxed: ” before any output; the safe here provides the fake “site 33” to the
encapsulated code, which has no way to access the true here0 = “site 2” binding2. Which context to use

2The code as given does not prevent the encapsulated code itself executing an unmarshal TrustedAppLib e. This can
be protected against by redeclaring the TrustedAppLib mark within the conditional.

24

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.6 Adding Distributed Communication

Moving Marks: S[=]

t1: let here0 = “site 1 – internal” in
mark OuterLib in
let x0 = “internal resource (from site 1)” in
mark InnerLib in
let send to external0:(unit→ unit)→ unit =
λz0:(unit→ unit).c external !marshal OuterLib z0 in

let send to internal0:(unit→ unit)→ unit =
λz0:(unit→ unit).c internal !marshal InnerLib z0 in

let = ...use x0... in
send to external0(λy0:unit.

let = ...use x0... in
let = send to internal0(λw0:unit.

let = ...use x0... in
()))

| t2:let here0 = “site 2 – external” in
mark OuterLib in
c external?(λg0:Marsh (unit→ unit).(unmarshal OuterLib g0)()

| t3:let here0 = “site 3 – internal” in
mark OuterLib in
let x0 = “internal resource (from site 3)” in
mark InnerLib in
c internal?(λg0:Marsh (unit→ unit).(unmarshal InnerLib g0)()

Figure 12: Dynamic Rebinding with IO and Communication: Further λio
marsh Examples

25

3.6 Adding Distributed Communication 3 A DYNAMIC REBINDING CALCULUS: λMARSH

is determined by the hypothetical function trusted , which would take into account some security criteria,
such as the origin of the message. Assuming that trusted() returns false, Q has a transition sequence
with labels

t1:print“site 1”, t1:(), t2:print“sandboxed: ”, t2:(), t2:print“site 33”, t2:()

It is worth emphasising that without delayed instantiation, rebinding in these examples would not be
possible. In particular, in both cases the construct-time (let) rule would substitute out here0 in t1 before
sending the lambda-term, thus preventing a rebinding of here at the remote site.

In R, again in Figure 11, there are two communications, from t1 to one of t2 or t3, and thence to the
other one; rebinding of here and print occurs twice.

Example S in Figure 12 shows a use of nested marks in which marshalling copies a mark. Suppose
the form of OuterLib (a definition of here) is standard on all sites, whereas that of InnerLib (a definition
of a resource x) is standard only on the sites within a particular organisation. In the example there are
two communications, from t1 (internal) to t2 (external) and from t2 back to t3 (internal). The first takes
the definition of x from its departure site, but the second, returning to within the organisation, picks up
the local definition of x . The three uses of x are therefore with the definitions from t1, t1 again, and t3.

Typing and Semantics The external library calls in Γlib, for example print0:string→ unit, are invoked
from within the language by application (rather than by a special system-call primitive). They therefore
require no special typing treatment, though we do require that the types in ran(Γlib) are all of T → T ′

forms. The semantics has a ‘delta’ rule (lib-app) for invocations. On the right-hand-side of (lib-app) the
application (E2.fi)u is replaced by a place-holder retT to record that this thread is expecting a response
from the OS of type T . The (lib-ret) rule allows the OS to provide that response. Both (lib-app) and
(lib-ret) introduce labels annotated with the thread id performing the action, modelling the fact that
IO on different machines should usually be distinguished (in practice one should work with a somewhat
weaker notion of observation than this transition system, as discussed in [Sew97]). Invocation labels
t :f u are not annotated with the tag i of the call, as tags should not be visible to the programmer or
observer. At an invocation of an external call we must collapse any let-structure of the argument to
produce a concrete value (typically, indeed, one of a type not involving any function spaces). This is done
in (lib-app) by the auxiliary

[|n |] = n
[| () |] = ()
[| (u, u ′) |] = ([| u |], [| u ′ |])
[|λxi:T .e |] = λxi:T .e
[| let zk:T = u in u ′ |] = {[| u |]/zk}[| u ′ |]
[| letrec zk:T ′ = λxi:T .e in u |] = {λxi:T .letrec zk:T ′ = λxi:T .e in e/zk}[| u |] if zk 6= xi
[| zk |] = zk
[|mark M in u |] = mark M in [| u |]
[|marshalled Γ u |] = marshalled Γ u
[| c |] = c
[| s |] = s

generalising the analogous function from λd. Finally, the value returned from an external call must be
well-typed. The side-condition ∆,Γlib ` u ′:T ′ of (lib-ret) allows this value to mention global channels or
other library calls, liberally, though in practice one might insist that return values are closed.

Turning to marshal and unmarshal, the rules are straightforward adaptions of the corresponding
λmarsh rules. In (marshal), note that we record Γlib in the grabbed value, thereby ensuring the marshalled
value can be typed as in λmarsh. The (unmarshal)rule prepends Γlib (for which we must suppose a fixed
ordering, regarding it as a list of type assumptions xi:T) to thb(E3) to calculate the appropriate rebinding

26

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.6 Adding Distributed Communication

∆,Γ ` e:T

∆,Γ, xi:T ` xi:T

∆,Γ ` n:int
∆,Γ ` ():unit
∆,Γ ` s:string

∆,Γ ` e:T
∆,Γ ` e ′:T ′

∆,Γ ` (e, e ′):T ∗ T ′
∆,Γ ` e:T1 ∗ T2

∆,Γ ` π1 e:T1

∆,Γ ` π2 e:T2

∆,Γ, xi:T ` e:T ′

∆,Γ ` λxi:T .e:T → T ′

∆,Γ ` e ′:T → T ′

∆,Γ ` e:T

∆,Γ ` e ′e:T ′

∆,Γ ` e:T
∆,Γ, xi:T ` e ′:T ′

∆,Γ ` let xi:T = e in e ′:T ′

∆,Γ, zk:T → T ′, xi:T ` e:T ′

∆,Γ, zk:T → T ′ ` e ′:T ′′

∆,Γ ` letrec zk:T → T ′ = λxi:T .e in e ′:T ′′

∆,Γ ` e:T
∆,Γ `mark M in e:T

∆,Γ ` e:T
∆,Γ `marshal M e:Marsh T

∆,Γ ` e:Marsh T
∆,Γ ` unmarshal M e:T

∆,Γ′ ` u:T

∆,Γ `marshalled Γ′ u:Marsh T

∆,Γ ` retT :T (∆, c:T),Γ ` c:T

∆,Γ ` e:Chan T
∆,Γ ` e ′:Marsh T

∆,Γ ` e!e ′:unit

∆,Γ ` e:Chan T
∆,Γ ` e ′:(Marsh T)→ T ′

∆,Γ ` e?e ′:T ′

∆,Γ ` P ok

∆,Γ ` 0 ok
∆,Γ ` e:unit
∆,Γ ` t :e ok

∆,Γ ` P ok
∆,Γ ` P ′ ok
tids(P) ∩ tids(P ′) = ∅

∆,Γ ` P | P ′ ok

where tids(0) = ∅, tids(t :e) = {t}, and tids(P | P ′) = tids(P) ∪ tids(P ′).

Figure 13: Distributed λmarsh: λio
marsh – Typing

27

3.6 Adding Distributed Communication 3 A DYNAMIC REBINDING CALCULUS: λMARSH

Values u ::= n | () | (u, u ′) | λxi:T .e | let zk:T = u in u
| letrec zk:T ′ = λxi:T .e in u | zi
| mark M in u |marshalled Γ u
| c | s

Atomic evaluation contexts A1 ::= (, e) | (u,) | πr | e | u
| let zk:T = in e
| marshal M | unmarshal M
| !e | c! | ?e | c?

Atomic bind and mark contexts A2 ::= let zk:T = u in | letrec zk:T ′ = λxi:T .e in
| mark M in

Evaluation contexts E1 ::= | E1.A1

Bind and mark contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Destruct contexts R ::= πr | u | unmarshal M | !e | c! | ?e | c?

Rules (proj), (app), (inst-1), (inst-2), (instrec-1), and (instrec-2) are exactly as in λmarsh, defining
reductions ⇀ that may occur within any E3 context of a thread. Rules (marshal) and (unmarshal)
are adapted from the λmarsh rules to take Γlib into account:

(marshal)
t :E3.mark M .E ′3.marshal M u −→ t :E3.mark M .E ′3.marshalled (Γlib, env(E3)) (bindmark(E ′3).u)

if dhb(E3,dom(Γlib)) and mark M not around in E ′3
(unmarshal)
t :E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u −→ t :E3.mark M .E ′3.S[u]

if dhb(E3,dom(Γlib)), dhb(E ′3, (dom(Γlib) ∪ hb(E3))),
S[=]rebind(Γ, (Γlib@thb(E3))) is defined, and mark M not around in E ′3.

Rules for invocations and returns of library calls:

(lib-app) t :E3.(E2.fi)u
t:f [| bindmark(E3).u |]−→ t :E3.retT ′

if fi:T → T ′ ∈ Γlib and fi /∈ hb(E3,E2)

(lib-ret) t :E3.retT ′
t:u′−→ t :E3.u

′

if ∆,Γlib ` u ′:T ′ and hb(E3) ∩ dom(Γlib) = ∅

The rule for communication:

(comm)
t :E3.c!marshalled Γ u | t ′:E ′3.c?(λxi:T .e) −→ t :E3.() | t ′:E ′3.(λxi:T .e)(marshalled Γ u)

Rules for congruence:

e ⇀ e ′

t :E3.e −→ t :E3.e
′

P
l−→P ′

P | P ′′ l−→P ′ | P ′′
P ≡ P ′

l−→P ′′ ≡ P ′′′

P
l−→P ′′′

where structural congruence ≡ is the least congruence over configurations satisfying P | 0 ≡ P ,
P ′ | P ≡ P | P ′ and (P | P ′) | P ′′ ≡ P | (P ′ | P ′′).

Figure 14: Distributed λmarsh: λio
marsh – Semantics

28

3 A DYNAMIC REBINDING CALCULUS: λMARSH 3.7 Discussion

substitution. One could easily relax our assumption that all machines provide the same external library
here, though one might then wish to alter (marshal) to record only the used external calls – the obvious
relaxation of the rule given here would prevent unmarshalling of any value from a thread with a larger
standard library than that available to the unmarshaller.

For communication, typing ensures that channels only carry values of Marsh T types. These are
always closed, so the (comm) rule for synchronisation can simply move them from sender to receiver. As
a mild variant, one could insist that external library calls are of (Marsh T)→ (Marsh T ′) types, obviating
the need for [| |] in (lib-app) but requiring many more marshal and unmarshals.

The values and evaluation contexts are very similar to those of λmarsh. Values now include channels c
and strings s. The A1 atomic evaluation contexts include input and output, with a left-to-right evaluation
order. More interestingly, the destruct contexts must include input and output on both left and right to
ensure we can reduce to an explicit channel, grabbed value and lambda before (comm) fires.

We do not state type preservation or partial safety results for λio
marsh. They should be straightforward

(albeit tedious) adaptations of the results for λmarsh.

3.7 Discussion

In this subsection we review some of the design choices embodied in λmarsh and their advantages and
disadvantages.

A simple alternative is to allow marshalling only of values that are in some sense closed (with a marshal-
time check that they do not refer to, e.g., print). This would require the programmer to explicitly abstract
on all the identifiers that are to be treated dynamically when constructing a value to be marshalled, and
to explicitly apply to the local definitions on unmarshalling. For rebinding to a single standard library
this might be acceptable, though even there notationally heavy, but for the richer usages we describe
above it would be prohibitively complex. One therefore needs some form of dynamic rebinding.

To keep the semantics of local computation simple, with the normal static scoping, we choose to
permit rebinding only when unmarshalling values. The most interesting question is then which variables
in a value should be rebound after marshalling and unmarshalling.

The main choice is between having two classes of variable (one treated statically and one dynami-
cally), or one class of variable, with some other way of specifying which are rebound in any particular
marshal/unmarshal instance.

Two classes were used in some related systems, though not motivated by marshalling [LLMS00, LF93,
Dam98, Jag94] (discussed further in §5). The disadvantages of the two-class choice are: (a) it is less flexible
than our use of marks, in which different marshals and unmarshals can refer to different marks, e.g. in
the examples of §3.6; and (b) if the types or usage-forms of the two classes differ, then changing the class
of a variable would require widespread code change (if the two classes are distinguished only by their
declaration-forms, this is not such a problem). Code would thus be hard to maintain.

In contrast, adding marks or changing their position is syntactically lightweight; it does not require
any change to code except at marshal/unmarshal points. Moreover, it will usually be straightforward to
change the let-bindings in programs that contain marks: changing let-bindings inside marks is as usual;
changing them outside a mark may require corresponding changes outside other marks but no change to
any marshal and unmarshal expressions. Taking one class has the disadvantage that it is not obvious
from a code fragment which variables might have been rebound, but in typical cases one can simply look
for enclosing marks and marshals.

A further disadvantage of λmarsh is that programs with many nested marks, and with marks under
lambdas, can become confusing. Whether this is a problem in practice remains to be seen.

With one class one could specify the variables to be rebound either with marks or by explicitly
annotating marshal with the set of rebindable identifiers. We believe the latter would be cumbersome
in practice (with large sets of standard library identifiers). It would also be conceptually complex and

29

4 SIMPLE UPDATE CALCULUS: λD + UPDATE

Simple Update Calculus: Syntax

Integers n Identifiers x, y, z Tags i, j, k
Types T ::= int | unit | T ∗ T ′ | T → T ′

Expressions e ::= xi | n | () | (e, e ′) | πr e | λxi:T .e | ee ′ | let zk:T = e in e ′ |
letrec zk:T = λxi:T .e in e | update

Simple Update Calculus: Semantics

(upd-replace-ok)
S[=]rebind(fv(e),hb(E3)) is defined env(E3) ` S[e]:T ∀j .xj /∈ hb(E ′3)

E3.let xi:T = u in E ′3.update
{x⇐e}−→ E3.let xi:T = S[e] in E ′3.()

Figure 15: Simple Update Calculus: λupdate

difficult to implement efficiently – for example, consider a sequence of bindings, each depending on the
one before, around a marshal that specifies that alternate bindings should be treated dynamically, as in:

let w = 1 in
let x = (w , 2) in
let y = (x , 3) in
let z = (y , 4) in
marshal ∗ [z , x]e

The marshal∗ specifies that any references to z and x in e should be treated dynamically – but then
there is no obviously-satisfactory semantics for y .

4 Simple Update Calculus: λd + update

We now turn from dynamic rebinding of marshalled values to the rebinding involved in dynamic update.
Dynamic updating is required for long-running systems that must provide uninterrupted service – the
canonical example is the telephone switch, with a complex internal state, many overlapping interactions
with its environment, and a requirement for high availability. Applying updates, however, can quickly
lead to confusion – particularly if they are in the form of binary patches. To ameliorate this, we would
like high-level update primitives: with semantics expressed in terms of the source programming language
rather than some abstract machine or particular compilation strategy. We show this can be done for
typed CBV functional programs. Delayed instantiation is again required, now so that running code picks
up any updated definitions as it executes, and applying an update involves some explicit rebinding. We
design a λupdate calculus accordingly, again based on our λd semantics and with tagged identifiers. It
is intended as a proof-of-concept, to demonstrate that a clean high-level semantics can be based on λd,
rather than a complete treatment of updating, so we include only a simple update primitive. Nonetheless,
the calculus is still quite expressive, and unlike other work in this area is not tied to a particular abstract
machine, or to a first-order setting.

The λupdate-calculus is given in Figure 15 (the λd rules and error rules are elided). As in §3 it is
convenient to use tagged identifiers and explicitly-typed lets, but the types are omitted in examples.
We allow the programmer to place an expression update at points in the code where an update could
occur; defining such updating ‘safe points’ is useful for ensuring programs behave properly [Hic01]. The
intended semantics is that this expression will block, waiting for an update (possibly null) to be fed in.

30

4 SIMPLE UPDATE CALCULUS: λD + UPDATE

An update can modify any identifier that is within its scope (at update-time), for example in

let x1 = (let w1 = 4 in w1) in
let y1 = update in
let z1 = 2 in
(x1, z1)

x1 may be modified by the update, but w1, y1 and z1 may not. For simplicity we only allow a single
identifier to be rebound to an expression of the same type, and we do not allow the introduction of new
identifiers.

We define the semantics of the update primitive using a labelled transition system, where the label
is the updating expression. For example, supplying the label {x ⇐ π1 (3, 4)} means that the nearest
enclosing binding of x is replaced with a binding to π1 (3, 4). Note that updates can be expressions, not
just values – after an update the new expression, if not a value, will be in redex position. Further, they
can be open, with free variables that become bound by the context of the update.

The static typing rule for update is trivial, as it is simply an expression of type unit. Naturally we
have to perform some type checking at run-time; this is the second condition in the transition rule in
Figure 15. Notice however, that we do not have to type-check the whole program; it suffices to check
that the expression to be bound to the given identifier has the required type in the context that it will
evaluate in. The other conditions of the transition rule are similarly straightforward. The first ensures
that a rebinding substitution is defined, i.e. that the context E3 has hole binders that are alpha-equivalent
to the free variables of e. Here rebind(V ,L), for a set V and list L of variables, is defined if for all
xi ∈ V there is some j with xj ∈ L, in which case it is the the substitution taking each such xi to
the rightmost such xj . The third condition ensures that the binding being updated, xi, is the closest
such binding occurrence for x (notice that an equivalence class x is specified for the update, but that
the closest enclosing member, xi, of this class is chosen as the updated binding). These conditions are
sufficient to ensure that the following theorems hold. Their proofs are straightforward.

Theorem 8 (Unique decomposition for λupdate)
Let e be a closed λupdate expression. Then, exactly one of the following holds: (1) e is a value; (2) e err;
(3) there exists a triple (E3, e

′, rn) such that E3.e
′ = e and e ′ is an instance of the left-hand side of rule

rn. Furthermore, if such a triple exists then it is unique.

Theorem 9 (Type preservation for updates)

If ` e:T and e
{x⇐e′}−→ e ′′ then ` e ′′:T

Theorem 10 (Safety for updates)
If ` e:T then ¬(e err).

Our use of delayed instantiation cleanly supports updating higher-order functions. As we have men-
tioned before, this is a significant advance on previous treatments. Consider the following program:

let f1 = λy1.(π2 y1, π1 y1) in
let w1 =λg1.let = update in g1(5, 6) in
let y1 = f1(3, 4) in
let z1 = w1f1 in
(y1, z1)

which contains an occurrence of update in the body of w1. If, when w1 is evaluated, we update the
function f :

e −→∗ {f⇐λp1.p1}−−−−−−−−→ −→∗ u

31

5 RELATED WORK

we have [| u |] = ((4, 3), (5, 6)). Delayed instantiation plays a key role here: with the λc semantics, the
result would be [| u |] = ((4, 3), (6, 5)); i.e. the update would not take effect because the g1 in the body of
w1 would be substituted away by the (app) rule before the update occurs. Our semantics preserves both
the structure of contexts and the names of variables so that updates can be expressed.

Erlang [AVWW96] has a simple update mechanism where modules can be replaced at runtime. The
transition to a new module, or the continued use of the old module, is specified at each call site. A se-
mantics for a (higher-order, typed) version of the Erlang update mechanism extended to support multiple
coexisting module versions can easily be expressed using the ideas in this paper [BHSS03].

5 Related Work

5.1 Lambda Calculi

As discussed in §2.2, our approach in λr and λd of using lets to record the arguments of functions
has some similarities to prior work on explicit substitutions [ACCL90] and on sharing in call-by-need
languages [AFM+95].

In work on the compilation of extended recursion (particularly for mixin modules) Hirschowitz, Leroy,
and Wells have (independently) used a semantics which is similar to λd save that (a) the language allows
more general recursive definitions, and (b) the semantics collapses multiple lets [HLW03, Hir03]. It draws
on work of Ariola and Blom [AB02] which also collapses let blocks. For rebinding, we need to preserve
this structure.

There are also similarities with Felleisen and Hieb’s syntactic theory of state [FH92]. Their ΛS models
late (redex-time) resolution of state variables in a substitution-based system by labelling the substituted-
in values with the name of the variable; assignment to a variable triggers a global replacement of all
values labelled with that variable throughout the program with the new value. This is then revised to an
equivalent store-based model. As in our system, there is a notion of a “final answer”, which may require
further clean-up to yield the value that is the result of the computation in the usual calculus (our [| . |]).

5.2 Dynamic Rebinding and λmarsh

Dynamic Binding Work on dynamic binding can be roughly classified along three dimensions. First,
one can have either dynamic scoping, in which variable occurrences are resolved with respect to their
dynamic environment, or static scoping with explicit rebinding, where variables are resolved with respect
to their static environment, but additional primitives allow explicit modification of these environments.
Second, one can work either with one class of variables or split into two: one treated statically and one
dynamically. Third, for explicit rebinding the variables to be rebound can be specified either individually,
per name, or as all those bound by a certain term context. We identify some points in this space below,
and refer the reader to the surveys of Moreau and Vivas [Mor98, VF01] for further discussion.

