
Back to Massey:
Impressively fast, scalable and
tight security evaluation tools

Marios O. Choudary and Pantelimon George Popescu
University Politehnica of Bucharest

CHES 2017, Taipei

Side Channel Attacks (SCA)
• Are powerful tools to extract data (e.g. secret keys)

used in cryptographic algorithms

• OR during key-loading operations

2

CRYPTO SCA KEY

Choudary and Popescu, Back to Massey

SCA on crypto algorithms

3

• Improved brute-force attacks by Divide and Conquer strategy:

• Target 8-bit subkeys instead of full crypto key (e.g. 128-bit)

Sbox(k1)
(8-bit)

Sbox(k2)
(8-bit) …

AE
S SC

A

SC
A

SC
A

Choudary and Popescu, Back to Massey

Security Evaluations

• Used to determine security of a device against side-
channel attacks (as well as other attacks…)

• Performed by chip designers as well as specialised
evaluation labs (for certification purposes)

• Certifications (e.g. Common Criteria, EMV) typically
needed for commercial security-critical products (e.g.
banking cards)

4 Choudary and Popescu, Back to Massey

Evaluations on single subkeys

5

• Due to Divide and Conquer strategy, classic evaluation
tools apply mostly to single subkeys (bytes, words):

• Guessing entropy (our focus)

• Success rate

• Mutual information

• …

Choudary and Popescu, Back to Massey

Evaluations on single subkeys

6

Sb
ox

(k
1)

(8
-b

it)
Sb

ox
(k

2)
(8

-b
it)

… SCA (…)

SCA (k2)

SCA (k1)

• These tools require lists of probabilities (or scores) for
each value of a subkey:

L1 = [P(k1=0), P(k1=1), …, P(k1=255)]

L2 = [P(k2=0), P(k2=1), …, P(k2=255)]

…

Choudary and Popescu, Back to Massey

e.g. Template Attacks

Guessing entropy (GM)
• James L. Massey, ’94 (‘guess work’)

|S| is the number of values per subkey
pi are the sorted probabilities after the SCA:

• Statistical expectation of position of correct key value in sorted
list of probabilities

• Expected amount of work for optimised brute force attack
7

GM =
P|S|

i=1 i · pi

p1 = P (k = v1) � p2 = P (k = v2) � . . . � p|S| = P (k = v|S|)

Choudary and Popescu, Back to Massey

Empirical guessing entropy (GE)
(aka key rank)

• Standaert et al., ’06

• GE = position of correct key (kgood)

in the sorted list of probabilities:

• e. g. if kgood = v2 => GE = 2 measure

8

p1 = P (k = v1) � p2 = P (k = v2) � . . . � p|S| = P (k = v|S|)

Choudary and Popescu, Back to Massey

GM =
P|S|

i=1 i · pi

Guessing entropy

9

GE = position of kgood

• Statistical expectation of
the position of correct key

• Does not require
knowledge of kgood
=> may be used with unknown

key

• Actual position of correct
key for a set of samples

• Requires knowledge of
kgood

Choudary and Popescu, Back to Massey

Our claim: GM can bebetter than GE for security evaluations
(e.g. if we have probabilities)

Experimental data sets

• Simulated data set

• Target is AES S-box lookup

• Hamming Weight leakage
model

• One sample

10

• Real data set:

• Target is AES S-box lookup
from AVR XMEGA AES crypto
engine

• Template Attack profiling

• LDA compression

Choudary and Popescu, Back to Massey

• Probabilities for real data with a single attack trace
Very large standard deviation for GE (100 iterations)

Guessing entropy

11

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7 10-3

Probabilities
GM
GE
pdf(GM)
pdf(GE)

Choudary and Popescu, Back to Massey

• Probabilities for real data with 100 attack traces
Again large standard deviation for GE

Guessing entropy

12

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Probabilities
GM
GE
pdf(GM)
pdf(GE)

Choudary and Popescu, Back to Massey

GM, GE on a single key byte

• Simulated data set

13

• Real data set

100 101 102 103
0

50

100

150

200

GM
GE

Choudary and Popescu, Back to Massey

100 101 102
0

50

100

150

200

G
ue

ss
in

g
En

tro
py

GM
GE

Large standard deviation for GE in both experiments

Problems for full-key evaluation:
GM, GE do not scale!

