
NAT implementation for the NetFPGA platform

Omar Choudary
University of Cambridge
15 JJ Thomson Avenue

Cambridge, UK
osc22@cl.cam.ac.uk

David J. Miller
University of Cambridge
15 JJ Thomson Avenue

Cambridge, UK
david.miller@cl.cam.ac.uk

ABSTRACT
We present an implementation of NAT (Network Address
Translation) for the NetFPGA platform capable of line-rate
Gigabit Ethernet. Our implementation features RAM and
CAM (Random Access and Content Addressable) memories
for a fast and efficient NAT table. Several simulation and
regression tests are included.

1. INTRODUCTION
The NetFPGA platform [4] is an open platform for research
and education in building Gigabit Internet routers and sim-
ilar devices. As part of the “Building an Internet Router”
(P33) module (part of the M.Phil ACS course at the Uni-
versity of Cambridge), we were required to build a working
IPv4 router, and then develop an “advanced feature”. The
students of this class were grouped in teams of two or three
students each, in which one was in charge of hardware design
while the other(s) developed software.

Even though a fully implemented reference router is avail-
able for the NetFPGA, we had no access to its implemen-
tation, and were required to design and implement the core
functionality on our own. Only the basic reference pipeline,
which provides access to the physical Ethernet ports and
CPU registers, was provided. In addition, we were required
to implement our own longest prefix match look-up table,
rather than use the Xilinx CoreGen (T)CAM modules (which
were forbidden).

After building the basic router, we began the work on our
advanced feature. We chose to implement Network Ad-
dress/Port Translation (NAPT, also known as traditional
NAT) [6], henceforth called NAT. The desired functionality
was that of a home router, but allowing the greater flexibil-
ity of supporting multiple Internet interfaces (i.e., a multi-
homed router). In this paper, we document the design of
our NAT implementation and the simulation and regression
tests provided.

Like the reference router, our solution achieves line speed,
i.e., close to 1 Gbps. This performance was achieved by im-
plementing our own Content Addressable Memory (CAM),
based on FPGA BlockRAMs. A CAM is used to locate
the information required to translate private addresses and
ports of each packet crossing the router. The BlockRAMs
available in the Xilinx Virtex-II FPGAs offer a large block
of dual-ported memory, which makes them convenient for
use as a CAM. Performance measurement was done using
TTCP [5] between two PCs connected via the NetFPGA
board.

2. IMPLEMENTATION
This section describes our implementation, which is available
on-line [1].

2.1 Overview
The NetFPGA platform provides a basic framework, known
as the reference pipeline, to build Internet devices such as
switches and routers. Packets arriving at an Ethernet port
pass through the pipeline, where they can be modified across
several modules, before being transmitted via the same or a
different port. In this architecture, the NetFPGA board is
used to process most of the packets, while software running
on the host PC (connected to the NetFPGA board via PCI
bus) is used to handle exceptions (including corrupt pack-
ets, ARP requests, etc.), process new flows, and update the
translation table within the NetFPGA via PCI registers.

The overview of our system design can be seen in Figure 1.
The IP Filter module is in charge of all layer 3 (routing)
and layer 4 (translation) operations. The arrows show the
flow of data across the packet data path and register bus.
The packet data bus is used to transfer the packets between
different modules using a 64-bit data path. Our implemen-
tation uses a pipeline to provide sub-modules (ARP, IP Fil-
ter, routing, and NAT) with access to required header fields
without sacrificing throughput, but at the expense of a few
clock cycles of latency. Pipelining makes it possible to begin
receiving a new packet while the last packet is still being
processed.

Our hardware NAT implementation is done in the NAT Ta-
ble module. This module is used to perform layer 3 and 4
address translation for hosts behind the NAT-enabled inter-
faces, as described in the next section.



INPUT ARBITER

OUTPUT QUEUES (DMA & ETHERNET)

MAC FILTER

IP FILTER

OUTPUT LOOKUP PORT

DATA REGS

REGSDATA

DATA REGS

DATA REGS

IP FILTER TABLEREGS

ROUTE TABLE
REGS

ARP TABLE
REGS

REGS NAT TABLE
REGS

Figure 1: NAT design overview

2.2 NAT design
The NetFPGA hardware has four Ethernet ports. For our
NAT implementation, we allow each port to be in one of
three states: INBOUND, OUTBOUND or DISABLED.

