
Verifying Fence Elimination Optimisations

Viktor Vafeiadis1 and Francesco Zappa Nardelli2

1 MPI-SWS
2 INRIA

Abstract. We consider simple compiler optimisations for removing re-
dundant memory fences in programs running on top of the x86-TSO
relaxed memory model. While the optimisations are performed using
standard thread-local control flow analyses, their correctness is subtle
and relies on a non-standard global simulation argument. The imple-
mentation and the proof of correctness are programmed in Coq as part
of CompCertTSO, a fully-fledged certified compiler from a concurrent ex-
tension of a C-like language to x86 assembler. In this article, we describe
the soundness proof of the optimisations and evaluate their effectiveness.

1 Introduction

Contrary to a näıve programmer’s expectations, modern multicore architectures
do not implement a sequentially consistent (SC) shared memory, but rather ex-
hibit a relaxed consistency model. For instance, x86 provides a TSO-like memory
model [18, 23] while Power exhibits much more relaxed behaviour [19].

Programming directly against such relaxed hardware can be difficult, espe-
cially if performance and portability are a concern. For this reason, programming
languages need their own higher-level memory model, and it is the role of the
compiler to guarantee that the language memory model is correctly implemented
on the target hardware architecture. Naturally, SC comes as an attractive choice
because it is intuitive to programmers, and SC behaviour for volatiles and SC
atomics is an important part of the Java and C++0x memory models, respec-
tively. However, implementing SC over relaxed hardware memory models re-
quires the insertion of potentially expensive memory fence instructions, and if
done näıvely results in a significant performance degradation. For instance, if
SC is recovered on x86 by systematically inserting an MFENCE instruction either
after every memory store instruction, or before every memory load (as in a pro-
totype implementation of C++0x atomics [26]), then on some benchmarks (e.g.
Fraser’s library of lock-free algorithms [11]) we could observe a 40% slowdown
with respect to a hand-optimised implementation.

Compiler optimisations to optimise barrier placement are thus essential, and
indeed there are many opportunities to perform fence removal optimisations. For
example, on x86, if there are no writes between two memory fence instructions,
the second fence is unnecessary. Dually, if there are no reads between the two
fence instructions, then the first fence instruction is redundant. Finally, by a
form of partial redundancy elimination [17], we can insert memory barriers at

selected program points in order to make earlier fence instructions redundant,
with an overall effect of reducing the number of fences along all execution paths
and hoisting barriers out of a loop.

However, concurrency, especially relaxed-memory concurrency, is a notori-
ously subtle and error-prone domain [10, 20], and so verifying such optimisations
is of great interest. Work in this area goes back at least to that of Shasha and
Snir [24] (and more recently [2, 6, 21]), but most of this is in terms of transfor-
mations of hypothetical program executions rather than the transformations of
code that are implemented (without proof) in actual compilers.

In this paper, we bridge this gap by implementing the aforementioned redun-
dant barrier removal optimisations in CompCertTSO [22], a fully fledged verified
compiler from ClightTSO (a C-like concurrent language with TSO semantics)
to concurrent x86 assembly code with x86-TSO semantics. We prove the cor-
rectness of our optimisations in Coq and integrate this result into the overall
semantic preservation proof of CompCertTSO, giving an end-to-end correctness
result.3 The correctness result verifies that these fence removal optimisations
do not introduce any new TSO behaviour. They are therefore sound in several
different usages: for ClightTSO code with manually inserted fences; in a TSO
implementation of a DRF-based memory model, such as C++0x [3] or the Java
memory model [16], where fences are used to implement the language’s low-level
atomic primitives; or if one implements SC by starting with a placement of fences
admitting only SC-behaviours (e.g. by placing a fence after every memory write)
and then optimises away as many as possible.

The correctness of one of our optimisations turned out to be more much
interesting than we had anticipated and could not be verified using a standard
forward simulation because it introduces unobservable non-determinism (see §3
for an explanation). To verify this optimisation, we introduce weaktau simula-
tions (see §4), which in our experience were much easier to use than backward
simulations [15]. In contrast, the other two optimisations were straightforward
to verify, each taking us less than a day’s worth of work to prove correct in Coq.

Hence, we believe that developing mechanised formal proofs about concur-
rent optimising compilers offers a good benefit to effort ratio, once the right
foundations are laid out.

Outline. We begin, in §2, by recalling the relaxed-memory behaviour of our
target architecture, as captured by the x86-TSO model, and the structure and
correctness statement of the CompCertTSO verified compiler. Then, in §3, we
describe our optimisations and their implementation in CompCertTSO, and eval-
uate their performace. In §4, we describe our overall simulation proof strategy
for verifying compiler correctness, and in §5 the use of this strategy to verify the
optimisations in question. Finally, in §6, we reflect on our experience using Coq
and in §7 we discuss related work.

