
Do Switches Dream of Machine Learning?
Toward In-Network Classification
Zhaoqi Xiong

University of Cambridge
Noa Zilberman

University of Cambridge
noa.zilberman@cl.cam.ac.uk

ABSTRACT
Machine learning is currently driving a technological and
societal revolution. While programmable switches have been
proven to be useful for in-network computing, machine learn-
ing within programmable switches had little success so far.
Not using network devices for machine learning has a high
toll, given the known power efficiency and performance
benefits of processing within the network. In this paper,
we explore the potential use of commodity programmable
switches for in-network classification, by mapping trained
machine learning models to match-action pipelines. We in-
troduce IIsy, a software and hardware based prototype of
our approach, and discuss the suitability of mapping to dif-
ferent targets. Our solution can be generalized to additional
machine learning algorithms, using the methods presented
in this work.

ACM Reference Format:
Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of
Machine Learning? Toward In-Network Classification. In ACM
Workshop on Hot Topics in Networks (HotNets ’19), November 13–
15, 2019, Princeton, NJ, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3365609.3365864

1 INTRODUCTION
Machine learning (ML) is increasingly dominating digital as-
pects of our everyday life: from personalized online shopping,
through social networks to finance and trading. The systems
community is battling to support ML demands while facing
an increasing number of barriers: from the end of Moore’s
law [33, 39] and Dennard’s scaling [19] to the memory and
dollar walls [42]. These challenges have driven innovation
in hardware design for ML, including CPU optimization
(e.g., [6, 53]), GPU (e.g., [14]) and FPGA (e.g., [18, 21, 51])

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365864

solutions, and specialized processing ASIC [12, 26]. All forms
of ML acceleration receive considerable attention.
Networking has not escaped the ML trend, and ML is be-

ing used both for optimization and decision making (e.g., [13,
23, 52]). With the rise of programmable network devices,
one would have expected that in-network ML would gain
much traction. Not only has in-network computing demon-
strated superior performance [24, 25], but it is also power
efficient [50]. Still, in-network ML has eluded the network-
ing community. Indeed, it has been shown that network
devices can be used to improve distributed ML, for example,
through in-network aggregation [45], but this was not an
implementation of ML within a network device. Possibly the
first steps toward in-network inference were in N2Net [47]
and BaNaNa Split [43], which discussed the implementation
of neural networks within programmable network devices.
In this paper we focus on the following question: given

that ML training was already conducted, can we deploy the
trained model within programmable network devices? By that,
we focus on one specific aspect of ML, classification.

We concentrate our efforts on classification for ML infer-
ence that is not neural network based, and show that the
trained models for packet classification seamlessly map to
programmable data planes. The mapping enables traffic clas-
sification at line rate, and we find a balance between limited
resources, line rate, and classification accuracy. Furthermore,
we show that as long as the set of features is static, updates
to classification models can be deployed through the control
plane alone, without changes to the data plane.

In this paper, we make the following contributions:
• We demonstrate the mapping of four different trained
machine learning algorithms to amatch-action pipeline.

• We introduce software and hardware based prototypes
of a framework that automatically maps trained mod-
els to a match-action pipeline.

• We demonstrate in-network classification within a
hardware target and quantify resource requirements.

Ourwork is limited in scope.We do not explore allML algo-
rithms, or even the most popular ones, e.g., neural-networks
are beyond the scope of this work. We do not claim any con-
tribution in ML algorithms. Also, our approach is by design
limited in accuracy and in the types of features it can extract.
We believe our classification-focused contribution is the first

https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3365609.3365864

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Zhaoqi Xiong and Noa Zilberman

step toward more complex, dedicated implementations of in-
ference within network devices. Our code is available at [57].

1.1 Motivation
In-network ML, meaning running ML within network de-
vices, is an exciting prospect for multiple reasons. First,
switches offer very high performance. The latency through
a switch is in the order of hundreds of nanoseconds per
packet [3], while high-end ML accelerators operate at the
scale of tens ofmicroseconds tomilliseconds per inference [26,
36]. The same accelerators achieve 10-90TOPS/sec [26], while
a 16Tb/sec switch supports about fifteen billion packets
per second [31]. However, OPS/s are not directly mapped
to packet rate, e.g., NVidia Tesla V100 will infer 10K im-
ages/sec [36], while it is possible to transmit the same im-
ages dataset through a switch at a rate of over 10M im-
ages/sec. Network switches’ power efficiency enables pro-
cessing 10M’s of packets perWatt[50], better thanmost accel-
erators, the absolute power consumption of a programmable
switch [3] is lower than current-day alternatives [26].

Switches have another advantage: being ideally placed for
some ML use-cases. The performance of distributed ML is
bounded by time required to get data to and from nodes. If
a switch can classify at the same rate that it carries packets
to nodes in a distributed system, then it will equal or out-
perform any single node. Outside the data center, switches
have further advantages. They can terminate data early, re-
ducing the load on the network, and supporting scalability
over time. Terminating data close to the edge saves power,
reduces load on infrastructure and improves user experience
thanks to reduced latency. Best of all, switches are already
deployed within the network, and do not require installing
additional hardware. As long as a switch can support both
ML and networking operations, it will provide a solution
cheaper than a system augmented with ML accelerators, and
will free up cycles on CPUs running ML applications.

