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Abstract. The C/C++11 concurrency model balances two goals: it is
relaxed enough to be efficiently implementable and (leaving aside the
“thin-air” problem) it is strong enough to give useful guarantees to pro-
grammers. It is mathematically precise and has been used in verification
research and compiler testing.

However, the model is expressed in an axiomatic style, as predicates
on complete candidate executions. This suffices for computing the set of
allowed executions of a small litmus test, but it does not directly support
the incremental construction of executions of larger programs. It is also
at odds with conventional operational semantics, as used implicitly in
the rest of the C/C++ standards.

Our main contribution is the development of an operational model
for C/C++11 concurrency. This covers all the features of the previous
formalised axiomatic model, and we have a mechanised proof that the two
are equivalent, in Isabelle/HOL. We also discuss the issues and remain-
ing challenges involved in integrating this semantics with an operational
semantics for sequential C (described elsewhere).

Doing this uncovered several new aspects of the C/C++11 model:
we show that one cannot build an equivalent operational model that sim-
ply follows program order, SC order, or the synchronises-with order. The
first negative result is forced by hardware-observable behaviour, but the
latter two are not, and so might be ameliorated by changing C/C++11.
More generally, we hope that this work, with its focus on incremental
construction of executions, will inform the future design of new concur-
rency models.

1 Introduction

C and C++ have been used for concurrent programming for decades, and con-
currency became an official part of the ISO language standards in C/C++11 [8,
26, 25]. Batty et al. contributed to this standardisation process, resulting in a
mathematical model in close correspondence with the standard prose [2].

Extensionally, the C/C++11 design is broadly satisfactory, allowing the right
observable behaviour for many programs. On the one hand, the semantics is
relaxed enough to allow efficient implementation on all major hardware plat-
forms [2, 5], and on the other hand, the design provides a flexible range of syn-
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chronisation primitives, with semantics strong enough to support both sequen-
tially consistent (SC) programming and fine-grained concurrency. It has been
used in research on compiler testing, optimisation, library abstraction, program
logics, and model-checking [14, 23, 3, 22, 20, 16].

Intensionally, however, the C/C+11 model (in the ISO text and the formali-
sation) is in an “axiomatic” style, quite different from a conventional small-step
operational semantics. A conventional operational semantics builds executions
incrementally, starting from an initial state and following the permitted tran-
sitions of a transition relation. This incremental structure broadly mirrors the
way in which conventional implementations produce executions. To calculate the
semantically allowed behaviours of a program, one can calculate the set of all
allowed behaviours by an exhaustive search of all paths (up to some depth if
necessary), and one can find single paths (for testing) by making pseudorandom
choices of which transition to take from each state. The incremental structure
also supports proofs by induction on paths, as in typical type preservation proofs,
and dynamic analysis and model-checking tools.

In contrast, an axiomatic concurrency model defines the set of all allowed
behaviours of a program in a quite different and more global fashion: it defines a
notion of candidate execution, the set of memory actions in a putative complete
execution (together with various relations over them), and a consistency predicate
that picks out the candidate executions allowed by the concurrency model; the
conjuncts of this are the axioms of the axiomatic model. Executions must also be
permitted by the threadwise semantics of the program, though this is often left
implicit in the relaxed-memory literature (for C/C++11, one additionally needs
to check whether any consistent execution exhibits a race). With this structure,
to calculate the set of all allowed behaviours of a program, in principle one first
has to calculate the set of all its control-flow unfoldings, then for each of these
consider all the possible choices of arbitrary values for each memory read (using
the threadwise semantics to determine the resulting values of memory writes),
and then consider all the possible arbitrary choices of the relations (the reads-
from relation, coherence order, etc.). This gives a set of candidate executions
which one can filter by the consistency predicate (and then apply a race check
to each). This is viable for small litmus tests, and it is essentially what is done
by the cppmem [2] and herd [1] tools. It intrinsically scales badly, however: the
number of candidate executions increases rapidly with program size, and the
fraction of consistent executions among them becomes vanishingly small. The
fundamental difficulty is that, in the above naive enumeration process, one has
to construct candidates with no knowledge of whether the choice of control-flow
unfolding and memory read values are actually compatible with the concurrency
model; the vast majority of them will not be.

Given this, for programs that go beyond litmus tests, one would at least
want to be able to explore single executions, e.g. for testing or animating a
concurrent data-structure algorithm w.r.t. the relaxed-memory semantics. But
the axiomatic model structure does not support the incremental construction
of single executions: its consistency predicate is only defined over candidate
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complete executions. For the same reason, it also does not support proofs by
induction on paths, or analysis or model-checking tools that are closely based
on the model.

This is the problem we address here: how one can incrementally construct
executions of C/C++11 concurrent programs. Our main contribution is an op-
erational semantics for C/C++11 concurrency which is proved equivalent to the
axiomatic model of Batty et al. [2] and the ISO standard; our proof is mechanised
in Isabelle/HOL.

The challenge arises from the fact that the axiomatic model (intentionally)
allows executions with certain cycles in the union of program order, the reads-
from relation, coherence order, SC order and synchronises-with order (we recall
these relations in §2). In a sequentially consistent semantics, each of the latter
relations are consistent with program order: as one builds an execution path
incrementally, each read is from a write that is earlier in the path, each write
is a coherence-successor of a write that is earlier in the path, and so on. For a
relaxed-memory semantics, that is not always the case, and so the transitions of
our operational semantics, which to be complete w.r.t. the axiomatic model must
be able to generate those cycles, cannot simply follow all the above relations. We
show that for C/C++11 one cannot build an equivalent operational model that
simply follows program order, SC order, or the synchronises-with order. The first
negative result is forced by hardware-observable behaviour, but the latter two
are not, and so might be ameliorated by changing C/C++11.

We continue with a preliminary investigation into what is required to in-
tegrate our operational concurrency model with a semantics for the sequential
aspects of a substantial fragment of C. That sequential semantics, defined by a
typed elaboration into a Core language, will be described in detail elsewhere (it
is not itself part of the contribution of this paper). The initial integration permits
litmus tests in Core or in C to be executed and, more importantly, reveals several
important areas for future work. This is a step towards tools that let one explore
the behaviour of larger concurrent C11 programs, that use more C features than
the original cppmem tool [2] – which had only a threadwise semantics only for a
small ad hoc fragment of C, and which was limited to exhaustive enumeration
of the behaviours of tiny test cases.

Contributions

– We show that one cannot build an equivalent operational model for
C/C++11 that simply follows program order, SC order, or the synchronises-
with order (§3).

– We show that the axiomatic model does behave incrementally under a par-
ticular execution order, develop an operational concurrency model following
that order, and prove this model equivalent to the axiomatic model of Batty
et al. [2], with a mechanised Isabelle/HOL proof (§4–6).

– We discuss the issues involved in integrating our operational concurrency
model with a sequential operational semantics for a Core language into which
a substantial fragment of C can be elaborated (§7).
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We do all this for the full C/C++11 model as formalised by Batty et al. [2],
including nonatomic accesses, all the atomic memory orders (sequentially con-
sistent, release/acquire, release/consume, and relaxed), read-modify-write oper-
ations, locks, and fences.