Dynamic scoping first appeared in McCarthy’s Lisp 1.0 as a bug, and has survived in most mod-
ern Lisp dialects in some form. It is there usually referred to as “dynamic binding.” Lisp 1.0 had one
class of variables. MIT Scheme’s [MIT] fluid-let form and Perl’s local declaration similarly perform
dynamically-scoped rebinding of variables. Modern Lisp distinguishes at declaration time between dy-
namically and statically scoped variables, as formalised in the λd-calculus of Moreau [Mor98]. Lewis et
al. propose to add syntactically-distinct, dynamically-scoped implicit parameters [LLMS00] to statically-
scoped Haskell. While flexible, dynamic scoping can result in unpredictable behaviour, since variables
can be inadvertently captured; this was referred to as the downward funarg problem in the Lisp commu-
nity (to avoid this in a typed setting Lewis et al. forbid arguments of higher-order functions from using
dynamically scoped variables).

32

5 RELATED WORK 5.2 Dynamic Rebinding and λmarsh

Turning to static scoping with explicit rebinding, the quasi-static scoping Scheme extension of Lee and
Friedman [LF93] and the λN -calculus of Dami [Dam98] both have two classes of variable with a rebinding
primitive that specifies new bindings for individual variables. Jagannathan’s Rascal language [Jag94]
maintains both a static environment and a public environment, corresponding again to two variable
classes. The barrier, reify, and reflect operations allow explicit manipulation of the variables bound by
an entire term context.

Outside the above classification, MIT Scheme also permits explicit manipulation of top-level envi-
ronments. Hashimoto and Ohori introduce a typed context calculus [HO01] for expressing first-class
evaluation contexts within the lambda calculus. Context holes can be ‘filled in’ with terms having free
variables which are captured by the surrounding context. This allows binding at context-application time,
but does not support rebinding. It is developed in the MobileML language [HY00]. Garrigue [Gar95]
presents a calculus based on streams that can be used to encode dynamic binding for particular, scope-free
variables.

Locating our λmarsh calculus in this space, it adopts static scoping with explicit rebinding, has a single
class of variables, and supports rebinding with respect to named contexts (not of individual variables).
Use of the destruct-time strategy delays variable resolution until the last possible moment to give the
most useful semantics, e.g., for repeatedly-mobile code. As argued in §3, we believe these choices will
lead to code that is easier to write and maintain, particularly for large systems.

We conjecture that λmarsh could be encoded in Rascal, and also that it could be given semantics
either in an environment-passing style or using an abstract machine with concrete environments. We
believe, however, that our reduction semantics, with small-step reductions over the source syntax, is more
perspicuous.

Partial Continuations The context-marking operator mark is reminiscent of Felleisen and Fried-
man’s [FF87] prompt operator #, and marshal/unmarshal of their control operator F . Their opera-
tors capture partial continuations, whereas our operators may be seen as capturing partial environments:
whereas mark marks a binding context, # marks an evaluation context. In fact, λmarsh filters the
captured context to retain only the binding structure (E2), whereas Felleisen et al.’s semantics exhibits
the behaviour of our λc, eagerly substituting out bindings and leaving only the control structure (E1) to
be captured.

Another interesting connection is between abstract continuations [FWFD88], as used by Quein-
nec [Que93], and the reduction contexts E3 used in our operational semantics. Each A1 or A2 corresponds
to a frame of the continuation, except that the semantics of ACPS substitutes the A2 binding frames
away.

Gunter et al. [GRR95] have studied # and F in a typed setting. It is interesting to note that although
they state a type safety result, this does not exclude the possibility that a well-typed program can get
‘stuck’ if an appropriate prompt does not exist (c.f. §3.4).

In the λmarsh calculus, marks are named (not anonymous), are not bound, and are preserved by
marshal/unmarshal operations. Some other choices have been investigated in the context of partial
continuations by Moreau and Queinnec [MQ94, Que93].

Dynamic Linking Dynamic linking is a ubiquitous simple form of dynamic binding, allowing program
bindings to be resolved either at load-time or run-time, rather than statically. Conventional executables
will, when run, dynamically link shared libraries for standard library functions (e.g., read, write, etc.).
Which libraries are loaded depends upon the context; for example, a machine might have a library
compiled with profiling enabled and one without. However, once dynamically bound, a variable’s
definition is fixed, precluding rebinding for marshalling or update. Modern languages often provide an
interface to the dynamic linker so that programs can load new code at run-time [DE, dlo, L+01, Rou96,
AVWW96]. Dynamic linking has been formally modelled for low-level machine code [Dug00, HWC00,

33

5.3 Dynamic Update 6 CONCLUSIONS AND FUTURE WORK

HW00], and high-level languages like Java [DE]. Several authors have considered customised linking for
security, performance, or debugging purposes [Rou96, SNC00, HWC00, SV00].

Rebinding in Distributed Calculi A number of distributed process calculi provide implicit rebinding of
names, adopting interaction primitives with meanings that depend on where they are used in a location
structure [CG98, SV00, RH99, Sch02, SWP99, CS00]. This allows a form of rebinding to application
libraries, but these works do not address the problem of integrating this rebinding with local functional
computation.

The JoCaml and Nomadic Pict languages for mobile computation [FGL+96, SWP99] provide rebinding
to external functions, but the details are matters of implementation, not semantically specified – though
a more principled proposal for JoCaml has been made by Schmitt in a Join-calculus setting [Sch02].

5.3 Dynamic Update

There are a number of implemented systems for dynamic updating surveyed in [Hic01], notably including
Erlang [AVWW96]. There is very little rigorous semantics, however. Duggan [Dug01] has a formal
framework for updating types, but updating code is considered only informally, based on arguments
around reference types. Gilmore et al. [GKW97, Wal01] have a formal description of updating, but it
is centred on abstract types, and is tied to their particular abstract machine. Neither of these systems
properly handles updating first-class functions. Gilmore et al. require that a function not be active when
it is updated; closures in activation records are active, and cannot thus be updated. Reference-based
indirections require that the types of function arguments change in a way that interacts poorly with
polymorphism [Hic01].

6 Conclusions and Future Work

We have established a clean semantic foundation for dynamic rebinding and update. In particular, we

• reconciled the dynamic-rebinding need for delayed instantiation with standard CBV semantics via
novel redex-time and destruct-time reduction strategies;

• introduced the λmarsh calculus, providing core mechanisms for dynamic rebinding of marshalled
values, with a clean destruct-time operational semantics, and argued that our design choices are
appropriate for a distributed programming language;

• showed how to extend λmarsh with communication and external functions, to express dynamic
rebinding and secure encapsulation of transmitted code; and
• demonstrated that dynamic update of programs with higher-order functions can be expressed us-

ing similar mechanisms, by introducing the λupdate calculus – again with a simple destruct-time
semantics.

There are several directions that are worth pursuing. Firstly, we would like a type system for
λmarshthat can statically prevent all run-time errors for programs that make only simple use of marshal
and unmarshal. Whether this is possible without excessive complexity is unclear. The main difficulty
seems to be capturing the ways in which the environment of a mark can change – one might speculate that
an enriched term structure that explicitly records the DAG of scopes would enable a type preservation
proof. Part of the motivation for this work is to cope with marshalling of values in distributed func-
tional languages, but this paper does not deal with issues of type coherence between separately-compiled
run-times. One might combine λio

marsh with the hash types of [LPSW03].

The λio
marsh calculus has communication on channels but not π-calculus-style new channel generation.

Adding these is an interesting problem, as the usual π semantics allows scope extrusion of new-binders

34

6 CONCLUSIONS AND FUTURE WORK

but for marshal/unmarshal we require a semantics that preserves the shape of the binding environment
outside marks.

This paper has focussed on semantics for small calculi, but ultimately dynamic rebinding mechanisms
should be integrated with full-scale programming languages. For ML-like languages with second-class
module systems it may be natural to have mark only at the module level (loosely analogous to the allowing
marks only between top-level λmarsh lets). Generalising, one might wish to marshal/unmarshal with
respect to a set of structures rather than a single mark. Libraries may need careful design to work
well with mobile code, to delimit any hard-to-move OS or library state. There are obvious problems
with optimised implementation of calculi with redex- or destruct-time semantics, as dynamic rebinding
or update primitives invalidate general use of standard optimisations, e.g., inlining, and perhaps also
environment-sharing schemes. For performance it will be important to identify conditions under which
such optimisations are still valid – perhaps via a characterisation of contextual equivalence for λmarsh. A
full implementation should obviously be carried out.

Finally, for dynamic update the λupdate calculus is only the beginning of a rigorous treatment. The
full story must address correctness of updates with state transformation, abstract types, changing the
types of variables, multi-threading, and so on.

Acknowledgments We acknowledge support from a Royal Society University Research Fellowship
(Sewell), a Marconi EPSRC CASE Studentship (Stoyle), a St Catharine’s College Heller Research Fellow-
ship (Wansbrough), EPSRC grant GRN24872, AFRL-IFGA IAI grant AFOSR F49620-01-1-0312 (Hicks,
while at Cornell University), EC FET-GC project IST-2001-33234 PEPITO, and APPSEM 2.

35

A λC , λR AND λD: SANITY PROPERTIES

A Proofs for λc, λr and λd: decomposition and typing

A.1 Unique redex/context decomposition

Theorem 11 (Unique redex/context decomposition for construct-time) Let e be a closed ex-
pression. Then (in the construct-time calculus) exactly one of the following holds:

1. e is a value

2. e err

3. there exists a triple (E , e ′, rn) such that E .e ′ = e and e ′ is an instance of the left-hand side of rule
rn.

Furthermore, if such a triple exists then it is unique.

Theorem 12 (Unique redex/context decomposition for redex-time) Let e be an expression.
Then (in the redex-time calculus) exactly one of the following holds:

1. e is a value (“e val”).

2. there exists a pair (E3, z) such that E3.z = e and z is a variable not contained in hb(E3) (“e var”).

3. e err

4. there exists a triple (E3, e
′, rn) such that E3.e

′ = e and e ′ is an instance of the left-hand side of
rule rn (“e red”).

Furthermore, if such a pair or triple exists then it is unique.

Proof Observe firstly that e err implies ∃E3, e
′, r , u.e = E3.(πr e ′) or e = E3.(e ′u), and that e err

implies E3.e err for all E3. Thus e err and e red are closed under general (E3) context composition.
e var is closed under E1 context composition, since E1 contexts are not binding and so do not
affect the hole binders of the context. Observe further that any value u may be decomposed into a
maximal binding context E2 and an outermost-structure-manifest value w such that E2.w = u.

The proof is by induction on the structure of e.

case z :

Let E3 = . Then e var holds uniquely, and no other disjunct holds.

case n, (), or λz :T .e :

e val holds, and no other disjunct holds.

case (e1, e2) :

Observe that e itself is not a variable or the LHS of any rule; nor does it match any errors
not in e1 or e2. Observe also that if e1 is not a value, then (e1, e2) is not a value, and the only
non-trivial decomposition is (, e2).e1.

Consider e1. By I.H., there are four distinct cases:

case e1 err :
e err. To prove no other disjunct holds, note we have already observed that e is not a
value, that e is not itself a variable or the LHS of a rule, and by induction e1 is not. But
by our other observation above, these are the only possibilities; hence no other disjunct
holds.

36

A λC , λR AND λD: SANITY PROPERTIES A.1 Unique redex/context decomposition

case e1 red :
e red uniquely, and no other disjunct holds.

case e1 var :
e var uniquely, and no other disjunct holds.

case e1 val :
Observe that if e1 is a value and e2 is not, then (e1, e2) is not a value, and the only
non-trivial decompositions of e are (e1,).e2 and (, e2).e1.
Consider e2. By I.H., there are four distinct cases:

case e2 err :
e err, and no other disjunct holds.

case e2 red :
e red uniquely, and no other disjunct holds.

case e2 var :
e var uniquely, and no other disjunct holds.

case e2 val :
e val by definition of value, and no other disjunct holds.

case πr e1 :

Observe that the only non-trivial decomposition is (πr).e1; further, e is certainly itself not
a value or a variable. Consider e1. By I.H., there are four distinct cases:

case e1 err :
e err, and no other disjunct holds.

case e1 val :
Decompose e1 into a maximal binding context E2 and an outermost-structure-manifest
value e ′1. If e ′1 = (u1, u2) then e red: e reduces by (proj), uniquely with E3 = , e ′ = e,
rn =proj, and no other disjunct holds. Otherwise, e err by (proj-err), and no other
disjunct holds.

case e1 var with (E ′3, z) :
e var uniquely with E3 = (πr).E ′3; ¬(e red) because e1 not (u1, u2), ¬(e err) because e1

not a value, ¬(e val) by definition.

case e1 red with (E ′3, e
′
1, rn) :

e red with E3 = (πr).E ′3, e ′ = e ′1. Unique because the only other decomposition is
irreducible, since e1 not (u1, u2). No other disjunct holds.

case e1e2 :

Follows the same pattern as (e1, e2), but for the case e1 val and e2 val, decompose each into
E2.u1, E ′2.u2. Now if u1 = λz :T .e ′1, e red: uniquely, ensure by α-conversion that fv(e2) /∈
hb(E2) and reduce by (app) with (, e, app). Otherwise, e err by (app-err). In each case, no
other disjunct holds.

For the e1 var and e2 var cases, proceed as for (πr). No other disjunct holds, since a variable
is not a value.

case let z = e1 in e2 :

There are three possible decompositions: (A): .let z = e1 in e2, (B): let z = in e2.e1,
(C): let z = e1 in .e2 if e1 val. Consider e1. By I.H., there are four distinct cases:

case e1 err :
e err. (C) is not possible. No other disjunct can hold via (B). Cannot reduce by (A)
since e1 non-value; not a value; not a var.

37

A.1 Unique redex/context decomposition A λC , λR AND λD: SANITY PROPERTIES

case e1 red with (E ′3, e
′
1, rn) :

e red with E3 = let z = in e2.E
′
3, e ′ = e ′1. (C) not possible; no other disjunct holds

via (A) or (B).

case e1 var with (E ′3, z
′) :

e var with E3 = let z = in e2.E
′
3. (C) not possible; no other disjunct holds via (A) or

(B).

case e1 val :
Observe now that (B) cannot yield e red or e var or e err. Consider e2. By I.H., there
are four distinct cases:

case e2 err :
e err, and no other disjunct holds.

case e2 red with (E ′3, e
′
2, rn) :

e red with E3 = let z = e1 in .E ′3, e ′ = e ′2. Since ¬(e2 var), this is unique. No
other disjuncts hold.

case e2 var with (E ′3, z
′) :

If z ′ ≡ z , then we know by I.H. that z ′ /∈ hb(E ′3). Ensure fv(e1) /∈ {z} ∪ hb(E ′3)
by α-conversion. Then e red by (, e, inst). Otherwise, z ′ /∈ hb(E ′3) ∪ {z}, so e var
by (let z = e1 in .E ′3, z

′).
case e2 val :

e val.

case letrec z = λx :T .e1 in e2 :

Similar to let above. �

Theorem 13 (I.H. for Unique redex/context decomposition for destruct-time) Let e be an
expression. Then (in the destruct-time calculus) exactly one of the following holds:

1. e val: e is a value and ¬(e var2) (value: may be benign unbound variable).

2. e var1: there exist E3,R,E2, z such that E3.R.E2.z = e and z /∈ hb(E3.R.E2) (unbound variable in
destruct position).

3. e var2: there exist E2, z such that E2.z = e and z ∈ hb(E2) (value: bound variable).

4. e err1: e err and ¬(e var1) (fatal error).

5. e red: there exist E3, e0, rn such that E3.e0 = e and e0 is an instance of the left-hand side of rule
rn (reducible).

Furthermore, if such a pair, triple, or quadruple exists then it is unique.

Note that “e a value” means “e val or e var2”.

Proof Observe firstly that e err1 implies e err implies ∃E3, e0,R.e = E3.R.e0, and that e err1 implies
E3.e err1 for all E3. Thus e var2, e err1, and e red are all closed under general (E3) context
composition. e var1 is closed under E1 context composition, since E1 contexts are not binding
and so do not affect the hole binders of the context. Observe further that any value u may be
decomposed into a maximal binding context E2 and an outermost-struture-manifest value w such
that E2.w = u.

The proof is by induction on the structure of e.

case z :

e val, and no other disjunct holds.

38

A λC , λR AND λD: SANITY PROPERTIES A.1 Unique redex/context decomposition

case n, (), or λz :T .e :

e val, and no other disjunct holds.

case (e ′, e ′′) :

Observe that e is not var2, and is not itself the LHS of any rule; nor does e match any errors
not in e ′ or e ′′. Observe also that if e ′ is not a value, then (e ′, e ′′) is not a value, and the only
non-trivial decomposition is (, e ′′).e ′; then since (, e ′′) /∈ R, ¬(e ′ var1) =⇒ ¬(e var2).

Consider e ′. By I.H., there are five distinct cases:

case e ′ err1 :
e err1. To prove no other disjunct holds, note we have already observed that e is not
a value or var1, that e is not itself a variable or the LHS of a rule, and by induction
e ′ is not. But by our other observation above, these are the only possibilities; hence no
other disjunct holds.

case e ′ red :
e red uniquely, and no other disjunct holds.

case e ′ var1 :
e var1 uniquely, and no other disjunct holds.

case e ′ var2 or e ′ val :
Observe that if e ′ is a value and e ′′ is not, then (e ′, e ′′) is not a value, and the only
non-trivial decompositions of e are (e ′,).e ′′ and (, e ′′).e ′.
Consider e ′′. By I.H., there are five distinct cases:

case e ′′ err1 :
e err1, and no other disjunct holds.

case e ′′ red :
e red uniquely, and no other disjunct holds.

case e ′′ var1 :
e var1 uniquely, and no other disjunct holds.

case e ′′ var2 or e ′′ val :
e val by definition of value, and no other disjunct holds.

case πr e ′ :

Observe that the only non-trivial decomposition is (πr).e ′; further, e is certainly itself not a
value or var2, and (πr) is not a binding context. Consider e ′. By I.H., there are five distinct
cases:

case e ′ err1 :
e err1, and no other disjunct holds.

case e ′ val :
Decompose e ′ into a maximal binding context E2 and an outermost-structure-manifest
value e ′0. If e ′0 = (u1, u2) then e red: e reduces by (proj), uniquely with E3 = ,
e0 = e = πr (E2.e

′
0), rn =proj, and no other disjunct holds. If e ′0 = z then we know

z /∈ hb(E2) (for if not, e ′ var2), and so e var1, since (πr) ∈ R, and ¬(e err1) by
definition, and no other disjunct holds. Otherwise, e err1 by (proj-err), and no other
disjunct holds.

case e ′ var1 :
e var1, and no other disjunct holds.

case e ′ var2 with (E ′2, z) :
e red with E3 = , e0 = e = πr (E ′2.z), rn =inst-2 or instrec-2 (according to whether z
is bound in E ′2 by a let or a letrec). ¬(e err1) and ¬(e var1) since z ∈ hb(E ′2).

39

A.1 Unique redex/context decomposition A λC , λR AND λD: SANITY PROPERTIES

case e ′ red with (E ′3, e
′
0, rn) :

e red with E3 = (πr).E ′3, e0 = e ′0. Unique because the only other decomposition is
irreducible, since e ′ not (u1, u2). No other disjunct holds.

case e ′e ′′ :

Possible decompositions are .(e ′e ′′), or (e ′′).e ′ (which is an R context if e ′′ is a value), or
(e ′).e ′′ if e ′ a value. Observe that e is not var2 or value, and neither decomposition involves
a binding context.

Consider e ′. By I.H., there are five distinct cases:

case e ′ err1 :
e err1, and no other disjunct holds.

case e ′ red :
e red uniquely, and no other disjunct holds.

case e ′ var1 :
e var1 uniquely (since (e ′′) not a binding context), and no other disjunct holds (since
e ′ not a value).

case e ′ var2 with (E ′2, z) :
Now e ′ is a value, and so we must consider e ′′. By I.H., there are five distinct cases:

case e ′′ err1 :
e err1, and no other disjunct holds.

case e ′′ red :
e red uniquely, and no other disjunct holds.

case e ′′ var1 :
e var1 uniquely, and no other disjunct holds (since e ′′ not value).

case e ′′ var2 or e ′′ val :
e red with E3 = , e0 = e = (e ′′).E ′2.z , rn =inst-2 or instrec-2 (according
to whether z is bound in E ′2 by a let or a letrec). ¬(e err1) and ¬(e var1)
since z ∈ hb(E ′2), no other reduction or error because e ′ and e ′′ both values, and
e ′ 6= E ′2.λz :T .e ′′′.

case e ′ val :
Decompose e ′ into E ′2.e

′
0.

Consider e ′′. By I.H., there are five distinct cases:

case e ′′ err1 :
e err1, and no other disjunct holds.

case e ′′ red :
e red uniquely, and no other disjunct holds.

case e ′′ var1 :
e var1 uniquely, and no other disjunct holds (since e ′′ not value).

case e ′′ var2 or e ′′ val :
If e ′0 = λz :T .e ′′′ then e red with E3 = , e0 = e = ((E ′2.λz :T .e ′′′)e ′′), rn =app
(ensuring fv(e ′′) /∈ E ′2 by α-conversion), and no other disjunct holds. If e ′0 = z
then we know z /∈ hb(E ′2) (for if not, e ′ var2), and so e var1, since (e ′′) ∈ R
and and ¬(e err1) by definition, and no other disjunct holds. Otherwise, e err1 by
(app-err), and no other disjunct holds.

case let z = e ′ in e ′′ :

There are three possible decompositions: .let z = e ′ in e ′′, let z = in e ′′.e ′, let z =
e ′ in .e ′′ if e ′ a value.