The INBOUND state is used strictly for NAT. That is, a packet
arriving on a INBOUND interface will only be checked against
the NAT table. When a match is found, the packet will
be forwarded according to the result of the NAT match.
When no match is made, the packet will be sent to the host
software. This consideration is taken because we need a
way to know when a new entry is needed in the NAT table.
Thus, new entries in the NAT table are created ONLY when
a packet arrives on a INBOUND interface, for which a match
is not found in the NAT table. If we were to enable routing
on an INBOUND interface, we would have no way of knowing
when a new NAT entry is needed.

Interfaces in the OUTBOUND state are used for both NAT and
routing. When a packet arrives on an OUTBOUND interface, it
is first checked (in the IP Filter Table module) to see whether
the destination address matches one of the addresses of the
router. If the packet is addressed to our router, then we
attempt to match against the NAT table. If the packet is
not for the router (i.e., is to be routed), then it is checked
against the route table as usual.

Interfaces in the DISABLED state are used only for routing.
That is, a packet arriving on such interfaces will never be
checked against the NAT table. An example of a possible
configuration is shown in Figure 2. In this example, a packet
is sent from a host on the private LAN (RFC1918 network)
to a public destination. The NAT implementation replaces
the source IP address and port with the IP address of the
OUTBOUND interface, and the source port with a locally allo-
cated port.

2.3 NAT table
The core of our solution is the NAT table. This table is im-
plemented using a combination of RAMs and CAMs. The
RAM is implemented using simple SelectRAM, while our
CAMs are implemented in BlockRAMs. Our CAM imple-
mentation is based on Xilinx Application Note 260 [7].

ROUTER with NAT 
functionality

nf0 - INBOUND

nf1 - INBOUND nf3 - DISABLED

nf2 - OUTBOUND
Private LAN

Private LAN

Internet

Internet

(IP_HOST, PORT_HOST)
 ->

 (IP_DST, PORT_DST)

(IP_nf2, PORT_nf2)
 ->

 (IP_DST, PORT_DST)

(IP_HOST, 
PORT_HOST)

(IP_DST, PORT_DST)

Figure 2: NAT process using the NetFPGA frame-
work

The CAM is used to locate existing flows in the NAT table.
If an entry is found, the RAM provides the information re-
quired to translate the private network address, before the
packet is forwarded. To check against both INBOUND and
OUTBOUND interfaces, we use two different tables. The infor-
mation stored in both CAM and RAM is shown in Table 1.

The RAM and CAM are bundled together into a module
named RAM_CAM_128_96. The RAM (INIT_RAM32x128) has
32 entries of 128 bits each, implemented using four 32x32
SelectRAMs. The CAM (CAM_96) has 32 entries of 96 bits
each, implemented in 11 BlockRAMs. Each BlockRAM in
the Xilinx Virtex-II family — used by the NetFPGA — has
a capacity of 16 kilobits, providing for a CAM with a 9 bit
search input and 32 entries.

RAM_CAM_128_96 completes a search in one clock cycle, and
returns the search result (signal match_ok), along with the
associated data (if any) in one more cycle. The diagram of
this module is shown in Figure 3.

in_addr

in_cam_data

in_ram_data

data_out

match_en

match_ok

wr_en

clk

CAM_96

INIT_RAM32x128

data
_in

add
r_in

wr_
en

matc
h_en

o_match_addr o_match_ok

data_in addr_in wr_e
n

SEL

out_data

RAM_CAM_128_96

Figure 3: Diagram of the RAM CAM 128 96 module



Table 1: Contents of RAM and CAM for NAT Table
Incoming Interface CAM data (96 bits) RAM data (128 bits)

INBOUND
IP HOST, IP DST IP NAT OUT, PORT NAT OUT

PORT HOST, PORT DST IF NAT OUT, MAC NEXT HOP

OUTBOUND
IP DST, IP NAT OUT IP HOST, PORT HOST

PORT DST, PORT NAT OUT IF NAT IN, MAC HOST

Module NAT Table is implemented using two RAM_CAM_128_96
modules. The first instance is used to match packets arriv-
ing on an INBOUND interface, when the second instance is
used for packets arriving on an OUTBOUND interface.

2.4 Layer 4 processing
Strictly speaking, a router requires only layer 3 address in-
formation in order to make routing decisions. It has no need
to decode any layer 4 protocol present, and therefore need
not check any layer 4 checksum such as found in TCP and
UDP.

