
Open problems from system software verification

Peter Sewell
University of Cambridge

Iris Workshop, Zurich 2024-06-03

This work was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (AdG grant 789108 ELVER), the UK Government Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694), EPSRC programme grant EP/K008528/1 REMS, Arm
Limited, Google, Google DeepMind, Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust, and the Gates Cambridge Trust.
Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-11-C-0249 (“MRC2”),
HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR0011-22-C-0110 (“ETC”), as part of the DARPA CRASH, MRC, and SSITH
research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

1/67

open postdoc position in C verif

Open problems from system software verification

Peter Sewell
University of Cambridge

Iris Workshop, Zurich 2024-06-03

This work was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (AdG grant 789108 ELVER), the UK Government Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694), EPSRC programme grant EP/K008528/1 REMS, Arm
Limited, Google, Google DeepMind, Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust, and the Gates Cambridge Trust.
Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-11-C-0249 (“MRC2”),
HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR0011-22-C-0110 (“ETC”), as part of the DARPA CRASH, MRC, and SSITH
research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

2/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun
▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

3/67

When is it worth doing semantics?

▶ for existing pervasive abstractions

▶ to explore paths to a better world
▶ for fun
▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

4/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world

▶ for fun
▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

5/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

6/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

When is it worth it – and possible – to do verification?

▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

7/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

When is it worth it – and possible – to do verification?

▶ interactive full verification for small critical software – especially systems software

▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale
software

▶ to explore paths to a better world
▶ for fun

8/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

When is it worth it – and possible – to do verification?

▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software

▶ to explore paths to a better world
▶ for fun

9/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

When is it worth it – and possible – to do verification?

▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world

▶ for fun

10/67

When is it worth doing semantics?

▶ for existing pervasive abstractions
▶ to explore paths to a better world
▶ for fun

When is it worth it – and possible – to do verification?

▶ interactive full verification for small critical software – especially systems software
▶ more automated methods (bug-finding analysis, type systems, ...) for larger-scale

software
▶ to explore paths to a better world
▶ for fun

11/67

Can we do semantics for real systems?
(Arm, RISC-V, C, Morello)? (WIP!)

Arm Morello Sequential ISA
Semantics: Sail Morello

Arm Sequential ISA
Semantics: Sail Armv9.4-A

Arm Concurrency Semantics
Relaxed virtual memory

C Semantics
Cerberus

Iris inside!
12/67

Can we do verification for real systems software?
(Arm, RISC-V, C, pKVM, Morello)? (WIP!)

Arm Morello Sequential ISA
Semantics: Sail Morello

Sequential ISA Reasoning
Islaris & whole-ISA Isabelle

Arm Sequential ISA
Semantics: Sail Armv9.4-A

Arm Concurrency Semantics
Relaxed virtual memory

Sequential ISA Reasoning
Islaris & whole-ISA Isabelle

Concurrent Arm Reasoning
Simplified Model & AxSL

C Semantics
Cerberus

Translation Validation and Composition

C separation-logic refinement
types and scalable tooling: CN / RefinedC / VIP

pKVM top-level specification
and proof

Iris inside!
13/67

pKVM and Morello verification people

Cambridge
Peter Sewell
Neel Krishnaswami
Alasdair Armstrong
Rini Banerjee
Thomas Bauereiss
Thomas Fourier
Angus Hammond
David Kaloper-Meršinjak
Dhruv Makwana
Kayvan Memarian
Thibaut Pérami
Christopher Pulte
Thomas Sewell
Ben Simner
Robert Watson

Aarhus
Lars Birkedal
Jean Pichon-Pharabod
Zongyuan Liu

MPI-SWS
Derek Dreyer
Deepak Garg
Michael Sammler→ETH,ISTA
Rodolphe Lepigre
Laila Elbeheiry
Youngju Song
Paul Zhu

Edinburgh
Ian Stark
Ohad Kammar
Brian Campbell
Ricardo Almeida

Radboud
Robbert Krebbers
Ike Mulder
Marc Hermes
Pierre Goutagny
Malo Jaffre

SNU
Chung-Kil (Gil) Hur
Yeji Han
Hyunwoo Lee

Google Android KVM
Will Deacon
Evi Karakozoglou
David Brazdil
Keir Fraser
Quentin Perret
Andrew Scull
Marc Zyngier
...

Google Project Oak
Sarah de Haas
Ben Laurie
Hong-Seok Kim
Jieung Kim

14/67

Can we do verification for real systems software?
(Arm, RISC-V, C, pKVM, Morello)? (WIP!)

Arm Morello Sequential ISA
Semantics: Sail Morello

Sequential ISA Reasoning
Islaris & whole-ISA Isabelle

Arm Sequential ISA
Semantics: Sail Armv9.4-A

Arm Concurrency Semantics
Relaxed virtual memory

Sequential ISA Reasoning
Islaris & whole-ISA Isabelle

Concurrent Arm Reasoning
Simplified Model & AxSL

C Semantics
Cerberus

Translation Validation and Composition

C separation-logic refinement
types and scalable tooling: CN / RefinedC / VIP

pKVM top-level specification
and proof

Iris inside!
15/67

clever

scale

scope

16/67

clever

scale

scope

Iris now

17/67

clever

scale

scope

Iris now

Iris tomorrow?