For such an intricate area, mechanisation has major advantages over hand
proofs, but it also comes at a significant cost. The total development amounts
to 7 305 lines of Isabelle/HOL script (excluding comments and whitespace), to-
gether with 2 676 lines of Isabelle/HOL script for the original axiomatic model.
We use Lem [15] to generate the latter from its Lem source, which was previously
used for HOL4 proof. In the paper we only state the most important theorems
and definitions; the proofs and the rest of the theorems and definitions are avail-
able online at http://www.cl.cam.ac.uk/~kn307/c11/esop2016/esop_2016_40_

supplementary_material.tar which builds with Isabelle 2015.

Non-goals While our operational semantics is executable, it is not intended to be
a single-path or state-space exploration tool that is usable on industrial grade
code, as we discuss in §7, though it may contribute to such tools in future.
Rather, our contribution is the mathematical one: the operational model and
its correctness theorem, and the demonstration that the model integrates better
with the rest of the C/C++ semantics than the axiomatic model does. Focussing
on the need for incremental construction of executions gives new insights into
the internal structure of the C/C++11 model, which we hope will inform future
language-level concurrency model design. The incremental structure may also be
useful for metatheory proofs and analysis tools, as it is for conventional sequential
or SC operational semantics.

We are also deliberately not addressing the “thin-air” problem: the C/C++11
model permits certain executions that are widely agreed to be pathological, but
which are hard to characterise [4]. Here we are aiming to be provably equiv-
alent to that model, and those executions are therefore also permitted by our
operational model. Instead we are solving an orthogonal problem: the cyclic exe-
cutions presented in §3 that are the main reasons why developing an operational
semantics is difficult are not out-of-thin-air executions. There may be scope for
combining this work with proposals for thin-air-free models for the relaxed and
nonatomic fragment of C/C++11 [18].

Our operational semantics can detect C/C++11 races on the path it explores,
but, as for any non-exhaustive semantics, it cannot detect races on other paths.

Lastly, our operational semantics is not in an “abstract machine” style, with
an internal structure of buffers and suchlike that has a very concrete operational
intuition. That might be desirable in principle, but the C/C++11 model is an
abstraction invented to be sound with respect to multiple quite different imple-
mentations, covering compiler and hardware optimisation; it is unclear whether
one can expect an equivalent abstract-machine model to be feasible.
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2 Background: C/C++11 axiomatic concurrency model

We begin by recalling the C/C++11 concurrency primitives and axiomatic
model, referring to previous work [8, 2, 6] for the full details.

2.1 The language: C/C++11 concurrency primitives

C/C++11 provide concurrency primitives supporting a range of different pro-
gramming idioms. First there are normal non-atomic accesses. Races on these
give rise to undefined behaviour (to allow compiler optimisation to assume there
are no races), and so concurrent use of them must be protected by conventional
locks or other synchronisation. Then there are atomic accesses, which can be
concurrently used without constituting undefined behaviour. Atomic accesses
include memory reads, writes, and various read-modify-write operations, includ-
ing atomic increments and compare-and-swap operations. There are also explicit
memory fences. Atomics can be annotated with different memory orders:

– Sequentially consistent (SC) atomics are guaranteed to appear in a global
total order, but their implementation on relaxed hardware requires relatively
expensive synchronisation.

– Write-release and read-acquire atomics are cheaper but weaker: if a write-
release is read from by a read-acquire, then memory accesses program-order
after the latter are guaranteed to see those program-order-before the former.

– Read-consume is a still weaker variant of read-acquire, implementable on
some relaxed hardware simply using the fact that those architectures guar-
antee that some dependencies are preserved. The status of read-consume
is in flux, as McKenney et al. describe [13]: it is difficult to implement in
full generality in existing compilers (where standard optimisations may re-
move source-code syntactic dependencies), but the basic facility it provides
is widely used, e.g. in the Linux kernel. All this notwithstanding, our oper-
ational model captures its behaviour as specified in the formal C/C++11
axiomatic concurrency model.

– Relaxed atomics are the weakest of all, guaranteeing coherence but weak
enough to require no hardware fences in their implementation on common
architectures [19].

Certain combinations of release/acquire, relaxed, and read-modify-write atomics
also guarantee synchronisation (exploiting the force of the memory barriers used
in write-release implementations).

2.2 The C/C++11 axiomatic concurrency semantics

Pre-executions To compute the behaviour of a progam using the axiomatic
model, one first calculates the set of all pre-executions using a threadwise se-
mantics (this is a parameter of the concurrency model, not a part of it). Each
pre-execution corresponds to a particular complete control-flow unfolding of the
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program and an arbitrary choice of the values read from memory, with the values
written to memory as determined by the threadwise semantics.

Below we show an example program (in a condensed syntax, with some com-
mon initialisation at the top and then two parallel threads) and one of its many
pre-executions. The pre-execution is represented as a graph, whose nodes are

atomic_int x=0

atomic_int y=0

r1 = loadrlx(x)

storerlx(y,42)

r2 = loadrlx(y)

storerlx(x,42)

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=42

asw

e:Rrlx y=42
asw

d:Wrlx y=42

sb

f:Wrlx x=42

sb

Fig. 1: Load buffering (LB)

memory actions. A node label such as a:Wna x=0 consists of:

– a, the identifier of the action, unique within the pre-execution.
– W, the type of the action, in this case a store. Other types are loads (R),

read-modify-writes (RMW), fences (F), locks (L) and unlocks (U).
– na, specifying that this action is non-atomic. For atomic actions, the memory

order (the synchronisation strength of the action, not an order relation) is
specified here: sequential consistent (sc), release (rel), acquire (acq), acquire-
release (a/r), consume (con) or relaxed (rlx). Locks and unlocks do not have
a memory order.

– x, the location of the action. Fences do not have a location.
– 0, the value written for stores. Load actions similarly contain the value read

(recall that pre-execution contains arbitrary values for the return values of
loads). For read-modify-writes a pair such as 2/3 specifies that 2 has been
read, and 3 has been written.

To keep the diagrams simple we suppress the memory actions of thread-local
variables ri. The sb “sequenced-before” edges capture program order, and the
asw “additional synchronises-with” edges capture thread creation, both from the
syntactic control-flow unfolding.

In general individual pre-executions may be infinitary, as may the set of
all of them, but for programs without loops or recursion they will be finite,
albeit perhaps extremely numerous. The threadwise semantics might calculate
the set of all pre-executions of such programs inductively on program syntax (in
that sense, this part of the semantics would be denotational, though it involves
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no limit construction), or could involve exhaustive exploration of a threadwise
labelled-transition operational semantics, with memory reads taking arbitrary
values.

Execution witnesses For each pre-execution that has been computed, one enu-
merates all possible execution witnesses; a candidate execution is a pair of a
pre-execution and an execution witness for it. An execution witness consists of
the following relations over the actions of a pre-execution:

– The reads-from relation
rf
→ to relate each read to the write that it reads from.

– The coherence order mo
→ is a total over atomic writes to the same location.

– The sequential consistent order sc
→ is a total order over actions with a se-

quential consistent memory order.

– The lock order lo
→ is a total order over locks and unlocks to the same location.

