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Abstract

The method of construction of a novel garden ornament is de-
scribed. The essential mathematics of it is indicated. The use of this
as a practical project for a group of 10-year-olds in a school lesson is
explained.

This article was published by The Institute of Mathematics and its
Applications in Mathematics Today, 42, 215-216, December 2006.

1 The Hardware

The outdoor photographs show a garden ornament made by Richard Sewell
in 2001. It consists of straight steel rods, of 1 centimetre diameter, which
connect two different cubic curves. The ends of the rods lie on two imag-
inary parallel planes 1 metre apart. The structure has been used to help
sweet peas grow upwards, albeit not vertically. Painted white, and movable,
it also provides intriguing contrast, at different times, in a patch of daffodils,
or of bluebells, or against an astilbe bush.

The two cubics, each in an x, t plane, belong to the same family x =
(y − 2)t− t3, for the particular values y = 0 and y = 8.

The model can be seen to have 15 straight rods, corresponding to the
x(y) straight lines provided by successive values of t at intervals of 0.25 in
the range −1.75 ≤ t ≤ +1.75. The central rod t = 0 is perpendicular, at
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each end, to the imaginary bounding plane there.

To make the model the two cubics, for y = 0 and y = 8, were plotted on
two hardboard templates, and holes were drilled in the hardboard at those
x(y) points of the cubic specified by the above values of t. Each pair of cor-
responding holes, having the same value of t, was labelled. The templates
were clamped in position at the correct spacing of 8 y units, i.e. 1 metre for
the size of model required. For each pair of holes, a 1 centimetre diameter
steel rod was cut to the correct length and passed through the holes, allow-
ing a short protrusion at each end.

Once the long straight rods were in place, protruding through the hard-
board planes at each end, the overall shape of the structure could be seen.
Next, adjacent rods had to be joined at their ends to make a rigid structure.

This was done by cutting short sections of rod to the required length, lay-
ing them on the template between the holes in the hardboard, and welding
them to the protruding ends with a MIG (metal inert gas) welder. Welded
together, these short rods then combine to make a good piecewise linear
approximation to the cubic curve on each bounding plane y = 0 and y = 8.
Both cubics have an inflexion at x = t = 0. The cubic with y = 8 also has
a local maximum and a local minimum, but that with y = 0 does not.

The hardboard templates were then cut away to reveal the finished struc-
ture. The welds were ground clean, and the finished structure was brush-
painted with zinc primer and then gloss paint.

Two inverted U-shaped pegs hammered into the ground astride the lower
cubic are sufficient to secure the structure in an upright vertical position.

Figure 1 shows a view looking, obliquely from above, towards the vertical
x, y planes on each of which t is constant and so we see straight line sec-
tions of the surface. The upper limiting cubic, without local maximum and
minimum, is seen on the plane y = 0. The Sun projects a cusped envelope,
formed by the rods, onto the ground behind the structure. This evident cusp
is the origin of the name “cusp catastrophe” sometimes associated with the
surface (see Section 3 below). Different views of the cusped envelope emerge
as one walks around the structure.

Figure 2 shows a view looking parallel to the x, y planes on each of which
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Figure 1: Front view showing cusped envelope shadow on ground

t is a constant. From this aspect the rich curvature contained in the model
is concealed, but the simplicity of the construction is shown. The model is
next to a white astilbe bush.

Figure 3 shows the steel structure in a different garden situation, next to
a silver coloured globe artichoke. Daniel Sewell is sitting next to his Uncle
Richard’s construction. The structure can readily be moved around the gar-
den so that it has more colourful backgrounds, such as azaleas or foxgloves,
but these are not illustrated here.

2 The Software

I have had the good fortune, since retiring from undergraduate teaching, to
teach a selected group of about nine 10-year-olds once a week in a primary
school. It has proved possible, over a period of five years, to choose topics
without repetition during that time, and which are not on the current syl-
labus, and also which do not deliberately anticipate a future syllabus which
the pupils may meet. Some accidental anticipation is, of course, inevitable
if certain topics are to be treated coherently. But the purpose is to offer
breadth rather than acceleration.
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Figure 2: Side view showing spacing of rods

Figure 3: View against a globe artichoke background
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Chocolate offers an opportunity. Until very recently, every 100g bar of
Lindt Excellence, a fine dark chocolate with 70 per cent cocoa, was sold in a
packet stiffened with a cardboard rectangle measuring 19 centimetres by 8.5
centimetres, and 1 millimetre thick. Having accumulated a large collection
of these cards, with an eye to possible future usefulness, an opportunity
arose.

