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Abstract

This paper is about the mechanical verification of
UDP based network programs. It uses the UDP
portion of a formal model of the Internet proto-
cols TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol). The model includes asyn-
chronous message passing, message loss and host fail-
ure. The model is based around the sockets library,
the primary API used for writing UDP and TCP
based applications. This paper demonstrates that for-
mal, machine-checked, proof is possible in the UDP
model by presenting the proof of a safety property
for an implementation of Stenning’s Protocol. The
protocol is implemented in a fragment of the OCaml
language, using the sockets library for UDP network
communication. The entire development including
the safety proof is carried out in the proof assis-
tant Isabelle; this assures soundness. Thus this paper
demonstrates that it is possible to machine verify very
concrete representations of distributed programs in a
detailed semantics that accurately reflects the pro-
grams execution environment. Previously only ab-
stract representations of this protocol have been ma-
chine verified. The proof, based on an implementa-
tion, provides a contrast to other verifications.

Keywords: theorem proving, distributed systems, for-
mal verification.

1 Introduction

It is well known that it is difficult to design dis-
tributed algorithms correctly. There are many subtle
ways in which they can fail. Thus computer scientists
have sought out formalisms to describe and verify dis-
tributed algorithms. However, proofs of properties of
distributed algorithms can be difficult and tedious.
A number of published algorithms, even with proofs,
have later been found to be incorrect. As a result,
machine tools, model checkers and proof assistants,
have often been used to demonstrate the correctness,
or otherwise, of distributed algorithms (Chkliaev,
Hooman & Vink 2003, Bhargavan, Obradovic &
Gunter 2002, Simons & Stoelinga 2001, Stoelinga &
Vaandrager 1999, Chkliaev et al. 2003)

This paper takes a complementary view – that it
is also difficult to implement distributed algorithms
correctly.

Any algorithm can be hard to implement correctly,
but distributed algorithms also involve the subtle in-
teraction of a number of components through a net-
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work, over which there is little or no control, making
the implementation yet more complex. Even having a
correct specification, or protocol, does not ensure that
the implemented code will be correct. This can be
for a number of reasons including that an implemen-
tation often bears little resemblance to an abstract
protocol description. Further, implementations rely
on concrete features of programing languages and op-
erating systems, rather than abstract operations like
send message m from A to B. These implementation
details have to be taken into account in when consid-
ering the correctness of programs.

This paper discusses the verification of distributed
systems at the level of programs rather than ab-
stract protocol descriptions. I briefly review the
model of Internet (UDP) communication presented
by Wansbrough et al. (Wansbrough, Norrish, Sewell
& Serjantov 2002, Serjantov, Sewell & Wansbrough
2001a). I then integrate a programing language se-
mantics with the model. This semantics is a frag-
ment of a real language so actual programs can be
expressed. In this language I implement Stenning’s
Protocol and verify a safety property with reference
to UDP and the sockets interface. The main contribu-
tion of this paper is to demonstrate the verification of
distributed program code in a model that accurately
represents the operating system API and network en-
vironment in which the program would execute. 1

UDP and the sockets interface. Distributed pro-
grams require some sort of underlying communication
support. This support gets a message from one pro-
gram, out onto the communication mechanism, pos-
sibly through various intermediate networks, and fi-
nally delivers the message to its destination. On the
Internet two of the major options are TCP (Trans-
mission Control Protocol) and UDP (User Datagram
Protocol). These and a number of other protocols
form what is ofter referred to as the Internet pro-
tocol suite. This paper considers the protocol UDP
(Postel 1981, Postel 1980).

UDP provides an unreliable datagram service.
This means that message transmission is on the level
of individual packets or datagrams (not streams as
in TCP), and that packets may be lost or reordered
by the network. Further no connection information
is maintained, nor is any state information retained
about a message once it has been sent. For this paper
all that need be known about UDP is that messages
sent using UDP may be lost, reordered and dupli-
cated; and that the sender of the message does not
know what has happened to it.

1Note that no model can completely capture a real program’s
execution: for that you would need to model and verify everything
from CPU to operating system to compiler to program. However,
by closing the ‘semantic gap’ between verification and the exe-
cutable system, we get a better assurance that the running program
is correct.



A number of important applications are imple-
mented using UDP, such as DNS (Domain Name Sys-
tem), DHCP (Dynamic Host Configuration Protocol)
and RIP (Routing Information Protocol).

UDP based distributed programs are written us-
ing the sockets interface. Originally from BSD Unix,
sockets are now part of the programing API on Win-
dows and Unix operating systems. The sockets in-
terface allows a programmer to open sockets of vari-
ous forms and to send and receive messages between
programs distributed across a network. The standard
guide to sockets and Unix network programing is pro-
vided by Stevens (1998).

In this paper I consider the semantics of UDP and
the sockets interface developed by Wansbrough et al.
(Wansbrough et al. 2002). This semantics includes
the various types of failure present in UDP networks:
message loss, message duplication, crash of hosts, and
disconnections of hosts from the network. It also in-
volves time and therefore programs that rely on fail-
ure, for example those that use timeouts, can be rea-
soned about.