In this work we focus only on classification. With the
amount of user-generated data continuously increasing, the
network becomes our first line of defense against the absurd
scale of data being streamed, exceeding ten zetabytes per
year [15]. The increased use of Internet of Things (IoT) is ex-
pected to lead to further data inflation, with much of this data
subject to classification. While today middleboxes can still
sustain the amount of processing required at the edge, they
are unlikely to continue and scale as data demand grows [60].
But what if we could run classification within the network,
before the data reaches its processing destination? We will
not only reduce processing loads, but also respond earlier
to events, terminating traffic close to the edge. Applications
such as autonomous cars and automated factories are just a
few of the latency critical applications [46] that will benefit.

Parser

M/A
Stage

M/A
Stage

Deparser

Feature Extraction

DecisionPort Assignment

Figure 1: The similarity between a decision tree and
a simple switch pipeline. Analogous components are
circled. M/A indicates match-action. The pipeline’s
output can be more than just a port assignment.

Perhaps themost simple in-network classification example
to consider is the Mirai Botnet, which used embedded and
IoT devices to create a denial of service attack on selected
targets [2]. Would it have been possible to stop the attack
early on if edge devices had dropped all Mirai-related traffic
based on the results of ML-based inference, rather than using
“standard” access control lists? We discuss use-cases further
in § 6.3 and §7.

2 SWITCH AS A CLASSIFICATION
MACHINE

Commodity switches naturally act as classification machines.
Consider the example of a standard layer 2 Ethernet switch,
and while any switch-architecture applies, we maintain a
mental model of a programmable data plane, such as used
by P4 [8] or NPL [35].

As a new object (a packet) arrives, the first step is to extract
the relevant features from it. In a switch, this resembles
parsing the packet’s header. Each header’s field is, in fact, a
feature, and the header parser is the features extractor.
The next step in a classification process is to apply the

object’s features to a trained ML model. In the case of a
layer 2 Ethernet switch, this model takes the form of a non-
binary decision tree, of one level. The feature used in the
root’s split is the destination MAC address. By accessing the
MAC address table in the switch, the object’s (packet) feature
(destination MAC address) is finding the right branch. Once
the appropriate branch is found, the object is assigned to a
class, meaning the packet is assigned to an output port. We
illustrate this similarity in Figure 1.

A layer 2 Ethernet switch can be represented also by more
complex decision trees. One example would be checking
that the source port is not identical to the destination port,
and dropping the packet if the values are identical. In a
decision tree, this will translate to adding another level, and
an additional class (drop).

Do Switches Dream of Machine Learning? HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

3 KEY INSIGHTS
One of the reasons machine learning algorithms have not
been implemented within network devices to date, is the
implementation complexity of the mathematical operations
required. Implementing in switch hardware operations such
as addition, xor or bit shifting is easy, but operations such as
multiplication1, polynomials or logarithms cannot be pipeli-
ned well, may add latency of affect throughput. However,
while switches do not support operations such as loд(x) or
loд(y), once loд(x) and loд(y) are known, operations such as
loд(x × y) can be easily done.

We do not try to implement mathematical operations
within the switch. Instead, we build upon a common practice
in programmable hardware (e.g., FPGA) and high perfor-
mance computing: we use look up tables to store the results
of calculations, or the equivalent of the results. Look up ta-
bles are a perfect fit to the match-action paradigm used by
programmable switches.
In practice, implementation is not as easy as it sounds.

Hardware switches have a finite amount of resources, and
one cannot store an infinite size table to support all possible
values. A solution we adopt in this work is not to store any
potential value in the table, and be willing to lose some accu-
racy for the price of feasibility. We further save memory by
storing classification results or codes (§5) rather than com-
putation results, allowing us a more efficient use of ternary
and longest prefix match (LPM) tables.

A second insight, already mentioned, is that switches are
already set up as classification machines, with the parser
acting as a features extraction module, and the match-action
pipeline as a means to make the classification.

In many switch architectures only part of the packet goes
through the programmable data plane, and the rest is buffer-
ed [8]. To process an entire packet, one solution is packet re-
circulation, with the packet (and features) being fragmented
to header-size data units, and iteratively going through the
pipeline. This approach degrades throughput, and requires
adjustments to maintain metadata, but may still performwell
in networks with low utilization or sufficient speed-up.

4 REALISTIC RESOURCE ALLOCATION
So far we have discussed the key insights enabling the ofmap-
ping classification algorithms to a match-action pipeline. In
this section, we take a more realistic approach to in-network
classification, considering commodity switches’ limitations.

First, we note that switches are likely not to do only classi-
fication, but also, importantly, switching. It is thus expected

1P4 supports multiplication, but allows the architecture to impose limita-
tions, such as multiplying only by a power of two

that until we consider switching and other switch function-
ality an act of machine learning, that significant resources
will be taken up by fundamental networking functionality.

Second, all the in-network classification solutions pre-
sented above share an important property: they don’t require
any externs, meaning no target-specific functionality is
required. This pure match-action implementation enables
porting between different targets, and means that a solution
is not locked to a single platform.

