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1 | Introduction

When compiling a C source file, the compiler typically produces a relocatable file, which can
be combined with other relocatable files to produce an executable. A (static) linker determines
how the sections of these files should be arranged in memory. Based on the arrangement, it
must perform relocations — rewrite the addresses that appear in the program so it functions
correctly when executed. We expect most relocatable files to behave consistently at runtime,
regardless of the positions of their sections in memory. In this project, I introduce the term
semantic relocatability to describe this property, and explore methods to formally verify it.

1.1 Motivation — semantic relocatability

We consider a program file semantically relocatable if its observed behaviour is not affected by
the memory addresses where its sections are placed. We expect most programs to have this
property, although some may knowingly violate it (e.g., when using hash tables indexed by
pointer values). Sometimes, the property is violated unintentionally due to improper pointer
manipulation. Figure 1.1 shows an example found in the GCC test suite [5]. Automatic
verification of this property for arbitrary programs is (obviously) impossible, but programs
rarely perform complicated operations with pointer values, making the verification viable.

The main approach used in this project is symbolic execution. The idea is to represent
unknown values (e.g., inputs of the program, or in our case, the sections’ memory addresses) by
symbols, and instead of performing a computation with concrete values, operate on expressions
involving the symbols [6]. If the program contains branching, symbolic execution explores all
possible execution paths. This lets us analyse how the memory addresses affect the execution.

The implementation is based on the read-dwarf tool developed by researchers at the Uni-
versity of Cambridge, to explore binary validation assisted by debug information. It provides
a framework for symbolically executing ELF files, and uses debug information to extract infor-
mation such as the type signatures of functions. [8]

The debug information annotates the binary with source-level details that are otherwise lost
during compilation, such as the representation of variables and their types. It is stored in a
compact DWARF format. Extracting the information requires non-trivial processing, involving
the evaluation of programs in special DWARF-specific stack machine languages. [4]

When verifying semantic relocatability, the debug information can be used to generate
reasonable constraints (e.g., that pointers may be affected by section addresses, but integers
should not) that allow the verification to be fully automatic, requiring no manual annotations.
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int ns_name_skip (unsigned char **x,

unsigned char *y) {

*x = 0;

return 0;

}

unsigned char a[2];

int dn_skipname(unsigned char *ptr,

unsigned char *eom) {

unsigned char *saveptr = ptr;

if (ns_name_skip(&ptr, eom) == -1)

return (-1);

return (ptr - saveptr);

}

int main(void) {

if (dn_skipname (&a[0], &a[1]) == 0)

abort ();

exit (0);

}

(a) Original (reformatted)

unsigned char a;

int dn_skipname(unsigned char *ptr) {

unsigned char *null = 0;

return (null - ptr);

}

int main(void) {

if (dn_skipname(&a) == 0)

abort ();

exit (0);

}

(b) Equivalent simplified version

Figure 1.1: GCC C torture test 980701-1.c, violating semantic relocatability. The problem is best seen on
the simplified version. The return type of dn skipname is int (assume 32 bits), which causes an overflow for
large values of ptr. When the address of a is any multiple of 232, the function call dn skipname(&a) returns
zero and the test fails.

1.2 Aims

Prior to this project, read-dwarf only supported executable files, and had no concept of reloca-
tions. This project extends it to support relocatable files, allowing the following:

• Symbolic execution of relocatable ELF files with sections’ addresses represented symbol-
ically.

• Evaluation of DWARF debug information from relocatable ELF files. Parts of the debug
information, such as the locations of global variables, depend on the addresses of sections,
which we represent symbolically.

As an extension of the project, I build an automated verification tool for semantic relo-
catability, capable of verifying simple programs. The tool combines symbolic execution with
bisimulation to verify the property in a semiformal way. It relies on exhaustive path exploration
during symbolic execution, limiting it to programs that always terminate. Additionally, the
current implementation does not support composite data types, which could be addressed in
later versions.
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2 | Preparation

2.1 Overview of ELF

Executable and Linkable Format (ELF) is the standard format for executables and object files
on Unix systems. An ELF file contains sections of different kinds.

Some sections consist of data that is loaded into memory for the program’s execution (e.g.,
.text contains the program instructions, .data contains global variables). Others contain
control information needed for linking, or debug information.

Symbols mark addresses within the sections that other parts of the ELF file can refer to,
such as functions and global variables. They are described in a symbol table (in a dedicated
.symtab section).

Programs are typically compiled into relocatable ELF files that do not yet describe how
sections should be arranged in memory. A static linker takes one or more relocatable files,
assigns a memory location to each section, and rewrites references to symbols in a process
called relocation. This results in a single executable ELF file.

2.1.1 Example function

long long x = 1;

void f(long long a) {

x = a;

}

Figure 2.1: Example C file

The file in Figure 2.1 gets compiled into a relocatable file, placing x into .data and the code of
f into .text. The addresses of these sections are only determined when a static linker processes
the file. Relocations ensure that, no matter where the sections end up, executing the function
always results in setting x to a, by rewriting the machine instructions that access x to refer to
the memory location where x is located at runtime.

This example will be used throughout this chapter and the next one.

2.1.2 Relocation

Figure 2.2a shows the disassembly of the function from Figure 2.1, compiled into an AArch64
relocatable file, with the following instructions:

1. adrp loads the page address of x (aligned to 4KB) into the register x8.
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2. str takes the page address from x8 and adds the page offset of x to obtain the full address.
Then it writes the value in register x0 to that address.

It contains relocation entries (red), that describe how to perform relocations. Both the adrp

and str instructions require the address of x, so they have appropriate relocation entries.

0: 90000008 adrp x8, 0

0: R_AARCH64_ADR_PREL_PG_HI21 x

4: f9000100 str x0, [x8]

4: R_AARCH64_LDST64_ABS_LO12_NC x

c: d65f03c0 ret

(a) Relocatable file

4000e8: 90000088 adrp x8, 410000

4000f0: f907f500 str x0, [x8, #4072]

4000f4: d65f03c0 ret

(b) Executable file

Figure 2.2: Comparison between objdump of a relocatable and executable file

Each relocation entry describes the relocation type (R AARCH64 ADR PREL PG HI21,
R AARCH64 LDST64 ABS LO12 NC), defining what kind of action must be performed, a
symbol (x) whose address is used to compute the value to be plugged in, and an optional
addend, also used in computing the value. Relocation types are machine-specific, defined by
the appropriate Application Binary Interface (ABI) specification. Table 2.1 shows a fragment
from the specification for AArch64.

The program after performing the relocations is shown in Figure 2.2b. The immediate
values that were changed by relocation are highlighted in red.

Name Operation Comment

R AARCH64 ADR PREL PG HI21 Page(S+A)
- Page(P)

Set an ADRP immediate value to bits [32:12]
of the X; check that −232 <= X < 232.

R AARCH64 LDST64 ABS LO12 NC S + A Set an LD/ST immediate value to bits [11:3]
of X. No overflow check.

R AARCH64 ABS64 S + A Write bits [63:0] of X at byte-aligned place P.
No overflow check.

S = address of the symbol
A = addend
P = address of the place being relocated
X = result of the relocation operation

Page(expr) = page address of the expression expr, defined as (expr & ∼0xFFF)

Table 2.1: Specification of selected AArch64 relocations [3]

2.1.3 DWARF

Most compilers have the option of including debug information in the compiled binary. It
describes, among other things, which instructions correspond to which lines of the program,
and how variables are placed in memory. This is used by debuggers such as gdb to set break-
points and examine variables during execution.

It is encoded using the DWARF format [4] in ELF sections with the prefix .debug. Figure
2.3 shows parts of the debug information of the program from Figure 2.1, that can be used to
determine the location of variables x and a. The locations are described in a DWARF-specific
stack machine language. Languages such as this one are used throughout DWARF to express
the debug information in a compact way. Interpreting the debug information thus requires
evaluating programs in these languages. A more complicated location description is shown in
Figure 2.4.
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<0><b>: DW_TAG_compile_unit

...

<12> DW_AT_name : example.c

...

<1e> DW_AT_low_pc : 0x4000e8

<26> DW_AT_high_pc : 0xc

<1><2a>: DW_TAG_variable

<2b> DW_AT_name : x

...

<35> DW_AT_location : DW_OP_addr 410fe8

...

<1><46>: DW_TAG_subprogram

<47> DW_AT_low_pc : 0x4000e8

<4f> DW_AT_high_pc : 0xc

...

<55> DW_AT_name : f

<2><5b>: DW_TAG_formal_parameter

<5c> DW_AT_location : DW_OP_reg0

<5e> DW_AT_name : a

...

Figure 2.3: DWARF debug information (some attributes omitted). Memory addresses are shown in red. In
a relocatable file, these must have associated relocation entries. The locations of variables are described using
operations: DW OP addr - value at some address in memory, DW OP reg0 - value in register 0.

DW_AT_location : DW_OP_breg20 0x0; DW_OP_constu 0x1; DW_OP_and; DW_OP_stack_value

Figure 2.4: More complicated location description (from pKVM [2]). The value of the variable is obtained by
taking the value in register 20 and performing a bitwise and with a literal 0x1.

As seen in Figure 2.3, some parts of DWARF reference memory locations. In a relocatable
file, they must have the corresponding relocation entries (Figure 2.5).

Offset Type Sym. Name + Addend

00000000001e R_AARCH64_ABS64 .text + 0 // start of the compilation unit

000000000037 R_AARCH64_ABS64 x + 0 // location of the variable x

000000000047 R_AARCH64_ABS64 .text + 0 // start of the function f

Figure 2.5: Relocations in DWARF

Besides its usual use case, debug information can be useful for validating binaries with
respect to their source implementation. The debug information describes how the binary rep-
resents elements from the source program, which would otherwise be difficult to infer.

2.2 Symbolic execution

Symbolic execution is a method for abstractly executing a program to determine its behaviour
for different inputs. The key idea is to represent all unknown values, such as the inputs, using
symbols that stand for arbitrary values. A symbolic executor executes the program as normal,
but instead of concrete values, it operates on symbolic expressions over the input symbols. [6]
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When a branch is encountered that depends on an unknown symbolic value, the executor
proceeds to explore both paths. The executor keeps a set of path conditions that lead to
choosing each particular path.

The result of the symbolic execution can be viewed as a state tree, capturing all possi-
ble executions of the program. Each node describes a symbolic state, together with its path
conditions.

SMT solvers can be used to simplify the state tree. They can simplify symbolic expres-
sions and remove impossible paths by checking the satisfiability of path conditions. This is
usually done during execution to improve performance. SMT solvers can be further used to
ask questions about the possible outcomes of each execution path.

2.3 Simulation

Simulation is a formal method for establishing a correspondence between two systems, often
modelled as state transition systems. Simulation shows that one system can mimic the be-
haviour of another. A bisimulation is a stronger symmetric version, showing that the systems
can simulate each other. Formally:

Definition 2.3.1 Given two labelled state transition systems, with sets of states S and S ′

respectively, a relation R ∈ S × S ′ is a simulation if for every pair of states (p, q) ∈ R:

• for every transition p
λ−→ p′, there is a transition q

λ−→ q′, such that (p′, q′) ∈ R.

It is a bisimulation if for every pair of states (p, q) ∈ R:

• for every transition p
λ−→ p′, there is a transition q

λ−→ q′, such that (p′, q′) ∈ R, and

• for every transition q
λ−→ q′, there is a transition p

λ−→ p′, such that (p′, q′) ∈ R.

A bisimulation can be combined with symbolic execution to prove the equivalence between two
programs. For simple programs, when the complete (finite) execution tree can be constructed,
we can use the following procedure:

1. Run symbolic execution on both programs, obtaining two state trees. Each program can
be seen as a state transition system consisting of the initial state and the leaf states of
the state tree. It begins in the initial state and can transition to any leaf state as long as
the path conditions are satisfied.

