
Timing UDP: mechanized semantics
for sockets, threads and failures

Keith Wansbrough Michael Norrish Peter Sewell Andrei Serjantov

Computer Laboratory, University of Cambridge

{First.Last}@cl.cam.ac.uk
www.cl.cam.ac.uk/users/pes20/Netsem

Abstract. This paper studies the semantics of failure in distributed
programming. We present a semantic model for distributed programs
that use the standard sockets interface; it covers message loss, host failure
and temporary disconnection, and supports reasoning about distributed
infrastructure. We consider interaction via the UDP and ICMP protocols.
To do this, it has been necessary to: • construct an experimentally-
validated post-hoc specification of the UDP/ICMP sockets interface;
• develop a timed operational semantics with threads, as such programs
are typically multithreaded and depend on timeouts; • model the be-
haviour of partial systems, making explicit the interactions that the in-
frastructure offers to applications; • integrate the above with semantics
for an executable fragment of a programming language (OCaml) with OS
library primitives; and • use tool support to manage complexity, mecha-
nizing the model with the HOL theorem prover. We illustrate the whole
with a module providing näıve heartbeat failure detection.

1 Introduction

Distributed systems are – almost by definition – concurrent and subject to partial
failure; many are also subject to malicious attack. This complexity makes it
hard to achieve a clear understanding of their behaviour based only on informal
descriptions, in turn making it hard to build robust systems. This paper reports
on work towards a rigorous treatment of distributed programming. We have
constructed a operational semantics which makes it possible to reason about
distributed programs, written in general-purpose programming languages, using
standard communication primitives, and in the presence of failure. Developing a
model that covers enough of the distributed phenomena (sufficiently accurately)
to do this has required a number of problems to be addressed; we introduce them
below, sketching our contribution to each.

As a preliminary, we must select the communication abstractions to consider.
Interactions between machines can be viewed at many levels. We are primarily
interested in the abstractions provided by the standard TCP, UDP and ICMP
protocols above IP, for two reasons. Firstly, they are ubiquitous: almost all dis-
tributed interaction is ultimately mediated by them. More particularly, we want

Appears in European Symposium on Programming (ESOP 2002), Grenoble, April 2002,
LNCS 0000. c©2002 Springer–Verlag.



2 Wansbrough, Norrish, Sewell, and Serjantov

a model that accurately reflects the information about failure that is available
to the application programmer – at the level of these protocols, the failure be-
haviour can be seen clearly. This should provide a solid basis for the design, ver-
ification and implementation of higher-level distributed abstractions. To inves-
tigate feasibility and techniques, we consider unicast UDP (providing unreliable
asynchronous messages) and the associated ICMP messages (providing various
error reporting); we do not touch on the more complex TCP (providing reliable
streams). The protocols themselves are defined in RFCs [Pos80,Pos81,Bra89].

1.1 Sockets and Experimental Semantics An application programmer must un-
derstand not only the protocols, which for UDP and ICMP are relatively simple,
but also the sockets interface [CSR83,IEE00,Ste98] to the operating system code
that implements them. The behaviour of this interface is complex and not well
documented (to the best of our knowledge there exist only informal natural-
language documents, covering common behaviour but not precise, complete or
correct). It is not feasible to analyse the sockets code and hence derive a seman-
tics, nor is it feasible to alter the widely-deployed implementations. We must
therefore produce a post-hoc specification with an experimental semantics ap-
proach: experimentally determining the behaviour of particular implementations.

1.2 Failure and Time Addressing failure requires two things. Firstly, we must
model the actual failures – in this paper, we consider message loss and dupli-
cation, crash failure of hosts, and connection/disconnection of hosts from the
network. More interestingly, we must be able to reason about the behaviour
of programs that cope with failure. UDP communication is asynchronous, so
these programs typically use timeouts, e.g. in calls to select. To model these
accurately we use a timed operational semantics, involving time bounds for cer-
tain operations. Some operations have both a lower and upper bound (message
propagation); some must happen immediately (recvfrom must return as soon
as a message arrives); and some have an upper bound but may occur arbitrar-
ily quickly (an OS return). For some of these requirements time is essential,
and for others time conditions are simpler and more tractable than the corre-
sponding fairness conditions [LV96, §2.2.2]. We draw on earlier work on timed
automata [SGSAL98] and process calculi here, but have kept the semantics as
lightweight as possible – in part, by building in a local receptiveness property.

1.3 Infrastructure Properties: Partial Systems and Threads We are particu-
larly interested in implementations of distributed infrastructure (or middleware),
rather than complete distributed systems, as a rigorous approach should be more
fruitful in the former. This means that the semantics must be able to describe
the behaviour of partial systems, consisting of a module that provides some
abstraction to higher-level application code (e.g. a library for ‘reliable’ commu-
nication), instantiated on many machines. Interesting infrastructure usually also
requires intra-machine concurrency in the form of threads (at minimum, one for
the infrastructure and one for the application). Our model includes threads and
simple modules, making explicit the possible interactions offered to a distributed
application by per-machine instances of an infrastructure module.