The definitions considered in this paper are very
large: the sockets library definition alone is an induc-
tive definition with over 70 rules and involves a num-
ber of complex functions. In order to manage such a
definition, and to carry out proofs, machine assistance
is required. The UDP model was defined as a theory
in the proof assistant HOL (Gordon & Melham 1993).
HOL assures that the definition is type correct and al-
lows various meta properties to be proved. The model
has also been tested against Linux and Windows im-
plementations. This paper is concerned with a version
of the model imported into the Isabelle proof assistant
(Nipkow, Paulson & Wenzel 2002). This is not due
to any deficiency with HOL, but simply because I am
more familiar with conducting proofs in Isabelle.

Isabelle. All the definitions and proofs required
for the results in this paper were carried out inside
Isabelle (Nipkow et al. 2002). Isabelle is an interactive
proof tool in the LCF tradition (Gordon, Milner &
Wadsworth 1979). Such proof tools take a definitional
approach, building all new theorems from previously
proved results. The definitional approach is designed
to assure soundness.

Isabelle supports a number of logical formalisms.
Here Isabelle’s instantiation of Higher Order Logic
is used, called Isabelle/HOL (Nipkow, Paulson &
Wenzel 2003, Nipkow et al. 2002). This system is
quite different to HOL, but the two support a similar
logic.

I try as much as possible to avoid a reliance on
Isabelle syntax. All theorems and definitions are ex-
plained when presented, using as clear syntax as pos-
sible. The reader need not be familiar with Isabelle
and need only know that the work is supported by a
mechanical tool.

MiniCaml. The UDP semantics is language in-
dependent. It includes a notion of threads but does
not restrict the language that the threads are imple-
mented in. This paper discusses the development of a
semantics for a fragment of OCaml, called MiniCaml.

The MiniCaml and UDP semantics are integrated
so that networks of distributed MiniCaml programs
can be defined in the formal model. As MiniCaml is
a subset of OCaml I can express programs that can be
compiled using the OCaml compiler. These compiled
programs can then be tested in real networks. The
program text can also be imported into the formal
model and reasoned about. In particular I consider
the implementation and verification of Stenning’s pro-
tocol.

Together the UDP and MiniCaml semantics define
a large labelled transition system. During a computa-
tion the network will emit a label for every action per-
formed; a list of such labels forms a trace. This paper
is concerned with verifying that every trace of a net-
work satisfies some safety property. The systems con-
sidered are commonly called reactive systems: they
interact with their environment and react to external
input. Hence this paper is also about the verifica-
tion of reactive systems, using a trace based model of
computation.

Paper outline. The paper begins by outlining the
UDP model (Section 2), including the semantics of
the sockets library (Section 2.2). It then discusses
the MiniCaml semantics (Section 3). Stenning’s pro-
tocol is described (Sections 4 and 4.1) and a Mini-
Caml implementation is presented (Section 4.2). The
main result of this paper is the mechanical verification
of a safety property of the Stenning protocol imple-
mentation (Section 5). Finally, a concluding section
(Section 6) evaluates this work and discusses possible
improvements and extensions.

2 UDP and Network Model

In this paper, a network consists of three main compo-
nents: messages in transit, hosts, and threads. Specif-
ically a network is generated by the following gram-
mar.

N = ε : The empty network.
N | N : Parallel composition

of two networks.
Msg m : A message in transit.
HC (n, comp) : A component

of host n.

Messages have a simple internal structure, closely
following the structure given the RFC (Postel 1980).
The important elements are its source, destination
and a block of message data.

Hosts are the most complicated network compo-
nent. A host is composed from a number of net-
work components. Here host components will either
be HC (n, Host(b, h)), for the actual state of host n
(open ports, messages queued to be sent and received
etc.), or HC (n, Thread(. . .)), for a thread running on
host n. A complete host will be the composition of
a number of interacting network components. Only
networks passing certain sanity properties can be rea-
soned about effectively; for example, networks con-
taining two copies of a single host’s state are clearly
not sensible. As in an actual network, a host will be
identifiable to other hosts by some IP addresses.

The dynamic semantics of a network is defined
by three transition relations. The relations are sum-
marised in Figure 1.

• The host semantics describes the state changes
on an individual host. These changes occur due
to incoming messages, the passage of time and
calls to socket library functions. Socket library
calls may create new sockets, queue messages to
be sent and deliver messages to running threads.
The relation is described in Section 2.2.

• An execution on a host is called a thread, many
threads may execute on a single host. In this pa-
per threads represent the execution of MiniCaml
programs. The semantics of MiniCaml (the dy-
namic portion of which constitutes the thread se-
mantics) is discussed in Section 3.



Host Semantics Thread Semantics

h l−−−−−−−→ h′ t l−−−−−−−� t′

Network Semantics

h lh−−−−−−−−−→ h′

HC(n,Host(b, h))
l

==⇒ HC(n,Host(b, h′))

t lt−−−−−−−−� t′

HC(n, Thread(. . . , t))
l

==⇒ HC(n, Thread(. . . , t′))

dpropmin ≤ d ∧ d ≤ dpropmax
ε

(Lb (n,In,L sendmsg m))
======================⇒ (Msg(Timed(m, d)))

Net Sync

N1
l1==⇒ N ′1

N2
l2==⇒ N ′2

sync l1 l2 = Some l

N1 | N2
l

==⇒ N ′1 | N ′2

Figure 1: Summary of the three labelled transition systems (semantics) that make up the entire UDP model.
The host semantics (→) describes the state changes on a host, it defines how calls to the sockets library affect
hosts. The thread semantics (�) corresponds to the dynamic part of the MiniCaml semantics. The network
semantics (⇒) combines the host and thread semantics, describing the interaction (synchronisation) of hosts
and threads. It also describes how messages traverse the network. The network semantics is non-deterministic
allowing for a number of possible execution options.

