
1

Breaking Smartcards Using Power Analysis

Omar Choudary (osc22)

University of Cambridge

I. INTRODUCTION

Smartcards are used Today in many applications, including cash retrieval, shop transac-

tions, on-line banking, Pay-TV services, anti-theft protection and many more. Many of these

services attract the interest of people in pirating the smartcards. For example, an attacker

might make an illegal copy of a smartcard used in Pay-TV services and sell it. The owner

of this illegal copy could then benefit from such services for free.

Smartcards (Figure 1) generally contain at least one microcontroller which features a CPU,

memory and data buses. As a result they can be used in many cryptographic applications

where hiding a secret (e.g. a private key) is fundamental.

(a) (b)

Fig. 1. Smartcards: (a) a smartcard used in access control; (b) a tampered smartcard

In this paper I present several methods for retrieving private information from a smartcard,

focusing on the eavesdropping techniques known as Power Analysis.

To illustrate some of the techniques I have done two experiments on Differential Power

Analysis (DPA) and Correlation Power Analysis (CPA). The experiments are done in Matlab

and represent an approximation of a real scenario. The results demonstrate the validity of

the presented attacks.



2

II. OVERVIEW OF SMARTCARD ATTACKS

There are two main types of smartcard attacks:

• Invasive Attacks: these attacks imply physical tampering of the hardware. Such tech-

niques can be used to access the chip’s surface directly, and thus we can observe,

manipulate, and interfere with the integrated circuit.

• Non-Invasive Attacks: they do not damage nor modify the physical structure of the

smartcard. As described by Kömmerling and Kuhn [1], such attacks include:

– Software Attacks: use the normal communication interface of the processor and

exploit security vulnerabilities found in the protocols, cryptographic algorithms, or

their implementation.

– Eavesdropping: techniques to monitor, with high time resolution, the analog char-

acteristics of all supply and interface connections and any other electromagnetic

radiation produced by the processor during normal operation. In this paper I’ll

focus on these techniques.

– Fault Generation: techniques that use abnormal environmental conditions to gen-

erate malfunctions in the processor that provide additional access.

Recently it has been developed a type of semi-invasive attack [2]. This attack uses an optical

sensor to detect photons emitted by electronic circuits when electrons pass through them.

They are called semi-invasive attacks because only the main cover is removed from the chip.

There is no need to physically tamper with the device in great detail.

III. POWER ANALYSIS ATTACKS

In this section we’ll discuss power analysis attacks, which are a type of eavesdropping

attacks. This section represents the main focus of the paper.

The basic setup is the same for all the power analysis attacks. The attacker has physical

access to a microcontroller and can record the external data bus as well as the current intensity

(See Figure 2).

A. Simple Power Analysis

Simple Power Analysis (SPA) is a basic technique which relies only in recording the

intensity of the electric current flowing through the microcontroller. As presented by Kocher

et al. [4], the main idea behind SPA is that some instructions executed by the microcontroller



3

Fig. 2. Experimental board used in power analysis [3]

(e.g. jump, RAM access) modify the current intensity in a very noticeable way. As an example,

in Figure 3 the three arrows mark register rotations in the DES encryption protocol. The power

trace clearly expose these operations by simple observation.

Fig. 3. Simple Power Analysis on DES encryption: the arrows mark the moments when registers C and D are rotated;

figure from [4]

Skorobogatov and Kuhn [3] have successfully used SPA in retrieving the private pass-

word of the MC68HC908AZ60A microcontroller. This password was needed to retrieve the

contents of the microcontroller’s memory.



4

Fig. 4. SPA attack on the MC68HC908AZ60A microcontroller: plotting the intensity for all 256 possible values of a

password-byte it is possible to determine the out-lier which corresponds to the correct byte; figure from [3]

In order to find the 8-byte long password, they sequentially tried all possible values for

the 8 bytes. For a given byte all the possible 256 values were sent to the microcontroller.

By analyzing the resulting intensity after each possible value they could determine precisely

which was the correct value (See Figure 4).