We observe that today’s programmable switches, support
an order of 12 to 20 stages per pipeline, with multiple (e.g.,
four) pipelines per device [3, 34], setting an upper bound on
the supported functionality. The tables’ memory is likely to
be in the order of hundreds of megabits [9], possibly divided
across multiple pipelines. Last, a parser can extract only
a limited number of headers, likely of the same order as
the depth of the pipeline, therefore in some classification
implementations the number of features will be of the same
scale as the number of classes. On the other hand, the width
of the features can be substantial, e.g. IPv6 address is 128 bit
wide. It is unrealistic to expect tables of depth 2128. Tables are
therefore not expected to be deep proportionally to the key’s
width, but proportionally to the network’s size (in a switch)
or classification problem (for in-network classification).

In practical terms, usingmultiple features as the key to a ta-
ble will not be easily feasible: silicon vendors have struggled
to implement lookup tables for IPv6’s 128b addresses, with
current state-of-the-art memory depth reaching 300K-400K
entries [4, 5]2, thus anything significantly (e.g., > ×10) larger
than that can be considered impractical. However, assuming
128b is a feasible key width opens up significant opportuni-
ties: as TCP source and destination port are represented by
16-bit each, flags are often just a few bits, and EtherType is
16-bit as well, multiple features can be concatenated into a
single key without reaching the width of an IPv6 address.
We avoid setting bounds on the amount of resources re-

quired to implement different algorithms, as such bounds
will bear little resemblance to reality. For example, if a key
to a table is of width w , the depth of the table will be 2w
only if the table is direct-mapped, in which case it can be
implemented as a simple memory and needs to store only the
action. The use of exact match, LPM and range-type tables
is intended specifically to avoid the table-depth requirement,
yet it leads to an increased table-width (key width plus action
width). We discuss this further in §6.3.

One way to increase the number of features (or classes)
used in the classification is by concatenatingmultiple pipelines,
where the output of one pipeline is feeding the input of the
next pipeline. This approach will face two challenges. First,
it will reduce the maximum throughput of the device, by a

2Some ASICs support >1M entries.

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Zhaoqi Xiong and Noa Zilberman

factor of the number of concatenated pipelines. Second, the
metadata we use to carry information between stages is not
shared between pipelines 3, and information may need to be
embedded in an intermediate header.

5 FROMML TO MATCH-ACTION
In this work, we adopt the P4 approach to programmable data
planes [8], assuming a general pipeline model in the form
of PISA or RMT [9]. We explore packet classification using
four algorithms, both supervised and unsupervised: decision
trees, K-means, SVM and Naïve Bayes. These algorithms are
chosen because of the differences between them, and the
results can be generalized. Neural-networks are beyond the
scope of this work. Table 1 summarizes our approach.

5.1 Decision Trees
A decision tree can be intuitively mapped to a match-action
pipeline. In every stage,a set of conditions are applied to a
feature, and their results lead to different branches of the
tree. As conditions are simple operations, they can be imple-
mented in P4. This approach is wasteful, as the tree depth
and conditions define the number of stages in the pipeline.

We propose a different approach, more suitable for match-
action pipelines (Table 1.14): the number of stages imple-
mented in the pipeline equals the number of features used
plus one. In every stage, we match one feature with all its
potential values. The result (action) is the encoded into a
metadata field, and indicates a branch taken in the tree. The
last stage within the pipeline takes the coded fields of all fea-
tures from the metadata bus, and maps (matches) the value
to the resulting leaf node.
Decision trees can be implemented using range-type ta-

bles [37], but those are not available on many hardware
targets. If the number of feature values is known and limited,
using exact match tables instead may be feasible. Alterna-
tively, ternary and LPM tables can be used, breaking a range
into multiple entries, consequently increasing the resource
consumption (compared to range-type tables), but providing
a feasible path for usage.

5.2 SVM
A second supervised algorithm, support vector machine
(SVM), uses hyperplanes to separate classes. The output of a
training process takes the form of multiple equations, where
each equation represents an hyperplane5:

3This is architecture and implementation dependent
4We use the notation Table 1.i to refer to entry i in Table 1.
5We indicate linearity for presentation only

a1x1 + b1x2 + ...z1xn + d1 = 0
a2x1 + b2x2 + ...z2xn + d2 = 0

...
amx1 + bkx2 + ...zmxn + dm = 0

where n is the number of features, k is the number of classes
andm = k ∗ (k − 1)/2.
One approach to SVM (Table 1.2) implements m tables,

each table dedicated to a hyperplane, and indicating onwhich
side of a hyperplane is a given input. The key used to access
the match-action table is the set of features, and to avoid
complex operations, the action is the “vote”. A “vote” is a
one-bit value mapped to the metadata bus that indicates if
the input belongs within or outside a hyperplane. Once an
input is matched against allm tables, all the “votes” (the sum
of the metadata bus, across classes) are counted, and the class
with the highest count of “votes” is the classification’s result.

A second approach (Table 1.3) is to dedicate a table per
feature, where the output of the table is a vector of the form
a1x1,a2x1, ...amx1. At the end of the match-action pipeline,
the value of each hyperplane is calculated as the sum of
all vectors, and a decision is taken. This approach requires
smaller tables, but is limited: the values in the generated
vectors have a limited accuracy (e.g., float cannot be repre-
sented), and may require a lot of bits. In addition, significant
logic (sum operations) may be required at the end of the
match-action pipeline.

