Open problems from system software verification

Peter Sewell

University of Cambridge

Iris Workshop, Zurich 2024-06-03

This work was partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation
programme (AdG grant 789108 ELVER), the UK Government Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694), EPSRC programme grant EP/K008528/1 REMS, Arm
Limited, Google, Google DeepMind, Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust, and the Gates Cambridge Trust.
Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD"), FA8750-11-C-0249 (“MRC2"),
HRO0011-18-C-0016 (“ECATS"), FA8650-18-C-7809 (“CIFV"), and HR0011-22-C-0110 (“ETC"), as part of the DARPA CRASH, MRC, and SSITH
research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

1/67

‘open postdoc position in C verif

Open problems from system software verification

Peter Sewell

University of Cambridge

Iris Workshop, Zurich 2024-06-03

This work was partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation
programme (AdG grant 789108 ELVER), the UK Government Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694), EPSRC programme grant EP/K008528/1 REMS, Arm
Limited, Google, Google DeepMind, Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust, and the Gates Cambridge Trust.
Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD"), FA8750-11-C-0249 (“MRC2"),
HRO0011-18-C-0016 (“ECATS"), FA8650-18-C-7809 (“CIFV"), and HR0011-22-C-0110 (“ETC"), as part of the DARPA CRASH, MRC, and SSITH
research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

2/67

When is it worth doing semantics?

3/67

When is it worth doing semantics?

> for existing pervasive abstractions

4/67

When is it worth doing semantics?

> for existing pervasive abstractions
» to explore paths to a better world

5/67

When is it worth doing semantics?

> for existing pervasive abstractions
» to explore paths to a better world
» for fun

6/67

When is it worth doing semantics?

> for existing pervasive abstractions
» to explore paths to a better world
» for fun

When is it worth it — and possible — to do verification?

7/67

When is it worth doing semantics?

> for existing pervasive abstractions
» to explore paths to a better world
» for fun

When is it worth it — and possible — to do verification?

> interactive full verification for small critical software — especially systems software

8/67

v

When is it worth doing semantics?

for existing pervasive abstractions
to explore paths to a better world
for fun

When is it worth it — and possible — to do verification?

interactive full verification for small critical software — especially systems software
more automated methods (bug-finding analysis, type systems, ...) for larger-scale
software

9/67

v

When is it worth doing semantics?

for existing pervasive abstractions
to explore paths to a better world
for fun

When is it worth it — and possible — to do verification?

interactive full verification for small critical software — especially systems software
more automated methods (bug-finding analysis, type systems, ...) for larger-scale
software

to explore paths to a better world

10/67

v

When is it worth doing semantics?

for existing pervasive abstractions
to explore paths to a better world
for fun

When is it worth it — and possible — to do verification?

interactive full verification for small critical software — especially systems software
more automated methods (bug-finding analysis, type systems, ...) for larger-scale
software

to explore paths to a better world

for fun

11/67

Can we do semantics for real systems?
(Arm, RISC-V, C, Morello)? (WIP!)

12/67

Can we do verification for real systems software?
(Arm, RISC-V, C, pKVM, Morello)? (WIP!)

C separation-logic refinement
types and scalable tooling: CN / RefinedC / VIP

Translation Validation and Composition

Concurrent Arm Reasoning Sequential ISA Reasoning Sequential ISA Reasoning
Simplified Model & AxSL Islaris & whole-ISA lsabelle Islaris & whole-ISA Isabelle

13/67

Cambridge

Peter Sewell

Neel Krishnaswami
Alasdair Armstrong
Rini Banerjee
Thomas Bauereiss
Thomas Fourier
Angus Hammond
David Kaloper-Mersinjak
Dhruv Makwana
Kayvan Memarian
Thibaut Pérami
Christopher Pulte
Thomas Sewell
Ben Simner
Robert Watson