In the case of a translating router, layer 4 port informa-
tion is both used to make decisions, and rewritten before
the packet is forwarded. It should therefore check layer 4
checksums before translation in order to prevent damaged
packets from being mis-translated, mis-routed, or filling up
the translation table with non-existent flows.

Given the time constraints of the course, we elected not to
check layer 4 checksums. In the event of a damaged packet,
any recipient of the packet will drop it, and the applicable
layer 4 error detection mechanism will cause the packet to
be retransmitted. Our NAT router is prone to overflow of its
translation table by damaged packets (a potential form of
denial-of-service attack), but this vulnerability could be rec-
tified by implementing a checksum check before the transla-
tion module. Note that because the PCI bus has less band-
width than the network links, this check must be done in
hardware, lest a flood of damaged packets overload the PCI
bus.

Since translation involves rewriting layer 3 and layer 4 head-
ers, it is necessary to update the TCP/UDP checksum be-
fore forwarding. We can do this without recomputing the
checksum over the entire packet by applying the formula:

H ′ = ∼(∼H ⊕∼sumold ⊕ sumnew)

where H is the old checksum, H ′ is new checksum, sumold

and sumnew are the ones’-complement sum computed over
SRC_IP, DST_IP, SRC_PORT and DST_PORT of the old and new
values respectively (the only fields that change their value).
∼ indicates a bit-wise complement operation, and ⊕ indi-
cates a ones’-complement sum operation.

In order to free memory in the NAT table for new connec-
tions, the host software deletes NAT table entries at regular
intervals. However, when two hosts A and B communicate
using TCP, they use the same TCP port for every packet
they send. If the software deletes the entry for such TCP
communication, then the next packet of A towards B will

have a different port and B will reject it. For this reason en-
tries in the NAT table that refer to active TCP connections
should not be removed unless they are no longer active. We
provide a hit-counter for each NAT table entry, implemented
in a SelectRAM of 32 entries of 32-bits each, which is incre-
mented every time an entry is matched. The host software
can use this to detect and delete inactive flows.

2.5 Module interface
The NAT table is implemented in the module nat_top, which
instantiates the two RAM_CAM_128_96 modules. We designed
nat_top such that it can be used with any NetFPGA design.
It accepts, as input, the IP source, IP destination, source
port, destination port, input and output interfaces. It pro-
vides, as output, a signal that indicates whether a match
was made, and the required data for translation (IP, port,
interface and MAC).

2.6 Software communication
While the hardware performs translation and forwarding of
known flows, it depends on host software to set up new flows
in the translation table, and to remove flows once they ex-
pire. Configuration of the translation table is performed by
means of NetFPGA PCI registers. The registers used by our
NAT implementation, and their description, are presented
in Table 2.

3. EVALUATION
In order to assess the correct functionality of our NAT imple-
mentation, we followed the regression test driven approach
suggested by Covington et al. [3]. We created several such
simulation and regression tests. Since our NAT module is
part of the standard router data path (see Figure 1), it was
also tested against the simulation and regression test suites
provided with the reference router. All these tests passed
successfully.

3.1 Verification by simulation
For simulation, we designed the tests test_nat_tcp and
test_nat_udp, each of which send three packets between an
INBOUND and an OUTBOUND interface, in order to test address
translation in both TCP and UDP. The first packet is sent
from OUTBOUND to INBOUND to check that the packet is routed
instead of translated, since there is not yet a matching entry
in the NAT table. Second packet is sent from INBOUND to
OUTBOUND and should be translated appropriately. The third
packet is again sent from OUTBOUND to INBOUND to verify that
it is properly translated. The tests populate all the tables
with the necessary data.