5.3 Naïve Bayes
Our exploration of the supervised Naïve Bayes classifier [30]
assumes a Gaussian distribution of independent features [20].
Related methods which may be more accurate for network
traffic classification, such as kernel estimation [32], will fol-
low similar implementation concepts. Under this assumption,
the likelihood of feature xi is expressed as:

P(xi |y) =
1√
2πσ 2

y

exp
(
−
(xi − µy)

2

2σ 2
y

)
And the classification rule will be:

ŷ = arдmaxyP(y)
n∏
i=1

P(xi |y)

Given a k classification problem, wheren features are used,
there are k ×n pairs of (µy ,σy). A naive implementation (Ta-
ble 1.4) would use k×(n+1)match-action tables, to calculate
for k classifications n probabilities, plus the product of all n
calculated probabilities of that class. This process is not only
wasteful, but is also hard to approximate in hardware when
the probabilities are small.
A second approach (Table 1.5) uses one table per class,

with all the features as the key. Instead of returning a float

Do Switches Dream of Machine Learning? HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Classifier A table per... Key Action Last stage
1. Decision Tree (1) Feature Feature’s value Feature’s code word Table, Decoding code words
2. SVM (1) Class (hyperplane) All features Vote Logic/table, Votes counting
3. SVM (2) Feature Feature’s value Calculated vector Logic, hyperplanes calculation
4. Naïve Bayes (1) Class & feature Feature’s value Probability Logic, highest probability
5. Naïve Bayes (2) Class All features Probability Logic, highest probability
6. K-means (1) Class & feature Feature’s value Square distance Logic, overall distance
7. K-means (2) Cluster All features Distance from core Logic, distance comparison
8. K-means (3) Feature Feature’s value Distance vectors Logic, overall distance

Table 1: Differentmanners of implementing in-network classificationwithin amatch-action pipeline. Logic refers
only to addition operations and conditions.

value as the classification’s probability, the returned value
is an integer value that symbolizes the probability. As long
as similar values are used to symbolize probabilities across
tables (different classifications), this approach yields accurate
results. The downside here is the size of the required table:
it uses a very wide key (a form of concatenation of all input
features values), and its depth is proportional to this width.

5.4 K-means
K-means clustering is an example of unsupervised learning.
For k classes it provides k centers of clusters, each composed
of n coordinate values, one per feature. The distance of a
given input x to a center of a cluster i is calculated as:

Di =

√
(x1 − ci1)

2 + (x2 − ci2)
2 + ..(xn − cin)2

where x1 to xn are the values of the features. An input will be
classified to the cluster to which it has the lowest distance.
For choosing a cluster based on shortest distance, it is

sufficient to consider the square distances. One of the options
(Table 1.7) is to use a table per cluster, with the key being all
features. This approach requires less tables, compared with
a table per cij coordinate (Table 1.6), but instead uses much
deeper and wider tables. A different approach (Table 1.8) uses
one table per feature, and its action assigns to the metadata
bus a set of distance values on a single axis, one per cluster.
In this approach, the last stage both adds up the distance
vectors and classifies to the smallest one.

Feasibility. Based on §4 and Table 1, our understanding
of real-world switches indicates the feasibility and limita-
tions of each implementation approach. Implementations
46 (Naïve Bayes) and 6 (K-means) will be both very limited.
Even in a data-plane dedicated only to classification, it is
not practical to use more than 4-5 features and 4-5 classes
without exceeding the available number of stages, or alter-
natively, 2 classes and 10 features (and vice versa). Other
methods provide more flexibility: supporting up to 20 classes

6Numbers indicate entry number in Table 1.

Dataset
Training

Framework

Data Plane
(P4)

Control Plane
(P4Runtime)

Trained Model

Tables entries

Incoming
Packets

`
Classified
Packets

Figure 2: High level architecture of IIsy. IIsy’s compo-
nents are in white. External components are in grey.

or features. Classifiers 1 (Decision Tree), 3 (SVM) and 8 (K-
means) will provide the best scalability, as a combination of
number of tables, key’s width and action’s width.

6 PROTOTYPE AND EVALUATION
We implement IIsy, In-network Inference made easy, as a
prototype of our observations. Our framework includes a
software-based implementation, demonstrating the ability
to automatically map classification algorithms to network
devices, and a hardware-based implementation, exploring
resource requirements and performance.

IIsy has three components. First, a machine learning train-
ing environment. Second, a programmable data plane within
a network device, and third, a control plane used for mapping
the trained algorithm to the network device. The framework
is illustrated in Figure 2.

We use Scikit-learn [40] as a training environment. While
the input to the training can be any dataset, we use labelled
packet traces as our input, to illustrate realistic traffic scenar-
ios. Scikit-learn is selected for ease of use, and be replaced
by other training environments, as long as their outputs can
be converted to a text format matching our control plane.

6.1 Software-based prototype
Our software-based prototype implements the data plane in
P4 using the v1model architecture. P4Runtime [38] is used
for the control plane. We use bmv2 and mininet as for testing.