Timing UDP: mechanized semantics for sockets, threads and failures 3

1.4 Executable Code: Language Independence and MiniCaml We aim to reason
about executable code, written in general-purpose programming languages. This
contrasts with work on distributed algorithm verification, in which algorithms are
usually described in pseudocode or in automata or calculi tuned for verification;
it should reduce the ‘semantic gap’ between verified algorithm and actual system.
Most of what we model, however, is language-independent. We therefore factor
the semantics, regarding infrastructure modules as labelled transition systems
(LTSs) of a certain form. The standard operational semantics of a variety of
languages can be extended to give such LTSs. We do so for MiniCaml, a fragment
of OCaml [L+01]. MiniCaml’s types include the standard built-in bool, int, string,
tuples, lists, references, exceptions, and functions, together with types required
for networking (e.g., fd, ip, port, etc.) The constructors, values, expressions and
patterns are as one might expect, as are the typing rules. The dynamic semantics
extends a standard operational semantics with labelled transitions for system
calls, and by specifying the behaviour of modules. We have implemented an
OCaml module that provides exactly the system calls of the model, so MiniCaml
programs can be compiled with the standard ocamlopt compiler.

1.5 Semantic Complexity and HOL Mechanization As one can imagine, the
need to deal simultaneously with sockets, failure, time, modules and threads has
led to large definitions. The most complex part, for sockets, has been validated
experimentally. To keep the whole internally consistent, we resort to automated
tools. The entire definition (except for the MiniCaml semantics) has been ex-
pressed in the HOL theorem proving system [GM93], which we are using to check
various sanity properties. The HOL and MiniCaml code in this paper has been
automatically typeset from the sources using special-purpose tools. Mechaniza-
tion identified a number of errors in earlier drafts of the semantics. The process
has also been a useful stress-test of the HOL implementation.

1.6 Overview The remainder of this paper contains a brief introduction to
UDP sockets, outlines the static and dynamic structure of the model, discusses
its experimental validation and HOL mechanization, and analyses a simple heart-
beat example in MiniCaml. Most details are perforce omitted; they will be in
a forthcoming technical report. The HOL definitions are available electronically
[WNSS01]. This work is a continuation of that reported in [SSW01a,SSW01b],
which did not address time, threads, modules or mechanization.

2 Background

2.1 The Protocols At the level of abstraction of our model, a network consists
of a number of machines connected by a combination of LANs (e.g. ethernets)
and routers. Each machine has one or more IP addresses i , which are 32-bit
values such as 192.168.0.11. The Internet Protocol (IP) allows one machine to
send messages (IP datagrams) to another, specifying the destination by one of
its IP addresses. IP datagrams have the form IP(i1, i2, body), where i1 and i2 are



4 Wansbrough, Norrish, Sewell, and Serjantov

the source and destination addresses. The implementation of IP is responsible
for delivering the datagram to the correct machine; it abstracts from routing and
network topology. Delivery is asynchronous and unreliable – IP does not pro-
vide acknowledgments that datagrams are received, or retransmit lost messages.
Messages may be duplicated.

The User Datagram Protocol (UDP) is a thin layer above IP that provides
multiplexing. It associates a set {1, .., 65535} of ports with each machine; a UDP
datagram is an IP datagram with body UDP(ps1, ps2, data), containing a source
and destination port and a short sequence of bytes of data.

The Internet Control Message Protocol (ICMP) is another thin layer above IP
dealing with some control and error messages. Here we are concerned only with
two, relating to UDP, with bodies: ICMP PORT UNREACH(is3, ps3, is4, ps4)
and ICMP HOST UNREACH(is3, ps3, is4, ps4). The first may be generated
by a machine receiving a UDP datagram for an unexpected port; the second is
sometimes generated by routers on receiving unroutable datagrams. They con-
tain the IP addresses and ports of the original datagram.

2.2 Sockets The OS protocol endpoint code in each host maintains a collection
of sockets: data structures that we write

Sock(fd , is1, ps1, is2, ps2, es, f ,mq)

which mediate between application threads and the asynchronous message de-
livery activities. The file descriptor fd uniquely identifies this socket within the
host. The IP addresses and ports is1, ps1 and is2, ps2 are a pair of ‘local’ and
‘remote’ pairs, some elements of which may be wildcards; the 4-tuple is used for
addressing outgoing datagrams and matching incoming datagrams. The flag es
stores any pending error condition, while the flags f hold an assortment of socket
options. Finally, the message queue mq holds incoming messages that have been
delivered by the OS to this socket but not yet received by the application.

The standard sockets interface [CSR83,IEE00,Ste98] is the library interface
made available to applications. It includes calls socket and close for creating and
closing sockets; bind and connect, for manipulating the local and remote pairs of
IP addresses and ports; sendto and recvfrom, for sending and receiving messages;
and select, allowing an application to block until either a timeout occurs or a file
descriptor is ready for reading or writing. To avoid dealing with the uninteresting
complexities of the standard C sockets interface, we introduce a thin abstraction
layer that provides a clean strongly-typed view of the C sockets interface without
sacrificing useful functionality. The model is expressed in terms of this interface,
which we call LIB and present in Appendix A. To allow MiniCaml programs to
be executed, we also implement the interface as a thin layer above the OCaml
socket and thread libraries.

