
Analysis of FileVault 2:
Apple's full disk encryption

Omar Choudary
Felix Grobert

Joachim Metz



FileVault 2



Project Overview

● Goal
○ reverse engineer and analyse Apple's full disk 

encryption (aka File Vault)
■ introduced in OS X 10.7 (Lion)

○ develop a cross-platform tool to read File Vault 
encrypted disks
■ also known as CoreStorage volumes

● Why
○ Need to know if secure
○ Use in forensic investigation
○ No trust in the operating system
○ Interoperability
○ Need for access of remote files on encrypted drives



Background - full disk encryption

● Problem:
○ need to encrypt all data
○ user should not memorize or enter a large 

encryption key
■ e.g. 128 or 256 bits
■ => key is stored in the disk somehow

○ we would like to independently encrypt sectors 
(normally 512 bytes)



Background - full disk encryption

● AES-CBC alone is not really suitable
○ random IV in metadata and just go on? (quite bad)
○ zero/constant IV? (even worse)
○ sector-based IV? (better, but still not good)

(Wikipedia)



Background - popular systems

● PGP 

● BitLocker (used with MS Windows)
○ uses AES-CBC with a sector-based tweak

AES-CBC + Elephant diffuser. A Disk Encryption Algorithm for Windows Vista.
Niels Ferguson.

● LUKS (Linux Unified Key Setup)
New methods in hard disk encryption. Clemens Fruhwirth.

● ... others



AES-XTS

● based on AES-ECB
● 2 keys
● tweak value per sector

○ modified per AES block



General full disk encryption 
architecture



The quest for Apple's File Vault FDE

● what are the key derivation mechanisms?
● what are the encryption mechanisms?
● how is the data encrypted?



Tools at hand

● GDB
● IDA Pro
● 3 MacBook's for kernel 

debugging
○ 2 of them connected via 

FireWire => disk access
○ 3rd one connected via 

Ethernet => remote gdb
● The Sleuth Kit

○ disk forensic tool



FileVault overview



EncryptedRoot.plist file

● Introduced after FileVault activation
● Contains wrapped volume key
● Available on Recovery HD partition
● Encrypted with key in volume header
● Hints from Apple:

○ AES-XTS as encryption
○ Keys wrapped

● From IDA Pro we get pointers also for
○ AES Wrap
○ PBKDF2



AES-XTS

● based on AES-ECB
● 2 keys: volume key and 

tweak key
● tweak value per sector

○ modified per AES block



Example EncryptedRoot.plist



General full disk encryption 
architecture



AES Wrap (RFC 3394) 

● based on AES, like XTS
● needs a key for 

unwrapping
● used to protect volume 

master key
● can verify if unwrapping 

is successful



General full disk encryption 
architecture



PBKDF2

● output keys of arbitrary lengths from any text
● slow brute force attacks on passwords
● 3 parameters: iterations, salt, password
● option of PRF (e.g. HMAC-SHA256)
● brute force searching of iterations ... no luck
● salt given in EncryptedRoot.plist
● found iterations via IDA

○ existing code for time dependent value
○ turned out that a static value is used most of the time 

(41000)



Key derivation overview

Image courtesy of Felix Grobert



are we done yet? ... tweak key?

Volume key



Looking for disk encryption 
mechanism (1)

● Looking at HFS+ metadata
○ existing header at good location
○ apparently unencrypted HFS+ structure files 

(allocation, journal block)
○ but ... misleading => bug in OS

(forgot to erase data)



Looking for disk encryption 
mechanism (2)
● chasing the encryption via GDB

○ found a tweak key and a tweak value for some data
○ no luck ... still no idea to what that corresponds

(may be for virtual memory)

● comparing data with disk data we get
○ tweak value correspondence
○ start of encrypted value
○ block size



Looking for disk encryption 
mechanism (3)

● chasing tweak key derivation via IDA Pro
● problems encountered:

○ C++ obfcuscation
■ cdecl (int*) ... *(ebp+478)(ebp+x, ...) ... ???
■ many classes and pointers involved
■ IDA helps but not that much

○ encryption process goes through a Daemon
○ code is quite large

AES-XTS tweak key = trunc128(SHA256(volume_key | lvf_uuid))

(lvf_uuid comes from encrypted (obfuscated) metadata)



FileVault overview



Volume layout Encrypted
Plaintext
Zero



Random number generator

● used for derivation of recovery key
● randomness taken from /dev/random
● about 320 bits of randomness available after first boot of 

new OS installation
○ mostly from mach_absolute_time()

● seems ok
○ can be improved if needed

 



Memory extraction attacks

● possible
● keys easily available via gdb
● not much we can do ... open research issue

○ see "Lest We Remember: Cold Boot Attacks on 
Encryption Keys", USENIX Security 2008.



open source C library

● cross-platform tool to read and mount 
CoreStorage (FileVault 2 encrypted) 
volumes

● can mount a CoreStorage volume and read 
arbitrary files without first decrypting the 
entire volume

● available at:
http://code.google.com/p/libfvde/

fvdemount -e EncryptedRoot.plist.wipekey -r 35AJ-AC98-TI1H-N4M3-
HDUQ-UQFG /dev/sda2 /mnt/fvdevolume/
mount -o loop,ro /mnt/fvdevolume/fvde1 /mnt/hfs_file_system



That's all

Omar Choudary
www.cl.cam.ac.uk/~osc22