pKVM and Morello verification people

Aarhus

Lars Birkedal

Jean Pichon-Pharabod
Zongyuan Liu

MPI-SWS

Derek Dreyer

Deepak Garg

Michael Sammler—ETH,ISTA
Rodolphe Lepigre

Laila Elbeheiry

Youngju Song

Paul Zhu

Edinburgh

lan Stark

Ohad Kammar

Brian Campbell

Ricardo Almeida

Radboud
Robbert Krebbers
lke Mulder

Marc Hermes
Pierre Goutagny
Malo Jaffre

SNU

Chung-Kil (Gil) Hur
Yeji Han

Hyunwoo Lee

Google Android KVM
Will Deacon

Evi Karakozoglou
David Brazdil

Keir Fraser

Quentin Perret

Andrew Scull

Marc Zyngier

Google Project Oak
Sarah de Haas

Ben Laurie
Hong-Seok Kim
Jieung Kim

14/67

Can we do verification for real systems software?
(Arm, RISC-V, C, pKVM, Morello)? (WIP!)

C separation-logic refinement
types and scalable tooling: CN / RefinedC / VIP

Translation Validation and Composition

Concurrent Arm Reasoning Sequential ISA Reasoning Sequential ISA Reasoning
Simplified Model & AxSL Islaris & whole-ISA lsabelle Islaris & whole-ISA Isabelle
Iris insidel

15/67

scale 4

> clever

scope

16/67

scope

scale

A

Iris now

> clever

17/67

scale

clever

18/67

Bottom-up

Things we like to pretend are true...

...but aren’t — at the architecture level of abstraction

19/67

Bottom-up

Things we like to pretend are true...
...but aren’t — at the architecture level of abstraction

...can we prove that they're true, in some circumstances?

20/67

Programs are executed in order — with a structural operational semantics

In the golden age:

111> (x,:=e),M + null,M(n/i] if e,m % n,m.
v+ (pl;pzl M > (pi:pz) MY Af py/M > p', M
(null;p) ,M + p,M.

[Program Semantics and mechanized proof, Milner 1976]
Semantics as a transition system of some kind

Defined more-or-less compositionally in the syntactic structure of the program

And we can build program logics for compositional reasoning above that

21/67

But...

22/67

Machine-code programs don’t have a lot of syntactic structure

00006aac:
00006ab0:
00006ab4:
00006ab8:
00006abc:
00006ac0:
00006ac4:
00006ac8:
00006acc:
00006ad0:
00006ad4:
00006ad8:
>00006adc:
00006a€0:
00006ae4:
00006a€e8:
00006aec:
00006af0:
>00006af4:
00006af8:
00006afc:
00006b00:

a9be7bfd
f9000bf3
910003fd
900000e8
900000e9
f940b113
f940b929
cb130129
140053 f
54000062
aalfo3f3
14000007
91400669
aal303e0
2alfo3el
52820002
f900b109
940047b4
aal303e0
f9400bf3
a8c27bfd
d65f03co

stp
str
mov
adrp
adrp
ldr
ldr
sub
cmp
b.cs
mov
b 6
add
mov
mov
mov
str
bl

mov
ldr
ldp
ret

x29, x30, [sp, #-32]!
x19, [sp, #16]
Xx29, sp
x8, 22000 <overflow_stack+0Oxef0>
X9, 22000 <overflow_stack+0xef0>
x19, [x8, #352]
x9, [x9, #368]
x9, x9, x19
X9, #0x1, lsl #12
6adc <hyp_early_alloc_page+0x30> // b.hs, b.nlast
x19, xzr <- 00006adO(b.cc-succ)<fallthrough>
af4 <hyp_early_alloc_page+0x48>
x9, x19, #0x1, lsl #12 <- 00006adO(b.cc)<hyp_early_alloc_page+0x30>
x0, x19
wl, wzr
w2, #0x1000 // #4096
x9, [x8, #352]
189¢0 <__memset>
x0, x19 <- 00006ad8(b)<hyp_early_alloc_page+0x48>,00006af0(bl-succ)<return>
x19, [sp, #16]
x29, x30, [spl, #32

23/67

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:
400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

24/67

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:
400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

How can we reason about that? For arbitrary code:

» Proof of “simple”’ properties about the complete definition, in Isabelle
(Arm Morello and Arm-A)

Verified security for the Morello capability-enhanced prototype Arm architecture. ESOP 2022. Bauereiss,
Campbell, T.Sewell, Armstrong, Esswood, Stark, Barnes, Watson, Sewell.