We write a P4 program per use-case. A use-case refers to a
pair of parameters: the machine learning algorithm used, and
the expected network traffic. The network traffic dictates the
design of the data-plane’s parser (i.e., which headers need to

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Zhaoqi Xiong and Noa Zilberman

be parsed) and the machine learning algorithm defines the
match-action design that needs to be implemented.

A python script is used to generate the control plane. We
take the output of the ML training stage, and convert the
parameters to table-writes to the match-action pipeline, us-
ing P4runtime. This stage is, despite its simplicity, the most
important stage: it enables us to change the network devices’
operation, and implement different classification rules with-
out changing the P4 program, as long as the type of machine
learning model and the set of features used do not change.

6.2 Hardware-based prototype
IIsy’s hardware prototype is implemented over NetFPGA
SUME [59] using the P4→NetFPGA workflow [22]. Cur-
rently, P4→NetFPGA does not support P4runtime, and we
implement the control plane configurations using the P4→Ne-
tFPGA control plane interface. Our hardware implementa-
tion mainly explores the feasibility of porting to hardware
targets and the classification rate.We use a P4 program that is
very similar to the software-based prototype, but with minor
hardware-target alterations: range-type tables are replaced
by exact-match or ternary tables, and the syntax is adapted
to the P4→NetFPGA workflow requirements. Another dif-
ference from our software implementation is that the archi-
tecture used by P4→NetFPGA is SimpleSumeSwitch [22].
For the performance evaluation we use OSNT, an open

source network tester [1] for traffic generation at line rate
(4×10G), and for latency measurements. As OSNT can replay
limited size packet traces, functional testing using large trace
files is done using tcpreplay over a standard X520 NIC.

6.3 Example: IoT Traffic
IoT is a driving use-case for in-network classification, as
noted in §1. We use pcap traces of IoT devices released by
Sivanathan et al. [48] as our dataset. Our goal is to demon-
strate using IIsy to classify incoming traffic by device-type.
We divide the monitored devices to five classes: static

smart-home devices (e.g., power plug), sensors (e.g., weather
sensor), audio (e.g., smart assistants), video (e.g., security
camera), and “others”. We pick classes that can be mapped
to different quality of service groups: from high bandwidth
(video) to best effort (“others” class). A set of 11 features is se-
lected for the evaluation, such as EtherType, IP protocol and
flags and TCP ports. All the features are directly extracted
from the packet’s header. We do not use identifiable informa-
tion such as MAC or IP address, which may both skew our
results (as the devices have fixed addresses), and as we wish
to show that classification can be deployed independently of
address-based match-action practices.

Table 2 summarizes the dataset’s properties. For six of the
features, only a small number of values exists in the dataset,

Feature Unique Values Class Num. Packets
Packet Size 1467 Static devices 1,485,147
Ether Type 6 Sensors 372,789
IPv4 Protocol 5 Audio 817,292
IPv4 Flags 4 Video 3,668,170
IPv6 Next 8 Other 17,472,330
IPv6 Options 2
TCP Src Port 65536
TCP Dst Port 65536
TCP Flags 14
UDP Src Port 43977
UDP Dst Port 43393

Table 2: Selected properties of the IoT training dataset
meaning that very small tables, or even registers, may suffice
to hold their computed values. A table holding packet sizes
will still fit within a standard lookup table [56]. Using exact
match tables for TCP and UDP port numbers is feasible, but
comes at a high cost on FPGA targets: each such table will
consume close to 2Mb of memory [56], and may not allow
to meet timing constraints. For this reason, we use ternary
tables, allowing to match over a range of values.

Our choice of eleven features will fit devices such as Bare-
foot Tofino, where using a table per feature, and one decision
table, equals the number of stages in the pipeline [3, 34]. We
expect future work to explore more complex features, as well
as a larger number of them (See §7), and the implementation
feasibility over NetFPGA platform. Exploring optimal fitting
of rules to tables is also beyond the scope of this paper, and
was extensively studied (e.g., [10, 11, 27]).

We train our models using Scikit-learn, and also obtain
model’s statistics. We validate the classification based on
mapping to ports. Our goal is that the switch’s classification
output will match the model’s classification result.
We implement all four models in IIsy, one approach per

model, and evaluate functionality and resource consumption.
Our performance test measures throughput and latency, and
is conducted for the decision tree implementation.
A summary of the resources required to implement the

models on the NetFPGA platform [59] is provided in Table 3.
Utilization figures refer to the Virtex-7 690T FPGA used
on the board, providing a relative comparison between the
different methods. We use small tables of 64 entries, except
for the last (decision) table, which uses exact match and is
set to the number of possible options. Tables of 512 entries
fit on the FPGA, but fail to close timing at 200MHz.

A look at the small size tables provides interesting insights.
For example, for the decision tree, between two and seven
match ranges are required per feature, and those fit into
the tables consuming no more than 47 entries, a significant
saving from 64K potential values (e.g., TCP port). In contrast,
models that use multiple features as a key to the table are
much harder to map to table entries, and require reordering

Do Switches Dream of Machine Learning? HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Model # tables Logic Util. Memory Util.
Reference Switch 3 15% 33%
Decision Tree 6 27% 40%
SVM (1) 11 34% 53%
Naïve Bayes (2) 5 30% 44%
K-means 5 30% 44%

Table 3: Resource utilization of in-network classifica-
tion implementations on NetFPGA-SUME.
of bits between features (interleaving most significant bits
first, and least significant last) to enable matching across
ranges. As can be expected, 64 entries are not sufficient for a
match without loss of accuracy.