• ns = 2 bytes => |S|ns = 2562 = 65536 probabilities
to compute and sort

14 Choudary and Popescu, Back to Massey

Sbox(k1)
(8-bit)

Sbox(k2)
(8-bit)

SC
A

SC
A

8
>>><

>>>:

p1
p2
...
p256

9
>>>=

>>>;
⇥

8
>>><

>>>:

p1
p2
...
p256

9
>>>=

>>>;
=

8
>>><

>>>:

p1
p2
...
p65536

9
>>>=

>>>;

GMf =
P|S|ns

i=1 i · pi
ns = 2 bytes
=> we can still do it
(takes a few min)

Problems for full-key evaluation:
GM, GE do not scale!

15 Choudary and Popescu, Back to Massey

• ns = 16 bytes => |S|ns = 25616 = 3.4… x 1038 probabilities
to compute and sort

ns = 16 bytes
=> we can not do it

Sbox(k1)
(8-bit)

Sbox(k2)
(8-bit)

SC
A

SC
A

Sbox(k16)
(8-bit)

SC
A

…

8
>>><

>>>:

p1
p2
...
p256

9
>>>=

>>>;
⇥

8
>>><

>>>:

p1
p2
...
p256

9
>>>=

>>>;
⇥ · · ·⇥

8
>>><

>>>:

p1
p2
...
p256

9
>>>=

>>>;
=

8
>>><

>>>:

p1
p2
...
p2128

9
>>>=

>>>;

GMf =
P|S|ns

i=1 i · pi

Full-key Evaluation tools

• Key enumeration: efficient algorithmic combination of
lists of probabilities to output the most likely values of
the full key (optimised brute force search attack)
f(kgood, L1, L2, …) => P(kfull= v1) > P(kfull= v2) > …

• Rank estimation: algorithmic estimation (bound) of
the key rank (empirical guessing entropy)
f(kgood, L1, L2, …) => {lbound(GE), ubound(GE)}

16 Choudary and Popescu, Back to Massey

• Limitations:

• Existing key enumeration and rank estimation
algorithms can only practically work with less than
256-byte (2048-bit) keys (i.e. 256 probability lists)

(due to computation time and memory consumption)

=> existing tools we cannot evaluate the security of a
device against a full-key SCA for keys of 512-byte
(4096-bit) and larger
(e.g. key-loading attack on large RSA keys)

Full-key Evaluation tools

17 Choudary and Popescu, Back to Massey

Our main result:
scalable GM bounds for large keys

• Mathematical bounds from Massey’s guessing entropy

• Fast: a fraction of a second for a 128-byte key

• Tight: a few bits margin for a 128-byte key

• Scalable: we have computed the bounds for a full-key SCA
on 1024-byte (8192-bit) and 8192-byte (65536-bit) keys

• With mathematical proofs

18 Choudary and Popescu, Back to Massey

• ns is number of subkeys (key bytes) in full key
(e.g. ns=16 for AES-128)

• |S| is number of possible values per subkey
(e.g. 256 for 8-bit implementation of AES).ween LB_GM --
UB_GM:

19

(LB_GM) (UB_GM)

1
1+ln |S|ns

Qns

i=1

hP|S|
k=1

p
pi,k

i2
 GMf  1

2

Qns

i=1

hP|S|
k=1

p
pi,k

i2
+ 1

2

Choudary and Popescu, Back to Massey

Our main result:
scalable GM bounds for large keys
From math literature, we arrived at the following bounds:

• Complexity:

=> computation increases linearly with number of subkeys

• We can compute distance between LB_GM-UB_GM:compute
distance between

• LB_GM -- UB_GM:
20 Choudary and Popescu, Back to Massey

Our main result:
scalable GM bounds for large keys

O(ns · |S|)
(LB_GM) (UB_GM)