In Fig. 2 we see two witnesses over the pre-execution of Fig. 1. That on the

left is not consistent: most of the
rf
→ and mo

→ edges do not even relate events
of the right kinds, and the reads-from edge from a to e relates events with
different locations and values. It is the consistency predicate that imposes the
intuitive meanings above, along with the more subtle properties that are the real
substance of the C/C++11 model.

a:Wna x=0

b:Wna y=0

sb

e:Rrlx y=42

rf

c:Rrlx x=42

asw
asw

d:Wrlx y=42

sb

mo

mo

f:Wrlx x=42

sb

rf

(a) An inconsistent witness

a:Wna x=0

b:Wna y=0

sb

f:Wrlx x=42

mo

c:Rrlx x=42

asw

d:Wrlx y=42

mo
e:Rrlx y=42

asw

sb
rf

sb
rf

(b) A consistent witness

Fig. 2: Execution witnesses over the pre-execution of Fig. 1

From a pre-execution and a witness the axiomatic model computes several
relations that are referred to in the axioms. For example:

– The synchronises-with relation sw
→ contains (among other things) synchro-

nising unlock-lock pairs, and synchronising release-acquire pairs.

– The happens-before relation hb
→ denotes which actions “happen before” which

other actions.
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The consistency predicate requires, among other things, that this derived
happens-before relation is acyclic.

3 Incrementalising the axiomatic model: the problems

Recall that our ultimate goal is to incrementally generate executions in such a
way that every consistent execution can be generated. In this section we consider
a part of the problem, namely how to incrementally generate witnesses, given a
complete pre-execution up-front, in such a way that all consistent witnesses over
that pre-execution can be generated. We call a model that does that a concur-
rency model, in later sections we also construct the pre-execution incrementally.
Our goal is to generate witnesses one action at the time: each step we add ex-
ecution witness data (new rf -pairs, etc.) between a new action a and actions
previously considered. We call such a step committing action a.

Another notion that we use is that of following or respecting a certain order.
If we would commit the actions of Fig. 2b in the order a, b, c, . . . , f then we would
not respect rf because the edge (f, c) ∈ rf goes against this order. Or formally:
let com be the commitment order (that is, (a, b) ∈ com if a has been committed
before b) and r a relation, we say that we follow r if for all (a, b) ∈ com we have
(b, a) /∈ r.

A requirement that follows from later sections is that we should follow rf . In
a complete pre-execution all the reads have a concrete value (that is arbitrarily
chosen), but later we want the concurrency model to determine which value is
read. Since rf relates reads to the write they read from, this means that the
concurrency model has to establish an rf -edge to the read when it commits the
read; in other words it has to follow rf .

The first problem we face is that hb edges (happens-before edges) between
previously committed actions might disappear when committing new actions.
This is conceptually very strange and it has undesirable consequences, which we
discuss in Section 3.1. In the same section we show that if we follow mo then
this problem does not occur.

The other problems follow from the existence of consistent executions with
particular cycles. In Section 3.2 we show that we cannot follow sb (the program
order), in Section 3.3 that we cannot follow sc (the sequential consistent order)
and in Section 3.4 that we cannot follow sw (the synchronises-with order). Each
of these also suggests a possible change to future versions of the C/C++11
model.

3.1 Disappearing synchronisation

Most synchronisation is immune to new actions. For example, a synchronising
release-acquire pair will be synchronised no matter which or how many new
actions are added to the execution, and similarly for a synchronising unlock-
lock pair. However, this is not true for types of synchronisations that depend on
release sequences, as can be seen in Fig. 3.
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Recall that a release sequence is defined as follows [2, §2.6]. It starts at a write-
release, and extends to all stores of the same thread and all RMWs (potentially
by other threads) that immediately follow in modification order, regardless of
their memory order annotation. The point of this is to provide at the C/C++11
level more of the force of the memory barrier used on some architectures to
implement the write-release, just before the write.

Such a release sequence can be broken by executing a new action, of which
we give an example below. In the execution on the left, the writes a and b are
part of a release sequence, and because the read c reads from a write in this
sequence, it synchronises with the first write in the sequence. In the second
execution, however, a new write d is inserted in modification order between the
existing writes a and b, which breaks the release sequence. Therefore, there is
no synchronisation between the read c and write a anymore.

c:Racq x=2

a:Wrel x=1

hb

b:Wrlx x=2

sb

rf c:Racq x=2

a:Wrel x=1

no hb

b:Wrlx x=2

sb

d:Wrlx x=3

mo

rf mo

Fig. 3: Disappearing synchronisation

Such disappearing hb edges make it difficult to construct an operational con-
currency model that generates all consistent executions. An hb edge restricts
consistent executions in many ways: for example, it restricts the set of writes
that a read can read from, and it forces modification order in certain directions.
If the concurrency model took those restrictions into consideration but at a later
step the hb edge disappeared, the concurrency model would have to reconsider
all earlier steps. If on the other hand the concurrency model already took into
account that an hb edge might disappear when it encounters an hb edge, the
number of possibilities would blow up, and furthermore many executions would
turn out to be inconsistent when the hb edge does not disappear after all.

Our solution to prevent disappearing synchronisation is to follow mo when
committing actions. We prove that this suffices in a later section, in Theorem 2.

Another solution would be to change the axiomatic model (and the C/C++
ISO standards) by allowing the release sequence to extend to sb-later writes in
the same thread irrespective of whether the write is immediately following in mo

order. We believe that this matches hardware behaviour, so this change would
not invalidate current implementations of C/C++11.

3.2 Abandoning program order

There are two kinds of cycles that show that we cannot follow program order.
For the first, recall that the operational concurrency model has to follow rf to
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determine the return values of reads. Then the cycle in rf ∪ sb in the execution
in Fig. 2b (the well-known LB example) shows that we cannot follow program
order (sb) at the same time. This execution has to be allowed in C/C++ because
it is allowed on POWER and ARM, and observable on current ARM hardware.

For the second, observe that the execution below has a cycle in mo ∪ sb.
As described in the previous subsection, we follow mo, so the existence of this
cycle also shows that we cannot follow program order. Here the corresponding
hardware examples, after applying the standard mapping, are not architecturally
allowed or observed on ARMv8 (2+2W+STLs) or POWER (2+2W+lwsyncs), so
one might conceivably strengthen C/C++11 to similarly forbid this behaviour.

a:Wrel y=1

b:Wrel x=2

sb

f:Racq y=1

rf

c:Racq x=1

sb

d:Wrel x=1

mo

rf

e:Wrel y=2

sb
mo

sb

A consistent execution with a cycle in mo ∪ sb

3.3 Abandoning sequential-consistent order

Recall from Section 2 that C/C++11 introduces sequential consistent atomics
that are guaranteed to appear in a global total order. When all accesses to
atomics have this SC memory order annotation, programs that have no non-
atomic races behave as if memory is sequentially consistent (Batty [6, 4]). It is
therefore surprising that the concurrency model cannot follow the sc relation
when the SC memory order is mixed with other memory orders.