The most accurate implementation uses a decision tree. A
trained model with a tree depth of 11 achieves an accuracy
of 0.94, with similar precision, recall and F1-score. Reducing
the tree depth decreases the prediction’s accuracy by 1%-2%
with every level. On NetFPGA we implement a pipeline with
just five levels, with accuracy and F1-score of approximately
0.85. Consequently, only five features are required. As a re-
minder, our goal is not to find an optimal traffic classification
model, but to conduct classification that is as accurate as the
trained model. The accuracy of the implementation is eval-
uated by replaying the dataset’s pcap traces and checking
that packets arrive at the ports expected by the classification.
Our classification is identical to the prediction of the trained
model. We further evaluate the performance of the imple-
mentation, using OSNT, and verify that we reach full line
rate. The latency of our design (which is toolchain-version
dependent) is 2.62µs (±30ns), on a par with reference (non-
ML) P4→NetFPGA designs with a similar number of stages.

7 DISCUSSION
In-NetworkComputing: In-network classification is a class
of in-network computing. While in this work we take in-
network computing for granted, following several high-profile
works (e.g., [24, 25, 44]), this research area is still considered
controversial and immature [7, 41]. One important challenge
is that in-network computing consumes resources other-
wise required for networking purposes. Using a switch as a
network-attached accelerator, will maintain the throughput
benefits without sharing resources, but will require power
and space that come almost for free when the computing is
done as part of a packet’s network traversal.

Feature Extraction: In our prototype we mostly used
features extracted from packet headers. Examples such as
cache queries [50] or DNS requests [55] can be similarly ex-
tracted. Features such as queue size may be available through
the pipeline’s metadata bus, but are architecture specific. Ex-
tracting features that require state, such as flow size, is possi-
ble [29, 49] but requires using e.g., counters or externs, and
may be target-specific. Many ML models require complex
features that it may not be possible to extract on a switch.

Performance and Scalability:Our implementation uses
only match-action tables, without complex operations. Con-
sequently, on hardware targets, the performance of IIsy will
be similar to the platform’s packet processing rate. While
IIsy scales in throughput, it may not scale with features-
number or values-per-feature. This is a property that varies
between hardware targets (§4). The solution that we offer
trades classification’s precision for resources, where classes
that are expected to have lower precision are tagged for
further processing by a host, similar to [54].

Switch ASIC: Porting IIsy to commercial switches is left
to future work. Discussions with switch vendors indicate
that it is feasible, and likely to achieve line rate performance.

Use Cases: The most expected use cases of IIsy are net-
work traffic related, such as traffic classification [32], as IIsy
proposes a means to handle traffic-volume scalability chal-
lenges [16]. Related use cases include traffic filtering and
mitigation of distributed denial of service attacks. Conges-
tion control is another likely use case, with features such as
queue size readily available on some hardware targets.

8 RELATEDWORK AND CONCLUSION
Recent years have seen a surge in research within the inter-
section of ML and networking. This ranged from network
traffic classification [17, 32, 58] to using ML for scheduling
and congestion control [23, 52]. ML frameworks are being
accelerated using network devices [18, 44], either as param-
eters servers or to aggregate and multicast traffic [28, 45].

The implementation of inference within network devices
is still in its infancy. N2Net [47] and BaNaNa Split [43] have
demonstrated implementations of binary neural networks
within network devices and analyzed processing and com-
munications overheads. Li [28] proposed an implementation
of reinforced learning within a switch, but used a bespoke
acceleration module. This paper is complementary to these
works, discussing non-neural networks ML algorithms.

In this paper, we have introduced IIsy, a framework for
in-network classification. We have mapped both supervised
and unsupervised algorithms to a match-action pipeline, and
discussed the applicability of such implementations. Our
prototypes are implemented both in software and hardware,
and achieve full line rate classifying real world traces. This
is but the first step in implementing ML within network
devices, and In-network training is the next big challenge.

ACKNOWLEDGMENTS
We thank the anonymous HotNets reviewers and our shep-
herd,ManyaGhobadi, for their valuable feedback. This project
was partially funded by the Leverhulme Trust (ECF-2016-289)
and the Isaac Newton Trust.

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Zhaoqi Xiong and Noa Zilberman

REFERENCES
[1] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman,

Adam Covington, Marc Bruyere, Nick McKeown, Nick Feamster, Bob
Felderman, Michaela Blott, et al. 2014. OSNT: Open source network
tester. IEEE Network Magazine 28, 5 (2014), 6–12.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. 2017. Understanding the Mirai
botnet. In 26th USENIX Security Symposium. 1093–1110.

[3] Arista. 2018. Arista 7170 Multi-function Programmable Networking.
White Paper, https://www.arista.com/assets/data/pdf/Whitepapers/
7170_White_Paper.pdf.