40

A λC , λR AND λD: SANITY PROPERTIES A.1 Unique redex/context decomposition

Consider e ′. By I.H., there are five distinct cases:

case e ′ err1 :
e ′ err1, and no other disjunct holds.

case e ′ red with (E ′3, e
′
0, rn) :

e red with E3 = let z = in e ′′.E ′3, e0 = e ′0, uniquely, and no other disjunct holds.

case e ′ var1 :
then e var1 uniquely, and no other disjunct holds.

case e ′ var2 or e ′ val :
Consider e ′′. By I.H., there are five distinct cases:

case e ′′ err1 :
e err1, and no other disjunct holds.

case e ′′ red with (E ′3, e
′′′, rn) :

e red with E3 = let z = e ′ in .E ′3, e0 = e ′′′. This is unique. No other disjuncts
hold.

case e ′′ var2 :
e var2, and no other disjunct holds.

case e ′′ val :
Decompose e ′′ into E ′′2 .u

′′. If u ′′ = z , where z is the bound variable of the let ,
then e var2, uniquely, and no other disjunct holds. Otherwise, e val, and no other
disjunct holds.

case e ′′ var1 with e ′′ = E ′′3 .R
′′.E ′′2 .z

′′ and z ′′ /∈ hb(E ′′3 .R
′′.E ′′2) :

If z ′′ ≡ z , then we know that z /∈ hb(E ′′3 ,E
′′
2). Ensure fv(e ′) /∈ {z} ∪ hb(E ′′3 ,E

′′
2)

by α-conversion. Then e red with E3 = , e0 = e = let z = e ′ in E ′′3 .R
′′.E ′′2 .z ,

rn =inst-1. Otherwise, e var1, since z ′′ /∈ {z} ∪ hb(E ′′3 ,E
′′
2).

case letrec z = λx :T .e ′ in e ′′ :

Similar to let above, but note the different scope of z . �

Observe that at the top level e var1 =⇒ e err, and e var2 =⇒ e a value. Hence:

Corollary 14 (Unique redex/context decomposition for destruct-time) Let e be an expression.
Then (in the destruct-time calculus) exactly one of the following holds:

1. e is a value.

2. e err.

3. there exist E3, e0, rn such that E3.e0 = e and e0 is an instance of the left-hand side of rule rn.

Furthermore, if such a triple exists then it is unique.

41

A.2 Type preservation and safety A λC , λR AND λD: SANITY PROPERTIES

A.2 Type preservation and safety

Lemma 15 (Renaming) If Γ ` e:T and Γ′, e ′ are obtained from Γ, e by an injective renaming of
dom(Γ) ∪ fv(e) then Γ′ ` e ′:T .

Lemma 16 (Weakening) If Γ,Γ′′ ` e:T and dom((Γ,Γ′′)) ∩ dom(Γ′) = {} then Γ,Γ′,Γ′′ ` e:T .

Proof Induction on type derivations, using Lemma 15 in the lambda and let cases. �

Lemma 17 (Permutation) If Γ,Γ′,Γ′′,Γ′′′ ` e:T then Γ,Γ′′,Γ′,Γ′′′ ` e:T .

Proof Induction on type derivations. �

It is convenient to work with E2 and E3 contexts in which the hole binders are distinct from each
other and from a set of identifiers. Accordingly, we define a predicate dhb(E2,X) as the least such that

• dhb(,X)

• dhb(E2,X) ∧ z /∈ hb(E2) ∪X =⇒ dhb(E2.let z = u in ,X)

• dhb(E2,X) ∧ z /∈ hb(E2) ∪X =⇒ dhb(E2.letrec z = λx :T .e in ,X)

and dhb(E3,X) by similar clauses together with dhb(E3,X) =⇒ dhb(E3.A1,X). Strictly there are
different definitions for λr and λd, as u ranges over different terms in each.

Lemma 18 (E2 inversion for λr and λd) If Γ ` E2.e:T and dhb(E2, dom(Γ)) then there exists Γ′ such
that Γ,Γ′ ` e:T , dom(Γ′) = hb(E2), and ∀e ′,T ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E2.e

′:T ′.

Proof The proofs for λr and λd are identical.

Induction on E2.

Case . Trivial.

Case E2.(let z = u in). Suppose Γ ` E2.(let z = u in).e:T and dhb(E2.(let z =
u in).e,dom(Γ)).

By defn dhb we have dhb(E2,dom(Γ)) and z /∈ hb(E2) ∪ dom(Γ).

By ind.hyp. there exists Γ′ such that Γ,Γ′ ` (let z = u in).e:T , dom(Γ′) = hb(E2), and
∀e ′,T ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E2.e

′:T ′ (*).

By inversion of the typing relation there exist ẑ, ê,T ′′ such that (let z = u in e) = (let ẑ =
u in ê), Γ,Γ′ ` u:T ′′, and Γ,Γ′, ẑ:T ′′ ` ê:T .

By Lemma 15 (as z /∈ hb(E2) ∪ dom(Γ) = dom((Γ,Γ′))) we have Γ,Γ′, z :T ′′ ` e:T .

Trivially dom((Γ′, z :T ′′)) = hb(E2.(let z = u in)).

Now suppose Γ,Γ′, z :T ′′ ` e ′:T ′.

By typing Γ,Γ′ ` (let z = u in).e ′:T ′.

By (*) Γ ` E2.(let z = u in).e ′:T ′.

Case E2.(letrec z = λx :T .). Similar.

�

42

A λC , λR AND λD: SANITY PROPERTIES A.2 Type preservation and safety

Lemma 19 (E3 inversion for λr and λd) If Γ ` E3.e:T and dhb(E3, dom(Γ)) then there exist Γ′,T ′

such that Γ,Γ′ ` e:T ′, dom(Γ′) = hb(E3), and ∀e ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E3.e
′:T .

Proof Induction on E3.

For λr:

Case . Trivial.

Case E3.A1

Case E3.(, e ′′). Suppose Γ ` E3.(, e
′′).e:T and dhb(E3.(, e

′′),dom(Γ)).
By defn. dhb have dhb(E3,dom(Γ)).
By ind.hyp. exist Γ′,T ′ such that Γ,Γ′ ` (, e ′′).e:T ′, dom(Γ′) = hb(E3), and ∀e ′.Γ,Γ′ `
e ′:T ′ =⇒ Γ ` E3.e

′:T (*).
By inversion of the typing relation exist T ′1,T

′
2 such that T ′ = T ′1 ∗ T ′2, Γ,Γ′ ` e:T ′1, and

Γ,Γ′ ` e ′′:T ′2.
Trivially dom(Γ′) = hb(E3.(, e

′′)).
Now suppose for some e ′ that Γ,Γ′ ` e ′:T ′1.
By typing Γ,Γ′ ` (, e ′′).e ′:T ′1 ∗ T ′2.
By (*) Γ ` E3.(, e

′′).e ′:T .

Cases E3.(u,), E3.(πr), E3.(e ′′), E3.(u), E3.(let z = in e ′′). All similar.

Case E3.A2

Case E3.(let z = u in). Suppose Γ ` E3.(let z = u in).e:T and dhb(E3.(let z =
u in),dom(Γ)).
By defn dhb we have dhb(E3,dom(Γ)) and z /∈ hb(E3) ∪ dom(Γ).
By ind.hyp. exist Γ′,T ′ such that Γ,Γ′ ` (let z = u in).e:T ′, dom(Γ′) = hb(E3), and
∀e ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E3.e

′:T (*).
By inversion of the typing relation exist ẑ, ê,T ′′ such that (let z = u in e) = (let ẑ =
u in ê), Γ,Γ′ ` u:T ′′, and Γ,Γ′, ẑ:T ′′ ` ê:T ′.
By Lemma 15 (as z /∈ hb(E3) ∪ dom(Γ) = dom((Γ,Γ′))) we have Γ,Γ′, z :T ′′ ` e:T ′.
Trivially dom(Γ′)z :T ′′ = hb(E3.(let z = u in)).
Now suppose for some e ′ that Γ,Γ′, z :T ′′ ` e ′:T ′.
By typing Γ,Γ′ ` (let z = u in).e ′:T ′.
By (*) Γ ` E3.(let z = u in).e ′:T .

Case E3.(letrec z = λx :T .e ′′ in). Similar.

For λd: the proof is the same except for the different u.

�

43

A.2 Type preservation and safety A λC , λR AND λD: SANITY PROPERTIES

Theorem 20 (Type preservation for λc, λr and λd) If Γ ` e:T and e −→ e ′ then Γ ` e ′:T .

Proof For λc this is completely standard.

For λr we proceed by induction on derivations of e −→ e ′.

Case (proj). Suppose Γ ` πr (E2.(u1, u2)):T .

W.l.g. take E2, u1, u2 such that dhb(E2,dom(Γ)).

By inversion of the typing relation there exist T1,T2 such that T = Tr and Γ ` E2.(u1, u2):T1∗
T2.

By Lemma 18 there exists Γ′ such that Γ,Γ′ ` (u1, u2):T1 ∗ T2, dom(Γ′) = hb(E2), and
∀e ′,T ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E2.e

′:T ′ (*).

By inversion of the typing relation Γ,Γ′ ` ur:Tr.
By (*) Γ ` E2.ur:T .

Case (app). Suppose Γ ` (E2.(λz :T0.e))u:T .

W.l.g. take E2, z , e such that z /∈ dom(Γ) and dhb(E2,dom(Γ) ∪ {z}).
Aside: what does this ‘without loss of generality’ really mean? This: given the 7-tuple
Γ,E2, z ,T0, e, u,T appearing in the typing hypothesis or in the premise or conclusion
of the (app) rule, such that fv(u) /∈ hb(E2) (from the sidecondition of (app)) then
there exist Ê2, ẑ, ê such that ẑ /∈ dom(Γ), dhb(Ê2,dom(Γ) ∪ {ẑ}), fv(u) /∈ hb(Ê2),
(E2.(λz :T .e))u = (Ê2.(λẑ:T .ê))u and (E2.let z = u in e) = (Ê2.let ẑ = u in ê) (the
latter two being the terms of the typing hypothesis and (app) rule).

By inversion of the typing relation there exists T1 such that Γ ` E2.(λz :T0.e):T1 → T and
Γ ` u:T1.

By Lemma 18 there exists Γ′ such that Γ,Γ′ ` λz :T0.e:T1 → T , dom(Γ′) = hb(E2), and
∀e ′,T ′.Γ,Γ′ ` e ′:T ′ =⇒ Γ ` E2.e

′:T ′ (*).

By inversion of the typing relation and by renaming Γ,Γ′, z :T0 ` e:T and T0 = T1.

By weakening (Lemma 17) Γ,Γ′ ` u:T0.

By typing Γ,Γ′ ` let z = u in e:T .

By (*) Γ ` E2.let z = u in e:T .

Case (inst). Suppose Γ ` let z = u in E3.z :T .

W.l.g. take E3, z such that z /∈ dom(Γ) and dhb(E3,dom((Γ, z :T1))).

By inversion of the typing relation and by renaming there exists T1 such that Γ ` u:T1 and
Γ, z :T1 ` E3.z :T .

By Lemma 19 there exist Γ′,T ′ such that Γ, z :T1,Γ
′ ` z :T ′, dom(Γ′) = hb(E3), and

∀e ′.Γ, z :T1,Γ
′ ` e ′:T ′ =⇒ Γ, z :T1 ` E3.e

′:T (*).

By inversion of the typing relation T1 = T ′.

By weakening (Lemma 17) Γ, z :T1,Γ
′ ` u:T1.

By (*) Γ, z :T1 ` E3.u:T .

By typing Γ ` let z = u in E3.u:T .

Case (instrec). Consider the reduction letrec z = λx :T1.e in E3.z −→ letrec z =
λx :T1.e in E3.λx :T1.e with z 6= x and z /∈ hb(E3) and fv(λx :T1.e) /∈ hb(E3). Suppose
Γ ` letrec z = λx :T1.e in E3.z :T .

W.l.g. take E3, e, z , x such that z , x /∈ dom(Γ) and dhb(E3,dom(Γ) ∪ {z , x}).
By inversion of the typing relation and by renaming there exists T2 such that Γ, z :T1 →
T2, x :T1 ` e:T2 and Γ, z :T1 → T2 ` E3.z :T .

44

A λC , λR AND λD: SANITY PROPERTIES A.2 Type preservation and safety

By the above name assumption we have dhb(E3,dom(Γ)z :T1 → T2).

By Lemma 19 there exist Γ′,T ′ such that Γ, z :T1 → T2,Γ
′ ` z :T ′, dom(Γ′) = hb(E3), and

∀e ′.Γ, z :T1 → T2,Γ
′ ` e ′:T ′ =⇒ Γ, z :T1 ` E3.e

′:T (*).

By inversion of the typing relation T ′ = T1 → T2.

By typing Γ, z :T1 → T2 ` λx :T1.e:T1 → T2.

By weakening (Lemma 17) Γ, z :T1 → T2,Γ
′ ` λx :T1.e:T1 → T2.

By (*) Γ, z :T1 ` E3.λx :T1.e:T .

By typing Γ ` letrec z = λx :T1.e in E3.λx :T1.e:T .

Case (E3). By Lemma 19.

For λd: (proj) and (app) are as in λr. For (inst-1) and (inst-2) note that the destruct contexts R
are contained in A1, so both are E3-closure instances of the λr (inst) rule (modulo the different u
notions). The same proof therefore goes through. For the (instrec-1) and (instrec-2) cases the same
applies.

�

Theorem 21 (Type safety for λc, λr and λd) If ` e:T then ¬(e err).

Proof Again, λc is standard.

Note that for λr a more general result holds, with an arbitrary Γ, but for λd it is important that
the type context be empty.

For λr:

Case (proj-err). Suppose Γ ` E3.πr (E2.w):T and ¬∃u1, u2.w = (u1, u2) (*).

W.l.g. dhb(E3,dom(Γ)) and dhb(E2,dom(Γ) ∪ hb(E3)).

By Lemma 19 there exist Γ′,T ′ such that Γ,Γ′ ` πr (E2.w):T ′ and dom(Γ′) = hb(E3).

By inversion of the typing relation there exist T1,T2 such that T ′ = Tr and Γ,Γ′ ` E2.w :T1 ∗
T2.

Trivially dhb(E2,dom(Γ)Γ′) so by Lemma 18 there exists Γ′′ such that Γ,Γ′,Γ′′ ` w :T1 ∗ T2.

The only w form which is typable with a product type is (u1, u2), contradicting (*).

Case (app-err). Similar.

For λd:

Case (proj-err). Suppose ` E3.πr (E2.w):T and ¬∃u1, u2.w = (u1, u2) (*) and
¬∃z in hb(E3,E2).w = z (**).

W.l.g. dhb(E3, {}) and dhb(E2,hb(E3)).

By Lemma 19 there exist Γ′,T ′ such that Γ′ ` πr (E2.w):T ′ and dom(Γ′) = hb(E3).

By inversion of the typing relation there exist T1,T2 such that T ′ = Tr and Γ′ ` E2.w :T1 ∗T2.

Trivially dhb(E2,dom(Γ′)) so by Lemma 18 there exists Γ′′ such that Γ′,Γ′′ ` w :T1 ∗ T2.

The only w forms which are typable with a product type is (u1, u2) and z . The former
contradicts (*). For the latter, by (**) z is free in E3.πr (E2.w), which contradicts its typability
in the empty context.

Case (app-err). Similar.

�

45

B λC , λR AND λD: OBS. EQUIV.

Integers n
Identifiers x , y , z
Types T ::= int | unit | T ∗ T ′ | T → T ′

Exprs a ::= z | n | () | (a, a ′) | πr a, r = 1, 2 | λx :T .a
| a a ′ | letm z = a in a ′ | Ω

Annotations m ::= 0 | 1

Figure 16: Annotated syntax λ′

B Proofs for λc, λr and λd: Observational equivalence

Throughout this appendix we work with a simpler language, replacing letrec by a nonterminating
Ω, with Ω −→ Ω in all reduction strategies.

Theorem 22 (Observational Equivalence)

1. If ` e:int and e −→∗c n then e −→∗r u and e −→∗d u′ for some u and u ′ with [| u |] = [| u ′ |] = n.

2. If ` e:int and e −→∗r u (e −→∗d u) then ∃n.e −→∗c n and [| u |] = n.

B.1 Observational equivalence between λr and λc

Theorem 23 states the sense in which we shall consider λc and λr to be observationally equivalent. We
show the validity of this theorem using relational reasoning to establish the existence, by construction, of
a weak bisimulation between the transition systems of λc and λr, furthermore we show that this relation
preserves termination. For technical reasons the proof proceeds by introducing an intermediate language,
λr′ , given in figures 16 and 17, and then constructing a relation from λc to λr′ and another from λr′ to λr.
Properties of these relations are then established for the sole purpose of proving that their composition
is the required relation between λr and λc.

Theorem 23 For all e ∈ λ the following hold:

1. ` e:int =⇒ (e −→∗c n =⇒ ∃v . e −→∗r u ∧ n = {| v |})

2. ` e:int =⇒ (e −→∗r v =⇒ ∃n. e −→∗c n ∧ n = {| v |})

We begin by making definitions of auxiliary functions and certain normal forms of expressions. Basic
properties of these, that will be needed in the construction of the bisimulation, are then established.

Definition 1 (Environment)

An environment Φ is a list containing pairs whose first component is an identifier and whose second
component is a c-value or an identifier that is the same as the first component. Environments have
the property that ∀x ∈ dom(Φ). Φ(x) = v ∧ ∀z ∈ fv(v).z≤Φx where ≤Φ is the ordering of the
identifiers in Φ. In addition we require that all the first components of the pairs in the list are
disjoint. We write Φ, z 7→ v for the disjoint extension of Φ forming a new environment. We write
Φ[z 7→ v] for the environment acting as Φ, but mapping z to v

When extending an environment, we must make sure that the free variables of the element we add are
already contained in the environment. In practice this constraint is easily satisfied as the values added
to the environment are of the from [| u |]Φ ([|− |]− is defined in figure 18) where we know fv(u) ⊆ dom(Φ).

46

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

Reduction contexts

Values u ::= n | () | (u, u ′) | λx :T .a | let0 z :T = u in u
Atomic eval ctxts A1 ::= (, a) | (u,) | πr | a | λx :T .a

| let1 z :T = in a
Atomic bind ctxs A2 ::= let0 z :T = u in
Eval ctxts E1 ::= | E1.A1

Bind ctxts E2 ::= | E2.A2

Reduction ctxts E3 ::= | E3.A1 | E3.A2

Reduction rules

(proj) πr (E2.(u1, u2)) −→ E2.ur

(app) (E2.(λx :T .a)u) −→ E2.let0 x = u in a
if fv(u) /∈ hb(E2)

(omega) Ω −→ Ω

(inst) let0 z = u in E3.z −→ let0 z = u in E3.u
if z /∈ hb(E3) and fv(u) /∈ z ,hb(E3)

(zero) let1 z = u in a −→ let0 z = u in a

(cong)
a −→ a ′

E3.a −→ E3.a
′

Figure 17: λr′ calculus

47

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

It is easy to check that fv(u) ⊆ dom(Φ) =⇒ fv([| u |]Φ) /∈ dom(Φ), which guarantees that our extensions
are safe.

Definition 2 (Well-formedness) We write wf[a] to denote that a term a is well-formed, in the sense
of the definition below. It is parametrised on a value predicate val, a predicate determining if a
given expression is a value in the calculus under consideration, the actual value of which should be
clear from the context.

The definition uses an auxiliary predicate nozeros(a) which asserts that there are no subexpressions
of a of the form let0 z = a in a ′.

wf[z] = t
wf[n] = t
wf[()] = t
wf[Ω] = t
wf[(a, a ′)] = wf[a] ∧ wf[a ′]
wf[πr a] = wf[a]
wf[λx :T .a]) = wf[a] ∧ nozeros(a)
wf[a a ′] = wf[a] ∧ wf[a ′]
wf[let0 z = a in a ′] = wf[a] ∧ wf[a ′] ∧ a val
wf[let1 z = a in a ′] = wf[a] ∧ wf[a ′] ∧ nozeros(a ′)

Definition 3 (inject) ι[] : λ → λ′ is a function that converts λ terms to λ′ terms by changing all
lets to 1-annotated lets:

ι[z] = z
ι[n] = n
ι[()] = ()
ι[Ω] = Ω
ι[πr e] = πr ι[e]
ι[(e, e ′)] = (ι[e], ι[e ′])
ι[λx :T .e] = λx :T .ι[e]
ι[e e ′] = ι[e]ι[e ′]
ι[let z = e in e ′] = let1 z = ι[e] in ι[e ′]

Definition 4 (erase) erase() : λ′ → λ is a function that converts λ′ terms to λ terms by erasing all
annotations from lets:

ε[z] = z
ε[n] = n
ε[()] = ()
ε[Ω] = Ω
ε[πr a] = πr ε[a]
ε[(a, a ′)] = (ε[a], ε[a ′])
ε[λx :T .a] = λx :T .ε[a]
ε[a a ′] = ε[a] ε[a ′]
ε[let0 z = a in a ′] = let z = ε[a] in ε[a ′]
ε[let1 z = a in a ′] = let z = ε[a] in ε[a ′]

48

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

Definition 5 (weak bisimulation) Given two transition systems X⊆ S × S and Y⊆ S × S, we say
that a relation R⊆ S × S relating states of X to states of Y is a weak simulation from X to Y if
and only if for every exRey the following holds:

ex −→X e′x =⇒ ∃e′y. ey −→∗Y e′y ∧ e′xRe′y

If R is a weak simulation from X to Y and a weak simulation from Y to X , then R is called a weak
bisimulation between X and Y .