Our argument is as follows. The execution below contains a cycle in mo ∪
rf ∪ sc, so we cannot follow all three relations together. We saw before that we
have to follow both rf and mo, hence we cannot follow sc. To the best of our
knowledge, this execution is not observable on POWER/ARM, so this suggests
another possible strengthening of C/C++11, which would allow an operational
model to follow sc by disallowing the mo ∪ rf ∪ sc cycle.

a:Wsc x=1

b:Wrlx x=2

mo

c:Rsc x=2rf

sc

A consistent execution with a cycle in mo ∪ rf ∪ sc (omitting initialisation)
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3.4 Abandoning synchronises-with order

Just as disappearing synchronisation makes it hard to develop an operational
semantics, new synchronisation to previously committed actions makes it equally
hard.

To see this consider the situation where there was no hb edge between a
write w and a load r when the load was committed, but committing a new
action a creates a hb edge between w and r. The consistency predicate con-
sistent_non_atomic_rf requires (in case r is non-atomic) that r reads from a
write that happens before it. When committing r we either have to consider w
and discard the execution when there never appears a hb edge, or we do not
consider it, but then we have to reconsider the execution of r as soon as there
does appear a hb edge. Similarly, the consistency predicate det_read requires
that r (regardless of whether it is atomic or not) is indeterminate if and only
if there does not exists a write that happens before it, so the same problems
applies here.

The hb relation is a superset of the synchronises-with (sw) relation, that arises
from thread creation, synchronising locks and synchronising release-acquire
atomics or fences. If we would have been able to follow sw , it would have been
easier to prevent new synchronisation between previously committed actions.
However, the execution below has a cycle in sw ∪ rf , and since we follow rf we
can therefore not follow sw . This execution is not observable on POWER/ARM,
so again one might conceivably forbid it in C/C++11 to follow the sw order.

a:RMWrel y=2/3

b:Wrlx y=4

d:Fa/r

c:Rrlx y=4

e:Wrlx x=1 f:RMWacq x=1/2

k:RMWrel x=2/3

h:Rrlx x=4

i:Fa/r

j:Wrlx y=1

l:Wrlx x=4

g:RMWacq y=1/2
rf mo rf mo

sb

sb

sb

rf ,morf ,mo

sb

sw
sb

sw

sw
sb momo sw

rfrf

A consistent execution with a cycle in sw ∪ rf (omitting initialisation)

4 Constructing an operational model: overview

In the rest of the paper we construct the operational semantics in the following
three stages.

Stage 1 The incremental concurrency model In Section 5 we present
an order r that can be used to incrementally generate all consistent executions,
in constrast to the orders presented in the previous section. The crucial property
of the order r is the following: an r-prefix of a consistent execution is again a
consistent execution.
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We use this order to define the incremental concurrency model in the follow-
ing way. We assume for now that a complete pre-execution is given (in a later
stage we remove this assumption). We define a notion of state that contains a
partially generated execution witness, and we allow a transition from state s1 to
s2 if s2 extends s1 with one action, and s2 is consistent.

To prove completeness (for finite executions), we exploit that consistency is
closed under r-prefixes: let ex be a consistent execution with n actions, define the
states s0, . . . , sn where si is the r-prefix of ex with i actions. Then the incremental
model can transition from si to si+1 and therefore it can incrementally generate
the consistent execution ex .

Limitations To actually compute a next state s2 from a state s1 one would
have to enumerate all possible execution witnesses and filter them according to
the criteria “s2 extends s1 with one action, and s2 is consistent”. Computing
behaviour this way is even less efficient than with the axiomatic model itself,
since there one would only need to enumerate the witnesses once while here for
every transition. This limitation is precisely what we solve in the next stage.

Stage 2 The executable concurrency model In Section 6 we present
the executable concurrency model. This is similar to the incremental model: it
also assumes a complete pre-execution, it has the same notion of states, and it
can transition from a state s1 to s2 if and only if the incremental model can.
The difference is that the executable model defines transitions using a function
that given a state s1 returns the set of all states where s1 can transition to. This
makes it feasible to compute transtions.

We develop this transition function by examining how the relations rf , mo, sc
and lo (that together form the execution witness) can change during a transition
of the incremental model.

Limitations The transition function internally still enumerates some candi-
dates and filters them using some of the conjuncts of the axiomatic consistency
predicate. We believe that the set of a priori possible candidates can be further
reduced when we know exactly how hb changes during a transition (instead of
the general results stated in Theorem 2 and Theorem 3); we leave this, which
is really an implementation optimisation, for future work. The point is that we
have to enumerate significantly fewer candidates than in the incremental model:
the executable model enumerates at most 3n candidates where n is the number
of actions in the partial witness, while the incremental model enumerates all
possibilities for four partial orders over n actions.

The remaining limitation is that the executable model still assumes a com-
plete pre-execution given up-front. This is what we solve in the next stage.

Stage 3 The operational semantics In Section 7 we integrate the ex-
ecutable concurrency model with an operational model for the sequential as-
pects of a substantial fragment of C. Here the latter incrementally builds a
pre-execution while the concurrency model incrementally builds a witness, syn-
chronising between the two as necessary.
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The main obstacle we had to overcome was the fact that the executable
concurrency model cannot follow program order (as explained in §3), but the
sequential semantics does. Our solution was to allow the sequential semantics
and the concurrency model to transition independently of each other: the former
generates actions in program order, and at every step the concurrency model
commits zero, one or more of the generated actions.

A consequence of the independent transitions is that when the sequential
semantics generates a read, the concurrency semantics might not immediately
commit that read and return the value. In that case the sequential semantics
has to be able to continue its execution without the return value. Our solution
is to make the sequential semantics symbolic: for all reads we use fresh symbols
for the return values, and whenever the concurrency model commits a read we
resolve the symbol with the value actually read.

When a control operator with a symbolic condition is encountered the se-
quential semantics non-deterministically explores both branches, adding the cor-
responding constraints to a constraint set. In some cases the semantics explores
a path that leads to an inconsistent constraint set, in which case the execution
is terminated. A production tool would need to backtrack or explore a different
path at such points, and it would be critical to resolve constraints as early as
possible.

5 The incremental model

In the light of the non-approaches of Section 3, we now show how one can, given
a complete pre-execution (with concrete values for all the reads), incrementally
generate witnesses in such a way that every consistent witness over the pre-
execution can be generated.

Let ex be a finite consistent execution whose witness we want to incrementally
generate. The first step is to find an order a1, . . . , an of the actions of ex in which
we plan the generate the witness; we define this order in Section 5.1 and prove
that it is acyclic, in contrast to the candidate orders considered in Section 3.

Then we define the partial executions ex 1, . . . , exn we plan to generate when
committing the actions a1, . . . , an, see Section 5.2. In Section 5.3 we prove that
hb edges do not disappear during a transition from ex i to ex i+1, and neither
do there appear new hb edges between previously committed writes and reads
(in respectively Section 3.1 and Section 3.4 we discussed why we need those
properties).

Then in Section 5.4 we prove that the partial executions ex 1, . . . , exn are all
consistent if ex is consistent, and, based on that, we define a transition relation
in Section 5.5. Finally, we define the incremental model in Section 5.6 and prove
equivalence with the axiomatic model for finite executions.