There are many behavioural subtleties which the model covers but which we
cannot describe here, including: wildcard and loopback IP addresses; wildcard,
privileged and ephemeral ports; blocking and non-blocking sendto, recvfrom
and select; local errors; and multiple interfaces. These are discussed in detail in



Timing UDP: mechanized semantics for sockets, threads and failures 5

val start heartbeat k : ()→ ()
val start heartbeat a : ()→ int ref
val get status : int ref → int

(* code for player Kurt *)
let start heartbeat k() =

let sender thread() =
let p = port of int (7658) in
let i a = ip of string (" 192.168.0.14 ") in
let fd = socket() in
let = bind(fd , ∗, ∗) in
let = connect(fd , i a, ↑p) in
while true do

try
sendto(fd , ∗, " ping ", false);
delay1000000;

with
UDP(ECONNREFUSED)→ ()

done in
let t = create sender thread() in ()

(* code for player Alan *)
let start heartbeat a() =

let status ref = ref 0 in
let receiver thread() =
let p = port of int (7658) in
let i k = ip of string (" 192.168.0.11 ") in
let fd = socket() in
let = bind(fd , ∗, ↑p) in
let = connect(fd , i k , ∗) in
while true do

let (fds, ) = select([fd ], [ ], ↑2500000) in
if fds = [ ] then
status ref := 0

else
let ( , , ) = recvfrom(fd , false) in
status ref := 1

done in
let t = create receiver thread() in
status ref

let get status status ref =
!status ref

Fig. 1. rhbeat2.mli and rhbeat2.ml. The ∗ and ↑ are constructors of option types
T↑; unit is typeset as ().

[SSW01a]. Here, we shall highlight only the existence of asynchronous errors:
a machine receiving a UDP datagram addressed to a port that does not have
an associated socket may send back an ICMP PORT UNREACH message
to the sender. This error message is received asynchronously—the sendto that
nominally caused the error has (in general) long since returned to the application,
and so some means of notification must be found. The sockets interface solves this
problem by storing the last such error in the socket, returning it to the application
whenever a subsequent communication operation (which may be quite unrelated)
is attempted on that socket. The operation will fail but the error will be cleared,
allowing subsequent operations to succeed.

2.3 Example Figure 1 gives a simple example of the kind of program which
our model allows us to reason about. It is a MiniCaml module that provides
a failure-detection service for two machines, using a näıve heartbeat algorithm.
The start heartbeat k function should be called by an application running on
machine kurt. It spawns a thread that creates a socket, sets its remote address
to that of the other machine (192.168.0.14) and its remote port to an agreed
value (7658), and then repeatedly sends “ping” messages, with a 1-second delay



6 Wansbrough, Norrish, Sewell, and Serjantov

between each. The start heartbeat a function, to be called by an application on
machine alan, creates a reference cell status ref to hold its current guess of the
status of kurt. It then spawns a receiver thread and returns the reference cell.
The thread creates a socket, sets its local port to the agreed 7658, and repeatedly
waits for up to 2.5 seconds for a “ping” message. If it receives one, it sets the
status to 1 to indicate that kurt is believed to be up (running and connected
to the network), otherwise it sets it to 0. The application on machine alan can
check the status of kurt by calling get status, passing it status ref . We are
using OCaml’s safe shared-memory communication between the alan threads.

3 The Model

This section outlines the main design choices and the static structure of the
model. Discussion of the host semantics, which captures the behaviour of the
library calls and UDP-related part of the operating system, is deferred to §4.

3.1 Overall Structure A network N is a parallel composition of UDP and ICMP
messages in transit (on the wire, or buffered in routers) and of machines. Each
machine comprises several host components hc – the OS state, a module, the
states of threads, the store, etc. To simplify reasoning we bring all these compo-
nents into the top-level parallel composition, maintaining the association between
the components of a particular machine by tagging them with host names n (not
to be confused with IP addresses or DNS names). Networks terms are therefore:

N ::= 0 empty network
N | N parallel composition
msgd IP datagram in transit
n·hc component of machine n

while host components, to be explained below, are of the forms:

hc ::=Host(conn, h) OS state
Module(t) module code
Thread(tid , org , t)d running thread snippet
ThreadCreate(tid , org , t , t ′)d pending create
Store(st) shared store
StoreRet(tid , tlty , v)d pending return

Networks are subject to a well-formedness condition, network okN , which re-
quires that no two machines share a host name n or non-loopback IP address,
that each machine has exactly one store, and that each host component satisfies
its own well-formedness condition, written host ok h etc. We omit the details.

The semantics of a network is defined as a labelled transition system of a
certain form. It uses three kinds of labels: labels that engage in binary CCS-
style synchronisations, e.g. for a call of a host LIB routine by a thread; labels



Timing UDP: mechanized semantics for sockets, threads and failures 7

that do not synchronise, e.g. for τ actions resulting from binary synchronisa-
tions; and labels on which all terms must synchronise, used for time passing,
hosts crashing and programs terminating. Parallel composition is defined using
a single synchronisation algebra to deal with all of these, and we also use a
non-standard restriction on the visible traces of the entire system, to force cer-
tain synchronisations to occur. The model is in some respects a nondeterministic
loose specification, abstracting from some details, such as the relative precedence
of competing errors, that should not be depended upon.

In contrast to standard process calculi we have a local receptiveness property:
in any reachable state, if one component can do an output on a binary-sync label
then there will be a unique possible counterpart, which is guaranteed to offer
an input on that label. This means the model has no local deadlocks (though
obviously threads can block waiting for a slow system call to return).

3.2 Threads and Modules In order to express and reason about the semantics of
infrastructure code, such as the rhbeat2 module, we must define the semantics
of a partial system, exposing the interactions that an application program could
have with such a module (and with the OS and store). Threads complicate the
problem, as we must deal with external thread snippets, executing some module
routine that has been called by an application thread, and with internal thread
snippets, spawned by a module routine calling create directly. External snippets
may return a value or exception to the application, whereas internal snippets do
not return.