Here we introduce a function that expresses the correspondence between well-
formed λr′ terms that were built through instantiation and λ terms built through
substitution (in the sense of λc reduction). [| a |]Φ is a function mapping a λr′
expression a and an environment Φ to a λc expression. We note that in each
of the cases where we extend the environment to associate an identifier with a
value, we can ensure that the identifier is fresh for the environment by alpha
conversion.

[| z |]Φ = Φ(z)

[|n |]Φ = n

[| () |]Φ = ()

[|Ω |]Φ = Ω

[| (a, a ′) |]Φ = ([| a |]Φ, [| a ′ |]Φ)

[|πr a |]Φ = πr [| a |]Φ

[|λx :T .a |] = λx :T .[| a |]Φ,x 7→x x /∈ dom(Φ)

[| a a ′ |]Φ = [| a |]Φ [| a ′ |]Φ

[| let0 z = a in a ′ |]Φ = [| a ′ |]Φ,z 7→[| a |]Φ z /∈ dom(Φ)

[| let1 z = a in a ′ |]Φ = let z = [| a |]Φ in [| a ′ |]Φ,z 7→z z /∈ dom(Φ)

Figure 18: instantiate-substitute correspondence

Definition 6 (extension of wf[−] to contexts) We extend wf[−] to act on A1 contexts by including
wf[] = t and otherwise remaining unchanged from its action on expressions. On reduction contexts
we define it as follows:

wf[] = t
wf[.E3] = wf[E3]
wf[A1.E3] = wf[A1] ∧ wf[E3]
wf[let0 z = u in E3] = wf[let0 z = u in] ∧ wf[E3]

Definition 7 (binding context)

Ec[E3]Φ builds an environment corresponding to the binding context of the λr′ reduction context

49

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

E3 using the environment Φ.

Ec[]Φ = ∅
Ec[.E3]Φ = Ec[E3]Φ

Ec[A1.E3]Φ = Ec[E3]Φ

Ec[let0 z = u in .E3]Φ = z 7→ [| u |]Φ, Ec[E3]Φ,z 7→[| u |]Φ

The context E3 and the environment Φ must be compatible in the sense that fv(E3) ⊆ dom(Φ) and
hb(E3) must be unique.

Lemma 24 (well-formed properties) wf[E3.a] ⇐⇒ wf[E3] ∧ wf[a]

Proof (=⇒) Assume wf[E3.a] and note that wf[−] acts on contexts in the same way it acts on expres-
sions, thus wf[E3]. Furthermore having a surrounding context can only impose stricter conditions
upon a, thus wf[a].

(⇐) Assume wf[E3] ∧ wf[a] and note that wf[−] can only fail if the nozeros or value checks fail.
No holes in E3 coincide with these checks, thus wf[E3.a].

�

Lemma 25 (reduction preserves well-formedness) wf[a] ∧ a −→r′ a ′ =⇒ wf[a ′]

Proof Prove this by showing that the transition system for λr′ is closed under wf[a] =⇒ wf[a ′] by
rule induction on a −→r′ a ′.

case (proj) :

Assume wf[πr (E2.(u1, u2))], then by well-formed properties (Lemma 24) wf[E2] ∧ wf[(u1, u2)].
By wf[−] definition we have wf[u1] ∧ wf[u2]. Thus by well-formed properties (Lemma 24)
wf[E2.ur].

case (app) :

Assume wf[(E2.λx :T .a) u] then by definition: wf[E2.λx :T .a] and wf[u]. We can deduce using
well-formed properties (Lemma 24) and the definition of wf[−] that wf[E2] and wf[a]. It follows
that wf[let0 x = u in a], then by well-formed properties (Lemma 24) wf[E2.let0 z = u in a]
as required.

case (omega) :

Immediate.

case (inst) :

Assuming wf[let0 z = u in E3.z] we have by definition that wf[u] and wf[E3.z], then by
well-formed properties (Lemma 24) (used twice) we have wf[E3.u] we then have by definition
that wf[let0 z = u in E3.u].

case (zero) :

Assuming wf[let1 z = u in a] we have by definition wf[u] and wf[a], thus wf[let0 z = u in a].

case (cong) :

Assume wf[a] =⇒ wf[a ′] and wf[E3.a] then by well-formed properties (Lemma 24) wf[a] and
thus using our inductive assumption wf[a ′]. By well-formed properties (Lemma 24) wf[E3.a

′].

�

50

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

B.1.1 Properties of substitute-instantiate correspondence

Lemma 26 ([|− |]− environment properties)

(i) If wf[a] and fv(a) ⊆ dom(Φ) and fv(v) ⊆ dom(Φ) then {v/x}[| a |]Φ,x 7→x = [| a |]Φ,x 7→v

(ii) If x /∈ fv(a) then [| a |]Φ,x 7→v = [| a |]Φ

Proof First prove (i) by induction on a. Cases () and n are trivial.

case z :

Assume fv(z) ⊆ dom(Φ) ∧ fv(v) ⊆ dom(Φ) ∧ wf[z]. We know by the definition of Φ that
Φ(z) = z or Φ(z) = v ′ for some c-value v ′. In the former case we have to consider if z = x
holds, if it does then

{v/x}[| z |]Φ,x 7→x = {x/v}[Φ, x 7→ x](z) = {v/x}x = v = [| z |]Φ,x 7→v

if not then

{v/x}[| z |]Φ,x 7→x = {x/v}[Φ, x 7→ x](z) = {v/x}z = z = [| z |]Φ,x 7→v

In the latter case

{v/x}[| z |]Φ,x 7→x = {x/v}[Φ, x 7→ x](z) = {v/x}v ′

holds and we are left to show that {v/x}v ′ = v ′ = [| z |]x 7→v ,Φ. The second equality is true
by assumption. To show the first equality is suffices to prove x /∈ fv(v ′). As Φ, x 7→ x is
an environment x /∈ dom(Φ) therefore given a z such that Φ(z) = v then x /∈ fv(v) by the
definition of environment.

case λz :T .a :

Assume fv(λx :T .a) ⊆ dom(Φ) and wf[λx :T .a]. First note that by alpha conversion z 6= x can
be ensured. Then fv(a) ⊆ dom(Φ, x 7→ x) and wf[a], so by induction

{v/x}[| a |]Φ,x 7→x = [| a |]Φ,x 7→v

From which the result follows by lambda abstracting on z .

The rest of the cases follow a similar pattern.

Part (ii) is clear from the definition of [|− |]−. �

Lemma 27 fv(E3.a) ⊆ dom(Φ) ⇐⇒ fv(a) ⊆ (dom(Φ) ∪ Ec[E3]Φ)

Proof (=⇒) Notice that fv(a)\fv(E3.a) can be at most hb(E3). The result is assured as hb(E3) =
dom(Ec[E3]Φ).

(⇐) It suffices to observe that the hole binders of E3 cannot be free in E3.a and that hb(E3) =
dom(Ec[E3]Φ).

�

Lemma 28 ([|− |]− value preservation)

fv(u) ⊆ dom(Φ) ∧ wf[u] =⇒ [| u |]Φ cval

51

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

Proof Prove by induction on u. [|− |]Φ clearly preserves n and (), so these cases are trivial. In the pair
case it acts inductively, and in the function case we transform functions in λr′ into functions in λc
and functions are values. This leaves the let case:

case let0 = u1 in u2 :

Assume fv(let0 z = u1 in u2) ⊆ dom(Φ) and wf[let0 z = u1 in u2]. [| let0 z = u1 in u2 |]Φ =
[| u2 |]Φ

′
where Φ′ = Φ, z 7→ [| u1 |]Φ. By Lemma 27 fv(u2) ⊆ dom(Φ′) and by definition of

wf[−], wf[u2]. By induction [| u2 |]Φ
′

cval as required.

�

Definition 8 ([|− |] on contexts) We extend [|− |]− to act on A1 contexts by adding the clause
[| |]Φ = . On reduction contexts we define the action as:

[| let0 z = a in .E3 |]Φ = [|E3 |]Φ,z 7→[| a |]Φ

[|A1.E3 |]Φ = [|A1 |]Φ.[|E3 |]Φ

[| .E3 |]Φ = .[|E3 |]Φ

Lemma 29 ([|− |] distribution over contexts) For all E3,Φ and a, if fv(E3.a) ⊆ dom(Φ) and

wf[E3.a] then [|E3.a |]Φ = [|E3 |]Φ.[| a |]Φ,Ec[E3]Φ

Proof We prove by induction on E3.

case A1.E
′
3 :

[|A1.E
′
3.a |]

Φ = [|A1 |]Φ. [|E ′3.a |]
Φ

= [|A1 |]Φ. [|E ′3 |]
Φ. [| a |]Φ,Ec[E

′
3]Φ (*)

= [|A1.E
′
3 |]

Φ. [| a |]Φ,Ec[A1.E
′
3]Φ

By well-formed properties (Lemma 24) we have wf[E ′3.a], and by assumption fv(E ′3.a) ⊆
dom(Φ), thus by induction (*) holds.

case let0 z = u in .E ′3 :

[| let0 z = u in .E ′3.a |]
Φ = [|E ′3.a |]

Φ,z 7→[| u |]Φ

= [|E ′3 |]
Φ,z 7→[| u |]Φ . [| a |]Φ

′
(*)

where Φ′ = Φ, z 7→ [| u |]Φ, Ec[E ′3]Φ,z 7→[| u |]Φ

= [| let0 z = u in .E ′3 |]
Φ. [| a |]Φ,Ec[let0 z=u in .E ′3]Φ (**)

By definition of wf[−] we have wf[E ′3.a], and by assumption fv(E ′3.a) ⊆ dom(Φ′), thus by
induction (*) holds. By definition of [|− |]− and Ec[−]−, (**) is equivalent to (*).

�

Lemma 30 ([|− |] preserves contexts) If fv(E3) ⊆ dom(Φ) and wf[E3] then there exists a λc reduc-
tion context E such that [|E3 |]Φ = E.

Proof We proceed by induction on the structure of E3:

case :

[| |]Φ = which is a valid λc reduction context.

52

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

case A1.E
′
3 :

Assume (1) fv(A1.E
′
3) ⊆ dom(Φ) and (2) wf[A1.E

′
3]. From [|− |] on contexts (definition 9)

[|A1.E
′
3 |]

Φ = [|A1 |]Φ.[|E3 |]Φ. Clearly fv(E ′3) ⊆ dom(Φ) and by well-formed properties (Lemma
24) wf[E ′3]. From these derived facts and induction, there exists an E ′ such that E = [|E ′3 |]

Φ.
We are left to show that [|A1 |]Φ is a valid λc reduction context for every A1:

case (, a) :
Follows directly from definition

case (u,) :
[| (u,) |]Φ = ([| u |]Φ,) which is a λc context only if [| u |]Φ cval. From 1 we know that
fv(u) ⊆ dom(Φ) as fv(u) ⊆ fv((u,).E ′3). From 2 we conclude wf[u]. By these last two
facts and [|− |]− value preservation (Lemma 28) [| u |]Φ cval as required.

The rest of the A1 cases are similar to one of the above two.

case let0 z = u in .E ′3 :

Assume fv(let0 z = u in .E ′3) ⊆ Φ and wf[let0 z = u in .E ′3]. From [|− |] on contexts

(definition 9) [| let0 z = u in E ′3 |]
Φ = [|E ′3 |]

Φ,z 7→[| u |]Φ . It is clear that fv(E ′3) ⊆ dom(z 7→
[| u |]Φ)Φ, and by well-formed properties (Lemma 24) wf[E3], thus by induction there exists

an E such that [|E3 |]Φ,z 7→[| u |]Φ = E .

�
Definition 9 (ε[−] on contexts) We extend ε[−] to act on A1 contexts by adding the clause ε[] =

On reduction contexts we define the action as:

ε[let0 z = a in .E3] = let z = ε[a] in ε[E3]
ε[A1.E3] = ε[A1].ε[E3]
ε[.E3] = .ε[E3]

Notation we write a
x−→ a ′ to indicated that rule x was used to reduce a to a ′.

Definition 10 (INF) A term a is in instantiation normal form (INF) if and only if there does not

exist an a′ such that a
inst−−→ a ′. We write a infr when a is in INF.

Definition 11 (open INF) A possibly open term a is in open instantiation normal form if and only
if there does not exist an E3 and z such that a = E3.z . We write a inf ◦r when a is in open INF.

Lemma 31 (inf ◦r preserved by E3 stripping) For any evaluation context E3, E3.a inf ◦r =⇒ a inf ◦r

Proof Proof of the contrapositive follows simply. �

Lemma 32 ([|− |]− invariant under insts) wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
inst−−→

∗
r′ a
′ =⇒ [| a |]Φ = [| a ′ |]Φ

Proof We first prove the single reduction case by induction on a
insts−−−→r′ a

′. Every case is trivial except
(inst) and (cong):

case (inst) :

Assume wf[let0 z = u in E3.z] and fv(let0 z = u in E3.z) ⊆ dom(Φ). We are required to
prove that applying [|− |]Φ to the left and right hand side of this rule results in the same term.
First take the LHS:

[| let0 z = u in E3.z |]Φ = [|E3.z |]Φ
′

where Φ′ = Φ, z 7→ [| u |]Φ

= Φ′, [| z |]Ec[E3]Φ
′

(†)
= [| u |]Φ (*)

53

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

(†) follows from [|− |]− distribution over contexts (Lemma 29) . (*) follows as z /∈ hb(E3) by
the side condition of rule. Now take the RHS:

[| let0 z = u in E3.u |]Φ = [| u |]Φ
′,Ec[E3]Φ

′
(**)

We are left to show that (*) and (**) are equal.

By side condition of the (inst) reduction rule fv(u) /∈ hb(E3) and by alpha conversion z /∈ fv(u).
It follows that fv(u) /∈ dom(Φ′, Ec[E3]Φ

′
) ∪ z , thus by induction on the number of bindings

in Φ′, Ec[E3]Φ
′

we can show, using [|− |]− environment properties (ii) (Lemma 26) , that

[| u |]Φ = [| u |]Φ
′,Ec[E2]Φ

′
, as required.

case (cong) :

Assume wf[E3.a] and fv(E3.a) ⊆ dom(Φ). By well-formed properties (Lemma 24) wf[a]. Let
Φ′ = Φ, Ec[E3]Φ, then fv(a) ⊆ dom(Φ′). By induction [| a |]Φ

′
= [| a ′ |]Φ

′
(*). Now [|E3.a |]Φ =

[| a |]Φ
′

and [|E3.a
′ |]Φ = [| a ′ |]Φ

′
, thus by (*) we are done.

The multiple step case follows by induction on the number of reductions. �

Definition 12 (instvar[−]) instvar[a] denotes the number of potential instantiations that a can do.

instvar[z] = 1
instvar[n] = 0
instvar[()] = 0
instvar[Ω] = 0

instvar[πr a] = instvar[a]
instvar[(a a ′)] = instvar[a] + instvar[a ′]

instvar[λx :T .a] = 0
instvar[aa ′] = instvar[a] + instvar[a ′]

instvar[letm z = a in a ′] = instvar[a] + instvar[a ′]

Lemma 33 (instvar[−] properties) For all λr′ terms a and a ′

1. a r’val =⇒ instvar[a] = 0

2. a
insts−−−→r′ a

′ =⇒ instvar[a ′] = instvar[a]− 1

Proof First prove 1: For instvar[u] to be non-zero, there must be at least one occurrence of a variable
that is not under a lambda binding. By the definition of the forms of values, this cannot be the
case.

Now prove 2: Assume a
inst−−→r′ a

′ and prove instvar[a ′] = instvar[a] − 1. By the assumption the
following must hold:

(3) ∃E3,E
′
3, z , u. a = E3.let0 z = u in E ′3.z

we are left to prove

instvar[E3.let0 z = u in E ′3.u] = instvar[E3.let0 z = u in E ′3.z]− 1

which is true if and only if instvar[u] = instvar[z] − 1, which holds if and only if instvar[u] = 0,
which is assured by our first observation.

�

54

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

Lemma 34 (INF reachability) For all closed a, if wf[a] then there exists a ′ such that a
insts−−−→

∗
r′ a
′ ∧

a ′ infr

Proof Assume a closed and wf[a]. If a does not match the LHS of an inst or instrec rule then we are
done, so suppose that it does. By instvar[−] properties (Lemma 33) there can only be finitely many
inst or instrec reductions, say n. Thus after n insts reductions we arrive at a term a ′, for which it
must hold that a ′ does not match the LHS of inst or instrec and thus a ′ infr as required. �

Lemma 35 ([|− |]Φ source-value property) For all λr′ expressions a, the following holds:

wf[a] ∧ a inf ◦r ∧ fv(a) ⊆ dom(Φ) ∧ [| a |]Φ cval =⇒ a r’val

Proof We prove by induction on a. In the identifier case, the term is not in INF. The n and () cases
are immediate. The (a1, a2) case follows by induction (and that the subterms are well-formed). The
πr a and a1 a2 cases are immediate as the action of [|− |]Φ on them does not produce a value. The
function case is also immediate as [|− |]Φ produces a function which is a value. In the let1 case,
applying [|− |]Φ does not produce a value. This leaves the let case:

case let0 z = a1 in a2 :

Assume the term is well-formed, then the subterms are well-formed and a1 r’val. Assume the
term is in open INF, then a2 inf ◦r . Assume that the free variables of the term are in dom(Φ),
then fv(a2) ⊆ Φ, z 7→ [| a1 |]Φ. We have to prove:

[| let0 z = a1 in a2 |]
Φ = [| a2 |]

Φ,z 7→[| a1 |]
Φ

is an r-value, which follows by induction on a2.

�

Lemma 36 ([|− |] outer value preservation) For all λr′ values u:

(a) If wf[u], fv(a) ⊆ dom(Φ) and [| u |]Φ = λx :T .e then there exists E2, a, x such that u = E2.λx :T .a

(b) [| u |]Φ = (v1, v2) =⇒ ∃E2, u1, u2. u = E2.(u1, u2)

Proof We prove (a) by induction on u. The cases of n, (), (u1, u2) are trivially true as [|− |]− on these
terms can not result in a term of the form λx :T .e. The case λx :T .a results in a function when
[|− |]− is applied, but it is already of the right form if one chooses E2 = . This leaves the let case:

case let0 z = u1 in u2 :

Assume wf[let0 z = u1 in u2]; fv(let0 z = u1 in u2) ⊆ dom(Φ) and [| let0 z = u1 in u2 |]Φ =
λx :T .e. By definition of well-formedness wf[u1] ∧ wf[u2]. It is easy to see that fv(u1) ⊆
dom(Φ) and fv(u2) ⊆ dom(Φ, z 7→ [| u1 |]Φ). From the last assumption [| let0 z = u1 in u2 |]Φ =

[| u2 |]Φ,z 7→[| u1 |]
Φ

= λx :T .e, thus by induction there exists E ′2, a
′, x ′ such that u2 = E ′2.λx ′:T .a ′.

The result follows by choosing E2 = (let0 z = u1 in .E ′2); a = a ′ and x = x ′.

(b) is proved by a similar induction on u. �

55

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

B.1.2 Erase properties

Definition 13 (ZNF) A λr′ expression is in zero normal form, denoted by a znfr if and only if there

does not exist an a ′ such that a
zero−−→r′ a

′.

Definition 14 (open ZNF) We say that a possibly open λr′ expression is in open zero normal form
and write a znf ◦r if and only if there does not exist E3, z , u, a

′ such that a = E3.let1 z = u in a ′

Lemma 37 (znf ◦r preserved by E3 stripping) E3.a znf ◦r =⇒ a znf ◦r

Proof Proof is easily obtained by proving the contrapositive. �

Lemma 38 (ε[−] invariant under zeros) wf[a] ∧ a
zero−−→∗r′ a ′ =⇒ ε[a] = ε[a ′]

Proof Observe that both sides of the (zero) rule erase to the same term.

�

Lemma 39 (RZNF reachability) For all closed a, if wf[a] then there exists a ′ such that a
zero−−→∗r′ a ′ ∧

a ′ znfr

Proof To see this we show that all contiguous sequences of (zero)-reductions are finite. Define a
metric ones: λ′ → N that counts the number of 1-annotated-lets in an expression, then each (zero)
reduction strictly reduces this measure. As expressions are finite, our metric is finite-valued and
thus reduction sequences consisting only of (zero)-reductions are finite.

�

Lemma 40 (ε[−] value preservation)

wf[u] =⇒ ε[u] rval

Proof Obvious from definition. �

Lemma 41 (ε[−] distributes over contexts) ε[E3.a] = ε[E3].ε[a]

Proof Straight forward induction on E3. �

Lemma 42 (ε[−] preserves contexts) If wf[E3] then there exists a λr reduction context E ′3 such that
ε[E3] = E ′3.

Proof By induction on E3:

case :

trivial

case A1.E3 :

Assume that wf[A1.E3]. By well-formed properties (Lemma 24) wf[E3]. By induction there
exists a λr context E ′3 such that ε[E3] = E ′3. Now ε[A1.E3] = ε[A1].ε[E3] = ε[A1].E ′3 and
furthermore, by ε[−] value preservation (Lemma 40) it is easy to verify that for each A1,
ε[A1] is a valid λr atomic context.