Notation We use the notation pre.sb and wit .rf to refer to parts of pre-executions
and execution witnesses. For brevity, we abuse this notation by writing ex .sb
when we should actually write “let ex = (pre,wit , rel), consider pre.sb” and
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likewise for the parts of the witness, such as ex .rf . With get_rel(pre,wit) we
mean the list of relations that are calculated from the pre-execution and witness.
Here we use the same shorthand: with ex .hb we mean “let ex = (pre,wit , rel)
and rel = [hb, . . .], consider hb”.

5.1 The commitment order

Recall that the operational concurrency model has to follow rf to determine the
return values of reads, and it has to follow mo in order to preserve earlier synchro-
nisation (see §3.1). We cannot prevent new synchronisation appearing between
previously committed actions, but by following {(a, b) ∈ hb | is_load(b)} we can
prevent it between previously committed writes and loads. This is enough to
prevent the situation described in Section 3.4 regarding the predicates consis-
tent_non_atomic_rf and det_read.

This order satisfies all the properties we would need to incrementalise the ax-
iomatic model, but it leaves many actions unordered, which means that the tran-
sition relation would be very non-deterministic. To reduce this non-determinism
as much as possible, we include as much of hb as we can. Because we cannot
follow program order (see Section 3.2) we know that we cannot include all of hb.

We decided to leave out hb edges to atomic writes, and include all hb edges
to other types of actions. (For locks and unlocks there is a choice whether to
include hb edges to locks and unlocks, or to follow the lock-order lo, but one
cannot include both since there can be a cycle in their union. We did not see
any compelling argument in favour of either of the two, and we chose to follow
the former.) In other words, this order allows us to speculate writes, and forces
us to commit all other actions in hb order.

Definition 1 (Commitment order). Let ex be a candidate execution. First
define ex .almost_hb = {(a, b) ∈ ex .hb | ¬ (is_write(b) ∧ is_atomic(b))}.

Then define the order

ex .com = (ex .rf ∪ ex .mo ∪ ex .almost_hb)
+
.

Theorem 1. Let ex be consistent. Then the relation ex .com defined above is a
strict partial order.

The proof, like all our work, has been mechanised in Isabelle/HOL and is
included in the supplementary material.

5.2 States

A state s consists of a set of actions s.committed denoting the actions that have
been committed so far, and an execution witness s.wit denoting the execution
witness built up so far. Note that the pre-execution is not part of the state, since
we assumed that it was given and therefore we only need to incrementally build
the witness.
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Let ex be the execution that we want to generate incrementally, and
a1, . . . , an the actions of that execution in some order that agrees with ex .com
defined in the previous subsection. We want the states s1, . . . , sn to reflect the
witness build up so far, and an obvious thing to do is to define si.committed to
be the actions a1, . . . , ai that are committed so far, and si.wit as the restriction
of ex .wit to those actions. The initial state (where i = 0) is always the same
(regardless of the given pre-execution) because the set of committed actions is
empty, and the witness contains only empty relations.

Definition 2. Let pre be a pre-execution, and S a set of actions. Then
preRestrict(pre, S) is defined by

preRestrict(pre, S).actions = pre.actions ∩ S

preRestrict(pre, S).sb = pre.sb ∩ S × S

preRestrict(pre, S).asw = pre.asw ∩ S × S

Similary, with wit an execution witness, witRestrict is defined by restricting rf ,
mo, sc and lo to S × S, as in

witRestrict(wit , S).rf = wit .rf ∩ S × S

And finally, with ex = (pre,wit , rel) an execution, exRestrict is defined by

pre ′ = preRestrict(pre, S)

wit ′ = witRestrict(wit , S)

exRestrict(ex , S) = (pre ′,wit ′, get_rel(pre ′,wit ′))

The partial executions ex i mentioned in the intro of this section are then
given by exRestrict(ex , Ai) where Ai = {a1, . . . , ai}. Note that we have also re-
stricted the pre-execution to the set of actions committed, although the complete
pre-execution is fixed during the generation of the witness. We have two reasons
for that: one is that otherwise the partial execution would be inconsistent (since
the actions in the pre-execution that have not been committed yet have no mo,
rf , etc. edges to and from them, while this is in some cases required to be con-
sistent). And the second reason is that when we integrate with the operational
threadwise semantics, the pre-execution is no longer fixed.

5.3 Properties of happens before

In Section 3.1 we explained that synchronisation could disappear when mo is not
followed. Since we have included mo in the commitment order, the counterex-
ample does not apply anymore, and we can prove that hb grows monotonically.

Definition 3. Let r be a relation over actions, and A a set of actions. Then
downclosed(A, r) holds if and only if for all (a, b) ∈ r with b ∈ A we have that
a ∈ A.
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For example downclosed(A, ex .mo) means that there are no mo edges from
outside A into A. Now the following monotonicity theorem states that if that is
true for A, then the restriction of ex to A does not contain any hb edges that
are not in ex , or in other words none of the hb edges disappeared.

Theorem 2. Let ex be an execution (not necessarily consistent). Let A be a set
of actions such that downclosed(A, ex .mo). Then

(exRestrict(ex , A)).hb ⊆ ex .hb

Recall that in Section 3.4 we mentioned another desirable property of how
hb changes: there should not appear new synchronisation between previously
committed writes and reads. We proved a slightly stronger result: there does not
appear new synchronisation between any type of action to an action that is not
an atomic write.

Theorem 3. Let ex be a consistent execution. Let A be a set of actions such
that downclosed(A, ex .com). Then for all (a, b) ∈ ex .hb with b ∈ A and b not an
atomic write, we have that (a, b) ∈ (exRestrict(ex , A)).hb.

5.4 Consistency of prefixes

Now we know how hb changes during incremental generation of executions,
we can prove that the partial executions exRestrict(ex , Ai) (as defined in Sec-
tion 5.2) are consistent, where Ai is the set of actions committed so far. This
means that every consistent execution can be build incrementally while being
consistent at every step.

Theorem 4. Let A be a set of actions such that downclosed(A, ex .com). If ex
is a consistent execution, then exRestrict(ex , A) is a consistent execution.

5.5 Transition relation

Given a consistent execution ex , an order a1, . . . , an, and the partial executions
ex i = exRestrict(ex , {a1, . . . , ai}), we now define a transition relation that allows
the transition between ex i and ex i+1. This ensures completeness: if we use this
transition relation to follow paths from the initial state (containing an empty
witness) we know that we will generate all consistent executions.

The transition relation incrementalStep(pre, s1, s2, a) is intended to hold if
committing a in state s1 can result in state s2, given the pre-execution pre

(recall that we still assume to be given a complete pre-execution). The transition
relation has several conjuncts, which we describe after giving the definition.
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Definition 4. The relation incrementalStep(pre, s1, s2, a) is defined as

a ∈ pre.actions ∧ (1)

a /∈ s1.committed ∧ (2)

s2.committed = s1.committed ∪ {a} ∧ (3)

witRestrict(s2.wit , s1.committed) = s1.wit ∧ (4)
[

∀b ∈ pre.actions .