• These two disjoint semantics are bound together
by a transition relation for the network seman-
tics. This relation describes message propaga-
tion, failures (host crashes, message loss etc.),
the passage of time, and the interaction of hosts
and threads. There are over 50 rules that de-
scribe the network transition relation. Section
2.1 discusses the network semantics and how it
links the host and thread semantics.

As Figure 1 indicates, all three relations are small
step operational semantics defining labelled transi-
tion systems. Each is defined inside Isabelle, using its
mechanisms for inductively defined sets. This mecha-
nism makes sure the definition satisfies certain mono-
tonicity properties and generates an induction princi-
ple.

2.1 Network Semantics

The rules for the network labelled transition system
are of two types. One defines the actions of individual
network components, the other describes synchroni-
sation between networks of (possibly) many compo-
nents built with parallel composition. The first type
of rule is shown in Figure 1 by the two rules showing
that host and thread actions can be lifted into the
network and by rules for messages. The second type
of rule is shown by the rule Net Sync. Let us consider
how these rules work together to describe network ex-
ecution.

Figure 1 gives a rule that shows how a message
may become a network component; it is labelled by
L sendmsg m. In this rule m is the actual UDP mes-
sage, which is wrapped in time information so that
the model can assure messages are delivered within
certain time constraints. As m is unconstrained this
rule says that if the propagation time obeys some con-
straints then any message may appear on the network.

It may seem strange that arbitrary messages can
‘invent themselves’ and enter the network. This prob-
lem is solved by the rules lifting host actions into the
network and the Net Sync rule. There are many in-
stances of rules similar to the rule for hosts shown in
Figure 1. They describe the different ways in which
host actions can affect the network. For example, the
following is the rule for when a host sends a message.

h Lh sendmsg m−−−−−−−−−−−−−→ h′

HC(n,Host(True, h))
(Lb (n,Out,(L sendmsg m)))

=========================⇒

HC (n,Host(True, h ′))

This rule says that if a host can send a message
(the transition above the line is part of the host se-
mantics) then the network component consisting of
only that host can send the same message. Here
the host component HC (n,Host(True, h)) is simply
the state information h, for host n: remember that
the state information includes messages queued to be
sent. We would expect that message m is on an out-
going queue of h; perhaps a thread had previously
asked for it be sent using a socket library call.

The important thing to notice about these two
L sendmsg rules is that they define the two halves
of one action. Note that the labels are identical
except for In and Out . These two rules need to
be synchronised, outputting a Tau label. This sort
of synchronisation algebra is familiar in many ar-
eas of concurrency theory, such as versions of the π-
calculus (Milner 1999). The Net Sync rule defines
how these two rules can synchronise and output the
label Lb(n,Tau, (L sendmsg m)). In a complete net-
work, neither rule would be allowed to fire indepen-
dently. Only the synchronisation of the two could
happen, thus constraining the messages actually sent
For example, for some arbitrary network N the fol-
lowing transition could occur.

HC(n,Host(True, h)) | ε | N
(Lb (n,Tau,(L sendmsg m)))

=========================⇒
HC(n,Host(True, h′)) | Msg(Timed(m, d)) | N
In this way the actions of individual components

of the network are lifted to actions of the whole net-
work and forced to be consistent. Note that only the
network labels are emitted; the actions of the par-
ticipants, here the host label Lh sendmsg m, will be
forgotten. Also it is not known if the message will
be lost or delayed, only that a host asked for it to be
sent. Hosts and threads synchronise in a similar way
for socket library calls.

In this model, networks contain two types of syn-
chronisation. Synchronous communication occurs



socket 1 succeed

h with ts := ts ⊕ (tid 7→ Rund)

tid·( ���������
	 ())−−−−−−−−→

h with 〈[ts := ts ⊕ (tid 7→ Ret(OKfd)dsch);
s :=(Sock(fd , ∗, ∗, ∗, ∗, ∗,Flags(F,F), [ ]) :: h.s)]〉

fd /∈ sockfds h.s

Figure 2: This rule, from the host semantics, de-
scribes the state change on a host when a new socket
is created. The rule says that if there is a running
thread on the host then the host may create a new
socket. The rule emits a label indicating that it per-
formed the sockets library call socket(). The new
socket is added to the hosts list of sockets, the side
condition says that the socket must have a file de-
scriptor that is not currently in use. Of course in a
network this rule would need to be synchronised with
a thread that also wants to make a call to socket().

as above. There is also asynchronous communica-
tion. Threads on different hosts communicate asyn-
chronously through the UDP messages that traverse
across the network.

Network execution is nondeterministic. In a net-
work, any of the available actions could be nondeter-
ministically selected and performed, ignoring other
possible actions. For example, in the network above
if N could perform some reduction step then this step
could have be chosen instead of the step illustrated.
This gives the notion of interleaving and nondeter-
minism required for concurrency semantics.

2.2 Host Semantics

The labelled transition system for hosts is somewhat
larger than the network semantics. This is the result
of the complexity of state information and the large
number of socket calls to be dealt with. A version
of the entire host semantics has been presented in
a technical report (Serjantov, Sewell & Wansbrough
2001b).