56

B λC , λR AND λD: OBS. EQUIV. B.1 Observational equivalence between λr and λc

case let0 z = u in .E3 :

Similar to the previous case.

�

Lemma 43 (ε[−] source-value property) wf[a] ∧ a znf ◦r ∧ ε[a] rval =⇒ a r’val

Proof Straightforward induction on a. �

Lemma 44 (ε[−] outer value preservation) For all λr′ values u:

(a) If wf[u] and ε[u] = E2.λx :T .e then there exists Ê2, a, z such that one of the following holds:

(i) u = Ê2.λx :T .a

(b) ε[u] = E2.(v1, v2) =⇒ ∃Ê2, u1, u2. u = Ê2.(u1, u2)

Proof Follows by inspection of the definition. �

Lemma 45 (ε[−] source context) If ε[a] = E3.e and a znf ◦r then there exists an Ê3 and â such that
a = Ê3.â and ε[Ê3] = E3.

Proof Proceed by induction on E3, we show only a sample of the cases as the rest are similar:

case (v ,).E3 :

Assume ε[a] = (v ,).E3.e and a znf ◦r . The only possible form for a is (a1, a2) for some a1 and
a2. Thus ε[a1] = v and ε[a2] = E3.e. As a is in open ZNF, a1 must also be, thus by ε[−]
source-value property (Lemma 43) a1 r’val. By induction on E3 there exists Ê3 and â such that
a2 = Ê3.â ∧ ε[Ê3] = E3. It follows that (a1, a2) = (a1,).Ê3.â ∧ ε[(a1,).Ê3.â] = (v ,).E3.

case let z = u in E3 :

Assume ε[a] = let z = u in E3.e and a znf ◦r . By inspection of the definition of ε[−] a either
has the form let0 z = a1 in a2 or let1 z = a1 in a2 for some a1 or a2. The latter cannot be
the case, as assume that it is, then by znf ◦r preserved by E3 stripping (Lemma 37) a1 znf ◦r ,
but ε[a1] = u so by ε[−] source-value property (Lemma 43) a1 r’val and so let1 z = a1 in a2

in not in open ZNF, a contradiction. We continue considering a = let0 z = a1 in a2. We
have ε[a1] = u, ε[a2] = E3.e and as wf[a], a1 r’val. By induction on E3 there exists an Ê3

and â such that a2 = Ê3.â ∧ ε[Ê3] = E3. It follows that a = let z = a1 in Ê3.â and
ε[let z = a1 in Ê3] = let z = u in E3 as required.

�

Lemma 46 (inst match property)

wf[a] ∧ a
inst−−→r′ a

′ =⇒ ∃e ′. ε[a]
inst−−→r e ′ ∧ e ′ = ε[a ′]

Proof We prove by induction on the structure of a
insts−−−→r′ a

′:

case (inst) :

ε[let0 z = u in E3.z]
= let z = ε[u] in ε[E3].ε[z]
−→r let z = ε[u] in ε[E3].ε[u]

= ε[let z = u in E3.u]

Where the penultimate step is valid by ε[−] preserves contexts (Lemma 42) .

57

B.1 Observational equivalence between λr and λc B λC , λR AND λD: OBS. EQUIV.

case (cong) :

Assume wf[E3.a]; E3.a −→r′ E3.a
′ and a

insts−−−→r′ a
′. It follows from well-formed properties

(Lemma 24) that wf[a]. By induction on a there exists an e ′ such that ε[a]
insts−−−→r′ e

′ and
e ′ = ε[a ′]. As ε[E3] is a valid λr context by ε[−] preserves contexts (Lemma 42) ε[E3].ε[a] −→r

ε[E3].e ′. To get the result it is sufficient to prove that ε[E3].e ′ = ε[E3.a
′]. It follows from ε[−]

distributes over contexts (Lemma 41) that ε[E3.a
′] = ε[E3].ε[a ′] = ε[E3].e ′ as required.

�

Lemma 47 (inst match sequence)

wf[a] ∧ a
insts−−−→

n

r′ a
′ =⇒ ∃e ′. ε[a]

insts−−−→
n

r e ′ ∧ e ′ = ε[a ′]

Proof By induction on the length of the transition sequence (n):

case n = 0 :

Immediate.

case n = k :

Assume (4) wf[a] ∧ a
inst−−→

k+1

r a ′ and prove (5) ∃e ′. ε[a]
inst−−→

k+1

r′ e ′ ∧ e ′ = ε[a ′]. By 4

∃a ′′. a
inst−−→

k

r a ′′
inst−−→r a ′ thus by IH (6) ∃e ′′. ε[a]

inst−−→
k

r e ′′ ∧ e ′′ = ε[a ′′]. Recall that well-
formedness is preserved by reduction so wf[a ′′]. By the above results and inst match property

(Lemma 46) we have (7) ∃e ′. ε[a ′′] insts−−−→r e ′ ∧ e ′ = ε[a ′], thus by 6 and 7: ∃e ′. ε[a]
insts−−−→

k+1

r′ e ′ ∧
e ′ = ε[a ′] as required.

�

Lemma 48 (zero match property)

wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
zero−−→r′ a

′ =⇒ ∃e ′. [| a |]Φ
let−−→c e ′ ∧ e ′ = [| a ′ |]Φ

Proof We prove by induction on the structure of a
zero−−→r′ a

′:

case (zero) :

observe
[| let1 z = u in a |]Φ = let z = [| u |]Φ in [| a |]Φ,z 7→z

−→c {[| u |]Φ/z}[| a |]Φ,x 7→x

= [| a |]Φ,x 7→[| u |]Φ (*)
= [| let0 z = u in a |]Φ

where step (*) is allowed by [|− |]− environment properties (i) (Lemma 26) .

case (cong) :

Assume wf[E3.a]; fv(E3.a) ⊆ dom(Φ); E3.a
zero−−→r′ E3.a

′. Notice that [|E3.a |]Φ =

[|E3 |]Φ.[| a |]Φ,Ec[E3]Φ . We can derive fv(a) ⊆ dom(Φ, Ec[E3]Φ). By well-formed proper-

ties (Lemma 24) wf[a]. By induction there exists an e ′ such that [| a |]Φ,Ec[E3]Φ −→c

e ′ ∧ e ′ = [| a ′ |]Φ,Ec[E3]Φ . By [|− |] preserves contexts (Lemma 30) there exists a λc con-

text such that [|E3 |]Φ = E , thus E .[| a |]Φ,Ec[E3]Φ −→c E .e ′. It now remains to show that

E .e ′ = [| a ′ |]Φ,Ec[E3]Φ , and this is assured by [|− |]− distribution over contexts (Lemma 29) .

�

58

B λC , λR AND λD: OBS. EQUIV. B.2 Bisimulation

r ê
l

c

ε[−]
ε[−]

ê′

ε[−]

r′ a
zeros

r′
∗

[|− |]Φ

ľ

r′

[|− |]Φ

a′

[|− |]Φ

c e
lets

c

∗
l

if l 6=insts

if l =insts

e′

Figure 19: Operational reasoning of rc-simulation

Lemma 49 (zero match sequence)

wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
zero−−→n

r′ a
′ =⇒ ∃e ′. [| a |]Φ

let−−→
n

c e ′ ∧ e ′ = [| a ′ |]Φ

Proof Proceed by induction on the length of transitions:

case n = 0 :

Immediate.

case n = k + 1 :

Assume wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
zero−−→k+1

r′ a ′. By reduction we are assured that there exists

an a ′′ such that a
zero−−→k

r′ a
′′. By induction there exists an e ′ such that [| a |]Φ

let−−→
k

c e ′ ∧ e ′ =
[| a ′′ |]Φ (*). As reduction can only remove variables from the set of free variables of a term
we have fv(a) ⊆ dom(Φ). By zero match property (Lemma 48) there exists an e ′′ such that

[| a ′′ |]Φ
let−−→c e ′′ ∧ e ′′ = [| a ′ |]Φ (**). By (*), (**) we have the result.

�

B.2 Bisimulation

The demonstration of a bisimulation between λc and λr will show that if an expression has a terminating
reduction sequence under both systems, then the results will be related. In order to show observational
equivalence we are, of course, left to show that termination in one system must lead to termination in the
other. We first concentrate on showing that the relation defined in definition 16 is a weak bisimulation.
To do this we prove it is a weak simulation from λr to λc by establishing the commutativity of the diagram
in figure 19 and similarly the converse is established by demonstrating the commutativity of the diagram
in figure 20.

Definition 15 (Candidate bisimulation)

R ≡ {(e, e ′) | ∃a. wf[a] ∧ a closed ∧ e = [| a |]∅ ∧ e ′ = ε[a]}

Definition 16 (idλ) idλ is the identity relation on lambda terms:

idλ = {(e, e) | e in λ ∧ e closed}

59

B.2 Bisimulation B λC , λR AND λD: OBS. EQUIV.

c e
l

ce
′

[|− |]Φ

r′ a

[|− |]Φ

insts ∗
r′

ε[−]

[|− |]Φ

l̂

r′

ε[−]

a′

ε[−]

r ê
insts ∗

r

l

if l 6= zeros

if l =zeros

ê′

Figure 20: Operational reasoning of cr-simulation

Lemma 50 (idλ ⊆ R) The candidate bisimulation R contains idλ.

Proof It suffices to prove ε[ι[e]] = e and [| ι[e] |]∅ = e. The first is clear from the definitions. The
second can be proved by induction on e. �

B.2.1 c-r correspondence

Lemma 51 (c-r’ correspondence)

a closed ∧ wf[a] ∧ [| a |]∅ −→c e ′ =⇒ ∃a ′, a ′′. a
insts−−−→

∗
r′ a
′′ −→r′ a ′ ∧ a ′′ infr ∧ e ′ = [| a ′ |]∅

Proof We generalise to open terms and claim that it is sufficient to prove:

wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a inf ◦r ∧ [| a |]Φ −→c e ′ =⇒ ∃a ′. a −→r′ a ′ ∧ e ′ = [| a ′ |]Φ

First let us show that this is sufficient: assume the above proposition and a closed ∧ wf[a] ∧

[| a |]∅ −→c e ′ then we are required to prove that there exists an a ′ and a ′′ such that (8) a
insts−−−→

∗
r′ a
′′;

(9) fv(a) ⊆ dom(Φ); (10) a ′′ −→r′ a ′; (11) a ′′ infr and (12) e ′ = [| a ′ |]∅. By INF reachability lemma
(Lemma 34) there exists an a ′′ to satisfy 8 and 11, thus taking Φ = ∅ in the generalised claim by
modus ponens we have that there exists an a ′ such that a ′′ −→r′ a ′ ∧ e ′ = [| a ′ |]∅. This satisfies
the remaining proof obligations.

We prove the generalised claim by induction on the structure of a:

case z :

¬(z inf ◦r).

case n; () :

[|n |]Φ = n which does not reduce under λc. [| () |]Φ = () which does not reduce under λc.

case (a1, a2) :

Assume wf[(a1, a2)] ∧ (a1, a2) inf ◦r ∧ [| (a1, a2) |]Φ −→c e ′ and prove that there exists an a ′

such that (a1, a2) −→r′ a ′ ∧ e ′ = [| a ′ |]Φ. We proceed by case split on the reductions of
[| (a1, a2) |]Φ.

case [| (a1, a2) |]Φ −→c (e ′1, [| a2 |]Φ) :

60

B λC , λR AND λD: OBS. EQUIV. B.2 Bisimulation

If follows that [| a1 |]Φ −→c e ′1. By wf[−] definition wf[a1]. We can reason that fv(a1) ⊆
dom(Φ). By inf ◦r preserved by E3 stripping (Lemma 31) a1 inf ◦r . By induction a1 −→r′

a ′1 ∧ [| a1 |]Φ = e ′1 (*). Thus a1 a2 −→r′ a ′1 a2 and we are left to show that the erasure
of the RHS of this is equal to (e ′1, [| a2 |]Φ): [| a ′1 a2 |]Φ = ([| a ′1 |]

Φ, [| a2 |]Φ) = (e ′1, [| a2 |]Φ) as
required.

case [| (a1, a2) |]Φ −→c ([| a1 |]Φ, e ′2) :
Similar to last case.

case πr a :

Assume wf[πr a] ∧ πr a inf ◦r ∧ [|πr a |]Φ −→c e ′ and prove that there exists an a ′ such that
πr a −→r′ a ′ ∧ e ′ = [| a ′ |]Φ. We proceed by case split on the reductions of [|πr a |]Φ.

case [|πr a |]Φ −→c πr a ′ :
Similar to inductive case on pairs.

case [|πr a |]Φ ≡ πr (v1, v2) −→c vr :
It follows that [| a |]Φ = (v1, v2). By inf ◦r preserved by E3 stripping (Lemma 31)
a inf ◦r . By [|− |]Φ source-value property (Lemma 35) a r’val. By [|− |]Φ outer
value preservation (Lemma 36) there exists E2, u1, u2 such that a = E2.(u1, u2).
Thus πr a = πr E2.(u1, u2) −→r′ E2.ur. Note that [| a |]Φ = [|E2.(u1, u2) |]Φ =

([| u1 |]Φ,Ec[E2]Φ , [| u2 |]Φ,Ec[E2]Φ) = (v1, v2), thus [|E2.ur |]Φ = [|ur |]Φ,Ec[E2]Φ = vr as re-
quired.

case λx :T .a :

Applying [|− |]Φ gives a function, and functions don’t reduce.

case a1 a2 :

Assume wf[a1 a2] ∧ fv(a) ⊆ dom(Φ) ∧ (a1, a2) inf ◦r ∧ [| a1 a2 |]Φ −→c e ′ and prove that
there exists an a ′ such that a1 a2 −→r′ a ′ ∧ e ′ = [| a ′ |]Φ. We proceed by case split on the
reductions of [| a1 a2 |]Φ.

case [| a1 a2 |]Φ −→c e ′1 [| a2 |]Φ :
Similar to inductive case on pairs.

case [| a1 a2 |]Φ −→c [| a1 |]Φ e ′2 :
Similar to inductive case on pairs.

case [| a1 a2 |]Φ ≡ (λx :T .e) v −→c {v/x}e :
Thus [| a1 |]Φ = λx :T .e and [| a2 |]Φ = v . By inf ◦r preserved by E3 stripping (Lemma 31)
a1 inf ◦r , so by [|− |]Φ source-value property (Lemma 35) a1 r’val. As a1 r’val it follows by
inf ◦r preserved by E3 stripping (Lemma 31) that a2 inf ◦r , so by [|− |]Φ source-value prop-
erty (Lemma 35) a2 r’val. By [|− |]Φ outer value preservation (Lemma 36) there exists
E2, x ,T , â such that a1 = E2.λx :T .â. Thus, (E2.λx :T .â) a2 −→r′ E2.let x = a2 in â

and applying [|− |]Φ to the RHS gives [| â |]Φ
′

where Φ′ = Φ, Ec[E2]Φ, x 7→ [| a2 |]Φ,Ec[E2]Φ .
We are left to show that [| â |]Φ

′
= {v/x}e. Do this by expanding {v/x}e

{v/x}e = {[| a2 |]Φ/x}[| â |]Φ,Ec[E2]Φ,x 7→x

= [| â |]Φ,Ec[E2]Φ,x 7→[| a2 |]
Φ

(*)

= [| â |]Φ
′

(**)

(*) follows from [|− |]− environment properties (i) (Lemma 26) and (**) is true as
fv(a2) /∈ hb(E2).

case let0 z = a1 in a2 :

Assume wf[let0 z = a1 in a2]; fv(let0 z = a1 in a2) ⊆ dom(Φ); (let0 z = a1 in a2) inf ◦r and
[| let0 z = a1 in a2 |]Φ = [| a2 |]Φ1 −→c e ′ where Φ1 = Φ, z 7→ [| a1 |]Φ. By inf ◦r preserved by E3

61

B.2 Bisimulation B λC , λR AND λD: OBS. EQUIV.

stripping (Lemma 31) a2 inf ◦r . By definition of wf[−] we have wf[a2] ∧ a1 r’val. By induction
a2 −→r′ a ′2 ∧ e ′ = [| a ′ |]Φ1 (*), thus let0 z = a1 in a2 −→r′ let0 z = a1 in a ′2. Now show
that applying [|− |]Φ to the RHS of the previous transition gives e ′: [| let0 z = a1 in a2 |]Φ =
[| a2 |]Φ1 = e ′ follows from (*).

case let1 z = a1 in a2 :

Assume wf[let1 z = a1 in a2]; fv(let1 z = a1 in a2) ⊆ dom(Φ); (let1 z = a1 in a2) inf ◦r
and [| let1 z = a1 in a2 |]Φ = let z = [| a1 |]Φ in [| a2 |]Φ −→c e ′ (*). By wf[−] definition
wf[a1] ∧ wf[a2]. By inf ◦r preserved by E3 stripping (Lemma 31) a1 inf ◦r .

We case split on the transitions of (*):

case let z = [| a1 |]Φ in [| a2 |]Φ,x 7→x −→c let z = e ′1 in [| a2 |]Φ,x 7→x :
By induction a1 −→r′ a ′1 ∧ e ′1 = [| a ′1 |]

Φ. Thus let1 z = a1 in a2 −→c let1 z = a ′1 in a2

and we are left to show that applying [|− |]− to the RHS of this results in the RHS of
the case split:

[| let1 z = a ′1 in a2 |]Φ = let z = [| a1 |]Φ in [| a2 |]Φ,x 7→x

= let z = e ′1 in [| a2 |]Φ,x 7→x

as required.

case let z = [| a1 |]Φ in [| a2 |]Φ,x 7→x −→c {[| a1 |]Φ/z}[| a2 |]Φ,x 7→x :
Thus [| a1 |]Φ cval. By [|− |]Φ source-value property (Lemma 35) a1 r’val, thus let1 z =
a1 in a2 −→r′ let0 z = a1 in a2. We are left to show that applying [|− |]− to the RHS
of this results in the RHS of the case split:

[| let0 z = a1 in a2 |]Φ = {[| a1 |]Φ/z}[| a2 |]Φ,x 7→x

= [| a2 |]Φ,x 7→[| a1 |]
Φ

where the last step is valid by [|− |]− environment properties (i) (Lemma 26) .

case Ω :

[|Ω |]Φ = Ω −→c Ω and Ω −→d′ Ω.

�

Lemma 52 (r’-r correspondence)

a closed ∧ wf[a] ∧ a
l−→r′ a

′ ∧ l 6= zero =⇒ ∃e ′. ε[a] −→r e ′ ∧ e ′ = ε[a ′]

Proof We generalise to open terms and claim that it is sufficient to prove:

wf[a] ∧ a
l−→r′ a

′ ∧ l 6= zero =⇒ ∃e ′. ε[a] −→r e ′ ∧ e ′ = ε[a ′]

We prove this by induction on a
l−→r′ a

′.

case (proj) :

Assume wf[πr (E2.(u1, u2))]. Then ε[πr (E2.(u1, u2))] = πr ε[E2].(ε[u1], ε[u2]). By ε[−] value
preservation (Lemma 40) ε[u1] rval and ε[u2] rval. Thus by ε[−] preserves contexts (Lemma
42) πr ε[E2].(ε[u1], ε[u2]) −→r ε[E2].ε[ur] = ε[E2.ur] as required.

case (app) :

Assume wf[(E2.λx :T .â) u]. Then ε[(E2.λx :T .â) u] = (ε[E2].λx :T .ε[â]) ε[u]. By ε[−] value
preservation (Lemma 40) ε[u] rval, thus ε[E2].((λx :T .ε[â]) ε[u]) −→r ε[E2].let x = ε[u] in ε[â].
We are left to show that this is equal to the erasure of the RHS of the (app) reduction rule.
Performing the erasure of the RHS we get ε[E2.let x = u in â] = ε[E2].let x = ε[u] in ε[â], as
required.

62

B λC , λR AND λD: OBS. EQUIV. B.2 Bisimulation

case (inst) :

Follow directly from inst match property (Lemma 46) .

case (zero) :

l = zero.

case (cong) :

Assume wf[E3.a] and a −→r′ a ′. By well-formed properties (Lemma 24) wf[a]. By induction
there exists an e ′ such that ε[a] −→r e ′ ∧ e ′ = ε[a ′]. We are now left to show that the erasure
of E3.a reduces under λr to a term that is the erasure of E3.a

′. The following reasoning relies
on the fact that ε[E3] is a λr context, which can be established by ε[−] preserves contexts
(Lemma 42) :

ε[E3.a] = ε[E3].ε[a]
−→r ε[E3].e ′

= ε[E3].ε[a ′]
= ε[E3.a

′]

as required.

�

Lemma 53 (cr simulation) R is a simulation from λc to λr

Proof Recalling the definition of weak simulation and expanding the definition of R, we are required
to prove

(∃a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ε[a]) ∧ e1 −→c e ′1 =⇒
∃e ′2. e2 −→∗r e ′2 ∧ (∃a. wf[a] ∧ a closed ∧ e ′1 = [| a |]∅ ∧ e ′2 = ε[a])

Assume

(13) ∃a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ε[a] and

(14) e1 −→c e ′1.