3 The proofs are available at http://www.cl.cam.ac.uk/~pes20/CompCertTSO/.

H/W thread

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

H/W thread

Fig. 1. x86-TSO block diagram

2 The x86-TSO Memory Model & CompCertTSO

The x86-TSO model [18, 23] is a rigorous memory model that captures the
memory behaviour of the x86 architecture visible to the programmer, for normal
code. Figure 1 depicts the x86-TSO block diagram: each hardware thread has a
FIFO buffer of pending memory writes (which can propagate to memory at any
later time, thereby avoiding the need to block while a write completes); memory
reads return the latest memory write pending in the thread write buffer, or, if
there are no pending writes, the value written in the shared memory. Memory
fences (MFENCE) flush the local write buffer: formally, they block until the buffer
is empty. ‘Locked’ x86 instructions (e.g. LOCK INC) involve multiple memory ac-
cesses performed atomically. Such atomic read-modify-write instructions first
block until the local write buffer is empty, and then atomically perform a read,
a write of the updated value, and a flush of the local write buffer.

The classic example showing a non-SC behaviour in TSO is the store buffer
program below (SB). Given two distinct memory locations x and y initially
holding 0, the memory writes of two hardware threads respectively writing 1

to x and y can be buffered, and the subsequent reads from y and x (into register
EAX on thread 0 and EBX on thread 1) are fulfilled by the memory (which still
holds 0 everywhere), and it is possible for both to read 0 in the same execution.
It is easy to check that this result cannot arise from any SC interleaving, but it
is observable on modern Intel or AMD x86 multiprocessors.

If MFENCE instructions are inserted after the memory writes, as in SB+mfences,
then at least one buffer must be flushed before any read is performed, and at
least one thread will observe the write performed by the other thread, as in all
SC executions.

SB
Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MOV EAX←[y] MOV EBX←[x]

Allowed final state: 0:EAX=0 ∧ 1:EBX=0

SB+mfences
Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MFENCE MFENCE

MOV EAX←[y] MOV EBX←[x]

Forbidden final state: 0:EAX=0 ∧ 1:EBX=0

CompCertTSO [22, 8] is a certified compiler that lifts the x86-TSO model of
the x86 assembly language to a C-like language. Its source language, ClightTSO,
is a concurrent extension of CompCert Clight language [4], adding thread cre-
ation and some atomic read-modify-write and barrier primitives that are directly
implementable by x86 locked instructions and MFENCE. In addition, ClightTSO
load and store operations have a TSO semantics. The main syntactic differ-
ence between Clight and C is that expressions cannot contain function calls and
memory writes (these can occur only as statements).

The behaviour of the source and target languages (ClightTSO and x86-TSO)
is defined using labelled transition systems (LTS) with visible actions for call and
return of external functions (e.g. OS I/O primitives), program exit, semantic
failure, and out-of-memory error, together with internal τ actions.

event , ev ::= call id vs | return typ v | exitn | fail | oom | τ

We take the observable behaviours of a program to be the set of finite and infinite
traces of events it generates, filtering out any finite sequences of internal τ ac-
tions. Broadly speaking, the correctness property of CompCertTSO states that
if the compiled program has some observable behaviours then those behaviours
are admitted by the source semantics; however compiled behaviour that arises
from an erroneous source program need not to be admitted in the source se-
mantics, and the compiled program should only diverge, indicated by an infinite
trace of τ labels, if the source program can. This is formalised in §4.

The compilation from ClightTSO to x86-TSO goes through 13 successive
phases and 7 intermediate languages (Csharpminor, Cminor, RTL, LTL, LTLin,
Linear, Mach), which progressively transform C features into assembly code
and perform various standard optimisations such as constant propagation, CSE
(limited to arithmetic expressions), branch tunneling, and register allocation.
In this paper, we need consider only the RTL intermediate language, whose
programs consist of a set of function definitions each containing a control flow
graph (CFG) of three-address-code instructions:

rtl instr ::= nop | op(op, ~r, r) | load(κ, addr, ~r, r) | store(κ, addr, ~r, src)
| call(sig, ros, args, res) | cond(cond, args) | return(optarg)
| threadcreate(optarg) | atomic(aop, ~r, r) | fence

Nodes with cond instructions have two successors (ifso, ifnot); nodes with return

instructions have no successors; all other nodes have exactly one successor.

3 The Optimisations

We detect and optimise away the following cases of redundant MFENCE instruc-
tions:

– a fence is redundant if it always follows a previous fence or locked instruction
in program order, and no memory store instructions are in between (FE1);

– a fence is redundant if it always precedes a later fence or locked instruction
in program order, and no memory read instructions are in between (FE2).

We also perform partial redundancy elimination (PRE) [17] to improve on the
second optimisation: we selectively insert memory fences in the program to make
fences that are redundant along some execution paths to be redundant along all
paths, which allows FE2 to eliminate them. The combined effect of PRE and
FE2 is quite powerful and can even hoist a fence instruction out of a loop, as we
shall see later in this section.

