
EVENT STRUCTURES AND REFINEMENT
FOR RELAXED MEMORY
Alan Jeffrey (Bell Labs)
Joint work with James Riely (DePaul U.)
Memory Model Meeting, Cambridge, September 2014



OVERVIEW

Context

Event structures

Thin air reads

Synchronization actions

Program refinement

To Do List

Conclusions

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



CONTEXT

import usual.chit.chat.JMM;

State of the art:

• Formal models of valid executions: JMM, C11, ARM/POWER, x86-TSO, …
(Mile high view: partially ordered events labelled with R/W actions)

• DRF theorem.
• Lots of lovely tooling (mechanized models, theorems, test cases, …)

Problems with state of the art:

• Thin Air Read (TAR): C11 undefined behaviour, JMM complexity.
• Compiler optimizations not validated against model.

Can we use existing models of relaxed concurrency?

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



CONTEXT

import usual.chit.chat.JMM;

State of the art:

• Formal models of valid executions: JMM, C11, ARM/POWER, x86-TSO, …
(Mile high view: partially ordered events labelled with R/W actions)

• DRF theorem.
• Lots of lovely tooling (mechanized models, theorems, test cases, …)

Problems with state of the art:

• Thin Air Read (TAR): C11 undefined behaviour, JMM complexity.
• Compiler optimizations not validated against model.

Can we use existing models of relaxed concurrency?

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



CONTEXT

import usual.chit.chat.JMM;

State of the art:

• Formal models of valid executions: JMM, C11, ARM/POWER, x86-TSO, …
(Mile high view: partially ordered events labelled with R/W actions)

• DRF theorem.
• Lots of lovely tooling (mechanized models, theorems, test cases, …)

Problems with state of the art:

• Thin Air Read (TAR): C11 undefined behaviour, JMM complexity.
• Compiler optimizations not validated against model.

Can we use existing models of relaxed concurrency?

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



CONTEXT

import usual.chit.chat.JMM;

State of the art:

• Formal models of valid executions: JMM, C11, ARM/POWER, x86-TSO, …
(Mile high view: partially ordered events labelled with R/W actions)

• DRF theorem.
• Lots of lovely tooling (mechanized models, theorems, test cases, …)

Problems with state of the art:

• Thin Air Read (TAR): C11 undefined behaviour, JMM complexity.
• Compiler optimizations not validated against model.

Can we use existing models of relaxed concurrency?

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures (Winskel 1980s) are a model of relaxed concurrency.

Fix an alphabet of actions Σ (e.g. read, write, init…)

• A partial order (E,≤) (events with program order)
• A function λ : E → Σ (labelling)
• A binary relation # on E (conflict)
• If d # e then d ̸= e, and if c # d ≤ e then c # e

For example the event structure for r=x; y=r is:

..init.

Rx = 0

.

Rx = 1

.

Wy = 0

.

Wy = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures (Winskel 1980s) are a model of relaxed concurrency.

Fix an alphabet of actions Σ (e.g. read, write, init…)

A labelled partial order (E,≤, λ) consists of:
• A partial order (E,≤) (events with program order)
• A function λ : E → Σ (labelling)

• A binary relation # on E (conflict)
• If d # e then d ̸= e, and if c # d ≤ e then c # e

For example the event structure for r=x; y=r is:

..init.

Rx = 0

.

Rx = 1

.

Wy = 0

.

Wy = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures (Winskel 1980s) are a model of relaxed concurrency.

Fix an alphabet of actions Σ (e.g. read, write, init…)

A labelled prime event structure (E,≤,#, λ) consists of:
• A partial order (E,≤) (events with program order)
• A function λ : E → Σ (labelling)
• A binary relation # on E (conflict)
• If d # e then d ̸= e, and if c # d ≤ e then c # e

For example the event structure for r=x; y=r is:

..init.

Rx = 0

.

Rx = 1

.

Wy = 0

.

Wy = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures (Winskel 1980s) are a model of relaxed concurrency.

Fix an alphabet of actions Σ (e.g. read, write, init…)

A labelled prime event structure (E,≤,#, λ) consists of:
• A partial order (E,≤) (events with program order)
• A function λ : E → Σ (labelling)
• A binary relation # on E (conflict)
• If d # e then d ̸= e, and if c # d ≤ e then c # e

For example the event structure for r=x; y=r is:

..init.

Rx = 0

.

Rx = 1

.

Wy = 0

.

Wy = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events.