25/67

http://www.cl.cam.ac.uk/~pes20/morello-proofs-esop2022.pdf

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:
400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

How can we reason about that? For known code:

> Isla symbolically evaluates the semantics of individual instructions, wrt constraints on the
opcode, register values, etc., to tree-structured traces of register/memory events and
SMT constraints

» instantiate Iris with an embedding of that (with an opsem) in Rocq

» adapt Lithium separation logic programming automation

Islaris: Verification of Machine Code Against Authoritative ISA Semantics. PLDI 2022. Sammler, Hammond,
Lepigre, Campbell, Pichon-Pharabod, Dreyer, Garg, Sewell
26/67

http://www.cl.cam.ac.uk/~pes20/2022-pldi-islaris.pdf

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:
400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)
How do we make such a huge definition manageable?
Find or invent narrow interfaces: instruetions register/memory interface events

Build automation: Isabelle / Isla / Islaris proof automation

27/67

Machine instructions aren’t simple atomic primitives

Inductive trace_label : Set :=

| LReadReg (r : sail_name) (al : accessor_list) (v : valu)

| LWriteReg (r : sail_name) (al : accessor_list) (v : valu)

| LReadMem (data : valu) (kind : valu) (addr : valu) (len: N) (tag: tag_value)
| LWriteMem (res : valu) (kind : valu) (addr : valu) (data: valu) (len: N) (tag: tag_value)
| LBranchAddress (v : valu)

| LBranch (c: Z) (desc : string)

| LDone (next : isla_trace)

| LAssert (b : bool)

| LAssume (b : bool)

| LAssumeReg (r : sail_name) (al : accessor_list) (v : valu)

(simple version, as in Islaris, for non-systems-architecture things)

28/67

Machine instructions aren’t simple atomic primitives

Open problems:

» Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)

29/67

Machine instructions aren’t simple atomic primitives

Open problems:
» Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)

» For interactive proof, make Islaris more usable — wrt both understanding Isla traces and
the proof automation

30/67

Machine instructions aren’t simple atomic primitives

Open problems:
» Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)

» For interactive proof, make Islaris more usable — wrt both understanding Isla traces and
the proof automation

» For larger-scale automated proof, to use as part of other verification tooling, make the
automation scale

31/67

Machine instructions aren’t simple atomic primitives

Open problems:
» Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)

» For interactive proof, make Islaris more usable — wrt both understanding Isla traces and
the proof automation

» For larger-scale automated proof, to use as part of other verification tooling, make the
automation scale

» For more foundational proof, replicate Isla symbolic evaluation inside Rocq, for the
Sail-to-Rocq generated version of the semantics (or a deep-embedding variant thereof)?

32/67

Machine instructions aren’t simple atomic primitives

In progress (Brian Campbell) — Improving shallow embedding:
» Addressing efficiency problems (e.g., equality for large enums)
> Simpler, type safe register and sequential register state representations
» Support for cog-record-update
» More stdpp support soon

Deep embedding:

» Dominique Devriese's team experimenting with a backend for their Katamaran tool

33/67

Programs don't execute in order

34/67

Hardware execution — and abstract-microarchitectural operational models

Hardware thread states
L]
e
L]

-
]

reads/writes

Storage state

!

!

[] partially and tentatively executed instruction

I completely executed and committed instruction

responses

a:W 0x0000 = 0x17

b:W 0x0010 = 0x78

c:W 0xc058 = 0x76

Transition system — but with explicit out-of-order and speculative execution, with restarts

Defined only for whole programs

35/67

After the dust settles — and in axiomatic models

Hardware thread architectural executions

- P-\-

I completely executed and committed instruction

[] discarded instruction

Axiomatic models are predicates on candidate complete execution graphs

Defined only for whole programs and complete executions

36,67

Executions aren’t incremental (in any obvious way)

Totally non-compositional: not merely whole-program, but also whole-complete-execution

Intrinsically so: because LB is allowed, a program-order prefix of an allowed execution may
not be even a well-formed candidate.