Prove that there exists an e ′2 such that

(15) e2 −→∗r e ′2 and

(16) ∃a. wf[a] ∧ a closed ∧ e ′1 = [| a |]∅ ∧ e ′2 = ε[a]

By c−r′ correspondence (lemma 51) there exists a ′ and a ′′ such that a
insts−−−→

∗
r′ a
′′ −→r′ a ′ ∧ a ′′ infr ∧

e ′1 = [| a ′ |]∅. By inst match sequence (Lemma 47) there exists an e ′ such that ε[a]
insts−−−→

∗
r′ e
′ ∧ e ′ =

ε[a ′′].

We now case split on the reduction rule for a ′′ −→r′ a ′:

case l = zero :

By ε[−] invariant under zeros (Lemma 38) we have ε[a ′′] = ε[a ′], thus taking e ′2 to be e ′

satisfies our proof obligation.

case otherwise :

By r’-r correspondence (Lemma 52) there exist e ′2 such that ε[a ′′] −→r e ′2 ∧ e ′2 = ε[a ′′].

�

63

B.2 Bisimulation B λC , λR AND λD: OBS. EQUIV.

B.2.2 c-r correspondence

Lemma 54 (r-r’ correspondence)

a closed ∧ wf[a] ∧ ε[a] −→r e ′ =⇒ ∃a ′, a ′′. a
zero−−→∗r′ a ′′ −→r′ a ′ ∧ a ′′ znfr ∧ e ′ = ε[a ′]

Proof We generalise to open terms and claim that it is sufficient to prove:

wf[a] ∧ a znf ◦r ∧ ε[a] −→r e ′ =⇒ ∃a ′. a −→r′ a ′ ∧ e ′ = ε[a ′]

Let us show that this is sufficient. Suppose a closed; wf[a]; and ε[a] −→r e ′, then by ZNF

reachability lemma (Lemma 39) there exists an a ′′ such that a
zero−−→∗r′ a ′′ ∧ a ′′ znfr. As reduction

can only reduce the number of free variables a ′′ closed and by reduction preserves well-formedness
(Lemma 25) wf[a ′′]. It thus follows from our generalised claim that there exists an a ′ such that
a ′′ −→r′ a ′ ∧ e ′ = ε[a ′]. The a ′ and a ′′ that we have demonstrated the existence of satisfy the
conclusion of our original claim.

We prove the generalised claim by induction on a. The terms z , () and n are left unchanged by
ε[−] and do not reduce under λr. The pair case is just application of the IH using well-formed
properties (Lemma 24) and znf ◦r preserved by E3 stripping (Lemma 37) . The rest of the cases
follow:

case πr a :

Assume wf[πr a]; πr a znf ◦r and ε[πr a] −→r e ′. By ε[−] source-value property (Lemma 43)
a r’val. By definition of wf[−], wf[a]. By znf ◦r preserved by E3 stripping (Lemma 37) a znf ◦r .
Observe ε[πr a] = πr ε[a] and case split on the reductions of this:

case πr ε[a] −→r πr e ′ :
Thus ε[a] −→r e ′. By induction a −→r a ′ ∧ e ′ = ε[a ′], thus πr a −→r′ πr a ′ ∧ πr e ′ =
ε[πr a ′] as required.

case πr ε[a] = πr E2.(v1, v2) −→r E2.ur :
By this case split ε[a] = E2.(v1, v2) (*). By ε[−] outer value preservation (Lemma 44)
there exists Ê2, u1, u2 such that a = Ê2.(u1, u2) (**). Thus πr Ê2.(u1, u2) −→r′ Ê2.ur.
We are left to show that ε[Ê2.ur] = E2.vr. By (*) and (**) ε[Ê2] = E2 and ε[ur] = vr,
thus ε[Ê2.ur] = ε[Ê2].ε[ur] = E2.vr as required.

case λx :T .a :

ε[λx :T .a] = λx :T .ε[a] which does not reduce under λr.

case a1 a2 :

Assuming that (17) wf[a1 a2], (18) a1 a2 znf ◦r and (19) ε[a1 a2] −→r e ′, we can derive imme-
diately (20) wf[a1] ∧ wf[a2] and by (21) a1 znf ◦r .

we case split on the reduction of the last assumption:

case ε[a1] ε[a2] −→r e ′1 ε[a2] :
Inductive.

case ε[a1] ε[a2] −→r ε[a1] e ′2 :
Inductive.

case ε[a1] ε[a2] ≡ (E2.λx :T .e) v −→r E2.let x = v in e :
By well-formedness definition wf[a1] ∧ wf[a2]. By znf ◦r preserved by E3 stripping
(Lemma 37) a1 znf ◦r . By ε[−] source-value property (Lemma 43) a1 r’val. By znf ◦r
preserved by E3 stripping (Lemma 37) a2 inf ◦r . By ε[−] source-value property (Lemma
43) a2 r’val. By ε[−] outer value preservation (Lemma 44) a1 is of the form Ê2.λx :T .a.

64

B λC , λR AND λD: OBS. EQUIV. B.2 Bisimulation

First note that by alpha conversion we can ensure that fv(a2) /∈ hb(Ê2). By case split
ε[a1] = ε[Ê2.λx :T .a] = λx :T .ε[a]. By reduction rules a1 a2 = (Ê2.λx :T .a) a2 −→r′

E2.let0 x = a2 in a. Then show that erasing this gives the desired result:

ε[E2.let0 x = a2 in a] = let x = ε[a2] in ε[a]

We are left to show that v = ε[a2], which is true by case split.

case let0 z = a1 in a2 :

This case proceeds by case analysis on the reductions of ε[let0 z = a1 in a2]. There are two
inductive cases, one in which ε[a1] reduces and the other where ε[a2] reduces. In both cases we
use znf ◦r preserved by E3 stripping (Lemma 37) to establish open ZNF of a1 or a2 and then
proceed by induction. The last possibility is for the term to reduce by doing an instantiation
of z . In this case there exists E3 such that (let z = u in E3.z) = ε[let0 z = a1 in a2], and we
are left to show that there exists an E ′3 such that a2 = E ′3.z , which is assured by ε[−] source
context (Lemma 45).

case let1 z = a1 in a2 :

This case proceeds by case splitting on the reductions of ε[let1 z = a1 in a2]. The first case is
when ε[a1] reduces, which goes by induction on a1 after using znf ◦r preserved by E3 stripping
(Lemma 37) to establish a1 znf ◦r . The other reduction is if a1 is a value, then a zero reduction
could occur, but this can not be the case as let1 z = a1 in a2 is in open ZNF by assumption.

�

Lemma 55 (r’-c correspondence)

a closed ∧ wf[a] ∧ a
l−→r′ a

′ ∧ l 6= inst =⇒ ∃e ′. [| a |]∅ −→c e ′ ∧ e ′ = [| a ′ |]∅

Proof Generalising to open terms it is sufficient to prove:

fv(a) ⊆ dom(Φ) ∧ wf[a] ∧ a
l−→r′ a

′ ∧ l 6= insts =⇒ ∃e ′. [| a |]Φ −→c e ′ ∧ e ′ = [| a ′ |]Φ

This is true as if a closed then fv(a) = ∅ ⊆ dom(Φ). We prove by induction on a
l−→r′ a

′.

case (proj) :

Assume fv(πr (E2.(u1, u2))) ⊆ dom(Φ) and wf[πr (E2.(u1, u2))]. Note that

[|πr (E2.(u1, u2)) |]Φ = πr ([| u1 |]Φ,Ec[E2]Φ , [| u2 |]Φ,Ec[E2]Φ) (*) and [|E2.ur |]Φ = [|ur |]Φ,Ec[E2]Φ .

Our obligation is to show that (*) reduces to [|ur |]Φ,Ec[E2]Φ .

From our assumptions we know fv(E2.(u1, u2)) ⊆ dom(Φ) thus fv(E2.ur) ⊆ dom(Φ), moreover

fv(ur) ⊆ dom(Φ, Ec[E2]Φ). By [|− |]− value preservation (Lemma 28) [|ur |]Φ,Ec[E2]Φ cval. It

follows that (*) reduces to [|ur |]Φ,Ec[E2]Φ under λc

case (app) :

Assume fv((E2.λx :T .a) u) ⊆ dom(Φ); wf[(E2.λx :T .a) u] and (22) (E2.λx :T .a) u −→r′

E2.let0 x = u in a.

Applying [|− |]Φ to the left-hand side of 22 and reduce.

[| (E2.λx :T .a) u |]Φ = (λx :T .[| a |]Φ,Ec[E2]Φ,x 7→x) [| u |]Φ

−→r′ {[| u |]Φ/x}[| a |]Φ,Ec[E2]Φ,x 7→x

= [| a |]Φ,Ec[E2]Φ,x 7→[| u |]Φ (*)

65

B.2 Bisimulation B λC , λR AND λD: OBS. EQUIV.

The last step uses [|− |]− environment properties (i) (Lemma 26) . Now apply [|− |] to the
right-hand side of 22 and show that it yields (*):

[| let0 x = u in a |]Φ = [| a |]Φ,x 7→[| u |]Φ

case (inst) :

l = inst

case (zero) :

Follows directly from zero match property (Lemma 48) .

case (cong) :

Assuming fv(E3.a) ⊆ dom(Φ); wf[E3.a]; E3.a −→r′ E3.a
′ and a −→r′ a ′ we can deduce

fv(a) ⊆ dom(Φ, Ec[E3]Φ), and wf[a] by well-formed properties (Lemma 24) . Then by induc-

tion there exists e ′ such that [| a |]Ec[E3]Φ,Φ −→c e ′ and e ′ = [| a ′ |]Φ,Ec[E3]Φ . By [|− |]− environ-
ment properties (i) (Lemma 26) this is the same as [|E3.a |]Φ −→c e ′ and e ′ = [|E3.a

′ |]Φ as
required.

�

Lemma 56 (rc simulation) R is a weak simulation from λr to λc

Proof Recalling the definition of weak simulation and expanding the definition of R, we are required
to prove

(∃a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ε[a]) ∧ e2 −→r e ′2 =⇒
∃e ′1. e1 −→∗c e ′1 ∧ (∃a. wf[a] ∧ a closed ∧ e ′1 = [| a |]∅ ∧ e ′2 = ε[a])

Assume

(23) ∃a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ε[a] and

(24) e2 −→r e ′2.

Prove that there exists an e ′1 such that

(25) e1 −→∗c e ′1 and

(26) ∃a. wf[a] ∧ a closed ∧ e ′1 = [| a |]∅ ∧ e ′2 = ε[a]

By r-r’ correspondence (Lemma 54) there exists a ′ and a ′′ such that a
zero−−→∗r′ a ′′ −→r′ a ′ ∧ a ′′ znfr ∧

e ′1 = ε[a ′]. By zero match sequence (Lemma 49) there exists an e ′ such that [| a |]∅
let−−→
∗
c e ′ ∧ e ′ =

[| a ′′ |]∅.

We now case split on the reduction rule for a ′′ −→r′ a ′:

case l = inst :

By [|− |]− invariant under insts (Lemma 32) we have [| a ′′ |]∅ = [| a ′ |]∅, thus taking e ′1 to be e ′

satisfies our proof obligation.

case otherwise :

By r’-c correspondence (Lemma 55) there exist e ′′ such that [| a ′′ |]∅ −→c e ′1 ∧ e ′1 = [| a ′′ |]∅,
satisfying our proof obligation.

�

66

B λC , λR AND λD: OBS. EQUIV. B.3 Equivalence

e
r

∗
v

a

ε[−]

[|− |]∅

a ′

ε[−]

[|− |]∅

zero

r′
n

u

[|− |]∅

ε[−]

e
c

∗
e′′

let

c

n
v′

e
c

∗
v

a

[|− |]∅

ε[−]

a ′

[|− |]∅

ε[−]

inst

r′
n

u

ε[−]

[|− |]∅

e
r

∗
e′′

inst

c

n
v′

Figure 21: Operational reasoning of r-c equivalence

B.3 Equivalence

Having demonstrated a bisimulation between λc and λr we must show that the termination of expressions
coincides for both systems in order to show that the two are observationally equivalent. Figure 21 shows
diagrammatically how the proof of the main theorem will proceed. First we establish some facts about
types and the auxiliary operations.

Definition 17 (environment-substitution correspondence)

S[Φ, z 7→ [| u |]Φ] = S[Φ]{{| ε[u] |}/z}
S[∅] = {}

Definition 18 (equality on λ terms up to functions) We define =λ to be the standard equality
relation up to alpha-equivalence, but extended to equate every function.

Lemma 57 (value correspondence) if Φ = Φk where

Φ0 = ∅
Φn+1 = Φn, xn+1 7→ [|un+1 |]Φn where fv([|un+1 |]Φn) = ∅

and fv(u) ⊆ dom(Φ) and wf[u] then S[Φ]{| ε[u] |} =λ [| u |]Φ

Proof

67

B.3 Equivalence B λC , λR AND λD: OBS. EQUIV.

The proof proceeds by induction on the structure of u.

case n; () :

Immediate.

case (u1, u2) :

Assume wf[(u1, u2)]; fv((u1, u2)) ⊆ dom(Φ). It can easily be verified that wf[u1] ∧ wf[u2],
fv(u1) ⊆ dom(Φ) ∧ fv(u2) ⊆ dom(Φ). By induction on u1 we have S[Φ]{| ε[u1] |} =λ [| u1 |]Φ

and similarly by induction on u2 we have S[Φ]{| ε[u2] |} =λ [| u2 |]Φ. It follows that

[| (u1, u2) |]Φ =λ ([| u1 |]Φ, [| u2 |]Φ)
=λ (S[Φ]{| ε[u1] |},S[Φ]{| ε[u2] |})
=λ S[Φ]{| (ε[u1], ε[u2]) |}

as required.

case λx :T .a :

σ{| ε[λx :T .a] |} = λx :T .σε[a] and [|λx :T .a |]Φ = λx :T .[| a |]Φ,x 7→x which are both functions
and therefore are equated by =λ.

case let0 z = u1 in u2 :

Assume wf[let0 z = u1 in u2] and fv(let0 z = u1 in u2) ⊆ dom(Φ). We are required to prove

S[Φ]{| ε[let0 z = u1 in u2] |} =λ [| let0 z = u1 in u2 |]
Φ

which holds if and only if

S[Φ, z 7→ {| ε[u1] |}]{| ε[u2] |} =λ [| u2 |]
Φ,z 7→[| u1 |]

Φ

(∗)

From our initial assumptions it is clear that fv(u1) ⊆ dom(Φ) and all of the values in the
domain of Φ are closed. It follows by a simple induction (proving fv(a) ⊆ dom(Φ) =⇒
fv([| a |]Φ) ⊆ fv(Φ)) that fv([| u1 |]Φ) = ∅. It then follows by induction that (*) holds, as
required.

�

Lemma 58 (typing is substitutive)

Φ ` v :T ∧ Φ, z :T ` e:T ′ =⇒ Φ ` {v/z}e:T ′

Proof Prove by induction on Φ ` e:T ′:

case (var) :

Assume Φ ` v :T ∧ Φ, z :T ` x :T ′ (*) and prove Φ ` {v/z}x :T ′. If z = x then T = T ′ and
we are required to show Φ ` v :T ′, which is assured by assumption. If z 6= x then we must
show Φ ` x :T ′ (**). Seeing as z 6= x and (*) holds, then x :T ′ ∈ Φ, therefore (**) holds as
required.

case (int); (unit) :

Trivial.

case (fun) :

Assume Φ ` v :T ; Φ, z :T ` λx :T ′.e ′:T ′ → T ′′ and Φ, z :T , x :T ′ ` x :T ′′. By alpha conversion
x 6= z . By Permutation Lemma (Lemma [17]) Φ, z :T , x :T ′ ` x :T ′′. By induction Φ, x :T ′ `
{v/z}e ′:T ′′. Thus by typing rules Φ ` λx :T ′.{v/z}e ′:T ′ → T ′′ and as x 6= z we have
Φ ` {v/z}(λx :T ′.e ′):T ′ → T ′′ as required.

68

B λC , λR AND λD: OBS. EQUIV. B.3 Equivalence

case (app); (proj); (pair) :

Inductive.

case (let) :

Assume Φ ` let x = e1 in e2:T ; Φ ` e1:T1 and Φ, x :T1 ` e2:T2. By alpha conversion x 6= z .
By induction Φ ` {v/z}e1:T1 and Φ, x1:T1 ` {v/z}e2:T2. Result follows by typing rules.

�

Lemma 59 ({| |} type preservation)

Φ ` u:T =⇒ Φ ` {| u |}:T

Proof Prove by induction on Φ ` u:T :

case (int); (unit) :

{| n |} = n and {| () |} = ().

case (fun) :

Assuming Φ ` λx :T ′.e (*) and x :T ′,Φ ` e:T . Now {| λx :T ′.e |} = λx :T ′.e so we are done
by (*).

case (app); (proj) :

Terms not values.

case (pair) :

Assume Φ ` (u1, u2):T1 ∗ T2; Φ ` u1:T1 and Φ ` u2:T2. By induction Φ ` {| u1 |} and by
induction again Φ ` {| u2 |}. Thus Φ ` {| (u1, u2) |}:T1 ∗ T2.

case (let) :

Assuming Φ ` let x = u1 in u2:T we have {| let x = u1 in u2 |} = {{| u1 |}/x}{| u2 |} and
thus by typing is substitutive (Lemma 58) {Φ ` {| u1 |}/x}{| u2 |} as required.

�

We now prove theorem 23:

Proof We begin by proving point 1 of the theorem.

First prove:

e closed ∧ e −→∗c v1 =⇒ ∃v2, u. e −→∗r v2 ∧ wf[u] ∧ u closed ∧ v1 = [| u |]∅ ∧ v2 = ε[u](∗)

Assume e closed and e −→∗c v1, and recall eRe by idλ ⊆ R (Lemma 50) . By c-r simulation (Lemma
53) R is a c-r simulation, thus there exists an e ′ such that e −→∗r e ′ and v1Re ′. Expanding the
definition of R in the latter, we are assured that

∃a. wf[a] ∧ a closed ∧ v1 = [| a |]∅ ∧ e ′ = ε[a]

We are left to show e ′ −→∗r e ′′ and e ′′ rval. By ε[−] source-value property (Lemma 43) it suffices
to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧ a ′ znfr ∧ e ′′ = ε[a ′].

Suppose that a infr, then by [|− |]Φ source-value property (Lemma 35) a r’val. By ε[−] value
preservation (Lemma 40) ε[a] rval as required.

Now suppose that ¬(a infr) then by INF reachability lemma (Lemma 34) there exists an a ′′ such
that a −→∗r′ a ′ ∧ a ′ infr. By reduction preserves well-formedness (Lemma 25) wf[a ′] and by [|− |]−

69

B.3 Equivalence B λC , λR AND λD: OBS. EQUIV.

invariant under insts (Lemma 32) v1 = [| a ′ |]∅. Thus by [|− |]Φ source-value property (Lemma 35)
a ′ r’val. By inst match sequence (Lemma 47) there exists an e ′′ such that e ′ −→∗r e ′′ ∧ e ′′ = ε[a ′]
as required.

Now prove the main theorem:

` e:int ∧ e −→∗c n =⇒ ∃v . e −→∗r v ∧ n = {| v |}

Assuming ` e:T ∧ e −→∗c n we can derive e closed, thus by (*) we know that there exists a u and
v2 such that e −→∗r v2 ∧ wf[u] ∧ u closed ∧ n = [| u |]∅ ∧ v2 = ε[u].

We are left to show that n = {| v2 |}. By value correspondence (Lemma 57) {| ε[u] |} = [| u |]∅. We
are left to show that this value is an integer, for which it suffices to show that one of the values in
the equality above types to int, as the only values of type int in λc are integers. By type preservation
for λr (Lemma [20]) ` v2:int, thus ` ε[u]:int by dint of equality with v2. By {| |} type preservation
(Lemma 59) ` {| ε[u] |}:int, as required.

Now prove point 2.

First prove:

e closed ∧ e −→∗r v1 =⇒ ∃v2, u. e −→∗c v2 ∧ wf[u] ∧ u closed ∧ v2 = [| u |]∅ ∧ v1 = ε[u]

Assume e closed and e −→∗r v1, and recall eRe by idλ ⊆ R (Lemma 50) . By r-c simulation (Lemma
56) R is a r-c simulation, thus there exists an e ′ such that e −→∗c e ′ and e ′Rv1. Expanding the
definition of R in the latter, we are assured that

∃a. wf[a] ∧ a closed ∧ e ′ = [| a |]∅ ∧ v1 = ε[a]

We are left to show e ′ −→∗c e ′′ and e ′′ cval. By [|− |]Φ source-value property (Lemma 35) it suffices
to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧ a ′ infr ∧ e ′′ = [| a ′ |]∅.

Suppose that a znfr then by ε[−] source-value property (Lemma 43) a r’val. By [|− |]− value
preservation (Lemma 28) [| a ′ |]∅ cval as required.

Now suppose that ¬(a znfr) then by ZNF reachability lemma (Lemma 39) there exists an a ′′ such

that a
zeros−−−→∗r′ a ′ ∧ a ′ znfr. By reduction preserves well-formedness (Lemma 25) wf[a ′] and by ε[−]

invariant under zeros (Lemma 38) v1 = ε[a ′]. Thus by ε[−] source-value property (Lemma 43)
a ′ r’val. By zero match sequence (Lemma 49) there exists an e ′′ such that e ′ −→∗c e ′′ ∧ e ′′ = ε[a ′]
as required.

Now prove the main theorem:

` e:int ∧ e −→∗r v =⇒ ∃n. e −→∗c n ∧ n = {| v |}

Assume ` e:int and e −→∗r v then by the above lemma there exists a v2 and a u such that
e −→∗c v2; wf[u]; u closed; v2 = [| u |]∅; v = ε[u] and u r’val.