For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events. For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events. For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events. For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events. For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

A configuration is a ≤-downclosed, #-free set of events. For example:

..init.

Rx = 0

.

Wy = 0

..init.

Rx = 1

.

Wy = 1

First configuration is fine, but second is fishy, where did x = 1 come from?

Assume relations RWJ ⊆ RWC on Σ.
(E.g. RWC is r/w same location, RWJ is r/w same location+value).

Write d ∈ RWC(e) for λ(d) ∈ RWC(λ(e)), ¬(d = e) and ¬(d # e). Ditto RWJ.

Define d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

A configuration is justified if all non-initial events have a justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures are a relaxed model, but some configurations
correspond to sequential executions…

A configuration is totally ordered when there is a total order ≤to such that
d ≤ e implies d ≤to e.

Define d is a sequential justifier for e when d ≤to e, d ∈ RWJ(e), and
there is no d ≤to c ≤to e where c ∈ RWC(e).

A configuration is sequentially consistent if it can be totally ordered such
that all non-initial events have a sequential justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

Event structures are a relaxed model, but some configurations
correspond to sequential executions…

A configuration is totally ordered when there is a total order ≤to such that
d ≤ e implies d ≤to e.

Define d is a sequential justifier for e when d ≤to e, d ∈ RWJ(e), and
there is no d ≤to c ≤to e where c ∈ RWC(e).

A configuration is sequentially consistent if it can be totally ordered such
that all non-initial events have a sequential justifier.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

An IRIW example:

thread 1: x=1;
thread 2: y=1;
thread 3: r=x; if(r) r=y;
thread 4: r=y; if(r) r=x;

..init.

Rx = 1

.

Rx = 0

.

Ry = 1

.

Ry = 0

.

Rx = 1

.

Rx = 0

.

Ry = 1

.

Ry = 0

.

Wy = 1

.

Wx = 1

Has justified non-SC configuration:
..init.

Rx = 1

.

Ry = 1

.

Rx = 0

.

Ry = 0

.

Wy = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

An IRIW example:

thread 1: x=1;
thread 2: y=1;
thread 3: r=x; if(r) r=y;
thread 4: r=y; if(r) r=x;

..init.

Rx = 1

.

Rx = 0

.

Ry = 1

.

Ry = 0

.

Rx = 1

.

Rx = 0

.

Ry = 1

.

Ry = 0

.

Wy = 1

.

Wx = 1

Has justified non-SC configuration:
..init.

Rx = 1

.

Ry = 1

.

Rx = 0

.

Ry = 0

.

Wy = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

The basic model is event structures with justified configurations.

Elegant model with pretty pictures (thanks Glynn!).

Basic model doesn't do everything:
• Thin Air Reads.
• Synchronization actions (volatile fields, locks, …).
• Refinement relation to validate compiler optimizations.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



EVENT STRUCTURES

The basic model is event structures with justified configurations.

Elegant model with pretty pictures (thanks Glynn!).

Basic model doesn't do everything:
• Thin Air Reads.
• Synchronization actions (volatile fields, locks, …).
• Refinement relation to validate compiler optimizations.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Oh dear, the TAR pit:

thread 1: r=x; y=r;
thread 2: r=y; x=r;

..init.

Rx = 1

.

Rx = 0

.

Wy = 0

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 0

.

Wx = 1

Has justified configuration:
..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

A TAR caused by a cycle in (justification + program-order).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Oh dear, the TAR pit:

thread 1: r=x; y=r;
thread 2: r=y; x=r;

..init.

Rx = 1

.

Rx = 0

.

Wy = 0

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 0

.

Wx = 1

Has justified configuration:
..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

A TAR caused by a cycle in (justification + program-order).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Banning such cycles kills instruction reordering:

thread 1: r=x; y=1;
thread 2: r=y; x=1;

..init.

Rx = 1

.

Rx = 0

.

Wy = 1

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 1

.

Wx = 1

since the expected behaviour has exactly the same cycle:

..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Handwave: allow conflict when avoiding TAR.

Analogous to JMM candidate executions.

A configuration is a ≤-downclosed, #-free set of events.

A pre-configuration is a ≤-downclosed set of events.

A pre-configuration is relaxed justified when it has a total order such that
any non-initial e has a justifier j(e) ≤to e.

A configuration is relaxed justified when it is included in a relaxed justified
pre-configuration.

Proposal: allowed executions are relaxed justified configurations.