B. Differential Power Analysis

An improved attack based on power analysis is Differential Power Analysis (DPA) [4].

This method relies on the fact that current intensity is dependent on the data processed by the

microcontroller, not only on the instructions executed. However, unlike SPA, the differences

in intensity caused by the variations in data cannot be observed directly.

In order to visualize the dependence between the data processed and the power trace we

need to repeat the same cycle of encryption operations many times (possibly more than 1000

operations are needed). The basic process to successfully apply the DPA attack is presented

in Figure 5. We input random plaintext (known) to the cipher algorithm and we record the

output and the power trace (only the input plaintext or the output ciphertext are needed). We

need a prior knowledge of the algorithm in order to estimate the resulted data after the first

(or last) iteration of one encryption operation.



5

Fig. 5. DPA process overview

Fig. 6. DPA attack on DES encryption standard; figure from [4]

If we note m the number of encryption operations, p1..m the input plaintext for each of

the operations, k the number of samples (iterations within the cryptographic algorithm) per

operation, T1..m[1..k] the power traces for the m operations, and D(pi, b) the expectation of



6

bit b after the one of the iterations in operation mi over plaintext pi, we can compute the

differential trace:

∆D[j] =

∑m
i=1 D(pi, b)Ti[j]∑m

i=1 D(pi, b)
−

∑m
i=1(1−D(pi, b)Ti[j])∑m

i=1(1−D(pi, b))
(1)

In Figure 6 we can see an example of DPA attack on the DES encryption algorithm. On

top it is presented the reference power trace. The second row represents the differential trace

for a correct estimation of a bit, while the last two rows represent the differential trace when

using a wrong estimation.

Fig. 7. Overview of our DPA attack experiment

I have used a simple encryption algorithm in order to test the DPA attack. This algorithms

contains five iterations per encryption operation. On each iteration the algorithm encrypts an

input byte (cipher) by using an XOR operation with a private key (key) and then makeing a

lookup into a random permutation table (sbox).

The DPA attack on this simple algorithm can be seen in Figure 7. I simulate the power

trace as the Hamming weight of the resulted byte plus some random noise.

All my experiment was done in Matlab. First I’ve chosen a random key. Then I’ve run

the simple encryption algorithm for a large number of m encryption operations. For a given



7

Fig. 8. Results of our DPA attack for different values of m; on the X-axis we represent the 5 iterations of an encryption

operation; the Y-axis represents the amplitude of the differential trace

input plaintext byte p and random chosen password byte rkey, the estimation of bit b was

simply the first iteration of our algorithm: D(p, b) = bitand(2b, sbox(rkey ∧ p)).

By plotting the differential trace over a large number of encryption operations for each

possible key we can easily detect the correct key. Figure 8 show these plots for different

values of m. For values over 100 the correct key is clearly visible.

C. Correlation Power Analysis

Looking more carefully at the DPA attack experiment we can observe that the power trace

is highly correlated to the Hamming weight of the encrypted data after the first iteration

(we only added some noise). Thus we could think of an attack using this correlation. It has

been actually proved that the power trace in a real scenario is correlated to the data being

processed [5]. This information is used in the so called Correlation Power Analysis (CPA)

attacks.



8

Fig. 9. Results of the CPA attack for m=50

As I already had the simulation in place, I made a simple implementation of the CPA attack.

Instead of computing an estimate of a given bit for an encryption operation, I computed the

Hamming weight of the resulted byte after the first iteration of the encryption algorithm. That

is, for a given plaintext byte p, random key rkey and expected data d = sbox(rkey ∧ p), we

compute the Hamming weight of d. The correlation of d with the power trace over all the

m encryption operations can be easily found in matlab by using the function coerrcoef.

By plotting the correlation coefficient for each possible key we obtained the results in

Figure 9, where m is 50. As it can be seen in Figure 10, the CPA attack gives better results

(at least in our case) than DPA.

IV. ACKNOWLEDGMENTS

I need to thank Dr. Markus Kuhn for his enormous help and directions in the experiments.