We are left to show that {| u |} = n. By value correspondence (Lemma 57) {| ε[u] |} = [| u |]∅. We
are left to show that this value is an integer, for which it suffices to show that one of the values in
the equality above types to int, as the only values of type int in λc are integers. By type preservation
for λr (Lemma [20]) ` v :int, thus ` ε[u]:int by dint of equality with v . By {| |} type preservation
(Lemma 59) ` {| ε[u] |}:int, as required.

�

70

B λC , λR AND λD: OBS. EQUIV. B.4 Observational equivalence between λd and λc

B.4 Observational equivalence between λd and λc

The goal of this section is to prove the observational equivalence between λd and λc, as stated in the
following theorem:

Theorem 60 For all e ∈ λ the following hold:

1. ` e:int =⇒ (e −→∗c n =⇒ ∃v . e −→∗d v ∧ n = {| v |})

2. ` e:int =⇒ (e −→∗d v =⇒ ∃n. e −→∗c n ∧ n = {| v |})

This proof follows the same structure as that of the observational equivalence proof between λr and
λc. We borrow concepts and definitions from this earlier proof, and only highlight the differences in
proofs which follow a similar structure to their counterparts in the λr proof.

We borrow the annotated syntax λ′; the functions ι[−], ε[−], bc(−) and Ec[−]−; and the predicate
wf[−] from the λr proof.

As we are ultimately interested only in closed terms, we are free to alter the behaviour of λc on open
terms so long as it remains the same when restricted to closed terms. We do this by adding identifiers to
the set of values for λc:

v ::= z | n | () | λx :T .e

Definition 19 (λd′) This is as defined for λr′ except we add destruct contexts:

R ::=πr | u

and we replace the (inst) reduction rule with two instantiation rules:

(inst-1) let0 z = u in E3.R.E2.z −→ let0 z = u in E3.R.E2.u
(inst-2) R.E2.let0 z = u in E ′2.z −→ R.E2.let0 z = u in E ′2.u

Definition 20 (Environment)

An environment Φ is a list containing pairs whose first component is an identifier and whose second
component is a c-value. Environments have the property that ∀x ∈ dom(Φ). Φ(x) = v ∧ ∀z ∈
fv(v).z≤Φx where ≤Φ is the ordering of the identifiers in Φ. In addition we require that all the first
components of the pairs in the list are disjoint. We write Φ, z 7→ v for the disjoint extension of Φ
forming a new environment. We write Φ[z 7→ v] for the environment acting as Φ, but mapping z
to v

Definition 21 ([|− |]−) We use the definition from the λr case with the following change:

[| z |]Φ = Φ∗(z)

where we define Φ∗ as the least fixpoint of the monotone operator F :

F (Φ) = Φ[x 7→ z | ∃y . Φ(x) = y ∧ Φ(y) = z]

Definition 22 (Instantiation normal form (INF)) A term a is in instantiation normal form

(INF) if and only if there does not exist an a′ such that a
inst−−→d′ a

′, where inst is inst-1 or inst-2.
We write a infd when a is in INF.

Definition 23 (open INF) A possibly open term a is in open instantiation normal form if and only
if there does not exist an E3,R,E2 and z such that a = E3.R.E2.z . We write a inf ◦d when a is in
open INF.

71

B.4 Observational equivalence between λd and λc B λC , λR AND λD: OBS. EQUIV.

Transforming proofs from λr to λd In order to avoid duplicating tedious proofs, we would like to
reuse as much reasoning from the λr proof as possible. To do this we will enumerate the entities we have
changed in the setup above to guide the reader, informally, in how λr proofs were transformed into a
corresponding λd one.

The entities we changed are:

• added identifiers to values

• added destruct contexts R;

• changed the (inst) rule;

• changed the environment, Φ, and [|− |]−.

We notice that every R context is an A1 context. In particular this means that the E3.R.E2 context
in the new (inst) rule is a particular form of E3 context.

Although we have changed the environment, we have weakened the conditions for adding elements to
it; while when we use elements from it they are taken out of Φ∗, the “transitive closure” of Φ, which is
an environment in the sense of that used for the λr proof.

Thus, informally, a proof in the λr equivalence result will remain a valid proof, or have a trivial
translation, in the λd equivalence result if the following conditions hold:

1. the proof does not rely on the form of values;

2. the proof does not rely on the form of an E3 context;

3. the proof does not rely on the actual elements in the codomain of the environment.

If these properties hold of a proof in the λr case then we will say that the proof of the property follows
directly from the argument given in the λr case. If this is the case, then the lemma is stated without
proof.

Lemma 61 (well-formed properties)

(i) wf[E3.a] ⇐⇒ wf[E3] ∧ wf[a]

(ii) wf[a] ∧ a −→d′ a ′ =⇒ wf[a ′]

Proof (i) follows directly from the λr case. (ii) The proof is by induction on a −→d′ a ′. All the
common cases follow analogously from the λr proof, then we are left with the two inst cases, which
are similar. We give (inst-1): assume wf[let0 z = u in E3.R.E2.z] then by (i) wf[E3.R.E2.z]
and by definition of well-founded wf[u], thus by (i) wf[E3.R.E2.u]. It follows that wf[let0 z =
u in E3.R.E2.u] as required. �

Lemma 62 ([|− |]− environment properties)

(i) If wf[a] and fv(a) ⊆ dom(Φ) and fv(v) ⊆ dom(Φ) then {v/x}[| a |]Φ,x 7→x = [| a |]Φ,x 7→v

(ii) If x /∈ fv(a) then [| a |]Φ,x 7→v = [| a |]Φ

Proof Prove (i) by induction on a. The interesting case is the identifier case:

case z :

72

B λC , λR AND λD: OBS. EQUIV. B.4 Observational equivalence between λd and λc

Assume wf[z]; z ∈ dom(Φ) and fv(v) ⊆ dom(Φ). It suffices to prove {v/x}[Φ, x 7→ x]∗(z) =
[Φ, x 7→ v]∗(z). There are three cases to consider: z = x ; z 6= x ∧ Φ∗(z) = z ; and z 6=
x ∧ Φ∗(z) = v ′ where v ′ is not an identifier. In the first and second cases are trivial,
so lets consider the last. First lets point out that [Φ, x 7→ x]∗(z) = [Φ, x 7→ v]∗(z) = Φ∗(z)
as x cannot appear free in cod(Φ). Thus it is sufficient to show that x /∈ fv(v ′) as then
{v/x}v ′ = v ′. To show this, note that every environment has a unique domain, therefore as
Φ, x 7→ v is an environment x /∈ dom(Φ). Furthermore, by the constraint on free variables
x /∈ fv(cod(Φ)) from which it follows that x /∈ fv(cod(Φ∗)), thus x /∈ fv(v ′).

�

Lemma 63 (environments over contexts) fv(E3.a) ⊆ Φ ⇐⇒ fv(a) ⊆ (Φ, Ec[E3]Φ)

Lemma 64 ([|− |]− value preservation)

fv(u) ⊆ dom(Φ) ∧ wf[u] =⇒ [| u |]Φ cval

Proof The proof is similar to the λr one, the new case is identifiers: as fv(z) ⊆ dom(Φ) we have
[| z |]Φ = Φ∗(z) which by definition is a c-value. �

Lemma 65 ([|− |] distributes over contexts) For all E3,Φ and a, if fv(a) ⊆ dom(Φ) and wf[E3.a]

then [|E3.a |]Φ = [|E3 |]Φ.[| a |]Φ,Ec[Φ]E3

Lemma 66 ([|− |] preserves contexts) If fv(E3) ⊆ dom(Φ) and wf[E3] then there exists a λc reduc-
tion context E such that [|E3 |]Φ = E.

Proof Follows the λr proof as Lemma 64 holds. �

We now show that there are only ever finitely many instantiation steps to the next instantiation
normal form. We first make some observations to motivate our approach:

• Every evaluation context E3 describes a tree with a unique hole

• The path in this tree from the hole to the root is unique

Definition 24 (Derived before order) Every evaluation context E3 induces a derived before total
order on the variables bound along the path from the hole to the root such that zCE3

z′ if and only
if z is closer to the root than z′.

Definition 25 (Instantiation chain) A sequence x1, x2, . . . is called an instantiation chain for an
evaluation context E3 if and only if xi C xj whenever i < j.

Lemma 67 E3.z
inst−−→d′ E3.z

′ =⇒ z′ C z

Proof Prove z C z′ under the assumption that E3.z −→d′ E3.z
′. In both of the let rules, the syntax

ensures that z′ C z �

Lemma 68 wf[E3.z] ∧ E3.z
inst−−→d′ E3.u ∧ u 6= z ′ =⇒ E3.u inf ◦d

Proof We assume that E3.z
inst−−→d′ E3.u ∧ u 6= z ′ and proceed by case analysis on the inst transition.

case (inst-1) :

We have E3.let0 z = u in E ′3.R.E2.z −→d′ E3.let0 z = u in E ′3.R.E2.u with the side
conditions that z /∈ hb(E ′3,E2) and fv(u) /∈ z ,hb(E ′3,E2). Again, there are two possibilities
depending on R:

• E3.let0 z = u in E ′3.πr .E2.u

73

B.4 Observational equivalence between λd and λc B λC , λR AND λD: OBS. EQUIV.

• E3.let0 z = u in E ′3.(u).E2.u

Take possibility 1: we can rewrite as E3.let0 z = u in E ′3.πr (E2.u), which is either stuck or
if u is a pair can reduce via (proj), in either case the term is in INF. Possibility 2 is similar.

case (inst-2) :

Similar.

�

Before the next lemma, we note that E3.z where z does not bind around the hole in E3 is in instan-
tiation normal form as no more reductions can be done.

Lemma 69 For all closed a, there exists an a ′ such that a
inst−−→

∗
d′ a
′ and a ′ infd

Proof Either a can do an inst or it can not. If it can not then it must be in instantiation normal
form for λd, so suppose that a

inst−−→d′ a
′′, then a has the general form E3.z and a ′′ the general

form E3.u. Either u is a non-identifier value or it is an identifier. In the former case lemma 68
holds and E3.u inf ◦d . In the latter case, lemma 67 tells us that this can result in at most finitely
many instantiations before the instantiation is not a bound identifier, at which point it must be a
non-identifier value, or a free variable, either way we are in instantiation normal form for closed
terms.

�

Lemma 70 (INF preserved by E3 stripping) For any evaluation context E3, E3.a inf ◦d =⇒ a inf ◦d

Lemma 71 ([|− |]− invariant under insts) wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
insts−−−→

∗
d′ a
′ =⇒ [| a |]Φ =

[| a ′ |]Φ

Proof We first prove the single step case by induction on a
inst−−→d′ a

′:

case (inst-1) :

[| let0 z = u in E3.R.E2.z |]Φ = [| z |]Φ,z 7→[| u |]Φ,Ec[E3.R.E2]Φ

= [Φ, z 7→ [| u |]Φ, Ec[E3.R.E2]Φ]∗(z)
= [| u |]Φ

= [| u |]Φ,z 7→[| u |]Φ,Ec[E3.R.E2]Φ (*)
= [| let0 z = u in E3.R.E2.u |]Φ

Where (*) is valid by part (ii) of Lemma 62

case (inst-2) :

Similar to the previous case.

case (cong) :

Assume wf[E3.a] and fv(E3.a) ⊆ dom(Φ). By Lemma 61wf[a]. Let Φ′ = Φ, Ec[E3]Φ, then
fv(a) ⊆ dom(Φ′). By induction [| a |]Φ

′
= [| a ′ |]Φ

′
(*). Now [|E3.a |]Φ = [| a |]Φ

′
and [|E3.a

′ |]Φ =
[| a ′ |]Φ

′
, thus by (*) we are done.

�

Lemma 72 ([|− |]Φ source-value property) For all λd′ expressions a, the following holds:

wf[a] ∧ a inf ◦r ∧ fv(a) ⊆ dom(Φ) ∧ [| a |]Φ cval =⇒ a d’val

74

B λC , λR AND λD: OBS. EQUIV. B.4 Observational equivalence between λd and λc

Proof This proof is the same apart from the identifier case, which is immediate as identifiers are values.
�

Notice in the next lemma that an extra restriction is needed when compared to the corresponding λr
lemma, that is, the value u must not be an identifier.

Lemma 73 ([|− |] outer value preservation) For all λd′ values u that are not identifiers:

(a) If wf[u], fv(a) ⊆ dom(Φ) and [| u |]Φ = λx :T .e then there exists E2, a, z such that u = E2.λx :T .a

(b) [| u |]Φ = (v1, v2) =⇒ ∃E2, u1, u2. u = E2.(u1, u2)

Lemma 74 (znf ◦d preserved by E3 stripping) E3.a znf ◦d =⇒ a znf ◦d

Lemma 75 (ε[−] invariant under zeros) wf[a] ∧ a
zeros−−−→∗r′ a ′ =⇒ ε[a] = ε[a ′]

Lemma 76 (ZNF reachability) For all closed a, if wf[a] then there exists a ′ such that a
zero−−→∗d′ a ′ ∧

a ′ znfr

Lemma 77 (ε[−] value preservation)

wf[u] =⇒ ε[u] dval

Lemma 78 (ε[−] distributes over contexts) ε[E3.a] = ε[E3].ε[a]

Lemma 79 (ε[−] preserves contexts) If wf[E3] then there exists a λr reduction context E ′3 such that
ε[E3] = E ′3.

Lemma 80 (ε[−] source-value property) wf[a] ∧ a znf ◦d ∧ ε[a] dval =⇒ a d’val

Lemma 81 (ε[−] outer value preservation) For all λd′ values u:

(a) If wf[u] and ε[u] = E2.λx :T .e then there exists Ê2, a, z such that one of the following holds:

(i) u = Ê2.λx :T .a

(b) ε[u] = E2.(v1, v2) =⇒ ∃Ê2, u1, u2. u = Ê2.(u1, u2)

Lemma 82 (ε[−] source context) If ε[a] = E3.e and a znf ◦d then there exists an Ê3 and â such that
a = Ê3.â and ε[Ê3] = E3.

Lemma 83 (inst match property)

wf[a] ∧ a
inst−−→d′ a

′ =⇒ ∃e ′. ε[a]
inst−−→d e ′ ∧ e ′ = ε[a ′]

Lemma 84 (inst match sequence)

wf[a] ∧ a
inst−−→

n

d′ a
′ =⇒ ∃e ′. ε[a]

inst−−→
n

d e ′ ∧ e ′ = ε[a ′]

Lemma 85 (zero match property)

wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
zero−−→d′ a

′ =⇒ ∃e ′. [| a |]Φ
let−−→c e ′ ∧ e ′ = [| a ′ |]Φ

75

B.4 Observational equivalence between λd and λc B λC , λR AND λD: OBS. EQUIV.

Lemma 86 (rec-zero match sequence)

wf[a] ∧ fv(a) ⊆ dom(Φ) ∧ a
zero−−→n

d′ a
′ =⇒ ∃e ′. [| a |]Φ

let−−→
n

c e ′ ∧ e ′ = [| a ′ |]Φ

Definition 26 (Candidate bisimulation)

R ≡ {(e, e ′) | ∃a. wf[a] ∧ a closed ∧ e = [| a |]∅ ∧ e ′ = ε[a]}

Lemma 87 (idλ ⊆ R) The candidate bisimulation R contains idλ.

Lemma 88 (c-d’ correspondence)

a closed ∧ wf[a] ∧ [| a |]∅ −→c e ′ =⇒ ∃a ′, a ′′. a
inst−−→

∗
d′ a
′′ −→d′ a ′ ∧ a ′′ infd ∧ e ′ = [| a ′ |]∅

Proof We prove the generalised statement:

wf[a] ∧ a inf ◦d ∧ [| a |]Φ −→c e ′ =⇒ ∃a ′. a −→d′ a ′ ∧ e ′ = [| a ′ |]Φ

Most cases in this proof transfer directly because the lemmas used in the λr case still hold here.
However, the [|− |]− outer-value preservation property does not hold directly, instead we have an
extra constraint that the value not be an identifier. We don’t have to deal with instantiation steps
here as the term we consider in the induction is in open INF.

case πr a :

In the λr proof, this case is further decomposed by the possible reductions of πr a. We have to
alter the case where the projection occurs to show that a is not an identifier so that the [|− |]−
outer-value preservation result can be used. This is easily done as by assumption (πr a) inf ◦d ,
and if a was an identifier, say z , then this would not hold as z would be in a destruct position.

case a1 a2 :

We alter this case similarly to the last.

�

Lemma 89 (d’-d correspondence)

a closed ∧ wf[a] ∧ a
l−→d′ a

′ ∧ l 6= zero =⇒ ∃e ′. ε[a] −→d e ′ ∧ e ′ = ε[a ′]

Proof The proof is the same as the λr case. The (inst-1) and (inst-2) cases follow, as they did in the
λr case, by the inst match property. �

Lemma 90 (cd simulation) R is a simulation from λc to λd

Lemma 91 (d-d’ correspondence)

a closed ∧ wf[a] ∧ ε[a] −→d e ′ =⇒ ∃a ′, a ′′. a
zeros−−−→∗d′ a ′′ −→d′ a ′ ∧ a ′′ znfd ∧ e ′ = ε[a ′]

Proof We prove the generalised statement:

wf[a] ∧ a znf ◦d ∧ ε[a] −→d e ′ =⇒ ∃a ′. a −→d′ a ′ ∧ e ′ = ε[a ′]

Most cases in this proof transfer directly because the lemmas used in the λr case still hold here. As
the instantiation rules have changed, we need to reprove the let0 z = a1 in a2, a1 a2 and πr a cases:

case πr a :

76

B λC , λR AND λD: OBS. EQUIV. B.4 Observational equivalence between λd and λc

In the λr proof this case is further decomposed by the possible reductions of the erased term.
We have to add an extra case to this for the instantiation:

case πr ε[a] = πr (E2.let z = u in E ′2.z) :
We can assume that a znf ◦r and wf[a] and πr ε[a] −→d πr E2.let z = u in E ′2.u. We
have to prove that πr a −→d′ a ′ and πr (E2.let z = u in E ′2.u) = ε[a ′]. By case split
ε[a] = E2.let z = u in E ′2.z . By ε[−] source context (Lemma 82)for some Ê2, â we have
a = Ê2.â ∧ ε[Ê2] = E2, therefore ε[â] = let z = u in E ′2.z . By znf ◦d preserved by
E3 stripping (Lemma 74) â znf ◦d . As â znf ◦r and it erases to a let, then â must be a
let0 , as supposing that it is a let1 leads to a contradiction about it’s ZNF property.
Thus â = let0 z = a1 in a2, ε[a1] = u, ε[a2] = E ′2.z and a1 d’val by well-formedness.

By ε[−] source context (Lemma 82)for some Ê2
′
, â2 we have a2 = Ê2

′
.â2 ∧ ε[Ê2

′
] = E ′2

it follows that ε[â2] = z thus â2 = z . Moreover a = πr Ê2.let z = a1 in Ê2
′
.z which

reduces under λd′ to πr Ê2.let z = a1 in Ê2
′
.a1. It is then simple enough to check that

this erases to πr E2.let z = u in E ′2.u.

case a1 a2 :

Similar to the above proof.

case let0 z = a1 in a2 :

We have to consider the case where this term erases to a term that can do an instantiation:

case let z = ε[a1] in ε[a2] = let z = u in E3.R.E2.z :
We can assume that wf[let0 z = a1 in a2] ∧ (let0 z = a1 in a2) znf ◦d and let z =
u in E3.R.E2.z −→d let z = u in E3.R.E2.u. By ε[−] source context (Lemma 82)there
exists a λd context Ê3 and a â such that a2 = Ê3.â and ε[Ê3] = E3, thus as erase
distributes over contexts, ε[â] = R.E2.z . We can see by inspection of ε[−] that if an
erase results in an R context, then the input to erase must have been an R context,
therefore let â = R.â′ for some â′ then ε[R.â′] = R.E2.z and as erase distributes over
contexts ε[â′] = E2.z . By ε[−] source context (Lemma 82)there exists Ê2 and ǎ such
that â′ = Ê2.ǎ and ε[Ê2] = E2 therefore ε[ǎ] = z forcing ǎ = z . Putting this all together
a2 = Ê3.R.Ê2.z , by well-formedness a1 d’val and so (let z = a1 in a2) = (let0 z =
a1 in Ê3.R.Ê2.z) −→d′ let0 z = u in Ê3.R.Ê2.a1. More over it is easy to check that
this last term erases to let z = u in E3.R.E2.u.

�

Lemma 92 (d’-c correspondence)

a closed ∧ wf[a] ∧ a
l−→d′ a

′ ∧ l 6= inst =⇒ ∃e ′. [| a |]∅ −→c e ′ ∧ e ′ = [| a ′ |]∅

Lemma 93 (dc simulation) R is a weak simulation from λd to λc

Lemma 94 (value correspondence) if Φ = Φk where

Φ0 = ∅
Φn+1 = Φn, xn+1 7→ [|un+1 |]Φn where fv([|un+1 |]Φn) = ∅

and fv(u) ⊆ dom(Φ) and wf[u] then S[Φ]{| ε[u] |} = [| u |]Φ

Proof The proof follows the λr proof, but with an extra case necessary as variables can now be values.
We give the extra case:

case z :

77

B.4 Observational equivalence between λd and λc B λC , λR AND λD: OBS. EQUIV.