I taught the children how to plot the two cubics described in the previous
Section, on centimetre graph paper. That is, they were required to draw the
x, t axes twice, one to use for y = 0 and the other to use for y = 8. Then
they were required to make tables of values of x for each of the 15 values of
t specified above. Next the points were plotted on the two pieces of graph
paper, and labelled B,C,D,E,F,G,H for t > 0, and b,c,d,e,f,g,h for t < 0,
with the origin t = 0 at A and a. This lettering helped in the next stage.

The graphs were glued to a pair of cards (I did this myself at home,
between lessons, to save time), and 0.5 millimetre holes were then pierced,
by the pupils, at the labelled points using a drawing pin.

Next the pupils had to fix the two cards 8 centimetres apart, and so that
the x and t axes on each card lay directly one above the other. We used some
more card. Two rectangles were cut, each 10 centimetres by 8 centimetres.
On each, the midline was marked which was parallel to the longer edge, and
the card was bent to a right angle along that midline. Four notches were
cut, 1 millimetre in width, and 1 centimetre from the ends of the longer
edges. The pupils could then wedge each end of the cards containing the
graphs into these notches, as seen in Figure 4. This fixed the graphs at the
required distance apart, and parallel to each other.

Now we were ready for the nice bit. The children used a needle to thread
cotton between correspondingly labelled points on the two graphs to create
the string model. This is shown in Figure 4. Of course it was possible for
there to be “many a slip...” in the last phase, but there was enough success
to make the endeavour rewarding.

I carried the 1 metre high steel garden model into the classroom before
we began the topic, to help provide motivation.
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Figure 4: String model constructed in primary class

3 The Applications

Some of my early research papers were concerned with the calculation of
eigenvalues which gave the buckling load of straight struts and flat plates
compressed into the plastic range of stress. A developing wider viewpoint in
the literature introduced the idea of an imperfection as another pertinent ge-
ometrical parameter in elastic and plastic structures. I wrote a paper (1966)
which introduced the “equilibrium surface” as a geometrical and analytical
representation of all the equilibrium configurations which would be possible
under the range of possible values of all pertinent physical parameters.

In another part of the forest, as became clear to me when I attended
a conference at Warwick University in 1969, the subject which eventually
became widely known as catastrophe theory was rapidly germinating. For
mechanical structures like struts, flat plates, and curved shells, with im-
perfections, the surface constructed in the previous two Sections above was
found to be representative of the equilibrium surface which described the
observed phenomena of the evolution of some of these structures under in-
creasing load. In some cases (e.g. shells) the structure is sensitive to imper-
fections, which lower the buckling load, and in other cases (e.g. struts and
plates) it is not sensitive to them.

A large number of other contexts emerged, some mechanical and some
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not, which made use of the surface exhibited in the photographs, or asso-
ciated surfaces. Descriptions of some of these theories are to be found in,
for example, the books by Zeeman (1977), Poston and Stewart (1978) and
Thompson and Hunt (1984). Further evolution into areas exhibiting mul-
tiple bifurcations and so-called chaos have followed. Emotive terminology
like “catastrophe” and “chaos” may not have been to everyone’s taste, but
it cannot be denied that the enormous stimulus which has been provided
not only to the statics, but also to the dynamics of natural processes, is
continuing.

A slice made by the plane x = 0 through the continuous surface rep-
resented by the string model will exhibit the parabola y − 2 = t2 and the
line t = 0 in the y, t plane. Together these display a trident, often called
a “pitchfork bifurcation” (although when I was helping to build haystacks,
the pitchforks always had two prongs rather than three). In the mechanical
context, of a loaded imperfect strut, for example, y represents the axial load,
t the sideways deflection, and x an imperfection.

The so-called “swallowtail” is another “elementary catastrophe” for which
an attractive string model can be constructed, and photographs of it are
shown in Sewell (1977, 1987). Other novel expositions of mathematics for
children, in this case for 13-year-olds, are described in Sewell (1997).
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