2. Construct a relation between the leaf states.

3. Verify the bisimulation by checking that the path conditions of states bound by the
relation are equivalent.

4. Check that the outputs and side effects of states bound by the relation are equal.

We will use this approach to verify the equivalence between two instances of the same
program, with varying memory layouts. It cannot be used for programs with unbounded loops,
since their execution tree is infinite. It is also not suitable for more complex programs whose
execution tree is too large to be efficiently constructed. There are methods which do not require
constructing the whole execution tree, but they were not used in this project (discussed in §5.2).
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2.4 Starting point

This project builds on multiple tools. The most important are:

• linksem — for reading ELF files, including the DWARF debug information,

• read-dwarf — for symbolic execution of binaries and further processing of DWARF on
top of linksem,

• Isla — a dependency of read-dwarf allowing symbolic execution of machine instructions.

The majority of my work is deeply integrated into linksem and read-dwarf. I was not familiar
with the tools before this project, so I had to learn about them before and during implemen-
tation.

2.4.1 Linksem

Linksem is an executable specification of ELF, including the DWARF debug information [7].
It is used by read-dwarf as a tool for parsing ELF files and interpreting DWARF. It is written
in a custom specification language Lem, which allows it to be compiled into OCaml as well as
different theorem prover backends. For this project, only the OCaml backend is relevant.

There are functions to parse the high-level structure of the ELF files, as well as the contents
of standard sections, such as symbol table and relocation sections.

The DWARF module defines a representation of DWARF and functions to parse it from
the appropriate ELF sections. It further provides functionality for evaluating the DWARF
expressions and a number of analysis functions. These are used to obtain the full expanded
debug information.

2.4.2 Read Dwarf

Read-dwarf is an experimental tool intended for validating ELF files compiled from C with the
help of DWARF [8]. It contains scripts for pretty-printing the debug information parsed by
linksem and for symbolically executing ELF binaries. This section will focus on the symbolic
execution, since it will be relevant in the implementation section.

Symbolic execution

Read-dwarf can symbolically execute functions in an ELF file. It starts by constructing an
initial state according to the function’s ABI. Then, a single execution step proceeds as follows:

1. Read the PC register from the state.

2. Look up the instruction at the PC address and obtain its instruction traces. A trace
describes the effects of an instruction on the state.

3. For each trace, apply it to the state, obtaining a new state.

The result of an execution step is one or more new states. Most instructions produce only
one new state, but branching instructions produce multiple. The execution then continues
recursively from each of the new states. The result of the execution is an execution tree of
states.
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Obtaining a trace

Read-dwarf uses Isla [1] to obtain traces for instructions. Isla is a symbolic execution tool
that uses formal instruction set architecture (ISA) specifications to determine the effects of
machine instructions. The possible effects are described using a set of traces, each consisting
of a sequence of commands. Isla provides a script Isla-client, which allows other processes to
communicate with it.

The opcode of the current instruction is sent to Isla-client, which sends back a trace in
a text format (Isla trace). The trace is parsed and simplified. It is further processed into
a simplified format, more convenient for the symbolic executor (instruction trace). This
pipeline is illustrated in Figure 2.6.

instruction Isla-client Isla trace
Isla trace
(simplified) instruction trace

simplify translate

Figure 2.6: Instruction trace pipeline

Three types of traces and expressions

Read-dwarf’s symbolic execution involves three different kinds of traces and symbolic expres-
sions. Two of them are shown in Figure 2.6 and the third - memory trace - is used in the
state representation of memory. I will explain the purpose of each and outline the differences
between them.

Each trace is a sequence of commands that symbolically describe a series of read/write
operations. They use symbolic expressions (using SMT constraints) to express the values used
by each operation. The form of symbolic expressions also differs between the three.

(trace

(declare-const v1 (_ BitVec 64))

(declare-const v2 (_ BitVec 64))

(read-reg |R8| v1)

(read-reg |R0| v2)

(define-const v3 ((_ extract 51 0 ) ( bvadd v1 #x0000000000000fe8)))

(define-const v4 ((_ zero_extend 12) v3))

(write-mem v4 v1 4)

)

(a) Isla trace (simplified)

WriteMem8(Register(R8)[0 : 51]+0xfe8:52, Register(R0))

(b) Instruction trace

Figure 2.7: Traces for instruction str x0, [x8, #4072]

Write8(0x410fe8,Arg(0))

Figure 2.8: Memory trace after executing the function from Figure 2.2b

Notation To concisely express the symbolic expressions, the following notation is used (also
used in read-dwarf’s outputs).
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e[lo : hi] = extract bits lo to hi inclusive from e
e1.e2 = concatenate the bits of e1 and e2
hex:n = the hex value interpreted as a bit-vector of n bits

Isla traces and expressions These are the traces returned by Isla and the symbolic ex-
pressions within them. An Isla trace describes the effects of a single instruction. Figure 2.7a
shows a simplified trace of the str instruction from Figure 2.2b. The trace consists of SMT
commands:

• declare-const <var> <typ> — declare a new variable var of type typ,

• define-const <var> <exp> — define a new variable var equal to exp,

• assert <exp> — assert exp is true,

and effects (some arguments omitted for brevity):

• read-reg <reg> <value> — read register reg and declare the result is equal to value,

• read-mem <value> <addr> <b> — read b bytes from address addr and declare the result
is equal to value,

• write-reg <reg> <value> — write value to register reg,

• write-mem <addr> <value> <b> — write value to address addr (b bytes).

Instruction traces and expressions Isla traces are translated into a simpler representation
that is easier to work with in the later stages of the pipeline. Again, each trace describes the
effects of a single instruction. Figure 2.7b shows the instruction trace obtained by translating
the Isla trace in Figure 2.7a. It has only four kinds of commands (also referred to as events):

r ∈ Register names

idr, idnd ∈ N Unique identifiers of a read

and non-determinism variables

sz ∈ N Data size in bytes

e ∈ Symbolic expressions over var

event ::= WriteReg(r, e) Write e to register r

| ReadMemsz(ea, idr) Read a block of size sz from address ea, the result

is represented by the read variable idr

| WriteMemsz(ea, ev) Write ev to a block of size sz at address ea

| Assert(e) Assert e is true

and there are three different kinds of variables used inside the symbolic expressions:

var ::= Register(r) The value of the register r at the beginning of the trace

| Readsz(idr) The result of a memory reading operation, of size sz

| NonDetsz(idnd) Variable representing non-determinism in the ISA spec, of size sz

Notice that there is no register read command, instead a variable Register(r) is used to denote
the value of register r before executing the instruction.
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Memory traces and state expression The variables in the instruction expressions are
local to the execution of a single instruction. On the other hand, state expressions contain
variables bound to the full symbolic execution context.

To apply an instruction trace to a state, the instruction variables must be substituted
by the appropriate state expressions. For example, a variable Register(r) would be substi-
tuted by the symbolic expression stored in the register r in the current state. Some of the
variable types used in state expressions are shown below:

ids ∈ N Unique identifier of a state

idr ∈ N Unique identifier of a read variable in a particular state

var ::= ReadVarsz(ids, idr) The result of a read in the state id

| Arg(n) The n-th function argument

| RetAddr The return address

| . . .

The memory in a given state is described using memory traces like the one shown in Figure
2.8. These consist of only two kinds of events:

e ∈ Symbolic expressions over var

event ::= Readsz(ea, var) From ea, read var of size sz

| Writesz(ea, e) To ea, write e of size sz

State representation

The symbolic execution progresses from some initial state, constructing a state tree. Each
symbolic state is represented using:

• Register map — state expressions describing the value in each register,

• Memory — represented using memory traces,

• Asserts — the path conditions for the state (i.e., the set of constraints that need to be
satisfied for a program to reach this state).

An instruction trace is executed on a state to obtain a new state. The trace events are
performed in sequence, modifying the state:

WriteReg updates the value in the register map.

Assert inserts a new path condition into the state’s asserts.

WriteMem appends a Write entry to the memory trace.

ReadMem appends a Read entry to the memory trace, and creates a new ReadVar variable
to represent the result. Sometimes, we can avoid using a ReadVar if the result can be
determined from previous writes. This is achieved through memory caching.
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Memory caching

address value
Write8 ( 0x410fe8, 0x0 )
Write8 ( 0x410ff0, 0x1 )
Read8 ( 0x410fe8, ReadVar8(1, 0) )
Write8 ( Register(SP, 0) + 0x8, 0x2 )
Read8 ( 0x410fe8, ReadVar8(1, 1) )

Figure 2.9: Memory trace

Read-dwarf caches writes to substitute previously written values for read variables. After each
write, all cache entries whose addresses could overlap with the new write are removed and a
new entry is added. Consider the memory trace in Figure 2.9. The cache after the first two
writes has the following entries:

0x410fe8 7→ 0x0 (8 bytes)

0x410ff0 7→ 0x1 (8 bytes)

For the next read (from 0x410fe8), the cache is used to determine that ReadVar8(1, 0) = 0x0.
After the next write (to Register(SP, 0) + 0x8), we need to remove both cache entries, because
without any further context, we cannot determine if any of the following equalities hold:

0x410fe8
?
= Register(SP, 0) + 0x8

0x410ff0
?
= Register(SP, 0) + 0x8

For the next read (from 0x410fe8), we are not able to substitute a value for ReadVar8(1, 1)
because the cache is empty.

The memory can also be split into multiple mutually exclusive fragments. Read-dwarf keeps
track of what fragment each pointer points into - its provenance. It is assumed that pointers
with different provenance do not alias (point to the same address). By default, read-dwarf uses
one fragment for the current stack frame and one for the rest of the memory. Every pointer
derived from the stack pointer has Stack provenance, everything else Main provenance. The
memory trace and cache, split between the two fragments, is shown in Table 2.2.

Main fragment Stack fragment

Trace

Write8(0x410fe8, 0x0)
Write8(0x410ff0, 0x1)
Read8(0x410fe8, ReadVar8(1, 0))
Read8(0x410fe8, ReadVar8(1, 1))

Write8(Register(SP, 0) + 0x8, 0x2)

Cache
0x410fe8 7→ 0x0
0x410ff0 7→ 0x1

Register(SP, 0) + 0x8 7→ 0x2

Table 2.2: Memory trace split between fragments

2.5 Requirement Analysis

In my project proposal, I outlined two main goals and an extension:

• Enable symbolic execution of relocatable files, using symbols to represent the unknown
addresses of sections.
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• Enable (symbolically) evaluating the debug information in relocatable files.

• (extension) Create an automatic verification tool for semantic relocatability of ELF files.

All of these only concern ELF files compiled from C for AArch64. For the core part, I shall
demonstrate that it can handle C programs compiled with no optimizations, containing any of
the primitives in Table 2.3.

Primitive Notes
Control flow primitives conditionals, loops, function calls
Global variables reading, writing

Pointers
including when affected by relocations
(e.g. pointing to global variables)

Arrays
Structs

Table 2.3: C primitives to be supported

2.5.1 Work plan

I split the work to be done into the following work-items.

Interpreting relocation entries Create a representation that describes the effects of relo-
cations, and convert relocation entries into this representation, according to the specification.
This representation will be used by the later parts of the project.

Relocation-aware DWARF Modify linksem to process DWARF in relocatable files. While
parsing the DWARF sections, process the relocation entries to insert symbolic values that
represent the result of each relocation. Modify the functions that further process the DWARF
to operate on symbolic instead of concrete values.

Symbolic execution Modify read-dwarf to allow symbolically executing relocatable files. In-
troduce new symbolic variables to represent the addresses of sections, and modify the execution
pipeline to use them when executing instructions affected by relocations.

Use the interpreted debug information to visualize the result of the symbolic execution,
displaying the values of variables.

Semantic relocatability (extension) Verify semantic relocatability of functions in an ELF
file by constructing a bisimulation between two runs of the same function, but with possibly
different addresses of sections. This will be done incrementally, first targetting simple functions
and progressing to more complex ones.

2.5.2 Languages Used

Since most of the code was written inside existing codebases, I had to use the programming
languages used by them. Most of the implementation was done inside read-dwarf, written in
OCaml. I was familiar with OCaml from the Tripos, but had not had any further experience
with it.

Modifications to linksem had to be written in a custom language Lem. Learning the syntax
was simple, since it is almost identical to OCaml. One difficulty of developing in Lem was the
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lack of editor support. I was unable to use autocomplete or any static analysis and refactoring
features that exist for mainstream languages in most editors.

Some modifications were also done to Isla, written in Rust. I had previous experience
developing in Rust, so this was without issues.