Thread snippets are written Thread(tid , org , t)d , with a thread id tid , org
either Extern or Intern, state t , and timer d (see §3.4). During thread creation
there is a transient state ThreadCreate(tid , org , t , t ′)d .

To keep as much as possible of the model language-independent, the be-
haviours of modules Module(t), and the resulting states t of thread snippets,
are taken to be arbitrary labelled transition systems satisfying various sanity
conditions, e.g. that a thread cannot simultaneously call two OS routines. This
permits automata-theoretic descriptions of infrastructure algorithms, when con-
venient. To allow reasoning about executable code, though, we can use our Mini-
Caml semantics to derive such an LTS from any MiniCaml source program.

3.3 Interactions In more detail, the interactions between network terms are
as follows. The external application can call a routine provided by the module.
A thread snippet will then be spawned off; ultimately this may return a value
or an exception. Thread snippets (and the external application) can call host
LIB routines, which may later return. A special case is a call to create, which
will both create a new thread ID and spawn off a thread snippet with that ID.
Another special case is a call to exit, which will terminate all the threads of the
host and close any sockets they have opened. Thread snippets (and the external
application) can call the store operations new, set and get, which will quickly
return. Hosts can send and receive IP datagrams. Hosts and thread snippets can
perform internal computation. Hosts can crash, whereupon all their components
are removed, can be disconnected from the network, and can be reconnected.
Hosts can output strings on their console. Time can pass.



8 Wansbrough, Norrish, Sewell, and Serjantov

3.4 Time Time passage is modelled by transitions labelled d ∈ R>0 interleaved
with other transitions. These labels uses multiway synchronisation, modelling
global time which passes uniformly for all participants (although it cannot be
accurately observed by them).

Our semantics is built using timers, variables containing elements of R≥0 ∪
{∞} that decrement uniformly as time passes (until zero); the state becomes
urgent as soon as any timer in it reaches zero. Speaking loosely, only binary-
synchronising output actions are constrained by timers. Urgent states are those in
which there is a discrete action which should occur immediately. This is modelled
by prohibiting time passage steps d from (or through) an urgent state. We have
carefully arranged the model to avoid pathological timestops by ensuring the
local receptiveness property holds.

Our model has a number of timing parameters: the minimum message prop-
agation delay dpropmin and the maximum scheduling delay dsch, outqueue
scheduling delay doq, store access delay dstore, thread evaluation step duration
dthread , and message propagation delay dpropmax .

Many timed process algebras enforce a maximal progress property [Yi91],
requiring that any action must be performed immediately it becomes enabled. We
choose instead to ensure timeliness properties by means of timers and urgency.
Our reasoning using the model so far involves only finite trace properties, so we
do not need to impose Zeno conditions.

3.5 Messages/Networks Message propagation through the network is defined
by the rules below.

0
n·msg−−−−→ msgd d ∈ [dpropmin, dpropmax ] net accept single

msgd+d′
d′

−→ msgd d ′ > 0 net msg time

msg0
n·msg−−−−→ 0 net emit

0
n·msg−−−−→ 0 net accept drop

A message sent by a host is accepted by the network with one of three rules.
The normal case is net accept single, which places the message on the network
with a timer d attached. The timer is initialised with the propagation delay,
chosen nondeterministically. Message propagation is modelled simply by time
passage: the rule net msg time decrements the timer until it reaches zero, mak-
ing the state urgent. The delivery rule net emit is thus forced to fire at exactly
the instant the message arrives. Once the message arrives, it may be emitted
by the network to a listening host by net emit . This rule is only enabled at the
instant the timer reaches zero, modelling the fact that the host has no choice
over when it receives the message. Note that the network rules do not examine
the message in any way – it is the host LTS that checks whether the IP ad-
dress is one of its own. Time aside, this treatment of asynchrony is similar to
Honda and Tokoro’s asynchronous π-calculus [HT91]. Messages in the network
may be reordered, and this is modelled simply by the nondeterministic propa-
gation times. They may also be finitely duplicated, or lost. Rule net accept dup



Timing UDP: mechanized semantics for sockets, threads and failures 9

(not shown) is similar to net accept single above except that it yields k ≥ 2
copies of the message, each with an independently-chosen propagation delay;
rule net accept drop simply absorbs the message.

3.6 Stores A store Store(st) has a state st which is simply a finite map from
(typed) locations to values. It can receive new, set and get labels, spawning
off a StoreRet(tid , tlty , v)dstore which will return the value v (of type tlty) to
thread tid within time dstore. For simplicity, as the MiniCaml types are not all
embedded into the HOL model, the store is restricted to first-order values.

3.7 Hosts A host Host(conn, h) has a boolean conn, indicating whether it
is currently connected to the network, and a host state h, a record modelling
the relevant aspects of the OS state. The h.ifds field is a set of interfaces, each
with a set of IP addresses and other data. We assume all hosts have at least a
loopback interface and one other. We sometimes write i ∈ h.ifds for ∃ifd .i ∈
ifd .ipset ∧ ifd ∈ h.ifds. The operating system’s view of the state of each thread is
stored in a finite map h.ts from thread identifiers tid to host thread states. Each
thread may be running (Run), exiting (Exit), or waiting for the OS to return
from a call. In the last case, the OS may be about to return a value (Retv) or the
thread may be blocked waiting for a slow system call to complete (Sendto2v ,
Recvfrom2v , Select2v , Delay2, Print2v , Zombie). The host’s current list
of sockets is stored in h.s. The outqueue, a queue of outbound IP messages, is
given by h.oq and h.oqf , where h.oq is the list of messages (with a timer) and
h.oqf is set when the queue is full. In HOL syntax, the record (h with 〈[ts := ts]〉)
is the record h with the ts field replaced by the value ts.