The semantics of hosts is described by over 70
rules; this definition alone, not counting any auxil-
iary functions, is over 1000 lines of theory text. These
rules set out precisely the behaviour of the sockets in-
terface. The rules were developed from inspection of
Linux kernel sources and existing documentation such
as Stevens (1998). A large number of functions are
also required in the definition.

Figures 2 and 3 give some idea of the semantics.
These are two of the simplest rules, and thus easiest
to explain. Each host rule contains 3 parts. Each rule
has a label and a description of the success or other-
wise of the socket call – any socket library call can
succeed or fail in a surprisingly large number of ways:
there are 10 rules describing the sendto() call. The
central part of the rule describes the transition. Side
conditions for the transition are listed at the bottom.

A host’s state consists of the identifiers and some
status information for all currently running threads
(not the actual thread itself, this will be another host
component in the network), a list of open sockets, and
a queue of outgoing messages. Incoming messages

recvfrom 1 succeed

FC (ifds ,
tid ,Rund ,
s with 〈[ps1 := ↑p1; es := ∗;
mq :=(IP(i3, i4,UDP(ps3, ps4, data)), ifid) :: mq ]〉)

tid· � ���
�� � ��� (s.fd,nb)−−−−−−−−−−−−−→

FC (ifds , tid ,Ret(OK(i3, ps3, data))dsch ,
s with 〈[ps1 := ↑p1; es := ∗; mq := mq ]〉)

F context FC

Figure 3: This rule, from the host semantics,
describes one case for the socket library call
recvfrom(). FC (i , tid , ts, s) represents a host with
the constrained parameters i, the thread identifier tid ,
the current state of the thread ts, and the socket s.
Here a host with a UDP message in the message queue
mq of socket s may pass that message on to a thread.
Again in a network this action would need to be syn-
chronised with the corresponding thread.

are queued in the socket at which they arrive. State
changes in a host are usually the result of a socket
library call, but can also be the result of interaction
with the network, as was the case in the transitions
explained in the previous section.

Figure 2 presents the rule for creating a new
socket, using a call to the function socket(). The
transition of this rule states that any host containing
a thread with status RUN may perform this transi-
tion. The result is to add a new socket SOCK (fd , . . .)
to the host; the threads state is changed to indicate
that it should be returned the file descriptor fd of
the socket. The side condition indicates that the file
descriptor should be new.

Again, this rule seems to say that a host may ar-
bitrarily create sockets for its running threads. How-
ever, in a network a host would need to synchronise
with a thread actually making a call to socket() in
order to use this transition.

Figure 3 presents one of the successful rules for
recvfrom(). A call to recvfrom(fd,...) asks to
return the first message from the socket associated
with fd.

3 MiniCaml Semantics

OCaml is a strongly typed functional programming
language in the ML tradition (Xavier Leroy et al
2004). Here a fragment of OCaml, MiniCaml, is con-
sidered. MiniCaml programs can be compiled by the
OCaml compiler and executed; UDP programs can
be written, compiled and executed in a real network.
A simple interface to the OCaml sockets library was
written that makes the MiniCaml sockets library look
exactly like the sockets library from the semantics
above. The text of MiniCaml programs can be in-
corporated into the formal model via a simple syn-
tax translation. Currently this translation is done by
hand, but a program could perform this task.

This paper considers MiniCaml programs written
using expressions as described in the following.



e = (e, e)
(e :: el)
if e then e else e
ref e
! x
x := e
while e do e
e; e
f e
let pat = e in e

MiniCaml contains tuples (e, e) and lists
(e :: el). if e then e else e and while e do e are
the familiar choice and looping constructs. ref e, ! x
and x := e allow references to mutable values to be
created in the program. e; e represents sequencing
and f e is the application of function f to expression
e. Finally let pat = e1 in e2 evaluates expression
e1 , matches the result with pat, and then executes
e2 with identifiers in e2 substituted for the values
obtained from the evaluation of e1 . This represents
pattern matching familiar from many functional lan-
guages. Patterns can be empty, identifiers (which in
the case of let will be bound in the following expres-
sion), constants, pairs, lists, and explicitly typed vari-
ants of any pattern. All these expression have the
same meaning in MiniCaml programs as in OCaml
programs.

The MiniCaml semantics needs to be a labelled
transition system, where the labels interact in appro-
priate way with the host and network semantics out-
lined in the previous sections.

Most actions of programs should not be visible at
the network level. For example, internal computa-
tions and decisions should not be observable in the
network. We should be able to observe that the pro-
gram is doing something but not know exactly what,
except when it interacts with its environment. In this
case environmental interaction is generally via socket
calls.

Internal computations are modelled with rules that
emit tau labels, while external rules will emit la-
bels that when lifted into the network semantics (see
Figure 1) will synchronise with a host. Figure 4
shows some of the rules from the MiniCaml semantics.
Many of the rules are as expected for any language
similar to this. They either perform some internal
step, emitting a tau, or perform some unknown step
and simply emit the corresponding label.

Socket calls emit the most interesting labels. The
socket call at the bottom of Figure 4 shows the general
case. Consider the function f to be any function from
the sockets interface, say socket(). In this case the
the label emitted by the reduction of this expression
will be

Lt callHostOut (socket ()).