The correctness of FE1 is intuitive: since no memory writes have been per-
formed by the same thread since executing an atomic instruction, the thread’s
buffer must be empty and so the fence instruction is effectively a no-op and can
be optimised away.

The correctness of FE2 is more subtle. To see informally why it is correct,
first consider the simpler transformation that swaps a MFENCE instruction past
an adjacent store instructions (that is, MFENCE;store store;MFENCE). To a first
approximation, we can think of FE2 as successively applying this transformation
to the earlier fence (and also commuting it over local non-memory operations)
until it reaches the later fence; then we have two successive fences and we can
remove one. Intuitively, the end-to-end behaviours of the transformed program,
store;MFENCE, are a subset of the end-to-end behaviours of the original program,
MFENCE;store: the transformed program leaves the buffer empty, whereas in the
original program there can be up to one outstanding write in the buffer. Notice
that there is an intermediate state in the transformed program that is not present
in the original program: if initially the buffer is non-empty, then after executing
the store instruction in store;MFENCE we end up in a state where the buffer
contains the store and some other elements. It is, however, impossible to reach
the same state in the original MFENCE;store program because the store always
goes into an empty buffer. What saves soundness is that this intermediate state
is not observable. Since threads can access only their own buffers, the only way
to distinguish an empty buffer from a non-empty buffer must involve the thread
performing a read instruction from that intermediate state.

Indeed, if there are any intervening reads between the two fences, the trans-
formation is unsound, as illustrated by the following variant of SB+mfences:

Thread 0 Thread 1

MOV [x]←1 MOV [y]←1

MFENCE (*) MFENCE

MOV EAX←[y] MOV EBX←[x]

MFENCE

If the MFENCE labelled with (*) is removed, then it is easy to find an x86-TSO
execution that terminates in a state where EAX and EBX are both 0, which was
impossible in the unoptimised program.

This ‘swapping’ argument works for finite executions, but does not account
for infinite executions, as it is possible that the later fence is never executed —
if, for example, the program is stuck in an infinite loop between the two fences.

T1(nop, E) = E
T1(op(op, ~r, r), E) = E
T1(load(κ, addr, ~r, r), E) = E
T1(store(κ, addr, ~r, src), E) = >
T1(call(sig, ros, args, res), E) = >
T1(cond(cond, args), E) = E
T1(return(optarg), E) = >
T1(threadcreate(optarg), E) = >
T1(atomic(aop, ~r, r), E) = ⊥
T1(fence, E) = ⊥

T2(nop, E) = E
T2(op(op, ~r, r), E) = E
T2(load(κ, addr, ~r, r), E) = >
T2(store(κ, addr, ~r, src), E) = E
T2(call(sig, ros, args, res), E) = >
T2(cond(cond, args), E) = E
T2(return(optarg), E) = >
T2(threadcreate(optarg), E) = >
T2(atomic(aop, ~r, r), E) = ⊥
T2(fence, E) = ⊥

Fig. 2. Transfer functions for FE1 and FE2.

The essential difficulty of the proof is that FE2 introduces non-observable non-
determinism. It is well-known that reasoning about such transformations cannot,
in general, be done solely by a standard forward simulation (e.g., [15]), but it also
requires a backward simulation [15] or, equivalently, prophecy variables [1]. We
have have tried using backward simulation to carry out the proof, but found the
backward reasoning painfully difficult. Instead, we came up with a new kind of
forward simulation, which we call a weaktau simulation in §4, that incorporates
a simple version of a boolean prophecy variable that is much easier to use and
suffices to verify FE2. The details are in §4 and §5.

We can observe that neither optimisation subsumes the other: in the program
below on the left the (*) barrier is removed by FE2 but not by FE1, while in
the program on the right the (†) barrier is removed by FE1 but not by FE2.

MOV [x]←1 MFENCE

MFENCE (*) MOV EAX←[x]

MOV [x]←2 MFENCE (†)
MFENCE MOV EBX←[y]

Implementation. The fence instructions eligible to be optimised away are eas-
ily computed by two intra-procedural dataflow analyses over the boolean do-
main, {⊥,>}, performed on RTL programs. Among the intermediate languages
of CompCertTSO, RTL is the most convenient to perform these optimisations,
and it is the intermediate language where most of the existing optimisations are
performed: namely, constant propagation, CSE, and register allocation.

The first is a forward dataflow problem that associates to each program point
the value ⊥ if along all execution paths there is an atomic instruction before the
current program point with no intervening writes, and > otherwise. The problem
can be formulated as the solution of the standard forward dataflow equation:

FE1(n) =

{
> if predecessors(n) = ∅⊔
p∈predecessors(n) T1(instr(p),FE1(p)) otherwise

where p and n are program points (i.e., nodes of the control-flow-graph), the join
operation is logical disjunction (returning > if at least one of the arguments is
>), and the transfer function T1 is defined in Fig. 2.