1
1+ln |S|ns

Qns

i=1

hP|S|
k=1

p
pi,k

i2
 GMf  1

2

Qns

i=1

hP|S|
k=1

p
pi,k

i2
+ 1

2

� ⇡ log 2

⇣
1+ln |S|ns

2

⌘
= log 2

⇣
1+ns·ln |S|

2

⌘
bits

From math literature, we arrived at the following result:

• Complexity:

=> computation increases linearly with number of subkeys

• We can compute distance between LB_GM-UB_GM:compute
distance between

• LB_GM -- UB_GM:
21 Choudary and Popescu, Back to Massey

Our main result:
scalable GM bounds for large keys

O(ns · |S|)
(LB_GM) (UB_GM)

1
1+ln |S|ns

Qns

i=1

hP|S|
k=1

p
pi,k

i2
 GMf  1

2

Qns

i=1

hP|S|
k=1

p
pi,k

i2
+ 1

2

� ⇡ log 2

⇣
1+ln |S|ns

2

⌘
= log 2

⇣
1+ns·ln |S|

2

⌘
bits

From math literature, we arrived at the following result:

VERY SCALABLE!

GE, GM and GM bounds on
two key bytes

• Simulated data set

22

• Real data set

100 101 102

0

2

4

6

8

10

12

14

16

G
ue

ss
in

g
En

tro
py

GM_UB
GM_LB
GM
GE

100 101 102 103

0

2

4

6

8

10

12

14

16

GM_UB
GM_LB
GM
GE

Choudary and Popescu, Back to Massey

(b
its

)

GM bounds vs rank estimation
(FSE’15) on 16 key bytes

23 Choudary and Popescu, Back to Massey

• Could not compare with GE or GM (not computable for full
AES key)

• FSE’15 (Glowacz et al.) : probably the best (tightness +
speed) rank estimation algorithm to date

• Although still not scalable for keys larger than 256 bytes

GM bounds vs rank estimation
(FSE’15) on 16 key bytes

• Simulated data set

24

• Real data set

100 101 102
0

20

40

60

80

100

120

G
ue

ss
in

g
En

tro
py

GM_UB
GM_LB
FSE15_UB
FSE15_LB

100 101 102 103
0

20

40

60

80

100

120

GM_UB
GM_LB
FSE15_UB
FSE15_LB

Choudary and Popescu, Back to Massey

(b
its

)

GM bounds vs rank estimation
(FSE’15) on 16 key bytes

• Simulated data set

25

• Computation time
(16 key bytes)

• GM bounds:
< 10 ms per iteration

• FSE’15 bounds:
~300 ms per iteration

100 101 102
0

20

40

60

80

100

120

G
ue

ss
in

g
En

tro
py

GM_UB
GM_LB
FSE15_UB
FSE15_LB

Choudary and Popescu, Back to Massey

(b
its

)

GM bounds on 128 key bytes

• Simulated data set

26

• Constant memory

• Computation time
(128 key bytes)

• 150 ms per iteration

• FSE’15 requires a few
seconds for similar
tightness.

100 101 102
0

200

400

600

800

1000

G
ue

ss
in

g
En

tro
py

 (b
its

)

GM_LB
GM_UB

Choudary and Popescu, Back to Massey

Our GM bounds for 1024 bytes
(8192-bit key)

• Based on simulated data set, replicated to obtain 1024 subkeys

27

10 0 10 1 10 2

nr attack traces

0

1000

2000

3000

4000

5000

6000

7000

8000

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB

1 2
nr attack traces

8060

8070

8080

8090

8100

8110

8120

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB

Choudary and Popescu, Back to Massey

(b
its

)

(b
its

)

Our GM bounds for 1024 bytes
(8192-bit key)

• Based on simulated data set, replicated to obtain 1024 subkeys

28

10 0 10 1 10 2

nr attack traces

0

1000

2000

3000

4000

5000

6000

7000

8000

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB

Choudary and Popescu, Back to Massey

• Constant memory

• Computation time
(1024 key bytes)

• ~70s per iteration:

- MATLAB VPA (very slow)
- no optimisations

(b
its

)

Our GM bounds for 1024 bytes
(8192-bit key)

• Based on simulated data set, replicated to obtain 1024 subkeys

29 Choudary and Popescu, Back to Massey

• Constant memory

• Computation time
(1024 key bytes)

• ~70s per iteration:

- MATLAB VPA
- no optimisations

YES, WE CAN DO IT!
NONE OF THE PREVIOUS ALGORITHMS COULD DO IT!