[4] Arista. 2019. 7060X4 Series 100/200/400G Data Center Switches. https://
www.arista.com/assets/data/pdf/Datasheets/7060X4-Datasheet.pdf.

[5] Arista. 2019. 7800R3 Series Data Center Switch Router. https://www.
arista.com/assets/data/pdf/Datasheets/7800R3-Data-Sheet.pdf.

[6] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K Panda.
2017. An in-depth performance characterization of CPU-and GPU-
based DNN training on modern architectures. In Proceedings of the
Machine Learning on HPC Environments. ACM.

[7] Theophilus A Benson. 2019. In-Network Compute: Considered Armed
and Dangerous. In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems. ACM, 216–224.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-action Processing
in Hardware for SDN. In Proceedings of the ACM SIGCOMM Conference
(SIGCOMM ’13). ACM, New York, NY, USA, 99–110.

[10] Anat Bremler-Barr, Yotam Harchol, David Hay, and Yacov Hel-Or.
2018. Encoding short ranges in TCAM without expansion: Efficient
algorithm and applications. IEEE/ACM Transactions on Networking 26,
2 (2018), 835–850.

[11] Anat Bremler-Barr and Danny Hendler. 2010. Space-efficient TCAM-
based classification using gray coding. IEEE Trans. Comput. 61, 1 (2010),
18–30.

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadian-
nao: A machine-learning supercomputer. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 609–622.

[13] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu,
and Sachin Katti. 2018. Neural networks meet physical networks: Dis-
tributed inference between edge devices and the cloud. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks. ACM, 50–56.

[14] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: perfor-
mance and programmability. IEEE Micro 38, 2 (2018), 42–52.

[15] Cisco. 2018. Cisco Global Cloud Index: Forecast and Methodology,
2016–2021. "https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.
html"

[16] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. 2012. Issues
and future directions in traffic classification. IEEE network 26, 1 (2012),
35–40.

[17] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. 2006. Traffic
classification using clustering algorithms. In Proceedings of the 2006
SIGCOMM workshop on Mining network data. ACM, 281–286.

[18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massen-
gill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan
Adams, Mahdi Ghandi, et al. 2018. A configurable cloud-scale DNN pro-
cessor for real-time AI. In Proceedings of the 45th Annual International
Symposium on Computer Architecture. IEEE Press, 1–14.

[19] David J Frank, Robert H Dennard, Edward Nowak, Paul M Solomon,
Yuan Taur, and Hen-Sum Philip Wong. 2001. Device scaling limits of
Si MOSFETs and their application dependencies". Proc. IEEE 89 (2001),
259–288.

[20] David J Hand and Keming Yu. 2001. Idiot’s Bayes—not so stupid after
all? International statistical review 69, 3 (2001), 385–398.

[21] Zhenhao He, David Sidler, Zsolt István, and Gustavo Alonso. 2018. A
flexible K-means operator for hybrid databases. In 2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL).
IEEE, 368–3683.

[22] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilbermann.
2019. The P4→NetFPGA Workflow for Line-Rate Packet Processing.
In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 1–9.

[23] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on
Internet Congestion Control. In International Conference on Machine
Learning. 3050–3059.

[24] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-free sub-
rtt coordination. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’18). 35–49.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 121–136.

[26] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA’17). IEEE, 1–12.

[27] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkat-
achary. 2005. Algorithms for advanced packet classification with
ternary CAMs. In ACM SIGCOMM Computer Communication Review,
Vol. 35. ACM, 193–204.

[28] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing,
and Jian Huang. 2019. Accelerating Distributed Reinforcement Learn-
ing with In-switch Computing. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA ’19). 279–291.

[29] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of the ACM
SIGCOMM Conference. ACM, 101–114.

[30] Melvin Earl Maron. 1961. Automatic indexing: an experimental inquiry.
J. ACM 8, 3 (1961), 404–417.

[31] Mellanox. 2019. Mellanox Quantum HDR Switch Silicon.
"https://www.mellanox.com/related-docs/prod_silicon/PB_
Quantum_HDR_Switch_Silicon.pdf"

[32] Andrew W Moore and Denis Zuev. 2005. Internet traffic classification
using bayesian analysis techniques. In ACM SIGMETRICS Performance
Evaluation Review, Vol. 33. ACM, 50–60.

[33] G. E. Moore. 1965. Cramming More Components onto Integrated
Circuits. Electronics 38 (April 1965), 114–117.

[34] Timothy Prickett Morgan. 2018. Programmable Networks Get A Bigger
Foot In The Datacenter Door. The Next Platform.

[35] NPLang.org 2019. NPL Specification. NPLang.org. Rev. 1.3.

https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7060X4-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7060X4-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7800R3-Data-Sheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7800R3-Data-Sheet.pdf
"https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html"
"https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html"
"https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html"
"https://www.mellanox.com/related-docs/prod_silicon/PB_Quantum_HDR_Switch_Silicon.pdf"
"https://www.mellanox.com/related-docs/prod_silicon/PB_Quantum_HDR_Switch_Silicon.pdf"

Do Switches Dream of Machine Learning? HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

[36] Nvidia. 2018. Nvidia AI inference platform performance study. Techni-
cal Overview, https://www.nvidia.com/content/dam/en-zz/Solutions/
data-center/gated-resources/inference-technical-overview.pdf.