The second is a backward dataflow problem that associates to each program
point the value ⊥ if along all execution paths there is an atomic instruction
after the current program point with no intervening reads, and > otherwise.
This problem is solved by the standard backward dataflow equation:

FE2(n) =

{
> if successors(n) = ∅⊔
s∈successors(n) T2(instr(s),FE2(s)) otherwise

where the join operation is again logical disjunction and the transfer function
T2 is defined in Fig. 2.

To solve the dataflow equations we reuse the generic implemenation of Kil-
dall’s algorithm provided by the CompCert compiler. Armed with the results of
the dataflow analysis, a pass over the RTL source replaces the fence nodes whose
associated value in the corresponding analysis is ⊥ with nop (no-operation)
nodes, which are removed by a later pass of the compiler.

Partial Redundancy Elimination. In practice, it is common for MFENCE instruc-
tions to be redundant on some but not all paths through a program. To help
with these cases, we perform a partial redundancy elimination phase (PRE)
that inserts fence instructions so that partially redundant fences become fully
redundant. For instance, the RTL program on the left of Fig. 3 (from Fraser’s
lockfree-lib) cannot be optimised by FE2: PRE inserts a memory fence in
the ifnot branch, which in turn enables FE2 to rewrite the program so that all
execution paths go through at most one fence instruction.

The implementation of PRE runs two static analyses to identify the program
points where fence nodes should be introduced. First, the RTL generation phase
introduces a nop as the first node on each branch after a conditional; these nop
nodes will be used as placeholders to insert (or not) the redundant barriers. We
then run two static analyses:

– the first, called A, is a backward analysis returning > if along some path after
the current program point there is an atomic instruction with no intervening
reads;

– the second, called B, is a forward analysis returning ⊥ if along all paths to
the current program point there is a fence with no later reads or atomic
instructions.

The transformation inserts fences after conditional nodes on branches whenever:

– analysis B returns⊥ (i.e., there exists a previous fence that will be eliminated
if we were to insert a fence at both branches of the conditional nodes); and

– analysis A returns ⊥ (i.e., the previous fence will not be removed by FE2);
and

– analysis A returns > on the other branch (the other branch of the conditional
already makes the previous fence partially redundant).

If all three conditions hold for a nop node following a branch instruction, then
that node is replaced by a fence node. A word to justify the some path (instead

FENCE

nop

store

FENCE

return

if

ifso

nop

ifnot

nop

FENCE

nop

store

FENCE

return

if

ifso

FENCE

ifnot

nop

nop

nop

store

nop

return

if

ifso

FENCE

ifnot

nop

Fig. 3. Unoptimised RTL, RTL after PRE, and RTL after PRE and FE2

of for all paths) condition in analysis A: as long as there is a fence on some path,
then at all branch points PRE would insert a fence on all other paths, essentially
converting the program to one having fences on all paths.

The transfer functions TA and TB are detailed in Fig. 4. Note that TB defines
the same transfer function as T2, but here it is used in a forward, rather than
backward, dataflow problem.

Evaluation We instructed the RTL generation phase of CompCertTSO to sys-
tematically introduce a MFENCE instruction before each memory read (strategy
br), or after each memory write (strategy aw). The table in Figure 5 considers
several well-known concurrent algorithms, including Dekker and Bakery mu-
tual exclusion algorithms, Treiber’s stack [27], the TL2 lock-based STM [9],
the already mentioned Fraser’s lockfree implementation of skiplists, and several
benchmarks from the STAMP benchmark [7], and reports the total numbers
of fences in the generated assembler files, following the br and af strategies,
possibly enabling the FE1, PRE and FE2 optimisations.

A basic observation is that FE2 removes on average about 30% of the MFENCE

instructions, while PRE does not further reduce the static number of fences, but
rather reduces the dynamic number of fences executed, e.g. by hoisting fences out
of loops as in Figure 3. When it comes to execution times, then the gain is much
more limited than the number of fences removed. For example, we observe a 3%
speedup when PRE and FE2 are used on the skiplist code (running skiplist 2

TA(nop, E) = E
TA(op(op, ~r, r), E) = E
TA(load(κ, addr, ~r, r), E) = ⊥
TA(store(κ, addr, ~r, src), E) = E
TA(call(sig, ros, args, res), E) = ⊥
TA(cond(cond, args), E) = E
TA(return(optarg), E) = ⊥
TA(threadcreate(optarg), E) = ⊥
TA(atomic(aop, ~r, r), E) = >
TA(fence, E) = >

TB(nop, E) = E
TB(op(op, ~r, r), E) = E
TB(load(κ, addr, ~r, r), E) = >
TB(store(κ, addr, ~r, src), E) = E
TB(call(sig, ros, args, res), E) = >
TB(cond(cond, args), E) = E
TB(return(optarg), E) = >
TB(threadcreate(optarg), E) = >
TB(atomic(aop, ~r, r), E) = ⊥
TB(fence, E) = ⊥

Fig. 4. Transfer functions for analyses A and B of PRE.