2.5.3 Development methodology

I used the agile development model. The project was initially divided into four main parts (de-
scribed in §2.5.1), and further broken down into smaller subtasks. Each completed component
was tested to inform the next steps. Converging on the final design required experimentation
and iteration. I used git for version control, which allowed me to easily revert to previous
versions of the code when needed. All code was backed up on GitHub.
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3 | Implementation

This chapter is split into six sections:

• §3.1 describes a representation of relocations that is used in the rest of the project, and
how it is constructed.

• §3.2 describes the modifications to linksem that allow reading the debug information from
relocatable files.

• §3.3 describes the changes in read-dwarf’s symbolic execution pipeline that allow execut-
ing relocatable files.

• §3.4 follows from the previous sections, describing how a complete relocatable program is
executed. A script is implemented that symbolically executes a program and prints the
execution path with evaluated debug information.

• §3.5 refines the concept of semantic relocatability and describes a tool implemented to
verify it.

• §3.6 gives a repository overview.

3.1 Relocations

This section is about representing the relocation entries in a way that directly expresses the
effect of the relocation. This representation will be used in multiple parts of the project, for
processing relocations in DWARF and during symbolic execution.

3.1.1 Relocation types

As mentioned in §2.1.2, there are different processor-specific relocation types that describe
what action must be performed. These actions are described in the ABI specification for each
processor architecture. As we saw in Table 2.1, the actions typically consist of the following
steps:

1. Evaluate a relocation operation.

2. Perform safety checks, such as an overflow check.

3. Extract a range of bits from the result.

4. Write the result into the target field at the relocation position. This is usually an imme-
diate field of some instruction or a certain number of consecutive bytes in memory.

I chose a representation that expresses these four steps. The translation of Table 2.1 into this
representation is shown in Table 3.1. It is a record type consisting of four fields:
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• Operation — the AST of the relocation operation. It is formed by simple arithmetic
operators (Plus, Minus) and special operators from the ABI documentation (Page(x)).
The set of operators (as a type) has already been defined in linksem.

• Safety Checks — I only needed to consider two kinds of safety checks:

– Overflow(min, max) — check that the value is between min (inclusive) and max
(exclusive) value,

– Alignment(n) — check that the bottom n bits are zero (important for aligned read
and write operations).

This field contains a list of these checks.

• Mask — a pair (hi, lo) identifying the range of bits to be extracted.

• Target Field — I made this field generic, because every architecture has a different set of
relocation targets. For each supported architecture (currently only AArch64), I created
a sum type consisting of the possible fields.

Name Representation
Operation Safety Checks Mask Target

R AARCH64 ADR PREL PG HI21 Page(S+A)
- Page(P)

Overflow(−232, 232) (32,12) ADRP

R AARCH64 LDST64 ABS LO12 NC S + A Alignment(3) (11,3) LDST 3

R AARCH64 ABS64 S+A — (63, 0) Data64

Table 3.1: Representation of selected AArch64 relocations

The complete list of supported relocation types is shown in Appendix A.

3.1.2 Problems with module dependencies

The way the linksem repository is organized prevents using the above representation in some
places. The repository consists of two main modules, for ELF and the ABI. The ELF module
contains the core specification of ELF files, including DWARF. The ABI module contains all
machine-specific logic which includes relocations. Code in the ABI module can depend on the
ELF module, but not the other way around.

The issue is that some relocations occur inside DWARF, and in order to interpret DWARF,
it is necessary to interpret the relocations. To accommodate this dependency, I implemented
a universal representation of relocations that removes all the ABI-specific dependencies and
resides in the ELF module.

3.1.3 Universal representation

The universal representation consists of the same fields as the normal ABI-aware representation,
except for the operation. Instead, the operation is evaluated into a symbolic expression,
consisting of elementary arithmetic and bit operations, with symbols representing the load
address of each ELF section. I implemented the evaluation function inside the ABI module.
An example is shown in Table 3.2.
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Operation Resulting symbolic expression
S Section(.data)+0
A 0
P Section(.text)+4

S+A Section(.data)+0+0
Page(S+A) - Page(P) ((Section(.data)+0+0) & ∼0xFFF) - ((Section(.text)+4) & ∼0xFFF)

Table 3.2: Translation of relocation operations

To handle the ABI-specific target fields, I created a new type to represent common target
fields, which are needed by DWARF. These are (my naming):

• Data32 — 4 consecutive bytes starting at the specified location,

• Data64 — 8 consecutive bytes starting at the specified location.

Each architecture’s implementation defines a partial mapping from its full set of target fields
to one of these two data fields.

3.1.4 Obtaining relocations for a section

First, the section that contains the relocation entries is found, and its content is parsed (using a
preexisting function) into a list of relocation entries. Next, each relocation entry is interpreted
according to the ABI specification into its universal representation.

This process is implemented as a function taking three arguments. A preprocessed ELF
file, a relocation interpreter, and a name of the section. The relocation interpreter is a function
from a relocation entry to a universal representation (also requiring context like the symbol
table and section ID). Relocation interpreters are architecture-specific, thus they are defined in
the ABI module.

3.2 Relocation Aware DWARF

As we saw in §2.1.3, DWARF contains memory address references that are inserted by relo-
cations. In relocatable files, the concrete memory addresses are not yet defined, but we can
describe them using symbolic expressions (see Figure 3.1).

<0><b>: DW_TAG_compile_unit

<12> DW_AT_name : example.c

<1e> DW_AT_low_pc : .text+0x0

<26> DW_AT_high_pc : 0xc

<1><2a>: DW_TAG_variable

<2b> DW_AT_name : x

<35> DW_AT_location : DW_OP_addr .data+0x0

<1><46>: DW_TAG_subprogram

<47> DW_AT_low_pc : .text+0x0

<4f> DW_AT_high_pc : 0xc

<55> DW_AT_name : f

<2><5b>: DW_TAG_formal_parameter

<5c> DW_AT_location : DW_OP_reg0

<5e> DW_AT_name : a

Figure 3.1: DWARF debug information with symbolic values (some attributes omitted)
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I modified the functions for parsing DWARF in linksem to obtain this kind of representation.
Linksem also provides analysis functions to extract specific information from DWARF, such as
the list of all variables and their locations. I modified these functions to operate on symbolic
values. Table 3.3 shows the result of the variable location analysis.

variable type low pc address high pc address location
x int .text+0x0 .text+0xc DW OP addr .bss+0x0
a int .text+0x0 .text+0xc DW OP reg0

Table 3.3: Variable locations

Linksem parses DWARF by extracting the bodies of relevant .debug sections, which are
then interpreted by a series of parsing functions.

For relocatable files, the section bodies are extracted together with relocation entries to
construct a symbolic byte sequence. Reading from a symbolic byte sequence yields either
a concrete value or a symbolic value if that place is targeted by a relocation. The symbolic
values are represented by newly introduced symbolic types.

3.2.1 Symbolic types

Linksem represents numeric values using natural and integer types. I implemented their
symbolic versions sym natural and sym integer. Notice that all symbolic expressions in Figure
3.1 and Table 3.3 have the form “section plus a constant”. This is expected because they refer to
a specific location in some section. To keep the implementation simple, I chose a representation
that restricts the expressions to this form. If a case was found where a more complex symbolic
expression is needed, the representation could be changed. I have not found such a case during
testing.

Both types use the same underlying representation illustrated in Figure 3.2. Some operations
with them are shown in Figure 3.3. Each operation raises an exception if the result cannot be
simplified to one of the two options, indicated by ⊥. The exceptions contain descriptive error
messages to help with debugging and discovering new cases that need to be covered.

n ∈ Z
s ∈ Section names

value ::= Absolute(n) Representing value n

| Offset(s, n) Representing value vs + n

where vs is a symbol representing

the load address of section s

Figure 3.2: Representation of DWARF symbolic values
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Abs(n1) + Abs(n2) = Abs(n1 + n2)

Off(s1, n1) + Abs(n2) = Off(s1, n1 + n2)

Abs(n1) + Off(s2, n2) = Off(s1, n1 + n2)

Off(s1, n1) + Off(s2, n2) = ⊥

(a) Addition

Abs(n1)−Abs(n2) = Abs(n1 − n2)

Off(s1, n1) + Abs(n2) = Off(s1, n1 − n2)

Abs(n1)−Off(s2, n2) = ⊥

Off(s1, n1)−Off(s2, n2) =

{
Abs(n1 − n2) if s1 = s2

⊥ if s1 ̸= s2

(b) Subtraction

Figure 3.3: DWARF symbolic operations (writing Abs and Off instead of Absolute and Offset for compactness)

3.2.2 Symbolic byte sequence

To keep the implementation simple, we only allow reading:

(a) any number of bytes unaffected by relocations, or

(b) the exact number of bytes affected by some relocation.

With this restriction, a symbolic byte sequence can be represented as concrete byte sequences
interleaved with symbolic segments represented using sym natural (Figure 3.4).

offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sym natural sym natural

Figure 3.4: Symbolic byte sequence

To avoid having to deconstruct the byte sequence containing the body of a section and
interleave it with the symbolic parts, I kept the original byte sequence as is and added a mask
representing the symbolic bits (Figure 3.5).

offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mask sym natural sym natural

Figure 3.5: Symbolic byte sequence using a mask

The mask is represented as a list of mask entries of two variants:

• NoSym(n) — signals that the next n bytes are not symbolic and should be taken from
the underlying raw byte sequence.

• SymVal(n, v) — signals that the next n bytes should be treated as containing the symbolic
value v.

This representation was chosen because it makes reading and removing bytes from the
beginning (an extremely common operation) efficient.

Originally, linksem uses functions that read a varying number of bytes from a byte sequence
(1, 2, 4, . . . ), returning them as a tuple. Corresponding functions were implemented for the
symbolic byte sequence, with the following return type:
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type read_result 'a =

| Bytes of 'a

| Sym of sym_natural

Here, ’a ranges over byte tuples of different lengths. The two cases are handled by the caller —
a low-level parsing function. Some functions (e.g., when parsing a string) only expect Bytes,
while others (when parsing a number) handle both options.

3.2.3 Constructing a symbolic byte sequence

To construct a symbolic byte sequence for a section, the raw bytes of the section are extracted
from the ELF file and the mask is constructed using relocation entries. The symbolic expres-
sion from the universal representation of a relocation is converted to the simplified form of
sym natural and the relocation target (only Data32 and Data64 should appear here) is used to
determine the width of the respective mask entry. The safety checks and mask have no effect
in the simple relocations appearing in DWARF.

Then, the usual DWARF-reading code is used, modified to use the symbolic types and
symbolic operations. The functions for evaluating DWARF expressions and analysis functions
are modified in the same way.

3.3 Read-dwarf Symbolic Execution

This section describes the changes I made in read-dwarf to allow symbolically executing relo-
catable files. The first step was modifying the types used to represent parts of the ELF file
and the functions used to construct them from the output of linksem. Next, I modified the
symbolic execution pipeline.

I started with the process of retrieving instruction traces. Changes were needed on the
downwards path — propagating the relocation information to Isla, as well as the upwards path
— processing the traces. I followed the pipeline, making changes as needed.

Lastly, changes had to be made in the state representation, and the process of executing
traces. This included methods for simplifying symbolic expressions.

Since each part is strongly tied to the pre-existing implementation of read-dwarf, I include
Context paragraphs to give the necessary background.

3.3.1 Retrieving ELF symbols

Context Read-dwarf uses linksem to extract data from the ELF file. It extracts a set of
symbols, each with its address and the data from that address (for global variables, this is
their initial value, for functions, it is their code). Read-dwarf constructs a symbol table,
allowing look-up of symbols by name and by address.

The addresses were changed from absolute (represented by an integer) to section-relative,
represented by a record type { section : string; offset : int }. The symbol table by
address also had to be modified into a collection of tables per section.

The symbol data, originally a byte sequence (ByteSeq.t), was changed to a record type
{ data : BytesSeq.t; relocations : Relocations.t }. The Relocations.t is a map
from offsets to relocations in the universal format, consisting of the symbolic relocation value,
safety checks, mask and the target field.
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The relocations are extracted for each section using the function I implemented in linksem,
and we filter those that apply to each symbol. After the symbols are loaded, read-dwarf looks
up the requested function in the symbol table, and starts executing it.