4 The Model Continued: Host Dynamics

The host semantics is defined by 78 host transition axioms, encoding the precise
behaviour of each of the library calls in Figure 2 and of the UDP subsystem of
the operating system. To give a flavour, we examine some of the behaviour of the
heartbeat example program of §2.3, explaining the main points of a few rules.

We first consider kurt’s execution of sender thread(). Once the thread has
converted the port and IP address, it calls socket() to allocate a new socket. The

thread performs the call by making an output transition · tid·socket()−−−−−−−→ ·, where
tid is the thread ID of the sender thread, and the host synchronises by making
the corresponding input transition according to rule socket 1 :

socket 1 succeed

h with ts := ts ⊕ (tid 7→ Rund)
tid·(socket())−−−−−−−−→
h with 〈[ts := ts ⊕ (tid 7→ Ret(OKfd)dsch);

s :=(Sock(fd , ∗, ∗, ∗, ∗, ∗,Flags(F,F), [ ]) :: h.s)]〉

fd /∈ sockfds h.s



10 Wansbrough, Norrish, Sewell, and Serjantov

Each rule is of the form “h
l−→ h′ where cond”, where h, h′ are host states and

l is a host transition label. The rules have been automatically typeset from the
HOL source (see §6). In socket 1 the initial host state (above the arrow) requires
only that the host thread state for the thread is Rund for some d ; Run means
the host is waiting for a call from the thread (in reachable states, the timer on
a Run will always be ∞). The side condition (given below the transition itself)
states that fd is some file descriptor not in the set of file descriptors already
used in h.s. The final host state (below the arrow) updates h.s by adding a
freshly initialised socket with the chosen fd to the list, and sets the host thread
state for the thread to Ret(OKfd)dsch . This will cause the host to return the
value OKfd to the thread within delay dsch, by rule ret 1 (not shown). Unlike
net emit above, this may occur at any time from 0 up until dsch; this models
a nondeterministic scheduler. The rules are partitioned into several classes; the
succeed indicates which class socket 1 belongs to.

We omit the bind and connect calls, and proceed to the top of the while
loop, where the application invokes sendto(fd , ∗,“ping”,F). Assuming there is
room on the outqueue for the message, rule sendto 1 fires:

sendto 1 succeed autobinding

h with 〈[ts := ts ⊕ (tid 7→ Rund);
s :=SC (s with es := ∗)]〉

tid·sendto(s.fd,ips,data,nb)−−−−−−−−−−−−−−−−−→
h with 〈[ts := ts ⊕ (tid 7→ Ret(OK())dsch);

s :=SC (s with 〈[es := ∗; ps1 := ↑p′1]〉);
oq := oq ′; oqf := oqf ′]〉

socklist contextSC ∧

p′1 ∈ autobind(s.ps1,SC ) ∧
(oq ′, oqf ′,T) ∈ dosend(h.ifds, (ips, data),

(s.is1, ↑p′1, s.is2, s.ps2),
h.oq , h.oqf ) ∧

string size data ≤ UDPpayloadMax ∧

((ips 6= ∗) ∨ (s.is2 6= ∗))

The auxiliary function dosend builds the message IP(i k , i a,UDP(↑p1, ↑p2,“ping”))
and places it on the output queue, ready to be delivered to the network; the flag
T indicates that it succeeded. The remaining side conditions check that the pay-
load is not too large for a UDP message, check that a destination IP address is
specified either explicitly or implicitly, and automatically provide a local port if
none is specified (autobind).

Once the message is on the outqueue, it will eventually be emitted onto the
network by rule delivery out 1 :



Timing UDP: mechanized semantics for sockets, threads and failures 11

delivery out 1 misc put UDP or ICMP to the network from oq

h

IP(i1,i2,body)−−−−−−−−→
h with 〈[oq := oq ′; oqf := oqf ′]〉

(IP(i1, i2, body), oq ′, oqf ′) ∈ dequeue(h.oq , h.oqf ) ∧
i2 /∈ LOOPBACK∪MARTIAN ∧

i1 /∈ MARTIAN

The auxiliary function dequeue takes the top message (if present) from the out-
queue and resets the outqueue timer to doq if oq ′ is nonempty, or ∞ otherwise.
We also check that the source and destination addresses are valid for the network;
martian [Bak95, §5.3.7] and loopback addresses are handled by other rules.

Once the message is placed on the network (and if it is not lost) it will
eventually be delivered to the remote host, where it will either be delivered to a
waiting socket, rejected with an ICMP PORT UNREACH, or dropped.

In the meantime, alan is running receiver thread(). alan begins listening for
a heartbeat by invoking select([fd ], [ ], ↑2500000), giving a timeout of 2.5 seconds.
Rule select 1 fires:

select 1 enter2 entering Select2 state

h with ts := ts ⊕ (tid 7→ Rund)
tid·select(readseq,writeseq,tms)−−−−−−−−−−−−−−−−−−−−→
h with ts := ts ⊕ (tid 7→ Select2(readseq ,writeseq)d′)

list to set(readseq @ writeseq) ⊆ sockfds h.s ∧

(∀i .(tms = ↑i) =⇒ 0 ≤ i) ∧
(d ′ = case tms of

∗ → ∞ ‖
↑i → time(real of int i/1000000))

select is a slow call [Ste98, p124], meaning that it may block rather than return-
ing immediately to the caller. Here the host transitions into a special blocked
Select2([fd ], [ ])2.5 state, recording the lists of file descriptors on which it is
waiting. The timer on this state is set to the timeout specified; this forces us to
leave the state at or before the end of the timeout. The other side conditions
state that all the file descriptors must be valid, and that the timeout must be
nonnegative.