REFERENCES

[1] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard processors,” in WOST’99:

Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technology.

Berkeley, CA, USA: USENIX Association, 1999, pp. 2–2.

[2] S. Skorobogatov, “Using optical emission analysis for estimating contribution to power analysis,” in 6th WORKSHOP

ON FAULT DIAGNOSIS AND TOLERANCE IN CRYPTOGRAPHY - FDTC 2009, 2009.

[3] S. Skorobogatov and M. Kuhn, “Power analysis of the Motorola MC68HC908AZ60A microcontroller,” University of

Cambridge, Tech. Rep., 2005.

[4] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO ’99: Proceedings of the 19th Annual

International Cryptology Conference on Advances in Cryptology. London, UK: Springer-Verlag, 1999, pp. 388–397.



9

[5] E. Brier, C. Clavier, and F. Olivier, Correlation Power Analysis with a Leakage Model. Springer Berlin / Heidelberg,

2004, ch. Correlation Power Analysis with a Leakage Model.

(a) (b)

Fig. 10. Results of CPA (a) and DPA (b), for m=100 (top), m=1000 (middle) and m=10000 (bottom). The X-axis represents

the 5 iterations of each encryption operation in our algorithm; the Y-axis represents the amplitude of the correlation for

CPA and the amplitude of the differential trace for DPA



10

APPENDIX

MATLAB CODE

spwanoise.m:

function spwanoise(iterations, noise)

% spwanoise(iterations,noise)

%

% iterations is the number of encryption operations to perform

% noise is the random noise to be added to the power trace to simulate a

% real situation

numrounds = 5;

% known to attacker

sbox = uint8(randperm(2ˆ8)-1);

plaintext = uint8(floor(rand(1, iterations) * 256));

cipherout = [];

% unknown to attacker

key = uint8(42);

% encryption and recording of power trace of toy "cipher"

trace = [];

ciphertext = plaintext;

for round=1:numrounds

ciphertext = sbox(bitxor(ciphertext, key)+1)-1;

noised = sum(dec2bin(ciphertext)-’0’,2) + rand(iterations,1)*noise;

trace = [trace; noised’];

cipherout = [cipherout; ciphertext];

end

% differential power analysis



11

% reconstruct LSB in first round

numkeys = 256;

keys=uint8(0:numkeys-1)’;

[plaintextm,keym] = meshgrid(plaintext, keys);

lsb = bitand(1,sbox(bitxor(plaintextm, keym)+1)-1);

tracepos = [];

traceneg = [];

for i=1:numkeys

pos = trace(:, find(lsb(i,:)));

posavg = mean(pos, 2);

tracepos = [tracepos; posavg’];

neg = trace(:, find(lsb(i,:) == 0));

negavg = mean(neg, 2);

traceneg = [traceneg; negavg’];

end

diff = tracepos - traceneg;

% search for key that leads to peak

ax = uint8(1:numrounds);

figure;

hold on;

axis([0.5 (numrounds+0.5) -1.2 1.2]);

plot(ax,diff,’g’);

plot(ax,diff(43,:),’r’); % we know key at index 43 is the correct



12

%We try to do some correlation analysis

%compute hamming weight for all keys/iterations

rh = hammingweight(sbox(bitxor(plaintextm, keym)+1)-1);

correlation =[];

for i=1:numkeys

cr = [];

for round=1:numrounds

cf = corrcoef(rh(i,:),trace(round,:));

cr = [cr cf(1,2)];

end

correlation = [correlation; cr];

end

%show

ax = uint8(1:numrounds);

figure;

hold on;

axis([0.5 (numrounds+0.5) -1.2 1.2]);

plot(ax,correlation,’g’);

plot(ax,correlation(43,:),’r’);

hammingweight.m:

function H = hammingweight(X)

% h = hammingweight(X)

% where X is a matrix

%

% This function computes the Hamming weight of all values in X, that is the

% sum of "1" bits in each element

[m,n] = size(X);



13

H = [];

for i=1:m

H = [H; sum(dec2bin(X(i,:))-’0’,2)’];

end


