
An operational semantics of C11 concurrency

Kyndylan Nienhuis

September 24, 2014

Axiomatic Operational

Why do we want an operational semantics of concurrency?

The C11 standard uses both styles of semantics:

An axiomatic style for
concurrency

and an operational style for
the rest

Why do we want an operational semantics of concurrency?
So we can compute (some) behaviour of large or infinite programs.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=1

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

f:Wrlx x=1

sb
rf

atomic int x=0;
atomic int y=0;
{{{
r1 = x.load(mo relaxed);
y.store(1, mo relaxed);
|||
r2 = y.load(mo relaxed);
x.store(1, mo relaxed);
}}}

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=1

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

?

rf

atomic int x=0;
atomic int y=0;
{{{
r1 = x.load(mo relaxed);
y.store(1, mo relaxed);
|||
r2 = y.load(mo relaxed);
x.store(1, mo relaxed);
}}}

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=0

rf

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

atomic int x=0;
atomic int y=0;
{{{
r1 = x.load(mo relaxed);
y.store(1, mo relaxed);
|||
r2 = y.load(mo relaxed);
x.store(1, mo relaxed);
}}}

Generating relaxed behaviour

a:Wna x=0
The model has two parts:

I A threadlocal semantics
that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=?

sw

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=?

sw

d:Wrlx y=1

sb

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=?

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=?

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

f:Wrlx x=1

sb

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Generating relaxed behaviour

a:Wna x=0

b:Wna y=0

sb

c:Rrlx x=1

sw

e:Rrlx y=1

sw

d:Wrlx y=1

sb
rf

f:Wrlx x=1

sb
rf

The model has two parts:
I A threadlocal semantics

that determines the the
nodes, sb and asw

I A concurrency model that
determines rf

They can take steps indepen-
dently of each other. To allow
this, the threadlocal semantics
is symbolic.

Axiomatic Operational

Axiomatic Operational

Axiomatic Operational