After this rule and an instance of the rule in Figure
2 have been lifted into network semantics, they could
synchronise. In this case, a host component and a
thread component would synchronise and emit the
label Lb(n,Tau, (L callHost(tid , socket()))). This
would indicate that the thread identified by tid and
running on host n has made the socket() call.

MiniCaml programs do not need to be part of a
network; we can consider them in isolation. Expres-
sions emitting tau labels will behave the same in this
interpretation. However, expressions interacting with
the network will have an interesting interpretation.
Consider the following transition

recvfrom(fd , false)
Lt callHostOut (recvfrom (fd,false))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−�

Retrecvfrom

if True then e1 else e2 τ−−� e1

if False then e1 else e2 τ−−� e2

eb l−� eb′

if eb then e1 else e2 l−� if eb′ then e1 else e2
e1 l−� e1′

e1 e2 l−� e1′; e2
(); e2 τ−−� e2

e1 l−� e1′

let p = e1 in e2 l−� let p = e1′ in e2
match(v, p) = Some sl

let p = v in e τ−−� (subslist sl e)

f v
Lt callHostOut(f v)−−−−−−−−−−−−−−−−−→ Retf

Retf
Lt RetHostIn v−−−−−−−−−−−−−→ v

Figure 4: Some of the rules from the MiniCaml se-
mantics. Many of the rules emit a tau label indicat-
ing an internal action. Socket calls will emit labels
describing the call made. When a MiniCaml program
executes in a network socket calls will be required to
synchronise with a host also making the appropriate
call.

According to the semantics in Figure 4, Retrecvfrom
is ready to receive a message from the network. How-
ever, if we are considering this program in isolation
there is no network. At this point nondeterminism
is introduced: the program could choose any possi-
ble message to input and continue with. Some au-
thors call this behaviour local guessing of network
values (de Roever, de Boer, Hannemann, Hooman,
Lakhnech, Poel & Zwiers 2001). At first this nonde-
terminism may seem to complicate matters, but it is
in fact useful in verification. If we can show that a
program has a certain property in isolation, i.e. for
all possible choices of unknown values, then we know
it will have that property in any network. Our veri-
fication method for distributed UDP system consists
of two stages: first we show programs satisfy certain
properties in isolation, then in a network show that
the interaction of these properties produces the de-
sired result for the network.

MiniCaml has a sensible type system, which is also
encoded in Isabelle. Using the entire language (ex-
pressions, type system and LTS semantics) we can
prove that a range of sanity properties hold of the
language. Mostly these properties are ones that could
be expected of any reasonable language. Only two are
presented here. Type preservation tells us that as the
program executes expressions do not change type.

Type Preservation

e l−→ e′

Γ ` e : T
Γ ` e′ : T

Also any well typed program is either a value, an
error or some rule can be found which reduces the
expression and emits a label.

Progress
Γ ` e : T

is value e ∨ is error e ∨ ∃ l e′. e l−→ e′

The subset of the language that emits tau labels
is also deterministic. These properties simply tell
us that the language is working properly. They are
proved by induction over the appropriate definition,
the structure of expressions, the typing relation, or



the transition system. Mostly the proofs are not diffi-
cult but require care as as a number of the definitions
are of mutually inductive sets.

4 Stenning’s Protocol

As an example of verifying programs in the UDP
model, let us consider the verification of an imple-
mentation of Stenning’s Protocol. This protocol is
designed for networks which (just like UDP) may
lose, reorder and duplicate messages. The protocol
assumes that received packets are not corrupted; our
UDP model makes the same assumption, relying on
lower level checksums to handle packet corruption is-
sues.

First the protocol is described and an abstract de-
scription is presented. Then a MiniCaml implemen-
tation is given.

4.1 The Protocol

Stenning’s protocol solves the problem of implement-
ing a reliable FIFO channel between two processes
connected by a network which may lose, reorder and
duplicate messages. The protocol consists of two par-
ties, a sender and a receiver, connected by some unre-
liable network. The sender wishes to send a message
to the receiver with the assurance that the message
will not be lost or reordered.

Consider two network nodes, NS (the sender) and
NR (the receiver). Stenning’s protocol involves NS
and NR performing the following actions. NS splits
the message into a number of packets p1, . . . , pn
(UDP imposes a restriction on the size of packets, so
not all messages could be sent in one packet.) NS then
repeatedly sends packet p1 to NR and awaits an ac-
knowledgement that the packet has arrived. NR waits
to receive a copy of p1. When the first copy arrives,
NR accepts the packet and sends NS an acknowledge-
ment for p1. If any packets arrive out of order, NR
repeats the current acknowledgement. Upon receiving
an acknowledgement for packet p1, NS knows thatNR
has received p1 and is waiting for p2. So NS moves
on to repeatedly sending packet p2. The process is
repeated for all packets.

Figure 5 shows one possible run in the operation
of the protocol. It may be intuitively clear that the
messages accepted by Nr are in order. Despite the
unreliable channel connecting NS and Nr they have
implemented a reliable FIFO channel at the level of
the packets p1, . . . , pn. See Lynch (Lynch 1996) for
further discussion of the protocol and a proof of its
correctness. Section 5 will discuss verifying that the
implementation presented next meets similar proper-
ties.