18/67

Bottom-up

Things we like to pretend are true...

...but aren’t – at the architecture level of abstraction

...can we prove that they’re true, in some circumstances?

19/67

Bottom-up

Things we like to pretend are true...

...but aren’t – at the architecture level of abstraction

...can we prove that they’re true, in some circumstances?

20/67

Programs are executed in order – with a structural operational semantics

In the golden age:

[Program Semantics and mechanized proof, Milner 1976]

Semantics as a transition system of some kind

Defined more-or-less compositionally in the syntactic structure of the program

And we can build program logics for compositional reasoning above that
21/67

But...

22/67

Machine-code programs don’t have a lot of syntactic structure
00006aac: a9be7bfd stp x29, x30, [sp, #-32]!
00006ab0: f9000bf3 str x19, [sp, #16]
00006ab4: 910003fd mov x29, sp
00006ab8: 900000e8 adrp x8, 22000 <overflow_stack+0xef0>
00006abc: 900000e9 adrp x9, 22000 <overflow_stack+0xef0>
00006ac0: f940b113 ldr x19, [x8, #352]
00006ac4: f940b929 ldr x9, [x9, #368]
00006ac8: cb130129 sub x9, x9, x19
00006acc: f140053f cmp x9, #0x1, lsl #12
00006ad0: 54000062 b.cs 6adc <hyp_early_alloc_page+0x30> // b.hs, b.nlast
00006ad4: aa1f03f3 mov x19, xzr <- 00006ad0(b.cc-succ)<fallthrough>
00006ad8: 14000007 b 6af4 <hyp_early_alloc_page+0x48>
>00006adc: 91400669 add x9, x19, #0x1, lsl #12 <- 00006ad0(b.cc)<hyp_early_alloc_page+0x30>
00006ae0: aa1303e0 mov x0, x19
00006ae4: 2a1f03e1 mov w1, wzr
00006ae8: 52820002 mov w2, #0x1000 // #4096
00006aec: f900b109 str x9, [x8, #352]
00006af0: 940047b4 bl 189c0 <__memset>
>00006af4: aa1303e0 mov x0, x19 <- 00006ad8(b)<hyp_early_alloc_page+0x48>,00006af0(bl-succ)<return>
00006af8: f9400bf3 ldr x19, [sp, #16]
00006afc: a8c27bfd ldp x29, x30, [sp], #32
00006b00: d65f03c0 ret

23/67

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:

400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

24/67

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:

400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

How can we reason about that? For arbitrary code:

▶ Proof of “simple” properties about the complete definition, in Isabelle
(Arm Morello and Arm-A)

Verified security for the Morello capability-enhanced prototype Arm architecture. ESOP 2022. Bauereiss,
Campbell, T.Sewell, Armstrong, Esswood, Stark, Barnes, Watson, Sewell.

25/67

http://www.cl.cam.ac.uk/~pes20/morello-proofs-esop2022.pdf

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:

400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

How can we reason about that? For known code:

▶ Isla symbolically evaluates the semantics of individual instructions, wrt constraints on the
opcode, register values, etc., to tree-structured traces of register/memory events and
SMT constraints

▶ instantiate Iris with an embedding of that (with an opsem) in Rocq
▶ adapt Lithium separation logic programming automation

Islaris: Verification of Machine Code Against Authoritative ISA Semantics. PLDI 2022. Sammler, Hammond,
Lepigre, Campbell, Pichon-Pharabod, Dreyer, Garg, Sewell

26/67

http://www.cl.cam.ac.uk/~pes20/2022-pldi-islaris.pdf

Machine instructions aren’t simple atomic primitives

Arm definition of the intra-instruction behaviour, of each instruction in isolation:

400k lines of ASL/Sail

(a first-order program that does uninterpreted register and memory accesses)

How do we make such a huge definition manageable?

Find or invent narrow interfaces: instructions register/memory interface events

Build automation: Isabelle / Isla / Islaris proof automation

27/67

Machine instructions aren’t simple atomic primitives

Inductive trace_label : Set :=
| LReadReg (r : sail_name) (al : accessor_list) (v : valu)
| LWriteReg (r : sail_name) (al : accessor_list) (v : valu)
| LReadMem (data : valu) (kind : valu) (addr : valu) (len : N) (tag : tag_value)
| LWriteMem (res : valu) (kind : valu) (addr : valu) (data : valu) (len : N) (tag : tag_value)
| LBranchAddress (v : valu)
| LBranch (c : Z) (desc : string)
| LDone (next : isla_trace)
| LAssert (b : bool)
| LAssume (b : bool)
| LAssumeReg (r : sail_name) (al : accessor_list) (v : valu)

(simple version, as in Islaris, for non-systems-architecture things)

28/67

Machine instructions aren’t simple atomic primitives

Open problems:
▶ Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)

▶ For interactive proof, make Islaris more usable – wrt both understanding Isla traces and
the proof automation

▶ For larger-scale automated proof, to use as part of other verification tooling, make the
automation scale

▶ For more foundational proof, replicate Isla symbolic evaluation inside Rocq, for the
Sail-to-Rocq generated version of the semantics (or a deep-embedding variant thereof)?