DRF Theorem holds for relaxed justified configurations
(under some mild technical conditions).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Handwave: allow conflict when avoiding TAR.

Analogous to JMM candidate executions.

A configuration is a ≤-downclosed, #-free set of events.

A pre-configuration is a ≤-downclosed set of events.

A pre-configuration is relaxed justified when it has a total order such that
any non-initial e has a justifier j(e) ≤to e.

A configuration is relaxed justified when it is included in a relaxed justified
pre-configuration.

Proposal: allowed executions are relaxed justified configurations.

DRF Theorem holds for relaxed justified configurations
(under some mild technical conditions).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Handwave: allow conflict when avoiding TAR.

Analogous to JMM candidate executions.

A configuration is a ≤-downclosed, #-free set of events.

A pre-configuration is a ≤-downclosed set of events.

A pre-configuration is relaxed justified when it has a total order such that
any non-initial e has a justifier j(e) ≤to e.

A configuration is relaxed justified when it is included in a relaxed justified
pre-configuration.

Proposal: allowed executions are relaxed justified configurations.

DRF Theorem holds for relaxed justified configurations
(under some mild technical conditions).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Handwave: allow conflict when avoiding TAR.

Analogous to JMM candidate executions.

A configuration is a ≤-downclosed, #-free set of events.

A pre-configuration is a ≤-downclosed set of events.

A pre-configuration is relaxed justified when it has a total order such that
any non-initial e has a justifier j(e) ≤to e.

A configuration is relaxed justified when it is included in a relaxed justified
pre-configuration.

Proposal: allowed executions are relaxed justified configurations.

DRF Theorem holds for relaxed justified configurations
(under some mild technical conditions).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Handwave: allow conflict when avoiding TAR.

Analogous to JMM candidate executions.

A configuration is a ≤-downclosed, #-free set of events.

A pre-configuration is a ≤-downclosed set of events.

A pre-configuration is relaxed justified when it has a total order such that
any non-initial e has a justifier j(e) ≤to e.

A configuration is relaxed justified when it is included in a relaxed justified
pre-configuration.

Proposal: allowed executions are relaxed justified configurations.

DRF Theorem holds for relaxed justified configurations
(under some mild technical conditions).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

The stuff I just brushed under the carpet…

Properties of the alphabet:
• If a ∈ RWC(b) and b ∈ RWC(c) then a ∈ RWC(c).

Properties of the event structure:

• If c < d ∼ e then c ≤ e.
• If c # d ∼ e and c ̸≥ e then c # e.
• If d ∼ e and λ(d) ∈ RWC(a) then λ(e) ∈ RWC(a).
• If d ∼ e and a ∈ RWC(λ(d)) then a ∈ RWC(λ(e)).
• If d ∼ e and a ∈ RWJ(λ(d)) then a ̸∈ RWJ(λ(e)).
• For any a ∈ RWC(λ(e)) there is a d ∼ e where a ∈ RWJ(λ(d)).

where d ∼ e is the minimal conflict relation:
• d ∼ e whenever d # e and if d ≥ b # c ≤ e then d = b # c = e.

In example programs, d ∼ e is generated by conflicting reads.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Instruction reordering example:

thread 1: r=x; y=1;
thread 2: r=y; x=1;

..init.

Rx = 1

.

Rx = 0

.

Wy = 1

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 1

.

Wx = 1

includes relaxed justified configuration:

..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Speculative read example:

thread 1: r=x; if(r) y=1;
thread 2: r=y; x=1;

..init.

Rx = 1

.

Rx = 0

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 1

.

Wx = 1

includes relaxed justified configuration:

..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



THIN AIR READS

Another TAR pit:

thread 1: r=x; if(r) y=1;
thread 2: r=y; if(r) x=1;

..init.

Rx = 1

.

Rx = 0

.

Wy = 1

.

Ry = 1

.

Ry = 0

.

Wx = 1

is cyclic, so this configuration is not relaxed justified:

..init.

Rx = 1

.

Wy = 1

.

Ry = 1

.

Wx = 1

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

Model so far is only for relaxed memory.

Let's add synchronization actions (motivating example: Java volatiles).

Assume Sync ⊆ Σ.

In a totally ordered configuration, this introduces synchronization relation:

λ(d), λ(e) ∈ Sync d ≤to e λ(d) ∈ RWC(λ(e))
d ≤so e

and happens before order:

d ≤ e
d ≤hb e

d ≤so e
d ≤hb e

c ≤hb d ≤hb e
c ≤hb e

(Note that if there are no synchronization actions then ≤ is the same as ≤hb).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

Model so far is only for relaxed memory.