4.2 Implementation

Figure 6 presents the MiniCaml implementation of
the sending side of the protocol, the receiving side
is omitted. Rather than send a packet number and a
message, the program only sends the packet numbers:
there are no other sensible messages to send with the
packet numbers. A complete program would be dif-
ferent: it would break up some larger message and
send it in numbered packets to be reconstructed at
the receiving end. However, the example considered
here will be enough to demonstrate that we can rea-
son about such programs. Section 6 further discusses
this program and suggest improvements.

The MiniCaml implementation works as follows.
The section labelled 1 simply creates sockets and pre-
pares the program to send and receive data; this sec-
tion is not needed in any protocol description but is
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Figure 5: Shows a possible execution of Stenning’s
protocol. The Sender repeatedly sends each message
until an acknowledgement is received and then moves
on to the next message. Note that despite network
error, messages will be accepted in order by the re-
ceiver.

of course essential in a real program. The code below
2 actually implements the protocol.

The outer while loop of 2 is executed until all mes-
sages have been sent; count indicates the message
currently being sent. At 3, the current message is
initially sent. The inner while loop, labelled 4, corre-
sponds to repeatedly sending a packet until it is ac-
knowledged. The sockets library function select()
is used to test if any messages have been received.
Given a list of sockets and a timer, a call to select()
will wait until either the timer expires (returning an
empty list) or a message arrives on one of the sockets
(when it will return a list of sockets on which messages
are waiting). Intuitively, the while loop waits until a
message arrives in the socket fd recv or 1000000 mi-
croseconds have passed. If the timer expires, it is
assumed that the message was lost and needs to be
resent. This is an example of using a timer to indicate
failure.

When the code labelled 5 is reached, there is defi-
nitely an message waiting in the socket fd recv: the
while loop would not have terminated otherwise. The
message still has to be checked to ensure it is the
acknowledgement for the current message. It may
of course be some delayed or repeated acknowledge-
ment, in which case it should be ignored. If it is the
correct acknowledgement then count is increased and
the program moves on to sending message count + 1.

The program for the receiving side is actually less
complex. It simply waits for a message and acknowl-
edges message receipt if the received message is in the
correct sequence.

This program is a valid OCaml program and thus
can be compiled and executed in a network. The pro-
gram text can also be embedded as a MiniCaml pro-
gram in the formal model described in Sections 2 and
3. We now turn to the question of mechanically ver-
ifying that a network consisting of the sending and
receiving MiniCaml programs satisfies and appropri-
ate safety property.



try

(* --- 1 --- *)
let num_to_send = 20 in

(* set up to send messages *)
let p_send = port_of_int 6666 in
let i_send = ip_of_string "128.232.9.15" in
let fd_send = socket () in
let _ = connect (fd_send,i_send,Lift p_send) in

(* set up to receive ACKs *)
let p_recv = port_of_int 7777 in
let i_recv = ip_of_string "128.232.9.37" in
let fd_recv = socket () in
let _ = bind (fd_recv, Lift i_recv, Lift p_recv) in

(* loop and send all messages *)

(* --- 2 --- *)
let count = ref 0 in
while !count < num_to_send do

(* --- 3 --- *)
sendto (fd_send,Star,string_of_int !count,false);

(* --- 4 --- *)
while (let (fds,_) = (* 4 *)
select ([fd_recv],[],Lift 1000000) in fds = [])

do
sendto (fd_send,Star,string_of_int !count,false);

done;

(* --- 5 --- *)
let (_,_,m) = recvfrom (fd_recv,false) in
if int_of_string m = !count
then
count := !count + 1

else
(* Packet arrived out of order, ignore it. *)

done

with _ ->
print_string "Error!!!";
print_newline ()

;;

Figure 6: The MiniCaml implementation of the send-
ing side of the Stenning Protocol.

5 Formal Verification

This section outlines the formal proof of the imple-
mented protocol. Proving that the protocol is correct
means showing that all possible executions of a net-
work containing the sending and receiving programs
satisfy some sensible property. This section begins by
discussing a suitable representation of computation,
developing a notion of traces. It then discusses ap-
propriate properties to prove and finally outlines the
proof conducted in Isabelle.

Traces. Consider a network N that performs some

number of steps N l1−−→ N1
l2−−→ . . . ln−−→ Nn, according

to the network transition relation. These steps de-
fine a computation performed by the network. The
computation starts in state N , finishes in state Nn,
and emits the labels l1, l2, . . . , ln. This list of labels
[ l1, l2, . . . , ln ] is a trace. The trace is a record
of the computation performed by the network. Some
of the labels in a trace will not be interesting; tau
actions for example will say nothing about what hap-
pened. Other labels will describe messages sent and
received or host crashes, which are more interesting
for verification.

A trace could have also been defined as the list
of states a network goes through. In the case above

the trace could have been [ N, N1, . . . , Nn ]. Both
forms of a trace are acceptable. I felt that traces of
labels would be easier to reason about, as the state
of an entire network is large and complex. Traces of
labels (sometimes called actions) are very simple, but
contain enough information to reason about.

Traces are easy to define in the UDP network
model. The following inductive definition yields the
definition of network traces, and an induction princi-
ple.