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber’s stack 5 2 3 1 1
Fraser’s skiplist 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367

Fig. 5. Experimental results

50 100 on a 2-core x86 machine): the hand-optimised (barrier free) version by
Fraser is about 45% faster than the code generated by the aw strategy.

For Lamport’s bakery algorithm we generate optimal code for lock, as bar-
riers are used to restore SC on accesses to the choosing array. However the
particular optimisations we consider are clearly not the last word on the sub-
ject. Looking at the fences we do not remove in more detail, the Treiber stack is
instructive, as the only barrier left corresponds to an update to a newly allocated
object, and our analyses cannot guess that this newly allocated object is still
local; a precise escape analysis would be required. In general, about the half of
the remaining MFENCE instructions precede a function call or return; we believe
that performing an interprocedural analysis would remove most of these barri-
ers. Our focus here is on verified optimisations rather than performance alone,
and the machine-checked correctness proof of such sophisticated optimisations
is a substantial challenge for future work.

4 Formalisation of Traces and Simulations

In this section, we formalise the traces of a program, the correctness statement
for our compiler, as well as basic, measured, and weaktau simulations. This
section corresponds to the Coq file Traces.v in our distribution [8], and was

not part of our original work on CompCertTSO [22], where we took measured
simulations to be our compiler correctness statement.

Language Semantics. Abstractly, the operational semantics of a language such
as ClightTSO, RTL, and x86-TSO consists of a type of programs, prg and a
type of states, states, together with a set of initial states for each program,
init ∈ prg → P(states), and a transition relation, →∈ P(states × event × states).
The states contain the program text, the memory, the buffers for each thread,
and each thread’s local state (for RTL, this is the program counter, the stack
pointer, and the values of the registers).

We employ the following notations: (i) s
ev−→ s′ stands for (s, ev, s′) ∈→; (ii)

s 6→ means ¬(∃ev s′. s ev−→ s′); and (iii) s
τ−→∗ ev−→ s′ means ∃s′′. s τ−→∗ s′′ ∧ s′′ ev−→

s′. For a finite sequence ` of non-τ , non-oom, non-fail events, we define s
`

=⇒ s′

to hold whenever s can do the sequence ` of events, possibly interleaved with a
finite number of τ -events, and end in state s′. Further, we define the predicate
inftau(s) to hold whenever s can do an infinite sequence of τ -transitions.

Traces. Traces are either infinite sequences of non-τ events or finite sequences
of non-τ events ending with one of the following three placeholders: end (des-
ignating successful termination), inftau (designating an infinite execution that
eventually stops performing any visible events), or oom (designating an execu-
tion that ends because it runs out of memory). The traces of a program, p, are
given as follows:

traces(p)
def
= {` · end | ∃s ∈ init(p). ∃s′. s `

=⇒ s′ ∧ s′ 6→}
∪ {` · tr | ∃s ∈ init(p). ∃s′. s `·fail

===⇒ s′}
∪ {` · inftau | ∃s ∈ init(p). ∃s′. s `

=⇒ s′ ∧ inftau(s′)}
∪ {` · oom | ∃s ∈ init(p). ∃s′. s `

=⇒ s′}
∪ {tr | ∃s ∈ init(p). s can do the infinite trace tr}

We treat failed computations as having arbitrary behaviour after their failure
point, whereas we allow the program to run out of memory at any point during
its execution. This perhaps counter-intuitive semantics of oom is needed to get
a correctness statement guaranteeing nothing about computations that run out
of memory.

Simulations. We proceed to the definition of simulations, which are techniques
for proving statements of the form ∀p. traces(compile(p)) ⊆ traces(p), which we
consider as compile’s correctness statement.

Definition 1 (Basic sim.). The relation pair ∼∈ P(src.states×tgt.states) and
>∈ P(tgt.states× tgt.states) is a basic simulation for the compilation function

compile : src.prg → tgt.prg, if and only if the following properties are satisfied:4

sim init : ∀p p′. compile(p) = p′ =⇒ ∀t ∈ init(p′). ∃s ∈ init(p). s ∼ t
sim end : ∀s t t′. s ∼ t ∧ t 6→ =⇒ s 6→
sim step : ∀s t t′ ev . s ∼ t ∧ t ev−→ t′ ∧ ` 6= oom =⇒

(s
τ−→∗ fail−−−→) — s reaches a failure

∨ (∃s′. s τ−→∗ ev−→ s′ ∧ s′ ∼ t′) — s does matching step sequence
∨ (ev = τ ∧ t > t′ ∧ s ∼ t′) . — s stutters (only allowed if t > t′)

In the definition above, > is used simply to control when stuttering can occur.
Later definitions will impose restrictions on >.