[37] P4 Language Consortium 2018. P4_16 Language Specification. P4
Language Consortium. Rev. 1.1.0.

[38] P4 Language Consortium 2019. P4Runtime Specification. P4 Language
Consortium. Rev. 1.0.0.

[39] David A Patterson and John L Hennessy. 2013. Computer organization
and design: the hardware/software interface. Newnes.

[40] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. Journal of machine learning research 12, Oct
(2011), 2825–2830.

[41] Dan RK Ports and Jacob Nelson. 2019. When Should The Network
Be The Computer?. In Proceedings of the Workshop on Hot Topics in
Operating Systems. ACM, 209–215.

[42] Partha Ranganathan. 2019. End of Moore’s law and how an introverted
computer architect learned to love networking. Keynote.

[43] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can
the Network be the AI Accelerator?. In Proceedings of the 2018Workshop
on In-Network Computing. ACM, 20–25.

[44] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-network computation is a dumb idea whose
time has come. In Proceedings of the 16th ACM Workshop on Hot Topics
in Networks. ACM, 150–156.

[45] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK
Ports, and Peter Richtárik. 2019. Scaling Distributed Machine Learning
with In-Network Aggregation. arXiv preprint arXiv:1903.06701 (2019).

[46] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek,
Gerhard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth,
Jens Voigt, Ines Riedel, et al. 2017. Latency critical IoT applications in
5G: Perspective on the design of radio interface and network architec-
ture. IEEE Communications Magazine 55, 2 (2017), 70–78.

[47] Giuseppe Siracusano and Roberto Bifulco. 2018. In-network neural
networks. arXiv preprint arXiv:1801.05731 (2018).

[48] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Rad-
ford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman.
2018. Classifying IoT Devices in Smart Environments Using Network

Traffic Characteristics. IEEE Transactions on Mobile Computing (2018).
[49] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan

Muthukrishnan, and Jennifer Rexford. 2017. Heavy-hitter detection
entirely in the data plane. In Proceedings of the Symposium on SDN
Research. ACM, 164–176.

[50] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé,
and Noa Zilberman. 2019. The Case For In-Network Computing On
Demand. In Proceedings of the Fourteenth EuroSys Conference 2019.
ACM, 21.

[51] Da Tong, Yun Rock Qu, and Viktor K Prasanna. 2017. Accelerating
decision tree based traffic classification on FPGA and multicore Plat-
forms. IEEE Transactions on Parallel and Distributed Systems 28, 11
(2017), 3046–3059.

[52] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida,
Ce Zhang, and Ankit Singla. 2019. Is advance knowledge of flow sizes
a plausible assumption?. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’19). 565–580.

[53] Vincent Vanhoucke, Andrew Senior, and Mark ZMao. 2011. Improving
the speed of neural networks on CPUs. (2011).

[54] Shay Vargaftik, Isaac Keslassy, and Yaniv Ben-Itzhak. 2019. RADE:
Resource-Efficient Supervised Anomaly Detection Using Decision
Tree-Based Ensemble Methods. arXiv preprint arXiv:1909.11877 (2019).

[55] Jackson Woodruff, Murali Ramanujam, and Noa Zilberman. 2019.
P4DNS: In-Network DNS. In Proceedings of the 2nd P4 Workshop in
Europe.

[56] Xilinx. 2019. Exact Match Binary CAM Search IP for SDNet. Smart-
CORE IP Product Guide, PG189 (v1.0) https://www.xilinx.com/support/
documentation/ip_documentation/cam/pg189-cam.pdf.

[57] Zhaoqi Xiong and Noa Zilberman. 2019. IIsy Repository. https://github.
com/cucl-srg/IIsy/.

[58] Jun Zhang, Xiao Chen, Yang Xiang, Wanlei Zhou, and Jie Wu. 2015.
Robust network traffic classification. IEEE/ACM Transactions on Net-
working (TON) 23, 4 (2015), 1257–1270.

[59] Noa Zilberman, Yury Audzevich, G.Adam Covington, and Andrew W.
Moore. 2014. NetFPGA SUME: Toward 100 Gbps as Research Com-
modity. IEEE Micro 34, 5 (September 2014), 32–41.

[60] Noa Zilberman, Andrew W Moore, and Jon A Crowcroft. 2016. From
photons to big-data applications: terminating terabits. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 374, 2062 (2016), 2014.0445.

https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/gated-resources/inference-technical-overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/data-center/gated-resources/inference-technical-overview.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cam/pg189-cam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cam/pg189-cam.pdf
https://github.com/cucl-srg/IIsy/
https://github.com/cucl-srg/IIsy/

	Abstract
	1 Introduction
	1.1 Motivation

	2 Switch as a Classification Machine
	3 Key Insights
	4 Realistic Resource Allocation
	5 From ML to Match-Action
	5.1 Decision Trees
	5.2 SVM
	5.3 Naïve Bayes
	5.4 K-means

	6 Prototype and Evaluation
	6.1 Software-based prototype
	6.2 Hardware-based prototype
	6.3 Example: IoT Traffic

	7 Discussion
	8 Related work and conclusion
	References