3.2 Verification by regression
We developed two regression tests named test_nat_setup

and test_nat_udp. The former automatically populates the



Table 2: Registers used by the NAT implementation
Register Description
ROUTER OP LUT NAT IFACE MODE 0 = DISABLE, 1 = INBOUND, 2 = OUTBOUND
ROUTER OP LUT NAT IFACE WR ADDR change the NAT mode of selected interface
ROUTER OP LUT NAT IFACE RD ADDR get the NAT mode of the specified interface
ROUTER OP LUT NAT TABLE ENTRY IP HOST IP address of HOST at INBOUND interface
ROUTER OP LUT NAT TABLE ENTRY IP DST IP address of DST communicating with HOST
ROUTER OP LUT NAT TABLE ENTRY PORT HOST TCP/UDP source port used by host
ROUTER OP LUT NAT TABLE ENTRY PORT DST TCP/UDP destination port used by destination
ROUTER OP LUT NAT TABLE ENTRY IP NAT OUT IP on OUTBOUND interface towards DST
ROUTER OP LUT NAT TABLE ENTRY PORT NAT OUT TCP/UDP port allocated by the software
ROUTER OP LUT NAT TABLE ENTRY IF NAT IN NAT INBOUND interface
ROUTER OP LUT NAT TABLE ENTRY IF NAT OUT NAT OUTBOUND interface
ROUTER OP LUT NAT TABLE ENTRY MAC HOST MAC address of host
ROUTER OP LUT NAT TABLE ENTRY MAC NEXT HOP MAC address of next hop towards destination
ROUTER OP LUT NAT TABLE ENTRY COUNTER used to maintain active connections
ROUTER OP LUT NAT TABLE RD ADDR REG entry index for read
ROUTER OP LUT NAT TABLE WR ADDR REG entry index for write

NAT table (which ordinarily would be done by the host
software) and tests the NAT implementation by transmit-
ting packets between two PCs connected via the NetFPGA’s
Ethernet ports. The latter is a hardware replica of the simu-
lation test of the same name. A similar test for TCP packets
could easily be developed, however we successfully tested the
NAT implementation with TCP by using web-based appli-
cations such as YouTube and Google Maps.

For both simulation and regression tests, we use the Perl
libraries provided in the NetFPGA base kit, along with a
library of our own.

3.3 Performance
We measured the maximum throughput of our solution us-
ing the Test TCP benchmarking tool between two hosts con-
nected via the NetFPGA board. Host A was connected to
an INBOUND interface, and host B to an OUTBOUND interface.

While transferring data from A to B, our router checked each
packet against four tables: the IP Filter (to test whether the
packet is for this router), the NAT table (to find what trans-
lations need to be done), the routing table (to find the next
hop), and finally the ARP table (to find the MAC address of
the next hop). Our solution managed to achieve this chain of
look-ups at line speed, with TTCP reporting approximately
133 MB/s, indicating a fully saturated 1 Gbps link.

4. FURTHER WORK
While we provide a suite of simulation and regression tests,
these could be expanded to use the FPGA packet genera-
tor [2] to verify the maximum capabilities of our solution.

Additional robustness could be added by providing layer 4
checksum checking. Additional features may be added, such
as ICMP translation, or the ability to mark certain flow
types as always requiring host processing, to enable the
support for protocols that require special handling (such as
FTP).

5. CONCLUSION
In this paper, we presented a line-rate (1 Gbps) NAT imple-
mentation for the NetFPGA platform. We describe our im-
plementation and its design, including how FPGA memory
resources are used to construct a fast look-up mechanism.

As is convention, we developed several simulation and re-
gression tests for our solution to verify its correctness. Ad-
ditionally, our NAT module passes the regression tests pro-
vided with the reference router.

We hope this solution may be of use to others in the NetF-
PGA community.

6. REFERENCES
[1] O. Choudary. Source code of the NAT implementation

for the NetFPGA platform.
http://www.cl.cam.ac.uk/~osc22/p33nat/.

[2] G. A. Covington, G. Gibb, J. W. Lockwood, and
N. McKeown. A packet generator on the NetFPGA
platform. 17th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2009.

[3] G. A. Covington, G. Gibb, J. Naous, J. W. Lockwood,
and N. McKeown. Encouraging Reusable Network
Hardware Design. In NetFPGA community, 2009.

[4] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and
N. Mckeown. NetFPGA: An open platform for teaching
how to build gigabit-rate network switches and routers.
IEEE Transactions on Education, 2008.

[5] PCAUSA. Test TCP (TTCP) utility.
http://www.pcausa.com/Utilities/pcattcp.htm.

[6] P. Srisuresh, J. Networks, and K. Egevang. RFC3022:
Traditional IP network address translator (traditional
NAT). http://tools.ietf.org/html/rfc3022.

[7] Xilinx. XAPP260: Using Virtex-II BlockRAM for high
performance read/write CAMs.
http://www.xilinx.com/support/documentation/

application_notes/xapp260.pdf.