Let's add synchronization actions (motivating example: Java volatiles).

Assume Sync ⊆ Σ.

In a totally ordered configuration, this introduces synchronization relation:

λ(d), λ(e) ∈ Sync d ≤to e λ(d) ∈ RWC(λ(e))
d ≤so e

and happens before order:

d ≤ e
d ≤hb e

d ≤so e
d ≤hb e

c ≤hb d ≤hb e
c ≤hb e

(Note that if there are no synchronization actions then ≤ is the same as ≤hb).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

Recall that in the absence of synchronization actions,
d is a justifier for e when e ̸≤ d, d ∈ RWJ(e), and
there is no d ≤ c ≤ e where c ∈ RWC(e).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

In the presence of synchronization actions,
d is a justifier for e when e ̸≤hb d, d ∈ RWJ(e), and
there is no d ≤hb c ≤hb e where c ∈ RWC(e).

(These definitions coincide when there are no synchronization actions.)

Previous definitions and results go through, under some more technical
requirements…

• If a ∈ RWC(b) and a ∈ Sync then b ∈ Sync (this fails in C11)
• If d ∼ e and d ∈ Sync then e ∈ Sync.

in a relaxed justified pre-configuration:
• If e is a synchronization event, then j(e) sequentially justifies e.
• If d ≤hb j(e) then ¬(d # e).

and in a relaxed justified configuration C:
• If j(e) ≤hb≤so≤hb e and e ∈ C then j(e) ∈ C.

DRF Theorem still holds.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

In the presence of synchronization actions,
d is a justifier for e when e ̸≤hb d, d ∈ RWJ(e), and
there is no d ≤hb c ≤hb e where c ∈ RWC(e).

(These definitions coincide when there are no synchronization actions.)

Previous definitions and results go through, under some more technical
requirements…

• If a ∈ RWC(b) and a ∈ Sync then b ∈ Sync (this fails in C11)
• If d ∼ e and d ∈ Sync then e ∈ Sync.

in a relaxed justified pre-configuration:
• If e is a synchronization event, then j(e) sequentially justifies e.
• If d ≤hb j(e) then ¬(d # e).

and in a relaxed justified configuration C:
• If j(e) ≤hb≤so≤hb e and e ∈ C then j(e) ∈ C.

DRF Theorem still holds.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

In the presence of synchronization actions,
d is a justifier for e when e ̸≤hb d, d ∈ RWJ(e), and
there is no d ≤hb c ≤hb e where c ∈ RWC(e).

(These definitions coincide when there are no synchronization actions.)

Previous definitions and results go through, under some more technical
requirements…

• If a ∈ RWC(b) and a ∈ Sync then b ∈ Sync (this fails in C11)
• If d ∼ e and d ∈ Sync then e ∈ Sync.

in a relaxed justified pre-configuration:
• If e is a synchronization event, then j(e) sequentially justifies e.
• If d ≤hb j(e) then ¬(d # e).

and in a relaxed justified configuration C:
• If j(e) ≤hb≤so≤hb e and e ∈ C then j(e) ∈ C.

DRF Theorem still holds.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

In the presence of synchronization actions,
d is a justifier for e when e ̸≤hb d, d ∈ RWJ(e), and
there is no d ≤hb c ≤hb e where c ∈ RWC(e).

(These definitions coincide when there are no synchronization actions.)

Previous definitions and results go through, under some more technical
requirements…

• If a ∈ RWC(b) and a ∈ Sync then b ∈ Sync (this fails in C11)
• If d ∼ e and d ∈ Sync then e ∈ Sync.

in a relaxed justified pre-configuration:
• If e is a synchronization event, then j(e) sequentially justifies e.
• If d ≤hb j(e) then ¬(d # e).

and in a relaxed justified configuration C:
• If j(e) ≤hb≤so≤hb e and e ∈ C then j(e) ∈ C.

DRF Theorem still holds.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



SYNCHRONIZATION ACTIONS

In the presence of synchronization actions,
d is a justifier for e when e ̸≤hb d, d ∈ RWJ(e), and
there is no d ≤hb c ≤hb e where c ∈ RWC(e).

(These definitions coincide when there are no synchronization actions.)