It is well-known that exhibiting a basic simulation is sufficient to verify that
the finite traces of compile(p) are included in the traces of p. This is captured
by the following lemmata:

Lemma 1. If (∼, >) is a basic simulation, then for all s, t, t′, and ev, if s ∼ t
and t

τ−→∗ ev−→ t′ and ev 6= oom, then

(s
τ−→∗ fail−−−→) ∨ (∃s′. s τ−→∗ ev−→ s′ ∧ s′ ∼ t′) ∨ (ev = τ ∧ s ∼ t′).

Lemma 2. If (∼, >) is a basic simulation, then for all s, t, t′, and `, if s ∼ t

and t
`

=⇒ t′, then (∃tr1 tr2. tr = tr1 · tr2 ∧ s
tr1·fail=====⇒) ∨ (∃s′. s tr

=⇒ s′ ∧ s′ ∼ t′).

The second lemma says that given a trace tr of external events starting from
a target state, t, then the related source state, s, can either fail after doing a
prefix of the trace or can do the same race and end in a related state. (This is
proved by an induction on the length of the trace tr using Lemma 1.)

We can adapt this proof also cover infinite traces of external events by em-
ploying coinductive reasoning. However, we cannot show something similar for a
trace ending with infinite sequence of invernal events, because the third disjunct
of sim step effectively allows us to stutter forever, thereby possibly removing the
infinite sequence of internal events.

So, while basic simulations do not imply full trace inclusion, they do so if we
can further show that for all s ∼ t, inftau(t) implies inftau(s).

Lemma 3. If there exists a basic simulation (∼, >) for the compilation function
compile, and if for all s ∼ t, inftau(t) implies inftau(s), then for all programs p,
traces(compile(p)) ⊆ traces(p).

This theorem follows easily from Lemma 2 and the corresponding lemma for
infinite traces of external events.

To ensure inclusion even for infinite traces of internal events, CompCertTSO
uses measured simulations, which additionally require that > is well-founded.

4 Our Coq definition in Traces.v is exploits some particular properties common to
all our semantics (e.g., s 6→ if and only if s contains no threads), and is therefore
slightly different than the one presented in the paper.

Definition 2 (Measured sim.). A measured simulation is any basic simula-
tion (∼, >) such that > is well-founded.

Existance of a measured simulation implies full trace inclusion, intuitively
because we can no longer remove an infinite sequence of internal events.

Theorem 1. If there exists a measured simulation for the compilation function
compile, then for all programs p, traces(compile(p)) ⊆ traces(p).

In this work, we introduce a new kind of simulation: the weaktau simulation,
which also implies trace inclusion.

Definition 3 (Weaktau sim.). A weaktau simulation consists of a basic sim-
ulation (∼, >) with and an additional relation between source and target states,
'∈ P(src.states× tgt.states) satisfying the following properties:

sim weaken : ∀s, t. s ∼ t =⇒ s ' t
sim wstep : ∀s t t′. s ' t ∧ t τ−→ t′ ∧ t > t′ =⇒

(s
τ−→∗ fail−−−→) — s reaches a failure

∨ (∃s′. s τ−→∗ τ−→ s′ ∧ s′ ' t′) — s does a matching step sequence.

One way of seeing weaktau simulations is as a forward simulation incorporating
a boolean prophecy variable [1] that can be used to delay execution only of
internal τ steps, but not of any visible steps. This will become more evident
from the proof that weaktau simulations imply trace inclusion.

Theorem 2. If there exists a weaktau-simulation (∼, >,') for the compilation
function compile, then for all programs p, traces(compile(p)) ⊆ traces(p).

Proof (sketch). From Lemma 3, it suffices to prove that whenever s ∼ t and
there is an infinite sequence of internal events starting from t, then there is also
such a sequence starting from s. To construct such a trace, we do a case split:
Are the transitions eventually always in the > relation (i.e., does the sequence
satisfy the LTL-formula ♦� >) or not?

– If so, then use Lemma 1 to reach that point, say s′ ∼ t′, then apply
sim weaken to deduce that s′ ' t′, and use the sim wstep to construct
the infinite trace.

– If they are not, tr contains infinitely many transitions that are not in the >
relation (�♦ 6> in LTL), and so using sim step, we can produce an infinite
trace for the source. ut

5 Proofs of the Optimisations

This section gives brief outlines the formal Coq proofs of correctness for the
three optimisations that were presented in §3.

Fence Elimination 1. We verify this optimisation by measured simulation.
Take > to be empty relation (which is trivially well-founded) and s ∼ t the

relation requiring that (i) the control-flow-graph of t is the optimised version of
the CFG of s, (ii) s and t have identical program counters, local states, buffers
and memory, and (iii), for each thread i, if the analysis for i’s program counter
returned ⊥, then i’s buffer is empty.