3.3.2 Execution pipeline

The rest of the section explains how the execution pipeline was modified, to enable executing
relocatable functions. I will demonstrate this using the example in Figure 3.6, mostly focusing
on the execution of the str (memory write) instruction (marked in the figure).

0: 90000008 adrp x8, 0

0: R_AARCH64_ADR_PREL_PG_HI21 x

> 4: f9000100 str x0, [x8]

4: R_AARCH64_LDST64_ABS_LO12_NC x

c: d65f03c0 ret

Figure 3.6: Objdump of a relocatable file (repeated from Figure 2.2a), with the relevant instruction marked

After executing this function, we should see a memory trace with

Write8(Section(.data),Arg(0))

Subsections 3.3.3, 3.3.4, 3.3.5 cover the process of obtaining an instruction trace, and Sub-
sections 3.3.6, 3.3.7 cover applying the trace to the state.

3.3.3 Obtaining the Isla trace

Context Read-dwarf obtains the Isla trace by sending a request (e.g. execute #xf907f500)
to Isla-client. The response is parsed using Isla-lang (a parsing library for Isla output), and
the trace is simplified by removing unnecessary parts.

Isla has a feature that enables symbolic opcodes with missing bits represented by segment
variables. For example, #b1111100100000 x0:9 #b0100000000 has 9 missing bits represented
by x0. I used this feature to process instructions affected by relocations. A variable is used to
represent the bits overwritten by the relocation.

Forming a request

The relocation target determines which bits does the relocation write to. This is used to form
the symbolic opcode as shown in Table 3.4. Table 3.5 shows a concrete example for the str

instruction. The request is sent to Isla-client.

Relocation target Symbolic opcode Segments

ADRP opc[31:31]␣x0:2␣opc[24:28]␣x1:19␣opc[0:4]
x0 = bits [0:1]
x1 = bits [2:20]

LDST n opc[(22-n):31]␣x0:(12-n)␣opc[0:9] x0 = bits [0:11− n]

Table 3.4: Forming the symbolic opcode for selected relocation targets. Ranges of bits from the raw opcode
are denoted as opc[lo:hi]. The last column shows which symbolic segments correspond to which bits of the
relocation value.
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Raw opcode Relocation
target

Symbolic opcode

#b11111001000000000000000100000000 LDST 3 #b1111100100000 x0:9 #b0100000000

Table 3.5: Example of forming a symbolic opcode

Isla-client

While Isla internally supports symbolic opcodes, this feature was missing in Isla-client and had
to be added. Only minor changes were needed — first, to parse the symbolic opcode from the
request; and second, to emit an additional segments message that maps segment variables to
Isla variables used in the trace. Figure 3.7 shows the communication between read-dwarf and
Isla-clent when executing the str instruction.

[read-dwarf]: execute #b1111100100000 x0:9 #b0100000000

[isla]: Segments

(segments

(|x0| 9 v0))

[isla]: StartTraces

[isla]: Trace (normal)

(trace

(declare-const v0 (_ BitVec 9))

(declare-const v1 (_ BitVec 64))

(declare-const v2 (_ BitVec 64))

(read-reg |R8| v1)

(read-reg |R0| v2)

(define-const v3

((_ extract 51 0 )

(bvadd

v1

(concat x0000000000 (concat v0 #b000))

)

)

)

(define-const v4 ((_ zero_extend 12) v3))

(write-mem v4 v1 4)

)

[isla]: EndTraces

Figure 3.7: Isla request and response with symbolic instruction opcode. The segments entry describes that
the segment variable x0 is mapped to the variable v0

Parsing and simplification

The response is parsed as before, except now with the additional ”segments” entry. For that,
an appropriate parser from Isla-lang is used.

Some difficulties were caused by the trace simplification. After the trace is pruned of
unnecessary commands, variables are renamed to be sequential (v0, v1, . . . ). This causes a
problem when a renamed variable was mapped to a segment. This had a simple fix: disallow
renaming variables that are mapped to segments (these are always the first k variables, so
everything stays neat). The difficult part was diagnosing the problem, without an extensive
knowledge of the codebase.
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3.3.4 Trace processing

Context At this stage, Isla trace is converted to an instruction trace. An important
aspect of this conversion is substituting Isla variables by the appropriate instruction vari-
ables.

As the trace is being processed, a mapping from Isla variables to the new variables is kept
and used to substitute variables in all expressions.

A new instruction variable kind was added:

var ::= . . .

| Segment(s, n) A n bit wide symbolic segment in the opcode, named s

to represent each symbolic segment in the instruction’s opcode.
This is then substituted for Isla variables according to the ”segments” entry in the Isla

response.
Figure 3.8 shows the instruction trace (consisting of just one event) we obtain from the

Isla trace in Figure 3.7. The variable v0 was substituted by Segment(x0, 9). Notice that the
Segment(x0, 9) variable appears in the address expression, indicating it is affected by relocation.

WriteMem8(Register(R8)[0 : 51] + 0x0:40.Segment(x0, 9).0x0:3, Register(R0))

Figure 3.8: Instruction trace with segments

3.3.5 Caching

Context Obtaining a trace for an instruction is computationally expensive, therefore the
traces (both Isla traces and instruction traces) are cached to speed up successive runs.

The cache was originally indexed by the instruction opcode. For instructions affected by
relocations, we use the raw opcode and the relocation target as a key.

The caching is also one reason why the Segment variables are used in instruction trace
instead of substituting them by the appropriate (symbolic) bits of the relocation values. Other-
wise, the relocation value would need to be included in the caching key. This way, instructions
differing only by their relocation value can benefit from a single cache entry.

3.3.6 Trace execution

Context An instruction trace is executed by performing the events it consists of and up-
dating the state. During the execution, the instruction expressions must be expanded into
state expressions. This is done by substituting instruction variables by the appropriate
state expressions. The same has to be done for the new Segment variables.

At this stage, the Segment variables are substituted by the appropriate bits of the relocation
values. The value to be substituted is constructed from the universal representation of the
relocation and the segment mapping shown in Table 3.4.

Consider our str example with the relocation R AARCH64 LDST64 ABS LO12 NC x. The uni-
versal representation of this relocation is shown in Table 3.6.
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Value Safety Checks Mask Target
Section(.data)+0+0 Alignment(3) (11,3) LDST 3

Table 3.6: Universal representation of R AARCH64 LDST64 ABS LO12 NC x, when x is located at .data+0.

First, we take the relocation value and apply a mask, resulting in

(Section(.data) + 0 + 0)[3 : 11]

Then, referring to the last column of Table 3.4, we obtain an expression for each symbolic
segment (in this case the operation is trivial)

x0 = (Section(.data) + 0 + 0)[3 : 11][0 : 8]

or in a simplified form
x0 = Section(.data)[3 : 11]

This is the expression that will be substituted for variable Segment(x0, 9).
We also construct expressions representing the safety checks. We will call them relocation

assertions, and they will be used to simplify expressions (see §3.3.8). In this case, Alignment(3)
translates to

Section(.data)[0 : 2] = 0x0:3

To accommodate these expressions I added a new kind of state variable:

var ::= . . .

| Section(s) The address of section s

Table 3.7 demonstrates the substitution in the address expression in the trace from Figure 3.8.
We arrive at an expression corresponding to the address of x.

Registers R8 7→ Section(.data)[12 : 63].0x0:12

Segments x0 7→ Section(.data)[3 : 11]

Original instruction expression Register(R8)[0 : 51] + 0x0:40.Segment(x0, 9).0x0:3

Expanded state expression
(Section(.data)[12 : 63].0x0:12)[0 : 51]

+0x0:40.(Section(.data)[3 : 11]).0x0:3

Simplified state expression (Section(.data))[0 : 51]

Table 3.7: Example of expanding an instruction expression

3.3.7 Memory operations

Context Memory is represented as a trace of read and write operations, with read variables
representing the results of each read. In addition, a cache is used to keep track of previously
written values, so we can substitute them for read variables if we can guarantee that they
were not overwritten. The memory can be split into multiple mutually exclusive fragments,
to prevent aliasing problems.
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Symbolic execution can produce a memory trace accessing multiple sections, as shown in Fig-
ure 3.9. The naive caching mechanism is unable to determine that the addresses Section(.data)
and Section(.bss) are distinct and substitute the read variable accordingly.

address value
Write8 ( Section(.data), 0x0 )
Write8 ( Section(.bss), 0x1 )
Read8 ( Section(.data), ReadVar8(1, 0) )

Figure 3.9: Memory trace

I solved this by assigning each section into a separate memory fragment. When performing
a memory operation (not stack-relative), the address expression is simplified into the form
section-plus-offset (see §3.3.8). The section is then used to pick the correct fragment. The
memory traces in each fragment are illustrated in Figure 3.10.

.data fragment .bss fragment
Write8(Section(.data), 0x0)
Read8(Section(.data), ReadVar8(1, 0))

Write8(Section(.bss), 0x1)

Figure 3.10: Memory trace split between section fragments

This approach has one downside: It forbids symbolic pointers for which we do not know what
section they point into. When reading/writing through these pointers, we cannot determine
which fragment to perform the operation in. The core of this project does not require these
kinds of pointers, but for some later extensions, I used a single fragment for all sections. In
that case, some read variables could not be eliminated.

3.3.8 Simplification

Consider a call to some function f, located at Section(.text.f), from Section(.text.main). We
expect this to set the PC register to the symbolic address Section(.text.f). Instead, we end up
with an expression like this

Section(.text.main) + F [Section(.text.f)− Section(.text.main)]

where F [x] is an expression that does the following to x:

1. Extracts bits 2 to 27 inclusive.

2. Concatenates two zeros to the right.

3. Sign-extends to 64 bits.

This is because the call instruction takes a relative offset to the target function

Section(.text.f)− Section(.text.main)

without the two least significant bits, in a 26 bit immediate field. If the offset does not fit into
the immediate field or is not a multiple of 4, it gets truncated as expressed by F [x].

Notice that when the safety checks Overflow(−227,227) and Alignment(2) are satisfied, there
is no truncation and we can show F [x] = x. This allows us to simplify the expression to the
expected form. The question is how to perform these simplifications automatically.
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Lazy approach We delay the simplification until an expression is used as an address for a
memory operation. At that point, we know the address can be expressed as Section(s)+x, where
x does not depend on any of the Section variables. In my implementation, I only considered x
being constant, since this was enough to execute complete programs, but in general, x can also
be symbolic.

First, x is found by evaluating the expression with all Section variables set to zero. Next,
we take all the Section variables contained in the expression as candidates for s. Finally, I used
an SMT solver to check each candidate. I used the pre-existing utility functions to construct a
query that checks if the set of safety checks implies that the candidate expression is equal to
the original.

This approach leaves unsimplified expressions in the state, making it less interpretable, and
requires keeping all safety checks around. To address these disadvantages, I introduced a second
approach.

Eager approach We simplify the expression immediately after an instruction expression
is converted to a state expression (§3.3.6). The challenge is that the expected simplified form
is not always clear. Usually, the form is Section(s) + x, but there are exceptions. For example,
the adrp instruction forms an address of a 4KB page, meaning the last 12 bits are zeroed. The
expected form is (Section(s) + x)[12 : 63].0x0:12.

Rather than hardcoding this, I used a more general approach. Notice that in the example,
F [x] is an expression, containing a subexpression x, it can be simplified to. This is a common
pattern. We can perform the simplification automatically by trying all subexpressions and
checking (using an SMT solver) if they are equal to F [x] (under the assumptions imposed
by the safety checks). To simplify the full expression, we perform this procedure on every
subexpression. The complete algorithm is described in Algorithm 1. The set of relocation
assertions (constructed from the safety checks) is used as the hypothesis (hyp).