29/67

Machine instructions aren’t simple atomic primitives

Open problems:
▶ Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)
▶ For interactive proof, make Islaris more usable – wrt both understanding Isla traces and

the proof automation

▶ For larger-scale automated proof, to use as part of other verification tooling, make the
automation scale

▶ For more foundational proof, replicate Isla symbolic evaluation inside Rocq, for the
Sail-to-Rocq generated version of the semantics (or a deep-embedding variant thereof)?

30/67

Machine instructions aren’t simple atomic primitives

Open problems:
▶ Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)
▶ For interactive proof, make Islaris more usable – wrt both understanding Isla traces and

the proof automation
▶ For larger-scale automated proof, to use as part of other verification tooling, make the

automation scale

▶ For more foundational proof, replicate Isla symbolic evaluation inside Rocq, for the
Sail-to-Rocq generated version of the semantics (or a deep-embedding variant thereof)?

31/67

Machine instructions aren’t simple atomic primitives

Open problems:
▶ Can we do whole-ISA proof in Rocq, to avoid gluing two provers? (Or Iris in Isabelle...)
▶ For interactive proof, make Islaris more usable – wrt both understanding Isla traces and

the proof automation
▶ For larger-scale automated proof, to use as part of other verification tooling, make the

automation scale
▶ For more foundational proof, replicate Isla symbolic evaluation inside Rocq, for the

Sail-to-Rocq generated version of the semantics (or a deep-embedding variant thereof)?

32/67

Machine instructions aren’t simple atomic primitives

In progress (Brian Campbell) – Improving shallow embedding:
▶ Addressing efficiency problems (e.g., equality for large enums)
▶ Simpler, type safe register and sequential register state representations
▶ Support for coq-record-update
▶ More stdpp support soon

Deep embedding:
▶ Dominique Devriese’s team experimenting with a backend for their Katamaran tool

33/67

Programs don’t execute in order

34/67

Hardware execution – and abstract-microarchitectural operational models

Hardware thread states

partially and tentatively executed instruction

completely executed and committed instruction

Storage state

a:W 0x0000 = 0x17

b:W 0x0010 = 0x78

c:W 0xc058 = 0x76
. . .

reads/writes

responses

Transition system – but with explicit out-of-order and speculative execution, with restarts

Defined only for whole programs

35/67

After the dust settles – and in axiomatic models

Hardware thread architectural executions

completely executed and committed instruction

discarded instruction

Storage state

Axiomatic models are predicates on candidate complete execution graphs

Defined only for whole programs and complete executions

36/67

Executions aren’t incremental (in any obvious way)

Totally non-compositional: not merely whole-program, but also whole-complete-execution

Intrinsically so: because LB is allowed, a program-order prefix of an allowed execution may
not be even a well-formed candidate.

LDR X0,[X1] r0=x//a
STR X2,[X3] y =1//b

Thread 0
LDR X0,[X1] r0=y//c
STR X2,[X3] x =1//d

Thread 1

Initial state: 0:X3=y; 0:X2=1; 0:X1=x; 0:X0=0;

1:X3=x; 1:X2=1; 1:X1=y; 1:X0=0; y=0; x=0;

LB AArch64

Allowed: 0:X0=1; 1:X0=1;

LDR

X0

,[

X1

]

r0

=

x

R x=1a:STR

X2

,[

X3

]

y

=1

W y=1b:

Thread 0

po
LDR

X0

,[

X1

]

r0

=

y

R y=1c:STR

X2

,[

X3

]

x

=1

W x=1d:

Thread 1

porfrf

37/67

Can we reason compositionally about Arm or RISC-V relaxed concurrency?
AxSL Iris program logic for Arm-A user relaxed concurrency, POPL 2024
Angus Hammond1, Zongyuan Liu1, Thibaut Pérami, Peter Sewell, Lars Birkedal, Jean Pichon-Pharabod

How, given LB? Instantiate Iris with strange operationalisation of the axiomatic model: guess
a complete memory-model-consistent candidate, then check each thread in program order

Open problems:
▶ (Zongyuan in progress) extend to mixed ob+coherence
▶ extend with other Arm features (mixed-size, ...)
▶ glue the AxSL logic onto the real Arm instruction-set semantics
▶ establish “fiction of sequential consistency” – local DRF-SC for real Arm
▶ establish “fiction of LB freedom”
▶ make usable for hand proofs of larger small examples
▶ make target for automated proofs of real code
▶ use the same idea for other axiomatic relaxed models
▶ what does the underlying Iris model look like for this instantiation?