If the heartbeat fails to arrive within 2.5 seconds, the blocked state becomes
urgent and rule select 4 will fire, returning OK([ ], [ ]) and leading alan to sus-
pect that kurt is down. If the message does arrive, however, it is accepted
asynchronously into the listening socket’s message queue by delivery in udp 1 ,
which matches the addressing fields of an incoming message to the address



12 Wansbrough, Norrish, Sewell, and Serjantov

quadruples of the host sockets. (Of course, if there were no matching socket, rule
delivery in udp 2 might send an ICMP PORT UNREACH message back to
the sender.) With a message in the queue, the blocked Select2 state becomes
urgent, forcing rule select 3 to fire, informing receiver thread of the waiting
message by returning OK([fd ], [ ]). The thread then invokes recvfrom to read
the message.

5 Experimental Validation

Our model is based on the existing natural-language documentation [Ste98,Ste94]
and [IEE00], inspection of the sources of the Linux implementation (kernel ver-
sion 2.2.16-22), and a combination of ad hoc and automated testing. Our test
network comprised a non-routed subnet with three Linux (RedHat 7.0) and two
Windows 2000 machines (in a few cases we ran tests further afield). Tests were
written in C, using the glibc 2.1.92 sockets library on Linux. Our ad hoc tests
used C programs to display the results of short sequences of socket calls, using
tcpdump to observe the network traffic. Later, we wrote an automatic tool, ud-
pautotest, that simulates the model (hand-translated into C) in parallel with
the real socket calls. This tests representatives of most cases of the host tran-
sition semantics, giving us a high level of confidence in our model. It helped
us greatly in correctly stating the more subtle corners of the semantics. We also
tested some aspects of OCaml thread handling. The limitations of our closed-box
testing are discussed in [SSW01b].

Having based the semantics on the Linux implementation, we are now using
a combination of udpautotest and ad-hoc testing to compare it against the
Win2K implementation (v. 5.0, build 2195, no service packs, Winsock2, WS2
32.DLL). The most substantial difference observed so far is that sendto calls are
unaffected by earlier ICMP PORT UNREACH messages – they successfully
send, and do not return the pending error. In contrast, the behaviour of recvfrom
and select appears to be as in Linux.

6 HOL Mechanization

We were driven to use mechanized tool support by experience with the model of
our earlier work, expressed in conventional non-mechanized mathematics. It was
substantially simpler than the model presented here, but its size and complexity
already made it hard to keep internally consistent. By expressing the current
semantics in HOL we know that its auxiliary functions and semantic rules are
all well-typed. We are also using HOL to prove some “sanity” theorems about
the model, showing that various invariants on host and network states are main-
tained, and that the semantic rules cover all possible cases (and overlap only
where intended). These results are not especially deep, but proving them has
brought up further important points. At the time of writing our most significant
result is the following:

Theorem 1 (host ok preservation). If host ok h0 and h0
l→ h, then host ok h.



Timing UDP: mechanized semantics for sockets, threads and failures 13

The proof (some 2800 lines of script) proceeds by rule category (e.g., fail,
succeed, slowsucceed). For each category we prove additional statements that
embody type correctness. The host ok predicate is quite complicated, embodying
constraints such as: if a thread is blocking on a recvfrom call on a file-descriptor
fd , then there must be a socket with that descriptor, and it must have a non-
null ps1 field. (This requirement is maintained in the face of the possibility that
some other thread may call close on the fd -socket.) Higher order logic seems
well-suited to our task. It is quite an expressive logic, and Hindley-Milner type-
inference ensures that terms can be written concisely, without excessive type
annotation. The mechanization has not required any treatment of binders, sim-
plifying matters.

The HOL system has been used to define operational semantics for various
programming languages in the past, including SML and C [Van96,Nor98], so we
were confident that the various tools needed for our own definitions and proofs
would be present. The implementation of HOL continues to develop (see [NS02]),
and our experience has been a substantial prompt to further development.

To make the semantics readable (for ourselves as well as others) we depend on
automatic typesetting tools – special-purpose tools we have written to take HOL
source and render it into LATEX, applying the various notational conventions seen
in the remainder of the paper.

7 Example: Repeated Heartbeat

At this point, we have (finally) set up enough semantic technology to analyse the
example of §2.3. Casual examination of the code may convince the reader that
it ‘works’; we are now in a position to state this more precisely, and to prove
it. We have been able to state a key property of the heartbeat failure detector
in HOL, and have carried out a hand proof. The interest is not so much in the
specific property, but in the fact that we can express it formally, and the various
preconditions which it requires.

Obviously we must assume reasonably fast message delivery, and not too
many messages dropped by the network; less obviously, we assume that the
threads on alan and kurt run fast enough to clear backlogs. For an example
case of the proof, suppose kurt is started first, and the receiver on alan is not
yet listening. The first “ping”may be duplicated by the network, with each arriv-
ing message potentially generating an ICMP. In turn, the ICMPs may be dupli-
cated and each duplicate arrive immediately before each call to sendto, causing
it to return immediately with an error (sendto 5 ) and forcing sender thread to
retry. (This is why the try ..with must enclose the delay as well as the sendto.)
A similar situation applies to the receiving end, and there are many other pos-
sibilities to be considered. We also prove that no uncaught exceptions arise.