Algorithm 1 Simplification

Require: set of hypothesis hyp, expression e
Ensure: a simplified expression
function simplify(hyp, e)

enew ← e
for e′ ∈ subexpressions(e) do ▷ try all sub-expressions

if can prove hyp =⇒ e = e′ then
enew ← e′

break
for e′ ∈ children(enew) do ▷ recursively simplify all child expressions

e′ ← simplify(hyp, e′)
return enew

3.4 Executing full programs

For this section, we only consider complete relocatable programs (with a main function), with
no inputs and no side effects. I will show how such program is executed using the symbolic
execution mechanism, and the result displayed. For a well-behaved program, we expect the
state tree resulting from the symbolic execution (after removing all impossible paths) to form
a line - no branching should depend on the symbolic addresses of sections.
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3.4.1 State initialization

Before the symbolic execution can begin, the initial state needs to be prepared. This involves
initializing the system registers, setting up memory fragments, and initializing other registers
according to the ABI specification. Three additional steps were added:

1. Create memory fragments for each ELF section (recall §3.3.7).

2. Generate constraints about section’s addresses, asserting that each section fits in memory,
does not include the null address, is correctly aligned, and no two sections overlap. The
symbolic executor can use them to simplify the path conditions and prune impossible
execution paths.

3. Write the initial values of global variables (or any other objects) into the memory1.

Step 3 is done by iterating over all object symbols in the symbol table. For each object,
we write its content into memory, using the same mechanism as when executing an instruction
trace. The object’s content can also be affected by relocations that need to be handled.

C allows initializing global pointers with references to other symbols, as in Figure 3.11.
Relocation is used to insert the correct pointer value. To construct the initial value, we need to
substitute the part affected by the relocation with the corresponding symbolic value. The sym-
bolic value is constructed by converting the relocation value and applying the mask (analogous
to §3.3.6). The relocation target is used to determine the width of the part that is substituted.
Only data relocations (recall Data32 and Data64 from §3.1.3) are allowed. If there are multiple
relocations, they are processed sequentially.

int x;

int *p[] = {0, &x, 0};

int main() {

...

}

Raw data 0x0:192

Relocation

R AARCH64 ABS64 x at offset +8 bytes

value Section(.bss)
target Data64 (64 bits)

Result 0x0:64.Section(.bss).0x0:64

Figure 3.11: Global pointer initialization

3.4.2 Interpreting the result

After initializing the state, the symbolic execution is run and we obtain a symbolic state tree. If
the tree consists of only a single execution path, we can print the sequence of instructions that
were executed, and evaluate the debug information between them. This provides a convenient,
human-readable view of the program’s execution.

The format is designed for symbolic executions that do not branch on symbolic values, but
can also handle those that do. The branches are printed after each other, and the user is
alerted using a BRANCH! message. This usually suggests that the program is not semantically
relocatable.

I used pre-existing functionality to print the instructions along with static debug informa-
tion, such as the location in the C file each instruction corresponds to. In addition, I wrote
code to obtain and print the values of the variables described in the debug information.

1Note that this step is only valid when executing the whole program from the start (the main function),
when all global variables still contain their initial values. The read-dwarf’s intended use case was symboli-
cally executing individual functions, for which this would not be valid, therefore this step was not previously
implemented.
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3.4.3 Evaluating debug variables

Read-dwarf defines a simplified representation of DWARF. This includes a list of global variables
and functions with their local variables. Each variable has a list of location descriptions, each
with a range of PC addresses where it is valid. In DWARF, the locations are specified through
(arbitrarily complicated) expressions, but read-dwarf uses pattern matching to identify four
simple cases in Figure 3.8. If none of them are applicable, it is kept in the expression form.

Register(r) In the register r
RegisterOffset(r,o) At the address in register r with an offset o
StackFrame(o) At an offset o from the base of the stack frame
Global(a) At the address a

Table 3.8: DWARF locations

To print the values of variables at a given execution point, I iterate through all global and
local variables and check if the current PC address falls into the range of any of its location
descriptions. If yes, I read the value from the state depending on the location description. Only
the four simple variants are supported, with additional Const location I added to describe
variables that are optimised into a constant. Only the original four were seen in programs
compiled without optimisations.

More complicated location descriptions would require symbolically evaluating the DWARF
expressions, operating on the read-dwarf’s symbolic values. Considering the time constraints,
this was not implemented.

3.5 Semantic relocatability

This section refines the concept of semantic relocatability and my implementation for its veri-
fication.

3.5.1 Theory

Consider a relocated instance of an object file to be the result of assigning a concrete address
to each section and applying relocations. I will use the same term to refer to the machine state
(memory and registers) when executing functions in a relocated instance.

For a well-behaved program, we expect each relocated instance to have the same behaviour.
For full programs (a main function), we can define it as:

Definition 3.5.1 A relocatable program is semantically relocatable if for any given inputs,
every relocated instance of the program produces the same output and side effects.

This definition is about whole programs, but relocatable files usually do not contain full pro-
grams, only functions to be called by other binaries. To reason about their behaviour, it is
useful to have a function-local definition.

Definition 3.5.2 A function is semantically relocatable if when it is executed in two relocated
instances, such that all values reachable by the function are semantically equivalent between the
two instances (see Definition 3.5.3), all externally observable effects (memory/register writes)
will write semantically equivalent values.

Reachability is defined by the C semantics. Only global variables, function arguments and
values derived from them are reachable. Semantic equivalence is defined as follows:
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Definition 3.5.3 Two values are semantically equivalent if one of the two holds:

• The values are pointers, and they point to the same offset in the same section.

• The values are base types (integers, floats, . . . ), and they have equal values.

This notion naturally extends to composite types; for example, structs are semantically equiv-
alent if all of their corresponding members are. The definition requires knowing the intended
type of each value, which we assume to be the static C type encoded in DWARF.

3.5.2 Simulation

I verify the semantic relocatability of a function, by symbolically executing it and demonstrating
a bisimulation between two copies of the symbolic execution tree (recall the procedure from
§2.3), assuming the pre-conditions stated in Definition 3.5.2.

The bisimulation relation is simply a one-to-one map between the corresponding copies of
each state. This approach only works for functions without unbounded loops, since they cause
the symbolic execution to not terminate.

To verify the bisimulation, we need to check the equivalence between the path conditions
of the corresponding states under the initial assumptions. We also need to check the semantic
equivalence of the values written by the function and the return value.

3.5.3 Algorithm

Consider a pair of states we wish to verify the bisimulation condition for. First, we encode
the initial assumptions inside a verification context. Then we iterate through the memory
traces, updating the verification context and checking the semantic equivalence of the written
values. We use the final verification context to prove the equivalence of path conditions and
the semantic equivalence of return values. The verification context consists of three kinds of
constraints.

SMT constraints (C) is simply a set of SMT expressions that are assumed to be true.
They usually express equality between values in the two instances.

Global memory constraints (G) express the semantic equivalence between pointers. It
is expressed as a set of triples (a1, τ, a2), denoted as a1 ≈τ a2, where a1, a2 are semantically
equivalent pointers that point to values of type τ . We also assume that all values derived from
them (e.g. by dereferencing) are semantically equivalent.

Stack constraints (S) are used to generate constraints about values read from the stack.
We only use them for the stack-passed function arguments. For the values that the function
itself writes on the stack, we rely on the caching mechanism to read back the precise values. It
is a map from stack locations to one of two equivalence kinds:

• Eq — the values are equal.

• Indirectτ — the values are semantically equivalent pointers pointing to values of type τ .

The location is described by a pair consisting of the offset from the stack base and a bytes
length.

All pointers referenced by stack and global memory constraints must point outside of
the current stack frame. This prevents aliasing problems where a value might have been
overwritten by a stack write. My algorithm preserves this invariant.

At the beginning, we initialize the verification context accoding to the information about
global variables and function arguments:

32



1. Create a global memory constraint for each global variable.

2. For each argument passed in a register, if it is a base type, we generate an SMT equality
constraint between the values in said register. If it is a pointer, we generate a global
memory constraint.

3. Generate stack constraints based on stack-passed arguments. If an argument is of a base
type, it will be an Eq constraint, if a pointer, an Indirect constraint.

Afterwards, we iterate through the memory traces of the two instances in lockstep, updating
the constraints. Each pair of memory operations should be of the same kind (read or write),
otherwise the algorithm fails2. The constraints are updated each time according to what kind
of memory operation it is.

Stack read If both reads are from the same stack offset, for which we have a stack constraint,
we generate a corresponding constraint about the read values.

Stack write We erase all stack constraints about values that get overwritten by the operation.

Global read We look up a global memory constraint for the given pair of addresses and
generate a corresponding constraint about the read values.

Global write We look up a global memory constraint for the given pair of addresses, and
check if the newly written values still satisfy it.

The full set of inference rules is shown in Figure 3.12. The conclusions have a form

C, S,G
operation1,operation2−−−−−−−−−−−−→ C ′, S ′, G′

where C, S,G represent the SMT, Stack and Global memory constraints respectively, before
processing the pair of memory operations (operation1, operation2), and C ′, S ′, G′ are the con-
straints after processing the operations.

I use C ⊢ P to denote that a predicate P is provable from the expressions in C. This is
needed when the predicate P contains symbolic values. When writing C ⊢ x1 ≈τ x2 ∈ G, this
essentially means

∃(x′
1 ≈τ x′

2) ∈ G. C ⊢ x1 = x′
1 ∧ x2 = x′

2

When introducing a global memory constraint, we also create SMT constraints about the
pointer values. These express that both pointers are in a valid memory range and either both
or none are null. The set of these constraints is

Ptr(v1, v2) =


0 ≤ v1 ≤ max address

0 ≤ v2 ≤ max address

v1 = 0⇔ v2 = 0


2Always the case when processing two copies of the same execution tree.
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o is not symbolic S(o, sz) = Eq
(StackReadEq)

C, S,G
StackReadsz(o,v1),StackReadsz(o,v2)−−−−−−−−−−−−−−−−−−−−−→ C ∪ {v1 = v2}, S,G

o is not symbolic S(o, sz) = Indirectτ
(StackReadIndirect)

C, S,G
StackReadsz(o,v1),StackReadsz(o,v2)−−−−−−−−−−−−−−−−−−−−−→ C ∪ Ptr(v1, v2), S,G ∪ {v1 ≈τ v2}

o is not symbolic (o, sz) /∈ dom(S)
(StackReadNone)

C, S,G
StackReadsz(o,v1),StackReadsz(o,v2)−−−−−−−−−−−−−−−−−−−−−→ C, S,G

o is not symbolic
(StackWrite)

C, S,G
StackWritesz(o,v1),StackWritesz(o,v2)−−−−−−−−−−−−−−−−−−−−−→ C, S \ {(o′, sz′)|(o′, sz′) overlaps (o, sz)}, G

C ⊢ a1 ≈τ a2 ∈ G τ is not a pointer sizeof(τ) = sz
(GlobalReadVal)

C, S,G
GlobalReadsz(a1,v1),GlobalReadsz(a2,v2)−−−−−−−−−−−−−−−−−−−−−−−→ C ∪ {v1 = v2}, S,G

C ⊢ a1 ≈τ∗ a2 ∈ G
(GlobalReadPtr)

C, S,G
GlobalReadsz(a1,v1),GlobalReadsz(a2,v2)−−−−−−−−−−−−−−−−−−−−−−−→ C ∪ Ptr(v1, v2), S,G ∪ {v1 ≈τ v2}

C ⊢ a1 ≈τ a2 ∈ G C ⊢ v1 = v2 τ is not a pointer sizeof(τ) = sz
(GlobalWriteVal)

C, S,G
GlobalWritesz(a1,v1),GlobalWritesz(a2,v2)−−−−−−−−−−−−−−−−−−−−−−−−→ C, S,G

C ⊢ a1 ≈τ∗ a2 ∈ G C ⊢ v1 ≈τ v2 ∈ G
(GlobalWritePtr)

C, S,G
GlobalWritesz(a1,v1),GlobalWritesz(a2,v2)−−−−−−−−−−−−−−−−−−−−−−−−→ C, S,G

Figure 3.12: Inference rules

When formulating these rules, I often preferred simplicity to expressiveness. For example,
it would be possible to formulate the rules in a way that allows stack writes to non-matching
offsets, or even symbolic offsets, but this would make the implementation more difficult.

The final step after processing the memory traces is to use the final set of SMT constraints
to prove the equivalence of the path conditions.

3.5.4 Implementation

The simulation tool was implemented as a script inside read-dwarf, which receives a relo-
catable file and the name of a function to verify. First, it runs the symbolic execution to obtain
the symbolic state tree. Then, it verifies a simulation relation between two copies of the same
execution tree using the algorithm described in §3.5.3.