(b ∈ s1.committed → (a, b) /∈ ex .com) ∧

((b, a) ∈ ex .com → b ∈ s1.committed)
]

∧ (5)

is_consistent(exprefix ) (6)

where ex and exprefix are defined by

ex = (pre, s2.wit , get_rel(pre, s2.wit))

preprefix = preRestrict(pre, s2.committed)

exprefix = (preprefix , s2.wit , get_rel(preprefix , s2.wit))

Conjunct (1) makes sure that an action of the pre-execution is committed
(and not an arbitrary action), Conjunct (2) that the action a has not been
committed yet, and Conjunct (3) that the set of committed actions is updated
correctly during the transition. Conjunct (4) ensure that all the changes to the
witness involve the new action a; in other words, the execution witness restricted
to the old set of committed actions is still the same. Conjunct (5) ensures that
actions are committed according to the commitment order, and finally Con-
junct (6) ensures that the generated partial execution is consistent.

We define that incrementalTrace(pre, s) holds if s is reachable from the initial
state following incrementalStep. The following states that all consistent execu-
tions are reachable.

Theorem 5. Let ex be a consistent, finite execution. Let A be a set of actions
with A ⊆ ex .actions and downclosed(A, ex .com).

Then there exists a state s, such that

incrementalTrace(pre, s)

s.wit = witRestrict(ex .wit , A)

s.committed = A

5.6 The incremental model

We now define a new notion of consistency that uses incrementalTrace, which is
equivalent to the axiomatic consistency predicate for finite executions.
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Definition 5. Let ex = (pre,wit , rel) be a candidate execution. We define

incrementalConsistent(ex ) =

rel = get_rel(pre,wit) ∧

∃s. incrementalTrace(pre, s) ∧

s.wit = wit ∧

s.committed = pre.actions

Theorem 6 (Equivalence). Let ex be a candidate execution with

ex = (pre,wit , get_rel(pre,wit)).

Then incrementalConsistent(ex ) holds if and only if ex is finite and consistent
according to the axiomatic model.

6 An executable model

In the previous section we saw that all finite consistent witnesses can
be generated incrementally: starting from the initial s0 state we follow
incrementalStep(pre, si, si+1, ai) to generate the states s1, . . . , sn until we
have committed all the actions of the pre-execution. The problem is that
incrementalStep is a relation, so to actually compute a state si+1 from the state
si we have to enumerate states until one of them satisfies incrementalStep.

In this section we define a step function executableStep that given a state and
a pre-execution, returns the set of possible next states, which makes it feasible
to compute executions incrementally.

To find out how we should define the step function we investigate how si+1

differs from si when incrementalStep(pre, si, si+1, ai) holds. For the set of com-
mitted actions this is clear: si+1.committed = si.committed ∪ {a} since this is
directly required by incrementalStep. For the witness this is not immediately
obvious, so investigate this in the following sections: in Section 6.1 we consider
the mo relation, in Section 6.2 the rf relation, and in Section 6.3 the sc and lo

relations. Then in Section 6.4 we define the step function.

6.1 Modification order

We consider how mo can change from si to si+1 when action a is committed.
In consistent executions, mo is an order over atomic writes that is total over
the writes of the same location. We therefore expect mo to remain the same
if a is not an atomic write, and a to be included in mo otherwise. Since the
modification order is included in the commitment order, we expect that a can
only be added to the end of the existing mo order.

To state the previous formally, we define a function that adds an action a at
the end of the modificition order of a state s.
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Definition 6. Define sameLocWrites(A, a) as

{b ∈ A | is_write(b) ∧ loc_of (b) = loc_of (a)}.

Then define addToMo(a, s) as

s.wit .mo ∪ {(b, a) | b ∈ sameLocWrites(s.committed , a)}

We now formally state our expectations of how mo changes. We explain the
requirements afterwards.

Lemma 1. Let s be a state, ex an execution and a an action, for which the
following holds.

a /∈ s.committed (7)

ex .actions = s.committed ∪ a (8)

witRestrict(ex .wit , s.committed) = s.wit (9)

downclosed(s.committed , ex .mo) (10)

isConsistent(ex ) (11)

If a is an atomic write, we have ex .mo = addToMo(ex .pre, a, s) and other-
wise we have ex .mo = s.wit .mo.

The state s should be thought of as the current state, and ex as the execution
we try to transition to. The requirements say that we should be able to transition
to ex : requirements (7) and (8) together state that there is one new action in ex .
Then (9) states that the witnesses of ex and s agree on the part that is already
committed in s; requirement (10) states that so far, the execution has followed
mo; and finally, (11) states that ex is consistent.

The conclusion of the lemma then says that if a is an atomic write, the
modification order of s changes according to addToMo, and otherwise it does
not change.

6.2 Reads-from relation

We consider how rf can change from si to si+1 when action a is committed. In
consistent executions, rf is a relation from writes to reads. Because rf is included
in the commitment order, we only expect new rf edges to the new action a and
not from a. Hence, how rf changes depends on whether a is a load, an RMW,
or neither.

In the first case, the consistency predicate det_read describes when there
should be a new rf edge: if there exists a write that happens before a there
should, otherwise there should not. This could be self-satisfying: if there is no
write that happens before a, creating a rf edge might create hb edge from a write
to a which would then make det_read true. Hence, we non-deterministically
choose to create a rf edge or not, and when the new hb relation is known, we
check whether there should have been an edge or not.
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Note that in the formal definition we use a non-deterministic monad every
time we say “non-deterministically choose or pick”. With this monad we can later
randomly or exhaustively explore the possibilities.

Definition 7. Define addToRfLoad(a, s) as follows. First, non-
deterministically choose between returning s.wit .rf (meaning no new
edge is added), or non-deterministically picking a write w from the set
sameLocWrites(s.committed , a) for which we have value_written_by(w) =
value_read_by(a) and returning s.wit .rf ∪ {(w, a)}.

In the second case (where a is an RMW), the consistency predicate
rmw_atomcity requires that a reads from its immediate mo-predecessor if there
is one, and otherwise it should be indeterminate (not reading from any write).

Definition 8. Define addToRfRmw(a, s) as follows. If the set
sameLocWrites(s.committed , a) is empty, return s.wit .rf . Otherwise, there
is a maximal element w of that set. We check whether value_written_by(w) =
value_read_by(a) holds, and if so, we return s.wit .rf ∪ {(w, a)}.

We can now formally state our expectations about how rf changes during a
transition. For the explanation of the assumptions we refer to the explanation
given after Lemma 1. Note that the functions addToRfLoad and addToRfRmw

are non-deterministic, so they return a set of possible new rf relations.

Lemma 2. Let s be a state, ex an execution and a an action for which a /∈
s.committed , ex .actions = s.committed ∪ a, witRestrict(ex .wit , s.committed) =
s.wit , downclosed(s.committed , ex .mo), downclosed(s.committed , ex .rf ), and
isConsistent(ex ).
(1) If a is a load, we have ex .rf ∈ addToRfLoad(ex .pre, a, s).
(2) If a is a RMW, we have ex .rf ∈ addToRfRmw(ex .pre, a, s).
(3) Otherwise we have ex .rf = s.wit .rf .

6.3 SC and lock order

In consistent executions, sc is a total order over all actions with a SC memory
order, and lo is an order over locks and unlocks that is total per location. Because
there exist cycles in sc ∪ com and in lo ∪ com, we have to allow the new action a
to be inserted before already committed actions in either order. Our approach is
to define the functions addToSc and addToLo that non-deterministically insert
a anywhere in respectively sc or lo, and later filter the possibilities that became
inconsistent.