38/67

https://www.cl.cam.ac.uk/~pes20/axsl-popl-2024.pdf

Can we reason compositionally about Arm or RISC-V relaxed concurrency?
AxSL Iris program logic for Arm-A user relaxed concurrency, POPL 2024
Angus Hammond1, Zongyuan Liu1, Thibaut Pérami, Peter Sewell, Lars Birkedal, Jean Pichon-Pharabod

How, given LB? Instantiate Iris with strange operationalisation of the axiomatic model: guess
a complete memory-model-consistent candidate, then check each thread in program order

Open problems:
▶ (Zongyuan in progress) extend to mixed ob+coherence
▶ extend with other Arm features (mixed-size, ...)
▶ glue the AxSL logic onto the real Arm instruction-set semantics
▶ establish “fiction of sequential consistency” – local DRF-SC for real Arm
▶ establish “fiction of LB freedom”
▶ make usable for hand proofs of larger small examples
▶ make target for automated proofs of real code
▶ use the same idea for other axiomatic relaxed models
▶ what does the underlying Iris model look like for this instantiation?

39/67

https://www.cl.cam.ac.uk/~pes20/axsl-popl-2024.pdf

Can we reason compositionally about Arm or RISC-V relaxed concurrency?

How do we make such a subtle definition manageable?

Find or invent narrow interfaces:
▶ instructions register/memory interface events
▶ program logic over those
▶ derived rules for instructions

40/67

Can we reason compositionally about Arm or RISC-V relaxed concurrency?

41/67

Systems semantics

▶ instruction fetch
▶ virtual memory
▶ exceptions

42/67

Programs

43/67

Programs don’t exist
Self-modifying code: dynamic loading, linking, patching, and just-in-time compilation

STR W0,[X1] //overwrite f with branch
DC CVAU,X1 //clean data cache
DSB ISH
IC IVAU,X1 //invalidate instruction cache
DSB ISH
ISB //flush pipeline
BL f
MOV X0,X10

Thread 0
f: B l0
l1: MOV X10,#2
RET
l0: MOV X10,#1
RET

Common
Initial state: 0:W0="B l1", 0:X1=f
SM+cachesync-isb AArch64

Forbidden: 1:X0=1

write f=|B l1|a:

|ISB|b:

fetch f=|B l0|c:

Thread 0

cachesync

isb
irf

ARMv8-A system semantics: instruction fetch in relaxed architectures.
Simner, Flur, Pulte, Armstrong, Pichon-Pharabod, Maranget, Sewell. ESOP 2020

Open problems:
▶ how can we reason about self-modifying code?
▶ establish the “fiction of Harvard architecture”: for programs that don’t write to any

address they fetch from, one can ignore ifetch

44/67

https://www.cl.cam.ac.uk/~bs630/files/publications/2020-ESOP-ifetch.pdf

Memory addresses don’t mean what you think
...virtual addresses and address translation

...which again needs careful discipline by system software, with enough synchronisation and
TLB invalidation, to avoid unpredictable behaviour and to enforce security

Relaxed virtual memory in Armv8-A. Simner, Armstrong, Pichon-Pharabod, Pulte,
Grisenthwaite, Sewell. ESOP 2022

CoFF
write f=B l1a:

Thread 0
fetch f=B l1b:

fetch f=B l0c:

Thread 1

irf
fpo

irf
CoFR

write f=B l1a:
Thread 0

fetch f=B l1b:

fetch LDR X1,[X2]c:

read f=B l0d:

Thread 1
irf

fpo

ferf

CoRF+ctrl-isb
write f=B l1a:

Thread 0
read f=B l1b:

fetch f=B l0c:

Thread 1
rf

ctrl+isb
irf

MP.RF+dmb+ctrl-isb
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

ISBd:

fetch f=B l0e:

Thread 1
dmb rf ctrl

isb
irf

MP.FR+dmb+fpo-fe
write x=1a:

write f=B l1b:

Thread 0
fetch f=B l1c:

fetch LDR X1,[X2]d:

read x=0e:

Thread 1
dmb irf fpo

fe

SM
write f=B l1a:

fetch f=B l0b:

Thread 0
ifr

irf

SM+cachesync-isb
write f=B l1a:

ISBb:

fetch f=B l0c:

Thread 0
cachesync

isb
irf

MP.RF+cachesync+ctrl-isb
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

ISBd:

fetch f=B l0e:

Thread 1
cachesync rf ctrl

isb
irf

MP.FF+dmb+fpo
write f1=B l1a:

write f2=B l1b:

Thread 0
fetch f2=B l1c:

fetch f1=B l0d:

Thread 1
dmb fpoirf

irf

MP.FF+cachesync+fpo
write f1=B l1a:

write f2=B l1b:

Thread 0
fetch f2=B l1c:

fetch f1=B l0d:

Thread 1
cachesync fpoirf

irf

ISA2.F+dc-dmb+dsb-ic-dsb+ctrl-isb
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

write y=1d:

Thread 1
read y=1e:

ISBf:

fetch f=B l0g:

Thread 2
dcsync icsync ctrl

isb

rf rf

ifr

MP.RF+cachesync+addr
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

fetch f=B l0d:

Thread 1
cachesync rf addr

irf

MP.RF+cachesync+ctrl
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

fetch f=B l0d:

Thread 1
cachesync rf ctrl

irf

WRC.F.RR+po+dmb
write f=NOPa:

Thread 0
fetch f=NOPb:

write x=1c:

Thread 1
read x=1d:

read f=B l0e:

Thread 2
irf

po rf dmb

fr

MP.RFF+dc-dsb+ctrl-isb-isb
write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l2e:

fetch g=B l1f:

fetch g=B l0g:

Thread 1
po

dcsync

ctrl+isb

isb

isb

rf

irf

irf

irf

SM.F+ic

write f=B l1a:

read x=1b:

ISBc:

fetch f=B l0d:

Thread 0
fetch f=B l1e:

write x=1f:

Thread 1
po

ctrl

isb

irf

icsync

rf

irf

FOW
write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l1e:

Thread 1
read x=1f:

fetch g=B l0g:

Thread 2
po

icsync

ctrl+isb ctrl+isbirf

rf
rf

irf

MP.R.RF+addr-cachesync+dmb+ctrl-isb
read z=1a:

write g=B l1b:

DC gc:

write y=1d:

Thread 0
read g=B l1e:

write g=B l2f:

write z=1g:

Thread 1
read y=1h:

fetch g=B l1i:

Thread 2
po

po

icsync

addr
po

dmb

ctrl+isbrf
rf

rf

irf

MP.RRF+dmb+addr-cachesync-isb
write f=B l1a:

write x=1b:

Thread 0
read x=1c:

read z=0d:

ISBe:

fetch f=B l0f:

Thread 1
dmb rf addr

cachesync

isb

ifr

CoRF+cachesync-isb
write f=B l1a:

Thread 0
read f=B l1b:

DC fc:

IC fd:

ISBe:

fetch f=B l0f:

Thread 1
po

dsb

dsb

isb

rf

ifr

MP+dmb+addr-dc
write x=1a:

write y=1b:

Thread 0
read y=1c:

DC xd:

read x=0e:

Thread 1
dmb addr

po

rf

fr

SB+scls
write x=1a:

read x+4=0b:

Thread 0
write x+4=1c:

read x=0d:

Thread 1
scl sclfr

fr

SM+sclcachesync-isb
write f=B l1a:

DC gb:

IC gc:

ISBd:

fetch f=B l0e:

Thread 0
scl

dsb

dsb

isb

ifr

scl

scl

SM8+sclcachesync-isb
write f[0]=B l1[0]a:

write f[1]=B l1[1]b:

write f[2]=B l1[2]c:

write f[3]=B l1[3]d:

DCe:

DCf:

ISBg:

fetch f=B l0h:

Thread 0
po

po

po

scl

dsb

dsb

isb

ifr
ifr

ifr
ifr

scl

scl
scl

SM+mixed
fetcha: write f[3]=B l1[3]b:

fetch fc:

Thread 0
fe

fpo

W+F+mixed
write f[3]=B l1[3]a:
Thread 0

fetch fb:
Thread 1 WRC.F.RR+po+dmb

write f=NOPa:
Thread 0

fetch f=NOPb:

write x=1c:

Thread 1
read x=1d:

read f=B l0e:

Thread 2
irf

po rf dmb

fr

Thread 0

a2: Fault (W)a1: T s1:l3pte(x)

b: R y/pa1 = 0x1

c: W z/pa2 = 0x1

d: dsb sy

e: W 0x303000/s1:l3pte(x) = 0x0

f: dsb sy

g: TLBI VALE1IS page=page(x)

h: dsb sy

i: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

j: eret

k2: W pa2 = 0x2k1: T s1:l3pte(x)

coco

Thread 0

a: W x/pa1 = 0x1

b: R y/pa1 = 0x0

rf po

Thread 0

a: W x/pa1 = 0x1

Thread 1

b: R x/pa1 = 0x1

c: R y/pa1 = 0x0

rf po
rf

Thread 0

a: W u/pa1 = 0x1

Thread 1

b: W v/pa1 = 0x2

Thread 2

c: R w/pa1 = 0x1

d: R x/pa1 = 0x2

Thread 3

e: R y/pa1 = 0x2

f: R z/pa1 = 0x1

po po
co

rf

rf

rf

rf

Thread 0

a: W x/pa1 = 0x1

b: R z/pa1 = 0x1

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: dmb sy

f: R x/pa1 = 0x0

porf

po

podata

porf

rf

Thread 0

a: W z/pa3 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W x/pa1 = 0x1

f: R w/pa1 = 0x1

g: R z/pa3 = 0x0

po

rf

poctrl

ctrl

ctrl

addr po

po

rf
rf po

MP.alias+pos

Thread 0

a: W x/pa1 = 0x1

b: W y/pa1 = 0x1

Thread 1

c: R y/pa1 = 0x1

d: R x/pa1 = 0x0

rf po
rf

co po

CoWTf.inv+po

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

po

trf

iio

po

CoRpteTf.inv+po

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf po

iio

rf

LB.TT.inv+pos

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303008/s1:l3pte(y) = mkdesc(addr=page(pa1))