(1)

N
[]

==⇒ N

(2)
N

tr
===⇒ N ′;N ′ l−→ N ′′

N
tr@[l]

======⇒ N ′′

Definition (1) tells us that the empty list [] is a
trace. Definition (2) says that if tr is a trace from
N to N ′, and if l is the label of a transition from N ′
to N ′′, then tr@[l] (where @ appends two traces) is a
trace from N to N ′′. We can define a similar concept
of traces for MiniCaml programs.

Due to the nondeterminism inherent in network
execution, one network state could legally produce a
number of traces. We will want to verify that all of
these possible traces satisfy the safety property. This
can be done using the induction principle generated
by the definition above. Assume that we wish to prove
that all traces of network N satisfy property P . The
induction principle generated by the definition above
has two cases. The base case asks us to prove that P
holds of the empty list. The step case asks us to prove
that if P holds of some trace tr then P also holds of
all possible extensions l to tr .

The initial state. This proof will consider
the traces of a simple network involving only the
two programs from the Stenning protocol and two
hosts. If stenning send is the code in Figure 6 and
stenning recv is the receiving side of the protocol,
then the initial state of sending and receiving hosts
could be described as the following networks.

NS =
HC (idsend ,Host(True, (simple host sender ip))) |
HC (idsend ,Thread(Timed((. . . , stenning send), d)))

NR =
HC (idrecv ,Host(True, (simple host receiver ip))) |
HC (idrecv ,Thread(Timed((. . . , stenning recv), d)))

The details of each component are not important;
simple host creates a simple host state given an IP
address for the host. NS is simply a host with the
stenning send program ready to execute on the host,
similarly for NR and stenning recv. Network com-
position is both associative and commutative, so net-
works may be composed in any order. The initial
state of the entire network is then given by

Ninitial = NS | NR

The property. One of the important safety prop-
erties for Stenning’s protocol is that it implements a
FIFO channel between sender and receiver. Here I
show that messages sent from sender to receiver are
sent and accepted in order. This seems seems to be
the equivalent property for this version of Stenning’s
protocol.

Definition 1.
stenning property tr =



∀ i m. accepted receiver m tr i −→
((∃ j < i. sent sender m tr j) ∧
(∀ n < m. ∃ j < i. accepted receiver n tr j))

Here accepted receiver m tr i says that the packet
numbered m was accepted by the receiver at point i
on trace tr, similarly for sent and received. Many
messages will be received but only messages arriving
in order will be accepted. This property states two
things. Firstly, that if message m is accepted then
all previous messages have already been accepted, as-
suring in order acceptance of messages. Secondly it
states that that messages must come from the sender .
To show that this property holds of all traces of
Ninitial we need to prove Theorem 1.

The Proof. The proof is compositional. Rather
than proving Theorem 1 in one large proof, it is
better to prove properties of the individual network
components, compose these components together and
then use the properties of the components in proving
the composed system. This compositional approach
should require less work than trying to derive the final
property in one large proof.

The proof technique has the following steps.
Firstly, prove properties of the MiniCaml programs
in isolation. This means prove that all traces of the
program satisfy a property, say Pts for the sending
program. Compose the network NS , giving the send-
ing half of the final network. Derive, using Pts , a
property that holds for NS , say PS (a similar chain
of reasoning is performed for the receiving half of the
network). This requires reasoning at two levels in the
semantics as Pts is a property of MiniCaml traces and
PS is a property of network traces. Finally show, with
the UDP messages sent between the two halves of the
network, that the final property holds of all traces of
Ninitial .

All traces of the MiniCaml program for the sending
side of the protocol satisfy the property in definition
2.

Definition 2.
thread send property tr =
∀ i m. sentmc m tr i −→
(∀ n < m. (∃ jr js. jr < i ∧ js < jr
receivedmc n tr jr ∧ sentmc n tr js))

Here sentmc m tr i is a property of MiniCaml
traces, it says that message m was sent on tr at point
i. Definition 2 says, if message m is being sent then
all previous messages must have been sent and ac-
knowledged.

The proof that all traces of the MiniCaml pro-
gram stenning send satisfies thread send property is
not given here (similarly for stenning receive). How-
ever, they are not not simply assumed. They were
proved by deriving, in Isabelle, a small logic from
the semantics of MiniCaml. The logic allows safety
properties to be stated and proved for MiniCaml pro-
grams. The important part of the proof is discovering
the correct loop invariant. For the sending program
an appropriate invariant is that all messages less than
count have been sent and acknowledgements for then
have been received.

The proofs for the MiniCaml programs do not im-
mediately apply in networks. They are properties of
MiniCaml traces not network traces. As explained
in Sections 2 and 3, these labels from the MiniCaml
semantics and are lost by the synchronisation at the
network level. So the fact that thread send property
holds of stenning send does not immediately apply
to the network NS .

Despite the labels not being present on a network
trace, the MiniCaml steps must have taken place (the

semantics in Figure 1 tells us that network steps in-
volving threads also involve steps from the MiniCaml
semantics). They will be represented by some net-
work labels, tau (for internal actions), calls to the
socket library etc. Thus there is a relationship be-
tween network traces and thread traces. Lemma 1
tells us about this relationship.

Lemma 1. All network traces also yield traces for
threads in the network, and each step of the thread
trace must correspond to some step in the network
trace.

The proof is carried out by firstly showing the step
property that any single network step either leaves
a thread unchanged or allows the thread to perform
one step from the MiniCaml semantics. Using this
property in an induction over the definition of network
traces gives the final result.