Then we prove the usual lemmas that show that this construction suffices.
For the explanation of the assumptions we refer to the explanation given after
Lemma 1.

Lemma 3. Let s be a state, ex an execution and a an action for which a /∈
s.committed , ex .actions = s.committed ∪ a, witRestrict(ex .wit , s.committed) =
s.wit , and isConsistent(ex ).
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If a has a sequential consistent memory order (which is possible for loads,
stores, RMWs and fences), we have ex .sc ∈ addToSc(ex .pre, a, s) and otherwise
we have ex .sc = s.wit .sc.

If a is a lock or an unlock, we have ex .lo ∈ addToLo(ex .pre, a, s) and other-
wise we have ex .lo = s.wit .lo.

6.4 The transition function

With the results of Section 6.1, 6.2 and 6.3 it is now straightforward to define a
non-deterministic function performAction(s, a) that returns an execution witness
based on the type of a. We have summarised this in the table below, defining
performAction(s, a) by describing how each of the relations of s.wit change based
on the type of a.

mo rf sc lo

Loads Unchanged addToRfLoad

If memory order is SC
then addToSc

else unchanged
Unchanged

Stores
If non-atomic
then unchanged
else addToMo

Unchanged Same as loads Unchanged

RMWs addToMo addToRfRmw Same as loads Unchanged
Locks, unlocks Unchanged Unchanged Unchanged addToLo

Fences Unchanged Unchanged Same as loads Unchanged

Now we define the transition function.

Definition 9. Define executableStep(pre, s) as follows. First non-
deterministically pick an action a ∈ pre.actions with a /∈ s.committed .
Then, non-deterministically generate a witness wit using performAction(s, a).
Define the new state s2 with s2.committed = s.committed∪{a} and s2.wit = wit .

Finally, check whether our choice followed the commitment order and re-
sulted in an consistent execution by discarding states that do not satisfy Re-
quirement (5) or Requirement (6) of Definition 4. For each of the non-discarded
options, the function returns the pair (s2, a).

Theorem 7. We have (s2, a) ∈ executableStep(pre, s1) if and only if
incrementalStep(pre, s1, s2, a).

Define executableTrace and executableConsistent in the same way as in
the incremental model (Definition 5), but then using executableStep instead of
incrementalStep. From the previous theorem and from Theorem 6 it then fol-
lows that the executable model is equivalent to the axiomatic model for finite
executions:

Corollary 1. Let ex be a candidate execution with ex =
(pre,wit , get_rel(pre,wit)). Then executableConsistent(ex ) holds if and
only if ex is finite and consistent according to the axiomatic model.
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7 Integration with the threadwise model

In the previous section we defined an executable transition function, but we
still assumed that we are given a complete pre-execution with concrete values
for all the reads. We now integrate that executable model with an operational
threadwise semantics that builds pre-executions incrementally.

As the front-end language, we use a small functional programming language
with explicit memory operations (Core). This is developed as an intermediate
language in a broader project to give semantics of the C programming language;
as such, any C program can be elaborated to a Core program.

The challenge here is that the operational semantics of Core follows program
order, while the executable concurrency model does not. Our solution is to let the
two models take transitions independently of each other, so the former can follow
program order, while the latter follows the commitment order. A consequence
of this is that the concurrency model does not always immediately commit a
read when the threadwise semantics has generated it, which means that the
threadwise semantics does not know the return value, but at the same time it
has to be able to continue the execution. Our solution is to continue the execution
symbolically.

We describe the interaction between the operational semantics of Core and
the executable concurrency model in Section 7.1. The symbolic execution has
significant drawbacks and one might hope that it is only needed for atomics,
but in Section 7.2 we show that it is also necessary for non-atomics. Then in
Section 7.3 what the implementation of the combined semantics supports and
what remains necessary to produce a more generally usable tool.

7.1 The interaction with the threadwise model

The integrated semantics starts with an empty pre-execution, and then goes on
to alternate between performing one step of the Core dynamics and zero or more
steps of the concurrency model, all within a nondeterminism monad.

The Core dynamics is a step function: from a given Core program state it
returns the set of memory operations (and the resulting Core program state
should that operation be performed) that can be performed at this point by the
program. These operations (object creation, load, store) are communicated to the
concurrency model by adding them to the pre-execution. For load operations, the
resulting Core program state needs a read value. Since the concurrency model
may choose not to provide a value immediately, we introduce, for each load
operation, a symbolic name for the value read, and use it to build the resulting
Core state.

As a result all values in Core programs must be symbolic. This means in
particular that the execution of control operators (Core has a single if-then-else
construct) is done symbolically. When a control point is reached, the thread-
wise semantics non-deterministically explores both branches, under correspond-
ing symbolic constraints for each branch.
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When the concurrency model does give an answer for a read, at some later
point in the execution, the set of constraints is updated by asserting an equality
between the symbolic name created earlier for the read and the actual value.
In the case of execution branches that should not have been taken, the con-
straint therefore becomes unsatisfiable and the execution path is killed. Our C
semantics elaborates the many C integral numeric types into Core operations on
mathematical integers, so all constraints are simply over those.

This symbolic execution can also be used to compute complete pre-
executions, e.g. to test variants of the axiomatic model, by executing a pro-
gram completely symbolically, without any steps of the concurrency semantics.
In this mode symbolic values cannot be resolved in the course of the execution,
obviously.

7.2 Symbolic execution unavoidable for non-atomics

Symbolic execution has significant downsides here: some paths are followed that
later turn out to be inconsistent, and we lose completeness if the constraint
generation and solver cannot handle the full generality of constraints (e.g. for
memory accesses from pointers computed in complex ways).

One might hope to only need symbolic execution for atomics, and that one
could always immediately return a concrete value for non-atomics, but unfor-
tunately the following shows that this is not the case. Consider the execution
of §3.4, and imagine a non-atomic write w1 to a new location (say z1) that is
sb-before action a, and similarly a new write w2 that is sb-before action k; and
imagine a non-atomic read r1 of z1 that is sb-between actions d and e, and
similarly a read r2 that is sb-between actions i and j. Suppose without loss of
generality that when r1 is generated by the threadwise semantics, r2 has not yet
been generated. The latter means that j cannot have been generated (since the
threadwise semantics follows program order), and therefore that g, a, b and c
have not been committed by the concurrency model (because the concurrency
model follows rf and mo). Hence, the hb edge between w1 and r1 does not exist
yet, and therefore we do not know where r1 can read from at this time (see
also Section 3.4) and the threadwise semantics has to use a symbol as its return
value.