We need to distinguish the variables between the two copies of the execution tree. I will
use superscript L for ”left” and R for ”right” execution tree3. For example SectionL(.bss) and
SectionR(.bss) are two independent variables representing the address of .bss section in two
different instances of executing a given file.

An example of this procedure is illustrated in Figure 3.13. We first construct an initial
verification context based on the initial state’s type information. Then we iterate through the

3In code, the variables are wrapped in a union type with L and R variants
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State 0 (initial)

Path Conditions:

Input registers:
R0 7→ Arg(0) (int32)
R1 7→ Arg(1) (int32*)
Globals:
x : int32 at Section(.bss)

Verification context:
C0 ={ArgL(0) = ArgR(0)}

∪ Ptr(ArgL(1),ArgR(1))

∪ Ptr(SectionL(.bss),SectionR(.bss))
S0 = {}

G0 =

{
ArgL(1) ≈int ArgR(1)

SectionL(.bss) ≈int Section
R(.bss)

}

Soruce C program

int x;

int f(int a, int *p) { // State 0 (initial)

if(x >= a) { // State 1

return x; // State 2 (end)

} else {

x = *p;

return x; // State 3 (end)

}

}

State 1

Path Conditions:

Global memory trace:
Read4(Section(.bss), ReadVar4(1, 0))

Verification context:
C1 = C0 ∪

{
ReadVarL4 (1, 0) = ReadVarR4 (1, 0)

}
S1 = S0

G1 = G0

State 2 (end)

Path Conditions:
ReadVar4(1, 0) ≥ Arg(0)

Global memory trace:
Return register:
R0 7→ ReadVar4(1, 0) (int32)

Verification context:
C2 = C1

S2 = S1

G2 = G1

Verify path conditions:

C2 ⊢
ReadVarL4 (1, 0) ≥ ArgL(0)

⇔
ReadVarR4 (1, 0) ≥ ArgR(0)

✔

Verify return value:
C2 ⊢ ReadVarL4 (1, 0) = ReadVarR4 (1, 0) ✔

State 3 (end)

Path Conditions:
ReadVar4(1, 0) < Arg(0)

Global memory trace:
Read4(Arg(1), ReadVar4(2, 0))

Write4(Section(.bss), ReadVar4(2, 0))
Return register:
R0 7→ ReadVar4(2, 0) (int32)

Verification context:
C3 = C1 ∪

{
ReadVarL4 (2, 0) = ReadVarR4 (2, 0)

}
S3 = S1

G3 = G1

Verify path conditions:

C3 ⊢
ReadVarL4 (1, 0) < ArgL(0)

⇔
ReadVarR4 (1, 0) < ArgR(0)

✔

Verify return value:
C3 ⊢ ReadVarL4 (2, 0) = ReadVarR4 (2, 0) ✔

Figure 3.13: Simulation verification on the execution tree of an example function. In this example, we
can ignore the stack constraints and stack traces, because no arguments are passed on the stack. The states
are processed in sequence. State 0: The verification context is initialized according to the types of the two
arguments and the global variable x. State 1: This is the state just before the branch. We take the evaluation
context from state 0, and update it according to the memory trace (a read from x). State 2: This corresponds
to the if branch. The memory trace is empty, so the evaluation context is the same as in state 1. We verify
the path conditions and since it is an end state, we verify the values in the return register. State 3: This
corresponds to the else branch. We take the evaluation context from state 1, and update it according to the
memory trace (a read from *p and write to x). We verify the path conditions and the return value.

execution tree, computing the verification context for each state. This is done by iterating
through the stack and global memory traces and applying the inference rules from Figure 3.12.
For each state, we also verify the equivalence between the path conditions in the ”left” and
”right” tree. Upon reaching a leaf node that represents returning from the function, we also
verify that the return values satisfy equivalence constraints expected for the function’s return
type.

The initial context is constructed using type information about the given function. The
type information was previously extracted from DWARF and used to annotate registers and
stack memory of the initial state with C types. We can just iterate through the registers
and generate constraints based on their types, as described before by the algorithm. We also
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generate stack constraints based on the stack type information. To generate constraints about
global variables, we iterate through the debug information about all global variables. For each,
we use its location description and type to generate a global memory constraint.

If the simulation fails because it is unable to verify the equivalence of path conditions for
some state (resp. pair of ”left” and ”right” state), it reports exactly which path conditions were
problematic. It can also fail to verify the equivalence of return values or apply an inference
rule while processing a memory operation. It reports what condition caused the failure. My
implementation allows false negatives, therefore a negative output has to be checked manually.

3.6 Repository overview

The project consists of linksem, read-dwarf and isla repositories, with additional evaluation
scripts in the evaluation repository. Figures 3.14 and 3.15 provide an overview of the main
additions and modifications to linksem and read-dwarf respectively. Files with only minor
modifications are omitted. Multiple parts of read-dwarf were changed to “relocatable rep-
resentation”, which mainly involved switching from absolute addresses to section-relative. In
isla, only client.rs was modified per §3.3.3. Figure 3.16 show the overview of evaluation.

src .................................................................................. +2081 -1008

abis

aarch64

abi aarch64 symbolic relocation.lem ..........Relocation specification
for AArch64 (§3.1.1)

+182

...

abi symbolic relocation.lem .............Utilities for relocation specifications +77

...

dwarf.lem ....................DWARF parsing and analysis. Modified to process
relocations and use symbolic types (§3.2).

+1070 -979

dwarf byte sequence.lem .........................Symbolic byte sequence (§3.2.2) +209

elf symbolic.lem .......................The symbolic expressions and the universal
relocation representation (§3.1.3).

+150

main elf.lem .....................The main program, intended for testing purposes +16 -27

sym.lem ...........................................Lem bindings for sym ocaml.ml +207

sym ocaml.ml ...........OCaml implementation of DWARF symbolic types (§3.2.1) +160

...

Figure 3.14: Repository overview of linksem
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src .................................................................................. +2737 -726

analyse/ .....Html visualization of DWARF. Modified to relocatable representation +361 -201

dw/ .....Simplified representation of DWARF. Modified to relocatable representation +56 -22

elf/ ...................................Representation of ELF. Modified per §3.3.1 +368 -93

isla/ .............................. Interaction with Isla-client. Modified per §3.3.3 +193 -69

relsim/ ...................Verification of semantic relocatability. Modified per §3.5 +447

run ....................Top level utilities and scripts for running symbolic execution +451 -78

relProg.ml ...............Symbolic execution of full relocatable programs (§3.4) +229

testRelProg.ml ...............Script for testing the symbolic execution (§4.2.1) +120

...

state/ ............ State representation. Modified per §3.4.1 (initialization), §3.3.7
(memory operation), including lazy simplification (§3.3.8)

+411 -63

trace/ ...........Representation of the instruction trace. Modified per §3.3.4, §3.3.6 +174 -51

z3/ Interaction with the Z3 SMT solver. Added a new simplification algorithm (§3.3.8) +72 -0

...

Figure 3.15: Repository overview of read-dwarf

/ .......................................................................................... +130

coverage/ ............................................C programs used as coverage tests —

simulation/ ................C files used for testing the semantic relocatability verfication —

compile.sh ..............................................Script to compile the test cases +13

linksem.sh ...............................Script to test the extraction of DWARF (§4.1) +33

subsitute.py ...............................................Utility used by linksem.sh +30

symbex.sh .......................................Script to test symbolic execution (§4.2) +19

verify.sh ................ Script to run the semantic relocatability verification tool (§4.4) +16

visualize.sh ..............Script to generate html execution logs for the test cases (§4.3) +19

Figure 3.16: Repository overview for evaluation
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4 | Evaluation

The success criterion set out in the project proposal was to enable symbolic execution (with
respect to section addresses) of relocatable programs. Additionally, it should allow interpreting
their debug information.

The project consists of two core components: the extraction of debug information and the
symbolic execution tool. I assessed these separately for their correctness and coverage.

Two tools were made based on the core components: one for visualizing the symbolic
execution of a relocatable file, and one for verifying semantic relocatability. These were also
assessed for correctness and coverage, as well as usability.

I compiled a set of test programs, some of which were used in multiple parts of the evaluation.
The complete set consists of the following:

• 12 short coverage tests exercising the C primitives from Table 2.3.

• A binary of the Android pKVM hypervisor [2], as an example of a larger real-world binary
with a complex use of DWARF (only used to test reading debug information).

• A snapshot of the execute/ directory of the GCC C torture tests from April 2025 [5],
consisting of 1676 tests. The tests have a form of short C programs (more details about
the structure of the tests in §4.2). I removed programs that rely on GCC-specific features,
are specific to a different processor architecture, or import libraries. I ended up with 1426
C programs that I was able to compile for AArch64.

• 20 small example functions to test the semantic relocatability verification tool.

Primitive Notes
Control flow primitives conditionals, loops, function calls
Global variables reading, writing

Pointers
including when affected by relocations
(e.g. pointing to global variables)

Arrays
Structs

Table 2.3: C primitives to be supported (repeated from page 16)

4.1 Reading Dwarf

This part of the evaluation checks whether the modified linksem correctly extracts and interprets
the DWARF debug information. The correctness was checked by comparing the output with
that of the original linksem on an executable file after linking.
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4.1.1 Method

The modified linksem was used to extract and print the debug information from each relocatable
file. The debug information was extracted using linksem option --debug-dump=info. This
parses the debug information, runs several analysis functions and pretty-prints their outputs.

To obtain a reference, a linker was run on the file to produce an executable file. The original
linksem was then used to extract reference debug information.

To compare the two outputs (example in Figure 4.1), the symbolic expressions in the test
output were replaced by concrete values. A simple Python script was used to find all expres-
sions of the form .section+offset and replace them by the actual address of the section,
incremented by the offset. The section addresses were extracted from the section table in the
executable file using readelf command. The outputs were further processed before being
compared using diff.

Firstly, byte sequences in variable location descriptions were replaced by placeholders to
avoid dealing with symbolic byte sequences in the output. No information was lost by this
transformation because the output also contains the interpretation of the byte sequence as a
list of operations.

Secondly, pointers into the string sections were replaced by a placeholder. All strings such as
variable names are stored in separate string sections of the ELF file and are referenced by their
address. The contents of these sections change during linking. Therefore, the addresses of some
strings would not match and needed to be ignored. Again, this does not remove information
because the literal string is also shown in the output.

The test was performed on all coverage tests, the 1426 GCC tests and on the pKVM binary.

***** .debug_info section - full *******

...

*** compilation unit die tree

...

<1><2a>: Abbrev Number: 2 (DW_TAG_variable)

<2b> DW_AT_name : (DW_FORM_strp)

AV_sec_offset 0x65 x↪→

...

<35> DW_AT_location : (DW_FORM_exprloc)

AV_exprloc 9 With symbolic bytes!

[03,00,00,00,00,00,00,00,00]

DW_OP_addr .data+0x0

↪→

↪→

↪→

...

***** analysis of location data ********

x ... .text+0x0 .text+0xc DW_OP_addr

.data+0x0 ...↪→

...

(a) Relocatable file

***** .debug_info section - full *******

...

*** compilation unit die tree

...

<1><2a>: Abbrev Number: 2 (DW_TAG_variable)

<2b> DW_AT_name : (DW_FORM_strp)

AV_sec_offset 0x65 x↪→

...

<35> DW_AT_location : (DW_FORM_exprloc)

AV_exprloc 9

[03,e8,0f,41,00,00,00,00,00]

DW_OP_addr 0x410fe8

↪→

↪→

↪→

...

***** analysis of location data ********

x ... 0x4000e8 0x400104 DW_OP_addr

0x410fe8 ...↪→

...

(b) Executable file

Figure 4.1: Linksem debug info dump outputs for relocatable and executable file. Red marks the section
addresses that are substituted in the output. The orange parts are ignored (replaced by a placeholder).

4.1.2 Results

All tests except one GCC test succeeded. The failing test (Figure 4.2) was investigated. In-
vestigation revealed the failure was due to a transformation done by the linker, rather than a
problem in my implementation.
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typedef unsigned char uint8_t;

uint8_t foo[1][0];

extern void abort (void);

int main()

{

if (sizeof (foo) != 0)

abort ();

return 0;

}

Figure 4.2: Failing linksem test (pr42570.c)

The .bss section, which contains only the zero length array foo, is removed by the linker.
The debug information in the relocatable file describes foo in a location .bss+0x0, but because
.bss was removed, we are unable to substitute it by a concrete address. Interestingly, the
DWARF in the executable still contains an entry describing foo being located at an address
that is not part of any section. This could be considered a bug in the linker.