Under the assumptions Φ = Φk; z ∈ dom(Φ) and wf[z] we are required to prove S[Φ](z) =
Φ∗(z).

As z ∈ dom(Φ), there exists j ∈ 1 .. k such that

S[Φ](z) = S (Φj , z 7→ [|uj+1 |]Φj (z)
= S[Φj][|uj+1 |]Φj

As fv([|uj+1 |]Φj) = ∅ then S[Φj][|uj+1 |]Φj = [|uj+1 |]Φj . To complete the proof consider Φ∗(z).
As for all v ∈ dom(Φ) it is the case that fv(v) = ∅, we have that Φ∗ = Φ. It follows that
Φ∗(z) = Φ(z) = [|uj+1 |]Φj as required.

�

Lemma 95 (typing is substitutive)

Φ ` v :T ∧ z :T ,Φ ` e:T ′ =⇒ Φ ` {v/z}e:T ′

Lemma 96 ({| |} type preservation)

Φ ` u:T =⇒ Φ ` {| u |}:T

Proof Follows as in the λr proof, but with a case for variables that is trivial. �

The proof of the main theorem follows in the same way as in λr as the argument is purely based upon
lemmas that have been reproved for the λd case, namely Lemma 87, Lemma 90, Lemma 80, Lemma 80,
Lemma 77, Lemma 69, Lemma 71, Lemma 84, Lemma 93, Lemma 64, Lemma 76, Lemma 75, Lemma 94
and Lemma 96.

78

C λMARSH: SANITY PROPERTIES

C λmarsh: Sanity Properties

C.1 Unique redex/context decomposition

Theorem 97 (I.H. for Unique redex/context decomposition for λmarsh) Let e be an expression.
Then (in λmarsh) exactly one of the following holds:

1. e val: e is a value and ¬(e var2) (value: may be grabbed or benign unbound variable).

2. e var1: there exist E3,R,E2, z such that E3.R.E2.z = e and z /∈ hb(E3.R.E2) (unbound variable in
destruct position).

3. e var2: there exist E2, z such that E2.z = e and z ∈ hb(E2) (value: bound variable other than by
marshalled Γ).

4. e err1: e err and ¬(e var1) (fatal error).

5. e red: there exist E3, e0, rn such that E3.e0 = e and e0 is an instance of the left-hand side of rule
rn (reducible).

6. e grb: there exist E ′3,M , u such that E ′3.marshal M u = e and mark M not around in E ′3
(unmarked grab).

7. e ung: there exist E ′3,M ,E2,Γ, u such that E ′3.unmarshal M .E2.marshalled Γ u = e and
mark M not around in E ′3 unmarked ungrab).

Furthermore, if such a pair, triple, quadruple, or quintuple exists then it is unique.

Proof The proof is by induction on the structure of e, and is in essence identical to the earlier proof
of Theorem 13, for the destruct-time calculus. The novelty subsists entirely in the new disjuncts
e grb and e ung, and in the new syntactic forms mark M in e, marshal M e ′, marshalled Γ u,
and unmarshal M e ′. We outline below the new cases of the argument; all remaining cases simply
propagate the new disjuncts unchanged, upwards through the syntax tree.

case mark M in e ′ :

May promote e ′ grb or e ′ ung to e red by (marshal) or (unmarshal), or may promote e ′ ung to
e err1 by (ungrab-err3) if rebind(fv(u),E3) is undefined. These cases are mutually exclusive.

case marshal M e ′ :

If e ′ val or e ′ var1, then e grb; otherwise, the disjunct propagates upwards.

case marshalled Γ u :

e val.

case unmarshal M e ′ :

If e ′ val and e ′ is of the form E2.z , then e var1. Otherwise, if e ′ val or e ′ var1, then if e ′ is of
the form E2.marshalled Γ u, then e ung, otherwise, e err1 by (ungrab-err1). Otherwise, the
disjunct propagates upwards. �

Observe that at the top level e var1 =⇒ e err, e var2 =⇒ e a value, e grb =⇒ e err by (grab-err),
and e ung =⇒ e err by (ungrab-err2). Hence:

Corollary 98 (Unique redex/context decomposition for λmarsh) Let e be an expression. Then (in
λmarsh) exactly one of the following holds:

1. e is a value.

79

C.2 Type preservation and partial safety C λMARSH: SANITY PROPERTIES

2. e err.

3. there exist E3, e0, rn such that E3.e0 = e and e0 is an instance of the left-hand side of rule rn.

Furthermore, if such a triple exists then it is unique.

C.2 Type preservation and partial safety

Theorem 99 (Type Preservation for λmarsh)
If ` e:T and e −→ e ′ then ` e ′:T

Theorem 100 (Partial Safety for λmarsh)
If ` e:T then ¬(e err).

We conjecture also that for expressions which contain only one mark, which is between top-level let
or letrec declarations, and in which there is no marshal or unmarshal before that mark, then no err′

can arise.

Lemma 101 (E2 inversion for λmarsh) If Γ ` E2.e:T and dhb(E2, dom(Γ)) then Γ,Γ(E2) ` e:T and
∀e ′,T ′.Γ,Γ(E2) ` e ′:T ′ =⇒ Γ ` E2.e

′:T ′.

Lemma 102 (E3 inversion for λmarsh) If Γ ` E3.e:T and dhb(E3, dom(Γ)) then there exists T ′ such
that Γ,Γ(E3) ` e:T ′ and ∀e ′.Γ,Γ(E3) ` e ′:T ′ =⇒ Γ ` E3.e

′:T .

These change from before in having Γ(E2), Γ(E3) instead of existentially-quantified Γ′. We do not
give the proofs, which are essentially as before.

Lemma 103 (bindmark() typing) For all E3,Γ, e,T , if Γ,Γ(E3) ` e:T and ∃T ′, e ′.Γ ` E3.e
′:T ′

then Γ ` bindmark(E3).e:T .

Proof Induction on E3, inside out (using associativity of context composition).

Case . Trivial.

Case A1.E3. We have Γ(A1.E3) = Γ(E3) and bindmark(A1.E3) = bindmark(E3). It remains only
to note that the typing rules for each A1.e require e typable in the same type environment as
A1.e.

Case A2.E3.

Case (let zk:T = u in).E3. Suppose Γ,Γ((let zk:T0 = u in).E3) ` e:T (1) and Γ `
(let zk:T0 = u in).E3.e

′:T ′ (2).
By (1) and the definition of Γ() we have Γ, zk:T0,Γ(E3) ` e:T (3).
By type inversion on (2) we have Γ ` u:T0 (4) and Γ, zk:T0 ` E3.e

′:T ′ (5).
By the inductive hypothesis for (3) and (5) we have Γ, zk:T0 ` bindmark(E3).e:T (6).
By typing on (4) and (6) we have Γ ` let zk:T0 = u in bindmark(E3).e:T .
By the definition of bindmark() we have Γ ` bindmark((let zk:T0 = u in).E3).e:T as
required.

Case (letrec zk:T ′ = λxi:T .e2 in).E3. Suppose Γ,Γ((letrec zk:T0 =
λxi:T1.e2 in).E3) ` e:T (1) and Γ ` (letrec zk:T0 = λxi:T1.e2 in).E3.e

′:T ′

(2).
W.l.g. assume also xi¬ ∈ dom(Γ)Γ((letrec zk:T0 = λxi:T1.e2 in).E3).
By (1) and the definition of Γ() we have Γ, zk:T0,Γ(E3) ` e:T (3).
By type inversion on (2) we have T2 such that T0 = T1 → T2, Γ, zk:T0, xi:T1 ` e2:T2 (4)
and Γ, zk:T0 ` E3.e

′:T ′ (5).

80

C λMARSH: SANITY PROPERTIES C.2 Type preservation and partial safety

By the inductive hypothesis for (3) and (5) we have Γ, zk:T0 ` bindmark(E3).e:T (6).
By typing on (4) and (6) we have Γ ` letrec zk:T0 = λxi:T1.e2 in bindmark(E3).e:T .
By the definition of bindmark() we have Γ ` bindmark((letrec zk:T0 =
λxi:T1.e2 in).E3).e:T as required.

Case (mark M in).E3. Suppose Γ,Γ((mark M in).E3) ` e:T (1) and Γ `
(mark M in).E3.e

′:T ′ (2).
By (1) and the definition of Γ() Γ,Γ(E3) ` e:T (3).
By type inversion on (2) Γ ` E3.e

′:T ′ (4).
By the inductive hypothesis for (3) and (4) Γ ` bindmark(E3).e:T .
By typing Γ `mark M in bindmark(E3).e:T .
By definition of bindmark() Γ ` bindmark(mark M in .E3).e:T .

�

Proof (Of Theorem 99, Type Preservation for λmarsh) First show that if Γ ` e:T and e ⇀ e ′ then
Γ ` e ′:T . The cases here ((proj), (app), (inst-1), (inst-2), (instrec-1), (instrec-2)) are essentially
identical to those for λd – the only differences in the reduction or typing rules are those required
for the syntactical adaptations, ie with (identifier,tag) pairs instead of identifiers, and with explicit
type annotations on let and letrec . The last enables us to use the simpler E2 and E3 inversion
lemmas above.

Now prove the theorem for −→ .

Case (E3). By the above result and Lemma 102.

Case (marshal). Consider the reduction E3.mark M .E ′3.marshal M u −→
E3.mark M .E ′3.marshalled (Γ(E3)) (bindmark(E ′3).u)

with dhb(E3) and mark M not around in E ′3.

W.l.g. assume dhb(E ′3,hb(E3)) (this depends on the fact that hb(bindmark(E ′3)) = hb(E ′3).

Suppose ` E3.mark M .E ′3.marshal M u:T .

By Lemma 102 there exists T ′ such that Γ(E3) `mark M .E ′3.marshal M u:T ′ and

∀e ′.Γ(E3) ` e ′:T ′ =⇒ ` E3.e
′:T (*).

By inversion of typing Γ(E3) ` E ′3.marshal M u:T ′.

By Lemma 102 there exists T ′′ such that Γ(E3),Γ(E ′3) `marshal M u:T ′′ and

∀e ′.Γ(E3),Γ(E ′3) ` e ′:T ′′ =⇒ Γ(E3) ` E ′3.e
′:T ′ (**).

By inversion of typing there exists T ′′′ such that T ′′ = Marsh T ′′′ and Γ(E3),Γ(E ′3) ` u:T ′′′.

By Lemma 103 (bindmark typing) Γ(E3) ` (bindmark(E ′3)).u:T ′′′.

By typing Γ(E3),Γ(E ′3) `marshalled (Γ(E3)) (bindmark(E ′3).u):T ′′.

By (**) Γ(E3) ` E ′3.marshalled (Γ(E3)) (bindmark(E ′3).u):T ′.

By typing Γ(E3) `mark M .E ′3.marshalled (Γ(E3)) (bindmark(E ′3).u):T ′.

By (*) ` E3.mark M .E ′3.marshalled (Γ(E3)) (bindmark(E ′3).u):T .

Case (unmarshal). Consider the reduction E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u −→
E3.mark M .E ′3.S[u]

with dhb(E3), dhb(E ′3,hb(E3)), S[=]rebind(Γ, thb(E3)) defined, and mark M not around in
E ′3.

Suppose ` E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u:T .

Assume w.l.g. that dhb(E2,hb(E3.mark M .E ′3).

Let Γ′ = Γ(E3.mark M .E ′3).

It is immediate from the above that dhb(E3.mark M .E ′3, {}) and dhb(E2,hb(E3.mark M .E ′3)).

81

C.2 Type preservation and partial safety C λMARSH: SANITY PROPERTIES

By Lemma 102 there exists T ′ such that Γ′ ` unmarshalM .E2.marshalled Γ u:T ′ and

∀e ′.Γ′ ` e ′:T ′ =⇒ ` E3.mark M .E ′3.e
′:T (*)

By inversion of typing Γ′ ` E2.marshalled Γ u:Marsh T ′.

Trivially hb(E3.mark M .E ′3) = dom(Γ′) so dhb(E2,dom(Γ′)).

By Lemma 101 Γ′,Γ(E2) `marshalled Γ u:Marsh T ′.

By inversion of typing Γ ` u:T ′.

Lemma 104 If rebind(Γ,L) defined then dom(rebind(Γ,L)) = dom(Γ),
ran(rebind(Γ,L)) ⊆ {xi | ∃T .(xi:T) ∈ L}, and forall xj ∈ dom(Γ), if Γ(xj) = T
then ∃(xj :T) ∈ L.

Proof By inspection of the definition of rebind(,). �
Hence dom(rebind(Γ, thb(E3))) = dom(Γ), ran(rebind(Γ, thb(E3))) ⊆ dom(Γ(E3)), and forall
xj ∈ dom(Γ), if Γ(xj) = T then Γ(E3)(rebind(Γ, thb(E3))(xj)) = T .

Lemma 105 (variable-for-variable substitution) If Γ ` e:T and S[:]dom(Γ) →
dom(Γ′) is a variable-for-variable substitution such that ∀xi ∈ dom(Γ).Γ′(S[xi]) = Γ(xi)
then Γ′ ` S[e]:T .

Proof Routine induction, noting that in the marshalled Γ′ u case there is nothing
to do. �

Hence Γ(E3) ` S[u]:T ′.

By weakening Γ(E3.mark M .E ′3) ` S[u]:T ′, ie Γ′ ` S[u]:T ′.

By (*) ` E3.mark M .E ′3.S[u]:T .

�

Proof (of Theorem 100, Safety for λmarsh)

Cases (proj-err), (app-err). These are essentially as in λd.

Case (ungrab-err1). Consider E3.unmarshalM .E2.w err.

Suppose ` E3.unmarshalM .E2.w :T , ¬∃u,Γ.w = marshalled Γ u (*), and ¬∃zk ∈
hb(E2,E3).w = zk (**).

W.l.g. dhb(E3, {}) and dhb(E2,hb(E3)).

By Lemma 102 there exists T ′ such that Γ(E3) ` unmarshalM .E2.w :T ′.

By inversion of typing Γ(E3) ` E2.w :Marsh T ′.

By Lemma 101 Γ(E3),Γ(E2) ` w :Marsh T ′.

The only w forms which are typable with a grabbed type are Marsh Γu and zk. The former
contradicts (*). For the latter, by (**) zk is free in E3.unmarshalM .E2.w , which contradicts
its typability in the empty context.

�

82

REFERENCES REFERENCES

References

[AB02] Z. M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Annals
of pure and applied logic, 117(1–3):97–170, 2002.

[ACCL90] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit substi-
tutions. In Proc. 17th POPL, pages 31–46, 1990.

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. A
call-by-need lambda calculus. In Proc. 22nd POPL, pages 233–246, 1995.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent Program-
ming in Erlang. Prentice Hall, 1996. 2nd ed.

[BHS+03] Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith Wansbrough. Dy-
namic rebinding for marshalling and update, with destruct-time λ. In Proc. ICFP 2003,
2003.

[BHSS03] Gavin Bierman, Michael Hicks, Peter Sewell, and Gareth Stoyle. Formalizing dynamic soft-
ware updating. In Proc. 2nd International Workshop on Unanticipated Software Evolution
(USE 2003), April 2003.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. 1st FoSSaCS, LNCS 1378,
pages 140–155, 1998.

[CS00] Tom Chothia and Ian Stark. A distributed pi-calculus with local areas of communication.
In Proc. 4th HLCL, ENTCS 41.2, 2000.

[Dam98] Laurent Dami. A lambda-calculus for dynamic binding. Theoretical Computer Science,
192(2):201–231, 1998.

[DE] Sophia Drossopoulou and Susan Eisenbach. Manifestations of Java dynamic linking. http:

//www-dse.doc.ic.ac.uk/projects/slurp/dynamic_link/Manifest.pdf.

[dlo] POSIX dlopen specification. http://www.opengroup.org/onlinepubs/007904975/

functions/dlopen.html.

[Dug00] Dominic Duggan. Sharing in Typed Module Assembly Language. In Proc. 3rd Workshop on
Types in Compilation, pages 85–116, 2000.

[Dug01] Dominic Duggan. Type-based hot swapping of running modules. In Proc. 5th ICFP, pages
62–73, 2001.

[FF87] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and the
lambda calculus. In M. Wirsing, editor, Formal Description of Programming Concepts III,
pages 193–219. Elsevier North-Holland, 1987.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In Proc. 7th CONCUR, LNCS 1119, pages 406–421, 1996.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

[FWFD88] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract contin-
uations: A mathematical semantics for handling full functional jumps. In ACM Conference
on LISP and Functional Programming, Snowbird, Utah, pages 52–62, July 1988.

83

REFERENCES REFERENCES

[Gar95] Jacques Garrigue. Dynamic binding and lexical binding in a transformation calculus. In
Workshop on Functional and Logic Programming, 1995.

[GKW97] Stephen Gilmore, Dilsun Kirli, and Chris Walton. Dynamic ML without dynamic types.
Technical Report ECS-LFCS-97-378, The University of Edinburgh, 1997.

[GRR95] C.A. Gunter, D. Rémy, and J.G. Riecke. A generalisation of exceptions and control in ML-like
languages. In Proc. FPCA, pages 12–23, 1995.

[Hic01] Michael Hicks. Dynamic Software Updating. PhD thesis, University of Pennsylvania, August
2001.

[Hir03] Tom Hirschowitz. Modules mixins, modules et récursion étendue en appel par valeur. Thèse
de doctorat, Université Paris 7, 2003.

[HLW03] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of extended recursion in call-
by-value functional languages. In Principles and Practice of Declarative Programming, pages
160–171. ACM Press, 2003.

[HO01] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theoretical Computer
Science, 266(1-2):249–272, 2001.

[HW00] Michael Hicks and Stephanie Weirich. A calculus for dynamic loading. Technical Report
MS-CIS-00-07, University of Pennsylvania, 2000.

[HWC00] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible dynamic linking of
native code. In Proc. 3rd Workshop on Types in Compilation, pages 147–176, 2000.

[HY00] Masatomo Hashimoto and Akinori Yonezawa. MobileML: A programming language for mo-
bile computation. In COORDINATION, LNCS 1906, page 198 ff., 2000.

[Jag94] Suresh Jagannathan. Metalevel building blocks for modular systems. ACM TOPLAS,
16(3):456–492, May 1994.

[L+01] X. Leroy et al. The Objective Caml system release 3.04 documentation, December 2001.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bindings
across multiple lexical scopes. In Proc. 20th POPL, pages 479–492, 1993.

[LLMS00] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark Shields. Implicit parameters:
Dynamic scoping with static types. In Proc. 27th POPL, pages 108–118, 2000.

[LPSW03] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global abstraction-safe
marshalling with hash types. In Proc. ICFP 2003, August 2003.

[MIT] MIT Scheme. http://www.swiss.ai.mit.edu/projects/scheme/.

[Mor98] Luc Moreau. A syntactic theory of dynamic binding. Higher-Order and Symbolic Computa-
tion, 11(3):233–279, December 1998.

[MQ94] Luc Moreau and Christian Queinnec. Partial continuations as the difference of continuations:
A duumvirate of control operators. In Proc. PLILP, LNCS 844, pages 182–197, September
1994.

[Nee93] R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, pages 315–327.
Addison-Wesley, Wokingham, 2nd edition, 1993.

84

REFERENCES REFERENCES

[Que93] Christian Queinnec. A library of high level control operators. Lisp Pointers, ACM SIGPLAN
Special Interest Publ. on Lisp, 6(4):11–26, October 1993.

[RH99] James Riely and Matthew Hennessy. Trust and partial typing in open systems of mobile
agents. In Proc. 26th POPL, pages 93–104, 1999.

[Rou96] François Rouaix. A Web navigator with applets in Caml. In Proc. 5th World Wide Web
Conference, pages 1365–1371, 1996.

[Sch02] Alan Schmitt. Safe dynamic binding in the join calculus. In Proc. IFIP TCS 2002, 2002.

[Sew97] Peter Sewell. On implementations and semantics of a concurrent programming language. In
Proceedings of CONCUR 97: Concurrency Theory (Warsaw). LNCS 1243, pages 391–405,
July 1997.

[SNC00] Albert Serra, Nacho Navarro, and Toni Cortes. DITools: Application-level support for dy-
namic extension and flexible composition. In Proc. USENIX Annual Technical Conference,
pages 225–238, 2000.

[SV00] Peter Sewell and Jan Vitek. Secure composition of untrusted code: Wrappers and causality
types. In Proc. 13th Computer Security Foundations Workshop, pages 269–284, 2000.

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location-independent com-
munication for mobile agents: a two-level architecture. In Internet Programming Languages,
LNCS 1686, pages 1–31, 1999.

[VF01] José Luis Vivas Frontana. Dynamic Binding of Names in Calculi for Mobile Processes. PhD
thesis, KTH, Stockholm, March 2001.

[Wal01] Chris Walton. Abstract Machines for Dynamic Computation. PhD thesis, University of
Edinburgh, 2001. ECS-LFCS-01-425.

This document was generated from:
Id: paper2.mng,v 1.103 2004/02/03 12:45:06 pes20 Exp
Id: common.mng,v 1.103 2004/02/03 12:13:39 gmb Exp
Id: examples.mng,v 1.10 2003/04/05 10:11:26 pes20 Exp
Id: related.mng,v 1.52 2004/02/03 12:13:39 gmb Exp

85