It is straightforward to show that each target step is matched exactly by the
corresponding step of the source program. In the case of a nop instruction, this
could arise either because of a nop in the source or because of a removed fence.
In the latter case, the analysis will have returned ⊥ and so, according to ∼,
the thread’s buffer is empty and the fence proceeds. Note that condition (iii)
is straightforward to re-establish after each step, because the transfer function,
T1, returns ⊥ only after a fence or an atomic instruction (when the buffer is
necessarily empty) and > whenever something could be added to the buffer
(i.e., at store instruction or a function call).

Fence Elimination 2. We verify this optimisation by exhibiting a weaktau sim-
ulation, for which we shall need the following two auxiliary definitions:

– Define s ≡i t to hold whenever thread i of s and t have identical program
counters, local states and buffers.

– Define s i s
′ if thread i of s execute a sequence of nop, op, store and

fence instructions and end in the state s′.

Take s ∼ t the relation requiring that (i) t’s CFG is the optimised version
of s’s CFG, (ii) s and t have identical memories, (iii), for each thread i, either
s ≡i t or the analysis for i’s program counter returned ⊥ (meaning that there is
a later fence in the CFG with no reads in between) and there exists a state s0
such that s i s0 and s0 ≡i t.

Take s ' t to be the relation requiring that: (i) the CFG of t is the optimised
version of the CFG of s, and (ii), for each thread i, there exists s0 such that
s i s0 and s0 ≡i t. It is easy to see that ∼ and ' satisfy sim weaken: that is,
for all s and t, s ∼ t implies s ' t.

Finally, let t > t′ be defined whenever t
τ−→ t′ by a thread executing a nop,

an op, or a store instruction.
To prove sim step, we match every step of the target with the corresponding

step of the source whenever the analysis at the current program point of the
thread doing the step returns >. It is possible to do so, because by the simulation
relation (s ∼ t), we have s ≡i t.

Now, consider the case when the target thread i does a step and the analysis
at the current program point returns ⊥. According to the simulation relation
(∼), we have s i s0 ≡i t. Because of the transfer function, T2, that step cannot
be a load or a call/return/threadcreate. We are left with the following cases:

– nop (either in the source program or because of a removed fence), op, or
store. In these cases, we stutter in the source, i.e. do s ∼ t′. This is possible
because we can perform the corresponding transition from s′ (i.e., there
exists an s′′ such that s i s

′ i s
′′ ≡i t′).

Code Specs Proofs

Traces & simulations – 490 358
Auxiliary memory lemmata – 162 557
Fence elimination 1 68 213 319
Fence elimination 2 68 336 652
Fence introduction (PRE) 138 117 127

Total 274 1318 2013

Fig. 6. Size of formal development in lines as reported by coqwc.

– fence, atomic: This is matched by doing the sequence of transitions from
s to s′ followed by flushing the local store buffer and finally executing the
corresponding fence or atomic instruction from s′.

– Thread i unbuffering: If i’s buffer is non-empty in s, then unbuffering one
element from s preserves the simulation relation. Otherwise, if i’s buffer is
empty, then there exists an s′ such that s s′ s0 and i’s buffer in s′ has
exactly one element. Then the transition from t

τ−→ t′ is simulated by first
doing s

τ−→∗ τ−→ s′ followed by an unbuffering from s′, which preserves the
simulation relation.

To prove wsim step, we simulate a target thread transition by doing the
sequence of transitions from s to s0 followed by executing the corresponding
instruction from s0.

Partial Redundancy Elimination. Even though this optimisation was the most
complex to implement, its proof was actually the easiest. What this optimisation
does is to replace some nop instructions by fence instructions depending on some
non-trivial analysis. However, as far as correctness is concerned, it is always safe
to insert a fence instruction irrespective of whatever analysis was used to used
to decide to perform the insertion. Informally, this is because inserting a memory
fence just restricts the set of behaviours of the program; it never adds any new
behaviour.

In the formal proof, we take the simulation relation to be equality except on
the programs themselves, where we require the target program to be the ‘opti-
mised’ version of the source program. Executing the inserted fence instruction
in the target is simulated by executing the corresponding nop in the source.

6 Coq Experience

Figure 6 presents the size of our development broken down in lines of extracted
code, lines of specifications (i.e., definitions and statements of lemmata and
theorems), and of proof script. Blank lines and comments are not counted. For
comparison, the whole of CompCertTSO is roughly 85 thousand lines.

Line counts do not accurately reflect the time taken to carry out those proofs.
The definitions of program traces, of the various kinds of simulations and their

properties (namely, that they imply trace inclusion) took about a month. The
main challenge was coming up with the definition of a weaktau simulation; the
proof that weaktau simulations imply trace inclusion took us less than a day
once we had come up with the definition. Prior to that we had spent two man-
months formalizing backward (prophecy) simulations [15] and trying to use them
to verify our second fence elimination optimisation, albeit unsuccessfully. The
trace inclusion proofs were moderately tricky to formalize in Coq because of
coinductive reasoning and the use of the axiom of choice, for which we assumed
the classical epsilon operator.