Performance

Although performance is not a priority, it is important that execution time remains within
reasonable bounds. I compared the performance of the modified linksem processing relocat-
able files to the original linksem processing executable files after linking. On most tests, the
processing of a relocatable file was around 1.4 times slower compared to the original linksem
processing an executable. Only a few were more than two times slower. On pKVM, as an
example of a larger real-world program, the processing of a relocatable file was 2 times slower
(31 seconds and 62 seconds). The performance remains sufficient for the intended use, despite
the decrease.

4.2 Symbolic execution

4.2.1 Method

The testing framework was designed around the GCC tests, and the other tests were adapted
to a compatible format. The tests have a form of C programs that should exit with status
0 if correctly executed. When we execute them symbolically (with respect to their section
addresses), we expect to obtain a state tree where all execution paths are either marked as
impossible1 or exit with status 0.

The programs exit either by returning from main or by calling standard library functions
exit or abort. To emulate calling these library functions, I set up the symbolic execution to
terminate when the program counter reaches an address of either of them.

After the full symbolic state tree is constructed, we check if all terminating states, not
marked as impossible, correspond to exiting with status 0. If the symbolic execution terminated
by exiting from main, the return register is checked to determine the status code. If it terminated
by calling exit, the register containing the function argument is checked.

Note that the test succeeds only if all failing paths are explicitly marked as impossible.
Even if the state tree produced by read-dwarf is valid but contains impossible paths that have
not been identified, it is reported as failed.

1read-dwarf determined that the path conditions are unsatisfiable
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4.2.2 Results

Coverage Tests

All coverage tests succeeded.

GCC Tests

Out of the 1426 compiling C programs, I further removed the following:

• 236 tests containing special directives. The directives specify extra compilation options
or requirements. For simplicity, these were all skipped.

• 145 tests calling library functions other than exit and abort.

• 112 tests using types not supported by read-dwarf (floating point types, bit-fields, un-
named structs).

One test was discovered not to be semantically relocatable (shown in the Introduction in Figure
1.1), i.e. it can fail if the sections are assigned some specific addresses. Of the remaining 932
tests, 16 did not finish within a set time limit (10 minutes), and 58 failed due to limitations of
read-dwarf:

• 21 failed because of escaping. Escaping happens when a pointer to a local variable is stored
in a global variable. This is not supported by the read-dwarf’s provenance tracking2.

• 37 failed because read-dwarf was unable to simplify memory reads.

Symbolic reads Programs sometimes use a 64 bit memory read for data that is smaller than
64 bits. Since the read spans into uninitialized memory, read-dwarf represents the read value
using a fresh read variable. Even if only the part of the read that contains initialized data is
used, there is currently no mechanism in read-dwarf that can simplify the expressions once a
read variable is introduced.

4.3 Execution visualization

The project also included a feature to visualize the symbolic execution of a program. This allows
one to manually inspect the execution and see how values of individual variables depend on
section addresses. It prints the instructions being executed, interleaved with debug information.
The tool was tested on the 12 coverage tests. The output was manually inspected for:

• correctness — shows the correct execution path and accurate values of debug variables,

• completeness — displays the values of all live variables,

• interpretability — it is easy to follow the execution of the program and read the values
of variables.

The tool displayed correct and complete outputs on these tests. An example is shown on
Figure 4.3. An experienced user can easily find relevant information in the output, but it would
likely cause problems to an unfamiliar user.

2All global pointers are assumed to have Main provenance, meaning they cannot point to places on the stack
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typedef struct { int x; int y; } A;

A a;

int main() {

A *c = &a;

A b = { .x=42, .y=47 };

b.x += b.y;

*c = b;

}

(a) Source code (b) Fragment of the output

Figure 4.3: A fragment of the rendered HTML output from the visualization tool

4.4 Simulation

The simulation tool verifies semantic relocatability of simple C functions. It either confirms
that the function is semantically relocatable or provides evidence of the opposite. The tool
allows false negatives; therefore, the evidence has to be manually checked.

I prepared 20 small example functions to test the tool on, consisting of positive (semantically
relocatable) and negative (not semantically relocatable) examples. Unfortunately, the current
limitations of the tool prevent it from being meaningfully used on larger real-world programs.

I checked if the tool gives the correct result. In case of a negative result, I assess the
interpretability of the result and how easy it is to confirm or refute the result.

4.4.1 Coverage

Apart from the limitations inherited from read-dwarf, the tool is mostly limited by the com-
plexity of the types and pointer operations used in a given program. It supports different sized
integer types and pointers to them. It does not support structs and arrays.

Since the simulation is based on the construction of a full symbolic execution tree, it is
restricted to programs with a finite execution tree, small enough to be efficiently constructed.
This rules out most programs containing loops.

4.4.2 Results

The tool successfully verified the semantic relocatability of functions that contain branching,
read and write through pointers and global variables, perform null pointer checks, compare
pointers within the same section, and perform integer arithmetic.

It produced false negatives on functions that compare pointers for equality, temporarily
write values into global memory that are not equivalent based on their type (even when they
are later overwritten), or rely on specific values written into global memory. An example is
shown in Figure 4.5.

It successfully identified a violation of semantic relocatability in all negative examples.
Examples are shown in Figures 4.4 and 4.6. The outputted expressions can be in a form that is
difficult to interpret. If they contain read variables, it may be necessary to consult the execution
tree.

See Appendix B for the results of all test cases.
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int ptr_val(char *x) {

return (int)x;

}

char f(char *x) {

int y = ptr_val(x);

if(y == 0)

return 0;

else

return *x;

}

(a) Source code

States not equivalent on path conditions

L: [ !(|L:arg:0|[0:31] = 0x0:32) ]

R: [ !(|R:arg:0|[0:31] = 0x0:32) ]

(b) Output

Figure 4.4: True negative result. Interpretation: the program behaviour could diverge depending on whether
the bottom 32 bits of the function argument (a pointer) are zero. This can indeed be affected by the memory
addresses assigned for sections.

int f(int *a, int *b) {

if (a == b)

return *a;

else

return 0;

}

(a) Source code

States not equivalent on path conditions

L: [ !(|L:arg:0| = |L:arg:1|) ]

R: [ !(|R:arg:0| = |R:arg:1|) ]

(b) Output

Figure 4.5: False negative result. Interpretation: the tool reports the program behaviour could diverge
depending on whether the two pointer arguments are equal. In reality, this is not dependent on specific section
addresses.

int x;

int f(int *y) {

if (y < &x)

return 0;

else

return x;

}

(a) Source code

States not equivalent on path conditions

L: [ !(0x0.(0x1 + |L:arg:0| + ~|L:section:.bss|) = 0x1:128 +

0x0.|L:arg:0| + 0x0.(~|L:section:.bss|)) ]↪→

R: [ !(0x0.(0x1 + |R:arg:0| + ~|R:section:.bss|) = 0x1:128 +

0x0.|R:arg:0| + 0x0.(~|R:section:.bss|)) ]↪→

(b) Output

Figure 4.6: True negative result (difficult to interpret). The condition could be simplified to
|arg:0|<|section:.bss|

.
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5 | Conclusions

The project achieved all core goals and a substantial part of the extensions. It enabled symbolic
execution of relocatable files with respect to the addresses of their sections, and evaluation of
the debug information, meeting all the success criteria.

Substantial progress was made in developing an automatic verification tool for semantic
relocatability (proposed as an extension of the project). It was successfully applied to simple
programs. As expected, the first version has limitations that need to be addressed before it
could be applied in realistic situations. Some of the limitations are implementation related (e.g.
support for composite types) and can be easily addressed. Others are more fundamental and
open-ended (e.g. handling loops).

5.1 Reflection

A large part of the project involved the modification of existing tools. Considerable time was
devoted to understanding their implementation, the design decisions made, and working around
them to achieve the project goals, leaving less for extensions. Getting familiar with the tools
before the project would have been beneficial for both planning and implementation.

5.2 Future work

Core functionality The modifications I made to read-dwarf broke some previous function-
ality, including the ability to process executable files. Work is required to unify my version
with the original version before it can be upstreamed to the read-dwarf repository.

The implementation can be extended to cover more relocation types. Currently, there is
no support for dynamic linking. It would require handling dynamic relocations applied to the
Global Offset Table1 and static relocations that refer to entries of the table. Support can also
be extended to other architectures beyond AArch64. A good candidate is RISC-V, since it is
already supported by (the original) read-dwarf.

Verification tool It remains to add support for composite types. A larger challenge is to
support unbounded loops. This will require a different approach, where the simulation relation
is constructed between points of the program (such as loop entry points), rather than the
states of a complete execution tree. Symbolic execution will be run only between the points to
verify the simulation. Automatically inferring the simulation relation for arbitrary programs is
impossible, and how to address practical cases remains an open question. The type information
from DWARF can be leveraged, as currently used in function precondition generation.

The simulation tool can be adapted to verify linkers. Linkers are allowed to perform simple
optimizations when producing an executable from relocatable files. These could be verified
using a simulation between the original relocatable file and the resulting executable.

1A table of addresses that is filled by a dynamic linker when loading a shared library
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A | Supported relocation types

The ABI specification for AArch64 defines over 100 relocation types [3], but most programs use
only a small fraction of them. Table A.1 lists the relocations that my implementation currently
supports, along with their representation as described in §3.1.1. These were the only relocation
types encountered across all tested programs. These relocation types fall into four groups:

• Miscellaneous — used to mark dependencies to prevent a static linker from removing a
section, but have no direct effect.

• Data — applied to data sections.

• PC-relative addressing — applied to instructions that generate PC-relative addresses
(including load/store instructions).

• Control flow — applied to control flow instructions.

Name Representation

Operation Safety Checks Mask Target

Miscellaneous relocations

R AARCH64 NONE None (no effect)

withdrawn None (no effect)

Data relocations

R AARCH64 ABS64 S+A (63, 0) Data64

R AARCH64 ABS32 S+A Overflow(−231, 232) (31, 0) Data32

R AARCH64 PREL64 S+A-P (63, 0) Data64

R AARCH64 PREL32 S+A-P Overflow(−231, 232) (31, 0) Data32

Relocations to generate PC-relative addresses

R AARCH64 ADR PREL PG HI21
Page(S+A)-
Page(P)

Overflow(−232, 232) (32, 12) ADRP

R AARCH64 ADD ABS LO12 NC S+A (11, 0) ADD

R AARCH64 LDST8 ABS LO12 NC S+A (11, 0) LDST 0

R AARCH64 LDST16 ABS LO12 NC S+A Alignment(1) (11, 1) LDST 1

R AARCH64 LDST32 ABS LO12 NC S+A Alignment(2) (11, 2) LDST 2

R AARCH64 LDST64 ABS LO12 NC S+A Alignment(3) (11, 3) LDST 3

R AARCH64 LDST128 ABS LO12 NC S+A Alignment(4) (11, 4) LDST 4

Control flow relocations

R AARCH64 CALL26 S+A-P
Overflow(−227, 227),
Alignment(2)

(27, 2) CALL

R AARCH64 CONDBR19 S+A-P
Overflow(−220, 220),
Alignment(2)

(20, 2) CONDBR

R AARCH64 JUMP26 S+A-P
Overflow(−227, 227),
Alignment(2)

(27, 2) B

Table A.1: List of supported AArch64 relocation types and their corresponding representation.
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The support can be easily extended to other relocation types within these groups. Other groups
that are currently not supported include:

• Group relocations — applied to a sequence of mov instructions that construct the relocated
value. Most of them can be easily added, except a few whose behaviour depends on the
sign of the relocated value.

• Relocations used to support dynamic linking:

– Static relocations that compute indices into the Global Offset Table (GOT).

– Dynamic relocations (processed by the dynamic linker) that fill the GOT with run-
time addresses.