LB AArch64

Initial state: 0:X3=y; 0:X2=1; 0:X1=x; 0:X0=0;

1:X3=x; 1:X2=1; 1:X1=y; 1:X0=0; y=0; x=0;

Thread 0 Thread 1 ’ Thread 0 ‘ ’ Thread 1 ‘

LDR X0, [X1] r0=x//a|LDR X0,[X1] rO=y//c a:Rx=1 c:Ry=1

STR X2,[X3] y =1//b|STR X2,[X3] x =1//d of

Allowed: 0:X0=1; 1:X0=1; rf po po
b:Wy=1 dWx=1

37/67

Can we reason compositionally about Arm or RISC-V relaxed concurrency?
AXxSL Iris program logic for Arm-A user relaxed concurrency, POPL 2024

Angus Hammond!, Zongyuan Liu!, Thibaut Pérami, Peter Sewell, Lars Birkedal, Jean Pichon-Pharabod

How, given LB? Instantiate Iris with strange operationalisation of the axiomatic model: guess
a complete memory-model-consistent candidate, then check each thread in program order

38/67

https://www.cl.cam.ac.uk/~pes20/axsl-popl-2024.pdf

Can we reason compositionally about Arm or RISC-V relaxed concurrency?

AXxSL Iris program logic for Arm-A user relaxed concurrency, POPL 2024
Angus Hammond!, Zongyuan Liu!, Thibaut Pérami, Peter Sewell, Lars Birkedal, Jean Pichon-Pharabod

How, given LB? Instantiate Iris with strange operationalisation of the axiomatic model: guess
a complete memory-model-consistent candidate, then check each thread in program order

Open problems:

>

>
>
>
>
>
>
>
>

(Zongyuan in progress) extend to mixed ob+coherence

extend with other Arm features (mixed-size, ...)

glue the AXSL logic onto the real Arm instruction-set semantics
establish “fiction of sequential consistency” — local DRF-SC for real Arm
establish “fiction of LB freedom”

make usable for hand proofs of larger small examples

make target for automated proofs of real code

use the same idea for other axiomatic relaxed models

what does the underlying Iris model look like for this instantiation?

39/67

https://www.cl.cam.ac.uk/~pes20/axsl-popl-2024.pdf

Can we reason compositionally about Arm or RISC-V relaxed concurrency?

How do we make such a subtle definition manageable?

Find or invent narrow interfaces:
> instructions register/memory interface events
» program logic over those

» derived rules for instructions

40/67

Can we reason compositionally about Arm or RISC-V relaxed concurrency?

Lemma LB_data_thread; :

(* Start the program with empty context *)
(None -{LPo}> * @ -{Ctrl}> * None -{Rmw}>) -*
(* No local writes to address [x] and [y] *)
last_local_write tid addr_x None -*
last_local_write tid addr_y None -*
(** Register points-to of [rq] *)
(3 rv, "r1" by rv) -x
(** Instruction memory *)
(* Half of LB-data at [0x1600] *)
(BV 64 9x1008) »; read "r1" addr_x -x
(BV 64 Bx1004) »; write_with_dep "r1" addr_y -*
(* Program ends at [8x1088] *)
(BV 64 8x1088) »y - -*
(** Weakest precondition *)
(* Run the program starting from the instruction at [6x1060]
in thread [1] *)
WPi (LTSI.Normal, (BV 64 6x1008)) @ 1
{{ r 1ts',
(** Postcondition *)
(* Execution terminates at address [8x1008] *)
r1ts' = (LTSI.Done, (BV 64 0x1008)) " *
(* Value of [rq] is [8] *)
3 rv, "rl" »p rv * "rv.(reg_val) = BV 64 8" }}.