Our GM bounds for 1024 bytes
(8192-bit key)

• We can even go further: 8192-byte (65536-bit) key

30

100 101 102
0

1

2

3

4

5

6

G
ue

ss
in

g
En

tro
py

 (b
its

)

104

GM_LB
GM_UB

Choudary and Popescu, Back to Massey

• Constant memory

• Computation time
(8192 key bytes)

• ~1000s per iteration:

- MATLAB VPA (very slow)
- no optimisations

Conclusions
• GM can be a valuable evaluation tool

• Our GM bounds provide the fastest and most scalable
full-key SCA evaluation tool to date

• We can evaluate very large keys

• Results shown for 1024-byte (8192-bit)
and 8192-byte (65536-bit) key

• Read the paper for more details and results

• Code available:
https://gitlab.cs.pub.ro/marios.choudary/gmbounds

31 Choudary and Popescu, Back to Massey

marios.choudary@cs.pub.ro
pgpopescu@yahoo.com

If you like this, please sponsor us J

Choudary and Popescu, Back to Massey

SCA on key-loading
operations

33

• We may target individual bytes/words one at a time:

k1k2…

MOV
Mem-to-Reg

Choudary and Popescu, Back to Massey

GM bounds vs
rank estimation methodsTable 1. Comparing GM bounds with rank estimation algorithms.

Method Good Bad

FSE ’15 [11] Very fast (< 1s) for up to
ns = 128. Very tight bounds.

Not scalable for ns � 256
(slow).

Asiacrypt ’15 [13] Tight bounds (similar to
FSE’15). Fast for ns = 16
(1� 4 s).

Memory can be prohibitive
for large key sizes. Not scal-
able: O(ns

2|S| log |S|) (very
slow for large key size).

Eurocrypt ’15 [10] Success Rate (SR) for full
key as function of time
complexity. Time: O(ns ·
Nmax2)

No method to go from SR to
key rank for a given set of
leakage traces. Not scalable
for tighter bounds (would re-
quire large Nmax).

PRO [12] Fast for ns = 16 (about 7 s).
Tight bounds as function of
↵ (can be slow).

Can run out of RAM for
large keys (↵ = 213). Takes
about 5 hours for large keys,
not scalable.

Eurocrypt ’13 [7] Bounds within 6 bits for key
ranks smaller than 230, when
targetting a 128-bit key.

Run time: 5s–900s. Bound
up to 20-30 bits for large key
ranks (250 � 2100). Memory:
4k – 83 MB. Weak bounds
(40 bit) for small key rank.

CARDIS ’14 (Ye) [9] Acceptable bound, unclear
for 16-bit (close to Euro-
crypt’13).

Computationally intensive.
Scalability may be bad (not
evaluated).

CT-RSA ’17 [21] Fast and scalable: O(ns ·
(|S| log |S|)).

Weak lower bound. Very
weak upper bound.

LBGM and UBGM Guaranteed bounds for GM.
Fastest method to date.
Scales to arbitrarily large ns:
O(ns · |S|). Tight bounds (5
bits for 128-bit key). Con-
stant (negligible) memory.

6.5 GM bounds versus rank estimation algorithms

Given the development of several rank estimation algorithms in the recent
years [11,13,10,12,7,9,21], we provide in Table 1 a comparison of these algorithms
with our GM bounds in terms of computation time, memory requirements, tight-
ness and accuracy for di↵erent key sizes.

7 Conclusion

In this paper we have presented the first fully scalable, tight, fast and sound
method for estimating the guessing entropy from arbitrarily many lists of prob-
abilities. This method, based on mathematically-derived bounds, allows us to

15