7.3 Integration: implementation and outstanding issues

The correctness of the concurrency model is guaranteed by the equivalence the-
orem. Our semantics is also executable, and we have exercised it on some classic
litmus test programs. It can be run in two modes: pseudorandom mode, exploring
a single execution path, with the concurrency model and threadwise semantics
tightly interleaved, and an exhaustive mode that calculates all pre-executions
up-front. In principle one could also do an exhaustive search of the tightly inter-
leaved semantics, but we expect the combinatorics would be prohibitive. Each
test can be written in multiple forms, of increasing complexity: the pseudocode
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one typically sees in papers, as in Fig. 1; hand-written Core, which makes intra-
thread sequencing and variable creation explicit; C extended with explicit par-
allel composition, adding memory actions for thread-local accesses; and actual
C, adding explicit pthread thread creation and join. For example, running a
release-acquire message-passing test exhaustively (MP+na+rel+acq+na, shown
in the first three forms in Fig. 4), the Core version has 1350 executions, while
the C-with-explicit-parallel version has 8451, taking 0.2s and 25s respectively.
The performance advantage of the former arises from the fact that in a hand-
written Core test one can use pure value lets that do not give rise to memory
actions, while in C one cannot. Finding a single execution in random mode takes
negligible time (0.02s and 0.05s), it usually results in a state with a satisfiable
constraint, and it does sometimes result in the relaxed-behaviour outcome. For
these and the other tests we tried (store buffering, load buffering, and cycles in
mo ∪ sb), random mode always returned allowed outcomes and exhaustive mode
returned the set of all allowed outcomes.

Extending this to support random-mode execution of more realistic C pro-
grams requires at least three significant advances. First, the C/C++11 con-
currency model, in both axiomatic and operational forms, must be extended to
support aspects of C neglected by Batty et al. [2], including general array, struct,
and mixed-size accesses, object lifetime, and dynamic errors. Second, the imple-
mentation of constraints must support those that arise from realistic pointer
arithmetic (ideally including bitwise operations). Third, there will need to be
performance optimisation, as at present the state size (and transition compute
time) grows with trace length, but in principle “sufficiently old” information can
be garbage-collected.

8 Related work

There is a long history of equivalence or inclusion results between operational
and axiomatic relaxed memory models, e.g. Higham et al. [11], Owens et al. [17],
Alglave et al. [1], and Cenciarelli et al. [9], but very little that relates to the
C/C++11 model issues that we address here (the first three of those address
hardware models, where concrete operational models provide a usable order; the
last is in the rather different JMM context).

The only closely related work that we are aware of is the work in press by
Lahav et al. [12], that we were made aware of while preparing this submission.
The authors study the fragment of C/C++11 in which all read, write, and read-
modify-write accesses have release/acquire memory orders, without relaxed, con-
sume, SC, or nonatomic accesses, and with just a single kind of fence. They also
identify that the execution presented in §3.2 is not observable in implementa-
tions, and go on to prove that the existing compilation schemes to POWER and
x86-TSO can still be used when forbidding hb ∪mo cycles. For this stronger re-
lease/acquire semantics (where those cycles are forbidden) they give a concrete
operational semantics in terms of ordered message buffers and memory local
to processors, and their results are largely also mechanised (in Coq). However,
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int x=0

atomic_int y=0

x = 1

storerel(y,1)

r1 = loadacq(y)

r2 = x

(a) The release-acquire message-passing test, MP+na+rel+acq+na, in pseudocode

proc main () : eff integer :=

let strong x = create(<alignof>("signed int"), "signed int") in

let strong _ = store("signed int", x, 0) in

let strong y = create(<alignof>("_Atomic(signed int)"), "_Atomic(signed int)") in

let strong _ = store("signed int", y, 0) in

let strong (_, a2) =

par(

let strong _ = store("signed int", x, 1) in

let strong _ = store("_Atomic(signed int)", y, 1, release) in

return (unit)

end end

,

let strong a1 = load("_Atomic(signed int)", y, acquire) in

if a1 = 1 then

let strong ret = load("signed int", x) in

return(ret)

end

else

return (2)

end end) in

let strong _ = kill(x) in

let strong _ = kill(y) in

return(a2)

end end end end end end end

(b) The MP+na+rel+acq+na test in Core, making object lifetime explicit with create and
kill, and sequencing explicit with let strong, but using Core value lets to record the results
of memory loads.

#include <stdatomic.h>

int main(void) {

int x = 0;

_Atomic int y = 0;

int z1, z2;

{{{ { x = 1;

atomic_store_explicit(&y, 1, memory_order_release); }

||| { z1 = atomic_load_explicit(&y, memory_order_acquire);

if (z1 == 1)

z2 = x;

else

z2 = 2; } }}};

return z2;

}

(c) The MP+na+rel+acq+na test in C extended with an explicit
parallel composition ({{{·|||·}}}). This version creates memory ac-
tions for the accesses to z1 and z2, but the explicit parallel avoids
the extra memory actions from pthread-style thread creation.

Fig. 4: The MP+na+rel+acq+na litmus test in three forms
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the release/acquire fragment of C/C++11 is considerably simpler than the full
model we deal with here. For example, in that fragment the sb-rf and sc-mo-rf
cycles that we address do not occur. They also work with a small calculus rather
than integrating their model with a larger C semantics.

The other most closely related work we are aware of is the model-checker of
Norris and Demsky [16]. This is focussed on efficiency, but attempts neither to
be sound nor complete with respect to the C/C++11 model. Our operational
model may inform future work on C/C++11 model-checking.

More peripherally, two lines of work have integrated a TSO memory model
with a semantics for significant fragments of C: the CompCertTSO verified com-
piler of Ševčík et al. [24], and the K semantics of Ellison [10, §4.2.6]. TSO is much
stronger and simpler than C/C++11, and there cannot be cycles in hb ∪ rf ,
so the concurrency impacts much less on the sequential semantics. Moreover,
mainstream C compilers do not implement TSO, so the significance of such a
semantics for concurrent C/C++11 programs is unclear.

Finally, there is work using SAT solvers for axiomatic models, for C/C++11
by Blanchette et al. [7] and for the JMM by Torlak et al. [21]. For litmus tests
these offer performance improvements w.r.t. naive enumeration of candidate exe-
cutions, but finding single paths of larger programs seems likely to be challenging,
as does integration with a more substantial C semantics.

9 Conclusion

We have presented an operational concurrency model that covers the full formal-
isation [2] of C/C++11 concurrency including locks, fences, read-modify-writes,
non-atomics and atomics with all memory orders, including consume. We have
proved the equivalence of our model with that formalisation and mechanised
the proof in Isabelle/HOL. We have also explored preliminary integrated of the
concurrency model with a sequential operational semantics for a Core language
into which a substantial fragment of C can be elaborated.

The challenge in defining the operational model was the fact that many ob-
vious approaches such as following program order or the sequential consistency
order do not work, because C/C++11 allows cycles in various orders. These
cycles are not always observed on current hardware, and in these cases we sug-
gested strengthening the C/C++11 model: we suggested to forbid coherence
shapes that involve sc (Section 3.3), cycles in sw ∪ rf (Section 3.4) and we
suggested changing the definition of release-sequences (Section 3.1).

More generally, we highlight two so-far underappreciated qualities that a
programming language concurrency semantics should have. It should be incre-
mentally executable, and it should be integratable (better yet, integrated) with
the semantics for the rest of the language, not just a memory model in isola-
tion. Leaving such integration for future work may lead to a memory model
that makes it remarkably involved. Since the sequential part of most languages
are defined in an operational style (including C/C++) these requirements can
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be best satisfied by developing an equivalent operational concurrency semantics
early in the process.
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