• Relocations used to support thread-local storage
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B | Results of Semantic
Relocatability Tests

B.1 True Positives

long long x = 1;

void f(long long a) {

x = a;

}

Simulation successful

Figure B.1: positive/example.c

int x;

int f(int *y, int a) {

return (a + *y * 7) % x;

}

Simulation successful

Figure B.2: positive/integer arithmetic.c

int x;

int f(int *y, int a) {

a += *y;

if(x < a)

x = a;

return a;

}

Simulation successful

Figure B.3: positive/integer comparison.c

int f(int *x) {

if(x == 0)

return 0;

else

return *x;

}

Simulation successful

Figure B.4: positive/null check.c

long long ptr_val(int *x) {

return (long long) x;

}

int f(int *x) {

long long y = ptr_val(x);

if(y == 0)

return 0;

else

return *x;

}

Simulation successful

Figure B.5: positive/null check after cast.c

void f(int *x, int *y) {

*y = *x;

}

Simulation successful

Figure B.6: positive/pointer read write.c
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int x, y;

int f() {

if (&x < &y)

return 0;

else

return x;

}

Simulation successful

Figure B.7: positive/pointer safe comparison.c

int f(int x, int y) {

if (&x < &y)

return 0;

else

return x;

}

Simulation successful

Figure B.8: positive/pointer safe comparison2.c

void f(int *x) {

*x = 42;

}

Simulation successful

Figure B.9: positive/pointer write.c

int y;

void f(int *x) {

*x = y;

}

Simulation successful

Figure B.10: positive/pointer write2.c

void f(int *x, int y) {

*x = y;

}

Simulation successful

Figure B.11: positive/pointer write3.c

void f(int **x, int *y) {

*x = y;

}

Simulation successful

Figure B.12: positive/pointer write4.c
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B.2 True Negatives

int ptr_val(char *x) {

return (int)x;

}

char f(char *x) {

int y = ptr_val(x);

if(y == 0)

return 0;

else

return *x;

}

Simulation failed:

States not equivalent on path

conditions↪→

L: [ !(|L:arg:0|[0:31] = 0x0:32)

]↪→

R: [ !(|R:arg:0|[0:31] = 0x0:32)

]↪→

Figure B.13: negative/null check after lossy cast.c

int ptr_val(int *x) {

int *p = 0;

return (int) (x-p);

}

int f(int *x) {

int y = ptr_val(x);

if(y == 0)

return 0;

else

return *x;

}

Simulation failed:

States not equivalent on path

conditions↪→

L: [ !(|L:arg:0|[2:33] = 0x0:32)

]↪→

R: [ !(|R:arg:0|[2:33] = 0x0:32)

]↪→

Figure B.14: negative/null check after lossy cast2.c
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int x;

int f(int *y) {

if (y < &x)

return 0;

else

return x;

}

Simulation failed:

States not equivalent on path

conditions↪→

L: [ !(0x0.(0x1 + |L:arg:0| +

~|L:section:.bss|) = 0x1:128

+ 0x0.|L:arg:0| +

0x0.(~|L:section:.bss|)) ]

↪→

↪→

↪→

R: [ !(0x0.(0x1 + |R:arg:0| +

~|R:section:.bss|) = 0x1:128

+ 0x0.|R:arg:0| +

0x0.(~|R:section:.bss|)) ]

↪→

↪→

↪→

Figure B.15: negative/pointer unsafe comparison.c

int x;

int f(int y) {

if (&y < &x)

return 0;

else

return x;

}

Simulation failed:

States not equivalent on path

conditions↪→

L: [

!(0x0.(-0x7 + |L:reg:1:SP_EL2|

+ ~|L:section:.bss|)↪→

= 0x1:128 + 0x0.(-0x8 +

|L:reg:1:SP_EL2|) +

0x0.(~|L:section:.bss|))

↪→

↪→

]

R: [

!(0x0.(-0x7 + |R:reg:1:SP_EL2|

+ ~|R:section:.bss|)↪→

= 0x1:128 + 0x0.(-0x8 +

|R:reg:1:SP_EL2|) +

0x0.(~|R:section:.bss|))

↪→

↪→

]

Figure B.16: negative/pointer unsafe comparison2.c

long long x;

void f(int *a) {

x = (long long)a;

}

Simulation failed:

Unable to verify Eq between L:

|L:arg:0| R: |R:arg:0|↪→

Figure B.17: negative/pointer to integer cast.c
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B.3 False Negatives

int f(int *a, int *b) {

if (a == b)

return *a;

else

return 0;

}

Simulation failed:

States not equivalent on path

conditions L: [ !(|L:arg:0| =

|L:arg:1|) ] R: [ !(|R:arg:0| =

|R:arg:1|) ]

↪→

↪→

↪→

Figure B.18: positive-failed/aliasing.c

int f(int *a, int *b) {

return a == b;

}

Simulation failed:

Return values not equivalent

Condition: Eq between

L: 0x0:32.(0x1:32 + (if |L:arg:0|

= |L:arg:1| then 0x0:32 else

-0x1:32))

↪→

↪→

R: 0x0:32.(0x1:32 + (if |R:arg:0|

= |R:arg:1| then 0x0:32 else

-0x1:32))

↪→

↪→

Figure B.19: positive-failed/aliasing2.c

long long x;

int is_x_zero() {

return x == 0;

}

int f(int *y) {

x = (long long)y;

if (is_x_zero()) {

return 0;

} else {

return x = 1;

}

}

Simulation failed:

Unable to verify Eq between L:

|L:arg:0| R: |R:arg:0|↪→

Figure B.20: positive-failed/global temp write.c
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C | Read-dwarf debug
information analysis

Read-dwarf contains a module that processes the DWARF output of linksem and displays it
in a more human-readable format using HTML. My contributions enabled applying the tool to
relocatable files, where the addresses are displayed in the .section+offset form. The output
for pKVM is shown in Figure C.1.

Figure C.1: Fragment of the evaluated debug information from pKVM, displayed using HTML. The code
fragment is accessing a static variable registered, located in the .bss section. The output displays the program
instructions (white), interleaved with parts of the debugging information. The descriptions of variables when
they enter the scope are green, the corresponding lines in the source code are orange, relocations are purple.
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Formal Verification of ELF Relocations
Introduction and description
Given the complexity of modern optimizing compilers, bugs can occur that
cause miscompilation. This can be a major problem for critical software. To
guarantee the correctness of a compiled program, one can use a formally verified
compiler, but these often lack in features. An alternative approach is Translation
Validation.

Translation Validation is a technique that aims to automatically prove for a
given program that it was compiled correctly, treating the compiler as a black
box. It is a big and complex task with ongoing research. In my project, I will
tackle a small subproblem of verifying relocations.

A program compiled into an ELF file consists of sections that can be placed at
different addresses in memory. It has a relocation table describing how to modify
adresses within the file based on where each section ends up. My project aims
to develop a tool that validates that the behaviour of a program is independent
of where each section is placed.

Debug information can be used to find a correspondence between the compiled
program and its source. It is specified inside the ELF file in a DWARF format. It
contains expressions that need to be evaluated to obtain the debug information.
The information includes a mapping of the machine code to lines in the source
code and descriptions of where each variable is located at each point of the
program’s execution. I will use it to assist with the verification.

At minimum, my project should be able to verify simple programs taking no
input, through symbolic execution. It should also be able to evaluate the debug
information at any point of the symbolic execution.

Extensions will cover more complex cases, aiming to verify individual functions
executing in unknown contexts.

Starting point
I will be using an existing executable specification of DWARF, that was developed
in Cambridge as part of Linksem (formalisation of ELF linking and DWARF
debug information). It covers a substantial part of the DWARF 4 standard. I
will need to modify it to allow symbolic evaluation with relocations.

I will be using Isla for the symbolic evaluation of Arm instructions. I have not
used it before and will need to familiarise myself with it and its capabilities.

Work to be done
I will need to extend Linksem to extract the information I need from the ELF
file. First are the relocations, that I want to extract as expressions that can
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be symbolically evaluated and applied. I also need to be able to symbolically
evaluate the debug information with symbolic relocations applied. Based on my
observations, the relocations only appear in simple DWARF expressions, which
makes the symbolic evaluation simple.

The relocations need to be processed to construct a symbolic state of memory at
the start of the program’s execution. The memory address where each section
starts will be specified by a symbolic variable and the relocations will be applied.
I will give this state to Isla and let it execute the program. The verification
succeeds if the output value is independent of the symbolic variables. To evaluate
debug information at a given point, I will run Isla up to that point and evaluate
the DWARF expressions on the current state.

Extensions
Extensions will involve verifying individual functions with inputs and/or side
effects. For that, I plan to utilize Bisimulation. Bisimulation is a relation between
states of two programs that behave in the same way. Let’s consider two different
runs of the program, differing in the placement of their sections. If we construct
a Bisimulation between them, we can prove that they are equivalent.

To do that, I will find a correspondence between the states of the memory and
registers at each program point. I will use the debug information to find all
parts of memory reachable in the current scope, and determine how their values
should relate between the two runs. Using Isla, I can verify that each instruction
respects this relation, finishing the proof.

I will split this into multiple subtasks:

1. Constructing a Bisimulation for a single instruction. Alternatively, con-
structing it for a short sequence of instructions, treating them as a single
state transition

2. Putting together the single instruction steps to verify a simple branch-free
function

3. Handling loads/stores that use two instructions, the first of which only
loads upper address bits into a register

4. Handling branching
5. Handling function calls
6. Handling compiler optimizations

Evaluation
I will prepare a selection of programs demonstrating the usage of all C primitives
described in the “Success Criterion”. My tool will be run on each to produce a
result of symbolically executing the program, which will be checked against an
expected result determined by hand.

Example programs will also be constructed to evaluate each extension.
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Success Criterion
Support symbolic execution of self-contained, relocatable programs, with no
input or side-effects, written in C and compiled for aarch64. It must assume that
the layout of the program’s sections in memory can be arbitrary, and represent
it symbolically.

It has to support all of the following C primitives:

• Control flow (conditionals, loops, function calls)
• Global variables (reads and writes)
• Pointers (including cases where their value is affected by relocations -

e.g. pointing to global variables)
• Arrays
• Structs

Allow symbolically evaluating debug information at any point of the symbolic
execution.

Work plan
Michaelmas

• Week 1-2

– Work on the project proposal
– Get familiar with Linksem
– Get familiar with Isla
– Come up with programs to test the project on

Milestones: Project proposal submitted

• Week 3-4

– Extend Linksem to process relocations into evaluable expressions
– Allow propagating the relocations to the DWARF expressions and

evaluating them given a concrete layout of the sections in memory

Milestones: Linksem producing relocations as expressions, and the debug
info after applying relocations

• Week 5-6

– Modify Linksem to allow evaluating DWARF with symbolic values.
Apply symbolic relocations to DWARF before evaluating

– Learn to use Isla and find out how to provide the symbolic state of
memory at the start of the program

Milestones: Linksem producing symbolic debug info

• Week 7-8
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– Assuming a symbolic address for each section, construct a symbolic
state of memory, applying the relocations outputted by Linksem

– Let Isla execute on this symbolic state and check the output

Milestones: A complete pipeline capable of verifying programs with no
input

Christmas break

• Allow evaluating debug information at any point of the symbolic execution
• Research and prepare a plan to construct a Bisimulation

Milestones: A fully functional tool that can symbolically execute a relocatable
file and evaluate debug information

Lent term

• Week 1-2

– Writing a progress report and preparing the presentation
– Start working on Bisimulation, handling a single instruction

Milestones: Progress report submitted and presentation ready

• Week 3-4

– Construct a Bisimulation for a whole function
– If time permits, handle multi-instruction loads/stores

• Week 5-6

– Continue work on Bisimulation, covering more complex cases

• Week 7-8

– Start writing dissertation

Milestones: Written Introduction and Peraration sections

Easter break

• Continue writing dissertation
• Gather feedback and make corrections to the dissertation

Milestones: Dissertation close to finished, with all sections written, leaving time
for final corrections

Easter Term

• Week 1-2
– Final corrections to the dissertation

Milestones: Dissertation and source code submitted
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Resource declaration
I will use my personal laptop (Lenovo Yoga 6, AMD Ryzen 5 7530u, 16GB RAM,
512GB SSD, Ubuntu 22.04) for the project. I accept full responsibility for this
machine and I have made contingency plans to protect myself against hardware
and/or software failure. In case of failure, I will use my second laptop. All my
work will be backed on GitHub.
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