41/67

Systems semantics

» instruction fetch
» virtual memory

P exceptions

42/67

Programs

43/67

Programs don't exist
Self-modifying code: dynamic loading, linking, patching, and just-in-time compilation

SM-tcachesync-isb AArch64
Initial state: 0:W0="B I1", 0:X1=f

Thread 0 Common [Thread 0]
STR WO, [X1] //overwrite f with branch f: B 10 a:write f=[B 11|
DC CVAU,X1 //clean data cache 11: MOV X10,#2
DSB TSH Jeachesync
IC IVAU,X1 //invalidate instruction cache |18: MOV X10,#1 b:1SB|
DSB ISH RET
ISB //flush pipeline iisb
BL f .
MOV X0,X10 ol cfetch f=|B 10]
Forbidden: 1:X0=1

ARMV8-A system semantics: instruction fetch in relaxed architectures.
Simner, Flur, Pulte, Armstrong, Pichon-Pharabod, Maranget, Sewell. ESOP 2020

Open problems:
» how can we reason about self-modifying code?
> establish the “fiction of Harvard architecture™ for programs that don't write to any
address they fetch from, one can ignore ifetch

4467

https://www.cl.cam.ac.uk/~bs630/files/publications/2020-ESOP-ifetch.pdf

Memory addresses don't mean what you think

...virtual addresses and address translation

...which again needs careful discipline by system software, with enough synchronisation and
TLB invalidation, to avoid unpredictable behaviour and to enforce security

Relaxed virtual memory in Armv8-A. Simner, Armstrong, Pichon-Pharabod, Pulte,

Grisenthwaite, Sewell. ESOP 2022

S |
el

[From Ben Simner draft thesis]

45/67

http://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/RelaxedVM-Arm-esop2022.pdf

Memory addresses don't mean what you think
...virtual addresses and address translation

Open problems:

» (Ben, Jean, Kayvan, David, ThomasF, Yeji, Peter) Can one test that systems s/w follows
that discipline?

» (Thibaut, Brian, Ben, ThomasB) Can one integrate ISA + VM semantics and prove it
provides the “fiction of virtual memory™: for programs that don't write to the memory
holding their address-translation mappings, one can ignore address translation

» (Christopher et al.) Can one reason compositionally about the sequential aspects of the
code that manages page tables?

» Can one reason compositionally about the relaxed concurrent semantics of virtual
memory management?

46/67

Machines don't just execute instructions — there are exceptions

Synchronous exceptions, for system calls, page faults, etc.
Asynchronous exceptions, for timers, devices, inter-processor interrupts

Open problems:
» (Ben, Jean, Ohad, Peter) How do they behave?
» Can we reason about them?

> ...e.g., for the “fiction of virtual memory with mapping on demand”, by the OS or
hypervisor, on page faults

47/67

Almost enough foundations for actual systems software...?

instruction semantics
“user” relaxed concurrency
instruction fetch

virtual memory
exceptions

GIC

IOMMU (SMMU)

other SoC aspects

48/67

Almost enough foundations for actual systems software...?

P instruction semantics
> ‘“user” relaxed concurrency
> instruction fetch
» virtual memory
P> exceptions
> GIC

» I[OMMU (SMMU)
» other SoC aspects

Open problems:
» (Thibaut etc.) build integrated semantics
» build integrated program logic, sufficient in principle for reasoning at the machine-code
level about everything pKVM does

49/67

Top-down: what about systems C code

50,67

Ongoing C verification experiments ~[oPen postdoc position

CN:

P Verifying systems C code with separation-logic refinement types. POPL 2023.
Pulte, Makwana, T. Sewell, Memarian, P. Sewell, Krishnaswami.

Aimed at predictable SMT-based proof automation, above Cerberus semantics.
Used for pKVM page_alloc.c buddy allocator and some pgtable.c safety proof

RefinedC:

P RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types
Sammler, Lepigre, Krebbers, Memarian, Dreyer, Garg. PLDI2021 (VIP POPL2022, BFF OOPSLA2022).

In Rocq with Lithium proof automation, using Cerberus front-end and a simplified C semantics.
Demo’d on small examples.