Thread 1

c2: R y/pa1 = 0x1c1: T s1:l3pte(y)

d: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio iio
po potrf

trf
CoTW1.inv

Thread 0

a2: R x/pa1 = 0x1a1: T s1:l3pte(x)

b: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

iio
po

trf

CoWTf.inv+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

CoTTf.inv+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

iio
po

iio

trf

CoRpteTf.inv+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: isb

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po

po

po

trf

po

iio

rf

CoTTf.inv+ctrl-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: isb

d2: Fault (R)d1: T s1:l3pte(x)

e: eret

po

po

trf

iio
poctrl

ctrl

ctrl

iio

trf

CoRpteTf.inv+addr

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

trf
addr

po

iio

rf

CoWTf.inv+dmb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c2: Fault (R)c1: T s1:l3pte(x)

d: eret

po

po

trf

iio

po

MP.RTf.inv+dmb+ctrl

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e2: Fault (R)e1: T s1:l3pte(x)

f: eret

po po

trf ctrlpo

ctrliio

po

rf
MP.RT.inv+dmb+ctrl-trfi

Thread 0

a: W x/pa1 = 0x1

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d: R y/pa2 = 0x1

e: W 0x303000/s1:l3pte(w) = mkdesc(addr=page(pa1))

f2: R w/pa1 = 0x0f1: T s1:l3pte(w)

po rf

ctrl

ctrl po

iio

po

rf

trf
po

WRC.TRTf.inv+po+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: isb

g2: Fault (R)g1: T s1:l3pte(x)

h: eret

po

po

po

trf

iio
popo

iio

trf

rf

WRC.RRTf.inv+dmb+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

c: dsb sy

d: W y/pa2 = 0x1

Thread 2

e: R y/pa2 = 0x1

f: dsb sy

g: isb

h2: Fault (R)h1: T s1:l3pte(x)

i: eret

po po

po

po

trf

popo

iio

rf

rf

WRC.TRR.inv+po+dsb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

b2: R x/pa1 = 0x1b1: T s1:l3pte(x)

c: W y/pa2 = 0x1

Thread 2

d: R y/pa2 = 0x1

e: dsb sy

f: R 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

po

iio
popo

trf

rf

rf

ROT.inv+dsb

Thread 0

a: W 0x283000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: dsb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: Fault (R)d2: T new table:l3pte(x)d1: T s1:l2pte(x)

e: eret

po

po

trf

iio iio
po

trf

CoWinvT+po

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b2: R x/pa1 = 0x0b1: T s1:l3pte(x)

trf

iio

po

CoWinvT+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: R x/pa1 = 0x0d1: T s1:l3pte(x)

po

potrf

iio

po

MP.RT.inv+poloc-dmb+ctrl-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x303000/s1:l3pte(x) = 0x0

c: dmb sy

d: W y/pa2 = 0x1

Thread 1

e: R y/pa2 = 0x1

f: isb

g2: R x/pa1 = 0x0g1: T s1:l3pte(x)

po

po

poctrl

ctrl

iio

copo

trf
po

rf

CoTfT+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

Thread 1

b2: Fault (R)b1: T s1:l3pte(x)

c: eret

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

iiotrf

MP.RTT.inv3+dmb-dmb+dsb-isb

Thread 0

a: W 0x302018/0x302018 = 0x0

b: dmb sy

c: W 0x303000/0x303000 = mkdesc(addr=page(pa1))

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i3: R x/pa1 = 0x0i2: T 0x303000i1: T 0x302018

po po

po

po

trf

po

iio iio

po

po

trf
rf

ROT.invs1+dmb2

Thread 0

a: W 0x203000/s2:l3pte(x) = mkdesc(addr=page(pa1))

b: dmb sy

c: W 0x203000/s2:l3pte(x) = 0x0

d: dmb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa1))

Thread 1

f3: R x/pa1 = 0x1f2: T s2:l3pte(x)f1: T s1:l3pte(x)

po

po

iio iio

co

po

trf

po
trf

ROT.inv2+dmb

Thread 0

a: W 0x283000/new table:l3pte(x) = 0x0

b: dmb sy

c: W 0x302018/s1:l2pte(x) = mkdesc(AF=0x1, AP=0x1, addr=0x283)