For some arbitrary network trace, we can not re-
cover what the thread traces are, nor exactly which
steps relate to which. But by capturing the relation-
ship between the two types of traces, Lemma 1 allows
properties of MiniCaml programs to be lifted into
networks. Consider the network NS we would like
to show that this network has an equivalent prop-
erty to thread send property , i.e. a property about
UDP messages sent and received on the network. This
proof will require two fundamental properties about
hosts in networks.

Lemma 2. Hosts do not receive invented messages.

Lemma 3. Hosts do not invent messages to send.

Lemma 2 tells us that if a host places a message
in the incoming queue of a socket then the message
came from a UDP packet on the network. Lemma 3
says that if a host puts a UDP packet on the network
then that packet must have come from some thread
making a call to the socket library function sendto().
We would expect these properties to be true, proving
them helps give assurance that our semantics is work-
ing correctly.

A large number of properties, which like Lemmas 2
and 3 describe how the semantics works, are required.
For a small number I first assumed the properties as
axioms and then filled in the proofs later. Only two of
these assumptions have not yet been formally proved,
and they are only required in one place (the final The-
orem). I am currently completing the proofs of these
final assumptions.

Using these meta-properties, a property equivalent
to thread send property (the same property except
that it is about UDP packets sent over and received
from the network) can be proved for the network NS .

The proof is by induction on the definition of net-
work traces. We must consider the following cases
Base case: Trivial
Step case: We have to show for arbitrary m, i and l
that if sent sender m (tr@l) j then all previous mes-
sages have been sent and received. Clearly the case to
consider is when i = length(tr) (i.e. l is the sending
step), other cases for i are covered by the inductive hy-
pothesis. Using Lemma 3 we know that the message
sent in this last step must have come at some point
from a thread performing a send. With Lemma 1
we know that there must be a trace of stenning send
including this send. Further, the trace must satisfy
thread send property , as all traces of stenning send
do. thread send property tells us that there are send
and receive actions on the thread trace for previous
messages. Now Lemmas 1, 2 and 3 help us to derive
that corresponding messages must have been sent and
received at the network level. Thus we have shown
that the network NS alway sends the messages in or-
der.



A property asserting that messages are accepted
in order can be proved in the same way for the
stenning recv program. In a similar way it can be
lifted to a property of the traces of NR.

The property in Definition 2 asserts that the pro-
gram stenning send is behaving correctly. Similarly
the properties of NS and NR assert that each half of
the network is well behaved. Now we need to com-
bine these results to prove a final theorem about the
interaction of these networks.

Theorem 1 (Safety).

∀ tr N ′. Ninitial
tr

===⇒ N ′ −→ stenning property tr

Proof. by arguments about the occurrence of events
on traces. For an arbitrary m, that has just been
accepted (accepted receiver m tr i), two things need
to be shown.

• Message m was sent by the sender. As m has
been received and accepted we know with Lemma
2 that it must have been sent across the network
at some stage. It is easy to show that only the
sender sends messages to the receiver, so message
m must have been sent by the sender.

• All previous messages have already been ac-
cepted. This is an easy consequence of the prop-
erty already proved for NR, which states that
messages are only ever accepted in order.

(End of Proof )
Theorem 1 with Definition 2 (lifted into networks)

tell us that messages are sent out in order and ac-
cepted in order. Thus, in terms of this safety prop-
erty, the sending an receiving MiniCaml programs will
work correctly in a UDP network.

6 Conclusion

This paper has discussed the verification of UDP
based distributed programs. A model of UDP and
the sockets library was presented. Stenning’s proto-
col was implemented in a fragment of OCaml. The
verification of a safety property for the protocol was
discussed. The entire development was carried out in
the theorem prover Isabelle.

6.1 Related Work

Stenning’s protocol and its close relatives, the alter-
nating bit and sliding window protocols, have been
scrutinised on a number of other occasions (Misra,
Chandy & Smith 1982, Halpern & Zuck 1992, DiVito
1982). The work presented here seems to be the first
proof at such a concrete level.

Lynch presents the protocol in I/O Automata,
giving hand proof demonstrating that the proto-
col acts as a reliable FIFO channel (Lynch 1996).
Schumann discusses the theorem prover SETHEO
and its application to verification of the protocol
(Schumann 1995).

Others have also considered the idea of verifying
network code. Dam et al. developed a method for
the verification of Erlang programs (Dam, Fredlund
& Gurov 1998, Arts & Dam 1999), though they have
a much simpler model of network communication.

6.2 Future Work

It is encouraging that we can carry out formal proof in
the UDP model. It was originally designed as a post
hoc specification of the sockets library and Internet
communication. Following the success of this veri-
fication the next milestone is to implement a larger

distributed protocol in the system (possibly one rely-
ing on host crashes, disconnection and message loss)
and attempting to prove challenging properties, such
as those involving liveness or timing constraints.

This proof could also be extended. The program
could be extended to act as a library function that
passes actual messages. The proof could then be ex-
tended to arbitrary networks, rather than the sim-
ple two host networks considered here. In this way I
might be able to use this protocol as the underlying
communication mechanism for a larger protocol.

I am also interested in deriving better techniques
for compositional proof in large models such as this
one. Compositional techniques that make use of pred-
icate transformers and semantically characterise pred-
icates may be helpful in this task (Charpentier &
Chandy 2004).
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