51/67

https://www.cl.cam.ac.uk/~pes20/cn-draft.pdf
https://plv.mpi-sws.org/refinedc/paper.pdf
http://www.cl.cam.ac.uk/users/pes20/2022-popl-vip.pdf
https://plv.mpi-sws.org/refinedc/bff/

open postdoc position

Ongoing C verification experiments

CN carefully limits the specification language, for predictable SMT-based proof automation,
and for testing, with fall-back to Rocq where needed

Open problems:
» How far can we make CN usable by non-prover-experts?
Bitvectors vs integers?
Exercise CN on more big examples
...does that limited expressiveness continue to suffice?
Extend the CN program logic with concurrency and the underlying Arm systems features

Define an Iris instantiation for CN-exported lemmas about resources

vVvyvyVvVvyypy

Better user experience at the CN-automation / Rocg-proof boundary

(conceivably, embed the same idea in Rocq?)

v

Make more foundational by generating (RefinedC-like?) proof scripts

(needs Cerberus Core in Rocq)

52/67

open postdoc position

Ongoing C verification experiments

How do we make such a huge and subtle definition manageable?
Find or invent narrow interfaces: € Core

...use the semantics directly in the verification tool

53/67

Relating C and binary

Open problem:
» translation validation for verified (systems) code
First experiment, from CN to Islaris: 2023 Mete Polat TUM/UCam Masters thesis

...use something like Islaris in an automated flow?

54 /67

How are programs actually composed?

» With syntactic language constructs

55/67

http://www.cl.cam.ac.uk/~pes20/rems/papers/oopsla-elf-linking-2016.pdf

How are programs actually composed?

» With syntactic language constructs
» With static and dynamic linking, and ABlIs, and FFls based on those

The missing link: explaining ELF static linking, semantically, Kell, Mulligan, Sewell. OOPSLA 2016

Open problems:
» Compositional reasoning for real linking

56/67

http://www.cl.cam.ac.uk/~pes20/rems/papers/oopsla-elf-linking-2016.pdf

A stack of fictions

» Arm (or RISC-V or x86) architecture semantics

57/67

A stack of fictions

» fiction of Harvard architecture
» Arm (or RISC-V or x86) architecture semantics

58/67

A stack of fictions

> fiction of virtual memory
» fiction of Harvard architecture
» Arm (or RISC-V or x86) architecture semantics

59/67

A stack of fictions

» fiction of virtual memory, with mapping on demand
> fiction of virtual memory

» fiction of Harvard architecture

» Arm (or RISC-V or x86) architecture semantics

60/67

A stack of fictions

fiction of LB freedom

fiction of virtual memory, with mapping on demand
fiction of virtual memory

fiction of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

61/67

A stack of fictions

fiction of SC for race-free nonatomics

fiction of LB freedom

fiction of virtual memory, with mapping on demand
fiction of virtual memory

fiction of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

62/67

VVvVvVvyVvYVvyYVvyyYy

A stack of fictions

fiction of composable (linkable) object files

fiction of SC for race-free nonatomics

fiction of LB freedom

fiction of virtual memory, with mapping on demand
fiction of virtual memory

fiction of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

63/67

VVV VvV VYV VY

fiction
fiction
fiction
fiction
fiction
fiction

fiction

A stack of fictions

of C (or Rust)

of composable (linkable) object files

of SC for race-free nonatomics

of LB freedom

of virtual memory, with mapping on demand
of virtual memory

of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

64/67

VVvVVvyVvVvyYVvyyYy

>

A stack of fictions

fiction of C (or Rust)

fiction of composable (linkable) object files

fiction of SC for race-free nonatomics

fiction of LB freedom

fiction of virtual memory, with mapping on demand
fiction of virtual memory

fiction of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

Whole-model theorems, or local results?

Each holds only under some assumptions that have to be established by software...

65/67

VVVYyVvVYVvVYVY

| 2

A stack of fictions

fiction of C (or Rust)

fiction of composable (linkable) object files

fiction of SC for race-free nonatomics

fiction of LB freedom

fiction of virtual memory, with mapping on demand
fiction of virtual memory

fiction of Harvard architecture

Arm (or RISC-V or x86) architecture semantics

Whole-model theorems, or local results?

Each holds only under some assumptions that have to be established by software...

Not really a stack...

66/67

Conclusion

Lots of interesting Iris-adjacent open problems!
Interesting tensions among scope, scale, and level of automation

scale

Iris [tomorrow? .-~

\ris now
" / clever

scope /

67/67