Thread 1

d3: R x/pa1 = 0x0d2: T new table:l3pte(x)d1: T s1:l2pte(x)

po

trf

iio iio
po

trf

RUE+isb

Thread 0

a: W 0x2c4000/new table:l3pte(x) = mkdesc(addr=page(pa1))

b: W 0x2c4000/new table:l3pte(x) = 0x0

c: l0pte(x))

d: isb

e2: R x/pa1 = 0x0e1: T new table:l3pte(x)

po

po

iio

trf

co po

po

CoWinvT.EL1+dsb-tlbi-dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1 page=page(x)

d: dsb sy

e: isb

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

potrf

iio

po

CoWinvT.EL1+tlbi-dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: TLBI VAE1 page=page(x)

c: dsb sy

d: isb

e2: R x/pa1 = 0x0e1: T s1:l3pte(x)

po

po

potrf

iio

po

MP.RT.EL1+dsb-tlbiis-dsb+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T s1:l3pte(x)

po

po po

po

po

trf

po

iio

po

rf

RBS+dsb-tlbiis-dsb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: R x/pa1 = 0x2f1: T s1:l3pte(x)

po

po

po

trf

iio
po

rf

RBS+dsb-tlbiis-dsb+poloc

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W y/pa1 = 0x2

Thread 1

f2: Fault (R)f1: T s1:l3pte(x)

g: eret

h2: R x/pa1 = 0x0h1: T s1:l3pte(x)

po

po

po

po

potrf rf

iio

iio

trf
po

MP.RT.EL2+dsb-tlbiipais-dsb+dsb-isb

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: W z/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: R x/pa1 = 0x0i1: T 0x203000

po

popo

po

po

trf

po

iio

po

rf

MP.RT.EL2+dsb-tlbiipais-dsb-tlbiis-dsb+dsb-isb

Thread 0

a: W 0x203000/0x203000 = 0x0

b: dsb sy

c: TLBI IPAS2E1IS page=page(ipa1)

d: dsb sy

e: TLBI VMALLE1IS vmid=0x0

f: dsb sy

g: W z/pa2 = 0x1

Thread 1

h: R y/pa2 = 0x1

i: dsb sy

j: isb

k2: R x/pa1 = 0x0k1: T 0x203000

po

po

popo

po

po

po

trf

po

iio

po

rf

BBM+dsb-tlbiis-dsb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: TLBI VAE1IS page=page(x)

d: dsb sy

e: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

Thread 1

f2: R x/pa1 = 0x0f1: T s1:l3pte(x)

po

po

po

trf

iio
po

co

CoWinvTp.ro+dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = 0x0

b: dsb sy

c: isb

d2: Fault (W)d1: T s1:l3pte(x)

e: eret

po

po

po

trf

iio

po

MP.RTpT.ro+dmb-dmb+dsb-isb-dsb-isb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(AP=0x3, addr=page(pa1))

b: dmb sy

c: W 0x303000/s1:l3pte(x) = 0x0

d: dmb sy

e: W y/pa2 = 0x1

Thread 1

f: R y/pa2 = 0x1

g: dsb sy

h: isb

i2: Fault (R)i1: T s1:l3pte(x)

j: eret

k: dsb sy

l: isb

m2: R x/pa1 = 0x0m1: T s1:l3pte(x)

po

po

po

po po

po

po po

trf

iio

po

iio

co
trf

po

po

rf

RMD+dmb

Thread 0

a: W 0x303000/s1:l3pte(x) = mkdesc(addr=page(pa2))

b: dmb sy

c: W y/pa2 = 0x1

Thread 1

d2: R x/pa2 = 0x1d1: l3pte(x)

po

trf

iiotrf
po

rf

[From Ben Simner draft thesis]
45/67

http://www.cl.cam.ac.uk/users/pes20/RelaxedVM-Arm/RelaxedVM-Arm-esop2022.pdf

Memory addresses don’t mean what you think
...virtual addresses and address translation

Open problems:
▶ (Ben, Jean, Kayvan, David, ThomasF, Yeji, Peter) Can one test that systems s/w follows

that discipline?
▶ (Thibaut, Brian, Ben, ThomasB) Can one integrate ISA + VM semantics and prove it

provides the “fiction of virtual memory” : for programs that don’t write to the memory
holding their address-translation mappings, one can ignore address translation

▶ (Christopher et al.) Can one reason compositionally about the sequential aspects of the
code that manages page tables?

▶ Can one reason compositionally about the relaxed concurrent semantics of virtual
memory management?