The precise statement of the theorem is in HOL, and is quite elaborate; we
here translate it into English.

Consider traces of a network N consisting of alan and kurt, quiescent, each
with a store and an identical copy of the module in Figure 1. For brevity, we
first make some simplifying assumptions, restricting the traces of N which we



14 Wansbrough, Norrish, Sewell, and Serjantov

consider: no incoming messages from outside; rule net accept dup never creates
more than 3 duplicates; rule net accept drop never drops more than one succes-
sive message from each host; the application calls the rhbeat2 module, but does
not call the host or store directly; neither alan nor kurt crash; alan does not
become disconnected, while kurt may become disconnected and reconnected at
any point; and the kernel does not run out of memory, nor does any slow system
call get interrupted. These assumptions are severe, but are appropriate for the
algorithm we consider. A less näıve algorithm would allow them to be relaxed.

Further (trace) assumptions state that the application uses the module cor-
rectly: alan and kurt each make a single call to the associated start function;
and calls to get status occur only on alan, after start heartbeat a(), with the
reference returned by it.

Finally, some model timing parameter assumptions. We impose some crude
bounds, supposing that dthread , dsch, doq, and dstore are all less than say 1ms,
and dpropmax is at most 200ms, to obtain a theorem with a simple statement.
These ensure: 2dpropmax + 3 doq < 1.0, and hence receipt of an ICMP gener-
ated from one “ping” cannot be delayed beyond the sending of the next; and
(2.0+120dthread +22dsch +2 doq +dpropmax −dpropmin) < 2.5, hence a single
message being lost cannot cause a timeout leading to a false failure report.

Given all this, we can identify certain intervals during which a reply to
get status is guaranteed to be correct:

Theorem 2 (Correct within reasonable time). For any trace of N under
the above assumptions, if get status is called at time t and returns a value v,
then v is the correct result if t is at least 2.6 seconds after the latest of kurt’s
last status change and alan’s call to start heartbeat a().

Of course, this is only one desirable property amongst many [ACT99]. It also
does not state that get status returns quickly (or at all). Further, we would like to
be able to relax some of the conditions (possibly with a more general algorithm),
e.g., to allow the applications to perform other communication operations, and
inhabit a larger network. This would require a more elaborate proof, but no
changes to the semantics.

8 Conclusion

8.1 Contribution We have given a mathematically precise and experimentally
validated model of an interesting class of distributed systems, covering UDP
sockets programming, threads, message loss and duplication, host failure and
disconnection, timeouts, and rudimentary modules. It is expressed in the HOL
theorem prover, and illustrated with a simple heartbeat example. This demon-
strates that it is feasible to address the combination of features above, though the
experimental approach and tool support (for mechanization, testing and typeset-
ting) have been essential. Our work is a step towards a rigorous understanding of
distributed systems – such models can: (1) improve our informal understanding
and system-building, (2) underpin proofs of robustness and security properties
of particular programs, and (3) support the design, proof and implementation
of higher-level distributed abstractions.



Timing UDP: mechanized semantics for sockets, threads and failures 15

8.2 Related work The literature contains a great deal of work on the verifica-
tion of protocols and distributed algorithms. This includes models of TCP using
IO automata and LOTOS [Smi96,Sch96], and work on monitoring TCP imple-
mentations from outside the hosts [BCMG01]. To the best of our knowledge,
however, there is no other work that accurately models the detailed behaviour
of the sockets interface, an understanding of which is critical for actually pro-
gramming with these protocols. At a higher level of abstraction, Arts and Dam
[AD99] have a similar goal to ours – they prove properties of executable concur-
rent programs, written in Erlang – and the IOA language [GLV00] allows certain
forms of IO automata to be executed.

Turning to failure detection, the literature contains sophisticated algorithms
and their applications, e.g. to consensus problems [ACT99]. Such algorithms
satisfy more useful (and more subtle) properties than our naive Theorem 2, but
are expressed in informal psuedocode. We have begun to consider how they might
be expressed in an extended MiniCaml.

8.3 Future Directions To date, our work on the semantics has been mostly de-
scriptive, focussing on developing an accurate model. This addresses (1) above,
but for (2) and (3) we must consider more substantial examples, which will re-
quire proof techniques to be adapted from the theories of process calculi and
distributed algorithm verification. Extending the coverage of the model would
also be valuable, in many directions: UDP multicast, PPP connections, TCP, net-
work partition, other OS socket implementations (especially Win2K and BSD),
a larger fragment of OCaml, or other language bindings. Finally, we would like
to automatically generate tests from the HOL model.

The work also raises some more general problems. Perhaps surprisingly, even
the non-distributed part of the semantics is not routine – to reason about prop-
erties of infrastructure implementations we need a semantics for modules with
multiple threads that is truly compositional, not dependent on substituting out
the module expressions. Our model embodies an ad hoc solution to the special
case of a single infrastructure module that provides only first-order functions;
a more general solution is required, perhaps using game-theoretic techniques.
Dealing with module initialisation and separate compilation is also important.
From the process-calculus point of view, our parallel composition and restriction
are non-standard, both in combining binary and multi-way synchronisation, and
in having the local receptiveness property. While timed finite trace equivalence is
relatively straightforward in this setting, one might expect interesting differences
in the theory of finer observational congruences.