Coding up the fence elimination optimisations took half a day, and so did the
soundness proof of the first one. Proving the correctness of the second optimi-
sation required in total about three man-months of effort, reduced to less than
a week once we defined the weaktau simulation, a significant part of which was
devoted to developing generic infrastructure to reason about executions resulting
in a memory error. Finally, PRE took a couple of days to implement and two
hours to prove correct. In total, we spent about 5 man-months on this project.

7 Related work

The problem of inserting memory barriers so that a program admits only SC
executions has been, and still is, a central research topic since Sasha and Snir’s
seminal paper on delay set analysis [24]. Most studies of this problem [24, 2, 6]
have mostly been in terms of hypothetical program executions and, unlike our
work, have not been integrated in a working compiler.

There is also some compiler work. Lee and Padua [14] describe an algorithm
based on dominators for inserting memory fences, while Sura et al. [25] focus on
the more practical aspects, e.g., on how to approximate delay sets by performing
cheaper whole-program analyses coupled with an escape analysis. While these
works perform much more sophisticated analyses than the ones we implemented,
unfortunately none of them comes with a mechanised soundness proof.

Another line of research [5, 12, 13] uses model checking techniques to insert
fences to ensure SC. While these techniques may insert fewer fence instructions
for small intricate concurrent libraries, they often guarantee soundness only for
some clients of those libraries, and are too expensive to perform in a general-
purpose compiler.

8 Conclusion

We have reported on the implementation of three barrier elimination optimisa-
tions within CompCertTSO and on their mechanised correctness proof in Coq.
Our results suggest that reasoning about compiler optimisations for weak mem-
ory models are good candidates for mechanisation, and believe that this work
will facilitate the formal study of more advanced compiler optimisations for con-
current programs within verified compilers.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. pp. 253–284 (1991)

2. Alglave, J.: A shared memory poetics. Ph.D. thesis, Université Paris 7 (2010)
3. Becker, P.: Working draft, standard for programming language C++ (Mar 2010),

n3090=10-0080
4. Blazy, S., Leroy, X.: Mechanized semantics for the clight subset of the c language.

J. Autom. Reasoning 43(3), 263–288 (2009)
5. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of

concurrent data types on relaxed memory models. In: Ferrante, J., McKinley, K.S.
(eds.) PLDI. pp. 12–21. ACM (2007)

6. Burckhardt, S., Musuvathi, M., Singh, V.: Verifying local transformations on re-
laxed memory models. In: CC 2010. pp. 104–123 (2010)

7. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC (2008)

8. CompCertTSO (2011), http://www.cl.cam.ac.uk/~pes20/CompCertTSO
9. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: DISC (2006)

10. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In: EM-
SOFT. pp. 255–264 (2008)

11. Fraser, K.: Practical Lock Freedom. Ph.D. thesis, University of Cambridge (2003),
also available as Tech. Report UCAM-CL-TR-639

12. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.
Form. Methods Syst. Des. 31, 281–305 (December 2007)

13. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
FMCAD 2010 (2010)

14. Lee, J., Padua, D.A.: Hiding relaxed memory consistency with a compiler. IEEE
Trans. Comput. 50, 824–833 (August 2001)

15. Lynch, N., Vaandrager, F.: Forward and backward simulations I: untimed systems.
Inf. Comput. 121, 214–233 (September 1995)

16. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Proc. POPL (2005)
17. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-

cies. Commun. ACM 22, 96–103 (February 1979)
18. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Proc.

TPHOLs (2009)
19. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding

POWER multiprocessors. In: PLDI (2011), to appear.
20. Sevcik, J., Aspinall, D.: On validity of program transformations in the Java memory

model. In: ECOOP (2008)
21. Sevcik, J.: Safe optimisations for shared-memory concurrent programs. In: PLDI

(2011), to appear
22. Sevćık, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-

memory concurrency and verified compilation. In: POPL. pp. 43–54 (2011)
23. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-tso: a

rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89–97 (2010)

24. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10, 282–312 (April 1988)

25. Sura, Z., Fang, X., Wong, C.L., Midkiff, S.P., Lee, J., Padua, D.: Compiler tech-
niques for high performance sequentially consistent java programs. In: PPoPP 2005.
pp. 2–13. ACM, New York, NY, USA (2005)

26. Terekhov, A.: Brief tentative example x86 implementation for C/C++
memory model. cpp-threads mailing list, http://www.decadent.org.uk/

pipermail/cpp-threads/2008-December/001933.html (Dec 2008)
27. Treiber, R.K.: Systems programming: Coping with parallelism. Tech. rep. (1986)