Previous definitions and results go through, under some more technical
requirements…

• If a ∈ RWC(b) and a ∈ Sync then b ∈ Sync (this fails in C11)
• If d ∼ e and d ∈ Sync then e ∈ Sync.

in a relaxed justified pre-configuration:
• If e is a synchronization event, then j(e) sequentially justifies e.
• If d ≤hb j(e) then ¬(d # e).

and in a relaxed justified configuration C:
• If j(e) ≤hb≤so≤hb e and e ∈ C then j(e) ∈ C.

DRF Theorem still holds.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

Looking for a definition of refinement ⊑ between event structures which is:
• is a preorder
• is compositional: if P ⊑ Q then C[P] ⊑ C[Q] for any program context C
• validates common compiler optimizations
(roach motel, variable reordering and thread inlining)

We have one.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

Looking for a definition of refinement ⊑ between event structures which is:
• is a preorder
• is compositional: if P ⊑ Q then C[P] ⊑ C[Q] for any program context C
• validates common compiler optimizations
(roach motel, variable reordering and thread inlining)

We have one.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

Define ES1 ⊑ ES2 whenever
• there is a binary relation R ⊆ E1 × E2,
• for every e2 ∈ E2 there is e1 ∈ E1 such that (e1, e2) ∈ R,
• for every (e1, e2) ∈ R, we have λ1(e1) = λ2(e2),
• for every (d1, d2) ∈ R and (e1, e2) ∈ R, we have d1 #1 e1 iff d2 #2 e2,
• for every synchronized write d2 with (d1, d2) ∈ R and d2 <2 e2,
there exists d1 <1 e1 such that (e1, e2) ∈ R,

• for every synchronized read e2 with (e1, e2) ∈ R and d2 <2 e2,
there exists d1 <1 e1 such that (d1, d2) ∈ R, and

• for every synchronized read e2 with (e1, e2) ∈ R and d2 ≪2 e2,
there exists d1 ≪1 e1 such that (d1, d2) ∈ R.

where d ≪ e whenever d < c < e for some c ∈ WWC(d).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

⊑ is a preorder.

⊑ is compositional

⊑ validates roach motel and variable reordering

⊑ validates thread inlining, since ES1 ⊑ ES2 whenever:

E1 = E2 ≤1 ⊆ ≤2 #1 = #2 λ1 = λ2

that is, more things are related by program order in ES2 than in ES1.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

⊑ is a preorder.

⊑ is compositional, in that it respects the following operations:
• Prefixing (a.ES adds a new event labelled a to the beginning of ES).
• Parallel composition (ES1 | ES2 is the disjoint union of ES1 and ES2).
• Sum (ES1 + ES2 is ES1 | ES2, but with conflict between E1 and E2).

Enough to give semantics for a simple shared-memory concurrent language.

⊑ validates roach motel and variable reordering

⊑ validates thread inlining, since ES1 ⊑ ES2 whenever:

E1 = E2 ≤1 ⊆ ≤2 #1 = #2 λ1 = λ2

that is, more things are related by program order in ES2 than in ES1.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

⊑ is a preorder.

⊑ is compositional.

⊑ validates roach motel and variable reordering,
since a.b.ES ⊑ b.a.ES whenever:

• a ̸∈ WWC(b),
• a is not a synchronized read, and
• b is not a synchronized write.

⊑ validates thread inlining, since ES1 ⊑ ES2 whenever:

E1 = E2 ≤1 ⊆ ≤2 #1 = #2 λ1 = λ2

that is, more things are related by program order in ES2 than in ES1.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



PROGRAM REFINEMENT

⊑ is a preorder.

⊑ is compositional.

⊑ validates roach motel and variable reordering.

⊑ validates thread inlining, since ES1 ⊑ ES2 whenever:

E1 = E2 ≤1 ⊆ ≤2 #1 = #2 λ1 = λ2

that is, more things are related by program order in ES2 than in ES1.

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



TO DO LIST

Tooling.

Conjecture: program refinement respects relaxed justified configurations.

Per-location SC (aka coherence).

Richer alphabets of synchronization actions.

Object creation (c.f. Lochlieber).

Reasoning by invariants (e.g. type safety).

Specification language for APIs to describe synchronization
(currently done by English, e.g. in java collections API).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.



CONCLUSIONS

Event structures provide a model for relaxed memory.

Basic model is event structures with justified configurations.

Scales up (at cost of complexity) to TAR and synchronization actions.

Supports program refinement which handles common optimizations
(roach motel, variable reordering and thread inlining).

COPYRIGHT © 2014 ALCATEL-LUCENT. ALL RIGHTS RESERVED.