Wansbrough and Serjantov are funded by EPSRC research grant GRN24872 Wide-
area programming. Norrish is funded by a St Catharine’s College Heller Research Fel-
lowship. Sewell is funded by a Royal Society University Research Fellowship.

References

[ACT99] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure de-
tector for quiescent reliable communication and consensus in partitionable



16 Wansbrough, Norrish, Sewell, and Serjantov

networks. Theoretical Computer Science, 220(1):3–30, June 1999.
[AD99] T. Arts and M. Dam. Verifying a distributed database lookup manager

written in Erlang. In World Congress on Formal Methods (1), 1999.
[Bak95] F. Baker. Requirements for IP version 4 routers, RFC 1812. Internet

Engineering Task Force, June 1995. http://www.ietf.org/rfc.html.
[BCMG01] K. Bhargavan, S. Chandra, P. J. McCann, and C. A. Gunter. What packets

may come: Automata for network monitoring. In Proc. POPL 2001.
[Bra89] R. Braden. Requirements for internet hosts – communication layers, STD

3, RFC 1122. Internet Engineering Task Force, October 1989.
[CSR83] University of California at Berkeley CSRG. 4.2BSD, 1983.
[GLV00] S. J. Garland, N. Lynch, and M. Vaziri. IOA reference guide, December

2000. http://nms.lcs.mit.edu/~garland/IOA/.
[GM93] M. J. C. Gordon and T. Melham, editors. Introduction to HOL: a theorem

proving environment. Cambridge University Press, 1993.
[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communi-

cation. In Proceedings of ECOOP ’91, LNCS 512, pages 133–147, 1991.
[IEE00] IEEE. Portable Operating System Interface (POSIX)—Part xx: Protocol

Independent Interfaces (PII), P1003.1g. March 2000.
[L+01] X. Leroy et al. The Objective-Caml System, Release 3.02. INRIA, July 30

2001. Available http://caml.inria.fr/ocaml/.
[LV96] N. Lynch and F. Vaandrager. Forward and backward simulations – Part II:

Timing-based systems. Information and Computation, 128(1):1–25, 1996.
[Nor98] M. Norrish. C formalised in HOL. PhD thesis, Computer Laboratory,

University of Cambridge, 1998.
[NS02] M. Norrish and K. Slind. A thread of HOL development. Computer Journal,

2002. To appear.
[Pos80] J. Postel. User Datagram Protocol, STD 6, RFC 768. Internet Engineering

Task Force, August 1980. http://www.ietf.org/rfc.html.
[Pos81] J. Postel. Internet Protocol, STD 5, RFC 791. Internet Engineering Task

Force, September 1981. http://www.ietf.org/rfc.html.
[Sch96] I. Schieferdecker. Abruptly terminated connections in TCP – a verification

example. In Proc. COST 247 International Workshop on Applied Formal
Methods in System Design, pages 136–145, 1996.

[SGSAL98] R. Segala, R. Gawlick, J. Søgaard-Andersen, and N. Lynch. Liveness in
timed and untimed systems. Inf. and Comp., 141:119–171, 1998.

[Smi96] M. Smith. Formal verification of communication protocols. In
FORTE/PSTV’96, pages 129–144, 1996.

[SSW01a] A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous
semantics for real networking. In Proc TACS2001, Sendai, October 2001.

[SSW01b] A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous
semantics for real networking. TR 515, Computer Laboratory, University of
Cambridge, July 2001. http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[Ste94] W. R. Stevens. TCP/IP Illustrated Vol. 1: The Protocols. Addison–Wesley,
1994.

[Ste98] W. R. Stevens. UNIX Network Programming Vol. 1: Networking APIs:
Sockets and XTI. Prentice Hall, second edition, 1998.

[Van96] M. VanInwegen. The machine-assisted proof of programming language prop-
erties. PhD thesis, University of Pennsylvania, December 1996.

[WNSS01] K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov. Timing UDP:
the HOL model, 2001. http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[Yi91] W. Yi. CCS + time = an interleaving model for real time systems. In Proc.
ICALP 1991, LNCS 510, pages 217–228, 1991.



Timing UDP: mechanized semantics for sockets, threads and failures 17

A The LIB interface

The sockets interface
socket : () → fd
bind : fd ∗ ip↑ ∗ port↑ → ()
connect : fd ∗ ip ∗ port↑ → ()
disconnect : fd → ()
getsockname : fd → ip↑ ∗ port↑
getpeername : fd → ip↑ ∗ port↑
sendto : fd ∗ (ip ∗ port)↑ ∗ string ∗ bool→ ()
recvfrom : fd ∗ bool → ip ∗ port↑ ∗ string
geterr : fd → error↑
getsockopt : fd ∗ sockopt → bool
setsockopt : fd ∗ sockopt ∗ bool→ ()
close : fd → ()
select : fd list ∗ fd list ∗ int↑→ fd list ∗ fd list
port of int : int → port
ip of string : string → ip
getifaddrs : ()→ (ifid ∗ ip ∗ ip list ∗ netmask) list

Thread operations
create : (T →T ′)→T → tid
delay : int → ()

Basic operating system operations
print endline flush : string → ()
exit : () → void

Exceptions
UDP : error → exn

Here error is a type of UDP-related Unix errors.

Fig. 2. The LIB interface, with MiniCaml types