46/67

Machines don’t just execute instructions – there are exceptions

Synchronous exceptions, for system calls, page faults, etc.
Asynchronous exceptions, for timers, devices, inter-processor interrupts

Open problems:
▶ (Ben, Jean, Ohad, Peter) How do they behave?
▶ Can we reason about them?
▶ ...e.g., for the “fiction of virtual memory with mapping on demand”, by the OS or

hypervisor, on page faults

47/67

Almost enough foundations for actual systems software...?
▶ instruction semantics
▶ “user” relaxed concurrency
▶ instruction fetch
▶ virtual memory
▶ exceptions
▶ GIC
▶ IOMMU (SMMU)
▶ other SoC aspects

48/67

Almost enough foundations for actual systems software...?
▶ instruction semantics
▶ “user” relaxed concurrency
▶ instruction fetch
▶ virtual memory
▶ exceptions
▶ GIC
▶ IOMMU (SMMU)
▶ other SoC aspects

Open problems:
▶ (Thibaut etc.) build integrated semantics
▶ build integrated program logic, sufficient in principle for reasoning at the machine-code

level about everything pKVM does

49/67

Top-down: what about systems C code

Arm Sequential ISA
Semantics: Sail Armv9.4-A

Arm Concurrency Semantics
Relaxed virtual memory

Sequential ISA Reasoning
Islaris & whole-ISA Isabelle

Concurrent Arm Reasoning
Simplified Model & AxSL

C Semantics
Cerberus

C separation-logic refinement
types and scalable tooling: CN / RefinedC / VIP

pKVM top-level specification
and proof

Iris inside!
50/67

Ongoing C verification experiments open postdoc position

CN:
▶ Verifying systems C code with separation-logic refinement types. POPL 2023.

Pulte, Makwana, T. Sewell, Memarian, P. Sewell, Krishnaswami.

Aimed at predictable SMT-based proof automation, above Cerberus semantics.
Used for pKVM page_alloc.c buddy allocator and some pgtable.c safety proof

RefinedC:
▶ RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types

Sammler, Lepigre, Krebbers, Memarian, Dreyer, Garg. PLDI2021 (VIP POPL2022, BFF OOPSLA2022).

In Rocq with Lithium proof automation, using Cerberus front-end and a simplified C semantics.
Demo’d on small examples.

51/67

https://www.cl.cam.ac.uk/~pes20/cn-draft.pdf
https://plv.mpi-sws.org/refinedc/paper.pdf
http://www.cl.cam.ac.uk/users/pes20/2022-popl-vip.pdf
https://plv.mpi-sws.org/refinedc/bff/

Ongoing C verification experiments open postdoc position

CN carefully limits the specification language, for predictable SMT-based proof automation,
and for testing, with fall-back to Rocq where needed

Open problems:
▶ How far can we make CN usable by non-prover-experts?
▶ Bitvectors vs integers?
▶ Exercise CN on more big examples
▶ ...does that limited expressiveness continue to suffice?
▶ Extend the CN program logic with concurrency and the underlying Arm systems features
▶ Define an Iris instantiation for CN-exported lemmas about resources
▶ Better user experience at the CN-automation / Rocq-proof boundary

(conceivably, embed the same idea in Rocq?)

▶ Make more foundational by generating (RefinedC-like?) proof scripts
(needs Cerberus Core in Rocq)

52/67

Ongoing C verification experiments open postdoc position

How do we make such a huge and subtle definition manageable?

Find or invent narrow interfaces: C Core

...use the semantics directly in the verification tool

53/67

Relating C and binary

Open problem:
▶ translation validation for verified (systems) code

First experiment, from CN to Islaris: 2023 Mete Polat TUM/UCam Masters thesis

...use something like Islaris in an automated flow?

54/67

How are programs actually composed?

▶ With syntactic language constructs

▶ With static and dynamic linking, and ABIs, and FFIs based on those

The missing link: explaining ELF static linking, semantically, Kell, Mulligan, Sewell. OOPSLA 2016

Open problems:
▶ Compositional reasoning for real linking

55/67

http://www.cl.cam.ac.uk/~pes20/rems/papers/oopsla-elf-linking-2016.pdf

How are programs actually composed?

▶ With syntactic language constructs
▶ With static and dynamic linking, and ABIs, and FFIs based on those

The missing link: explaining ELF static linking, semantically, Kell, Mulligan, Sewell. OOPSLA 2016

Open problems:
▶ Compositional reasoning for real linking

56/67

http://www.cl.cam.ac.uk/~pes20/rems/papers/oopsla-elf-linking-2016.pdf

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture

▶ Arm (or RISC-V or x86) architecture semantics

57/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory

▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

58/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand

▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

59/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom

▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

60/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics

▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

61/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files

▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

62/67

A stack of fictions

▶ fiction of C (or Rust)

▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

63/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

64/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

Whole-model theorems, or local results?
Each holds only under some assumptions that have to be established by software...

65/67

A stack of fictions

▶ fiction of C (or Rust)
▶ fiction of composable (linkable) object files
▶ fiction of SC for race-free nonatomics
▶ fiction of LB freedom
▶ fiction of virtual memory, with mapping on demand
▶ fiction of virtual memory
▶ fiction of Harvard architecture
▶ Arm (or RISC-V or x86) architecture semantics

Whole-model theorems, or local results?
Each holds only under some assumptions that have to be established by software...
Not really a stack...

66/67

Conclusion
Lots of interesting Iris-adjacent open problems!
Interesting tensions among scope, scale, and level of automation

clever

scale

scope

Iris now

Iris tomorrow?

67/67

