
Measuring Burstiness in Data Center Applications
Jackson Woodruff
University of Edinburgh

J.C.Woodruff@sms.ed.ac.uk

Andrew W Moore
University of Cambridge

andrew.moore@cl.cam.ac.uk

Noa Zilberman
University of Cambridge

noa.zilberman@cl.cam.ac.uk

ABSTRACT
Buffer sizing is a tricky task — it depends on a large number
of variables, ranging from congestion control to traffic en-
gineering. Still, the most unpredictable contributors are the
workloads running in the network. The link utilization and
burstiness of these workloads dictate the buffer depth needed
by a switch. But what is a burst? Do traditional definitions
still apply in the age in which switches transfer terabits of
data and billions of packets every second? Unless we assess
bursts correctly, we are unlikely to size buffers appropri-
ately. In this work, we present a measurement-led evaluation
of the burstiness of different data center applications. We
address the question of “what is a burst?” and assert that
common techniques cannot answer this question in modern
data centers. We quantify the change in burstiness of the
studied applications across multiple vectors, including la-
tency and network perspective, and generalize our results to
the common case. Our observations can inform future buffer
sizing efforts and guide switch configurations. Our dataset
is openly available for the benefit of the community.

1 INTRODUCTION
What is the optimal size of a buffer? The obvious answer is
“it depends.” Traffic engineering, congestion control, network
utilization and oversubscription are among many factors
that affect the required size of a buffer [10]. Still, the most
elusive factor that affects buffer sizing is the workload.
Previous studies within data centers [17] of the effect of

bursts and microbursts on buffer utilization have shown sig-
nificant differences between applications. These works [3, 7]
considered the effects of bursts and microbursts on millisec-
ond and microsecond granularity, and used (standard) switch
functionality to analyze network data. Alizadeh et al. [1] de-
fine amicroburst as a burst of traffic too short to be prevented
by traditional congestion control protocols. This definition
can be made more precise given a sub-nanosecond view
of the network available today. Zhang et al. [17] define mi-
crobursts as small periods (<1ms) of high utilization. During
1ms, more than a megabyte of data can arrive, even on a
10G network link.

Time is deceiving. A 100G link with 40% utilization using
100B packets means 50kB of data over 10 µs, but those may
arrive as a single burst of 50kB or with 100B packets spaced
by 150B-equivalent gaps. In the first case, a buffer can be

filled,1 while in the second a queue may not build at all.
Approaches such as in-network telemetry [8] may not be
able to capture these transitional and momentary effects.
Looking only at a watermark indication (e.g., as provided
by counters on many NICs [6, 12]) is not the solution either;
there is no way to distinguish between a singular and a
recurrent event.

In this work, we try an address the question ofWhat is a
burst? Or rather, How should we define a burst for buffer sizing
purposes? While we do not have full visibility into the switch,
we do have the ability to look outside it by using packet traces.
In this work we explore the use of packet traces with sub-
nanosecond timestamp resolution to explore the meaning
of burstiness using different data center applications. While
we use a limited-scale, local setup, our environment does
allow us to explore three interesting vectors: (1) What is
the effect of the application? (2) What is the effect of server
aggregation? (3) What is the effect of latency?

We make the following contributions:
• We collect a set of packet traces of different data center
applications, with sub-nanosecond capture timestamp
resolution. Our dataset and tools are available at [15,
16].

• We explore the definition of a burst using the different
applications’ packet traces.

• We explore the effect of latency and server aggregation
on burstiness.

• We discuss generalizing our results and offer recom-
mendations for buffer sizing.

The rest of this paper is organized as follows: Section 2
discusses our experimental setup and the applications used.
Section 3 describes our dataset. Section 4 analyzes the bursti-
ness of our applications. Section 5 discusses our results and
the general case. Section 6 concludes.

2 EXPERIMENTAL SETUP
Our experiments use 10 machines running Ubuntu server
16.04.5 and Linux kernel 4.4.0-131-generic. Up to seven ma-
chines run the benchmarks, twomore capture traces, and one
acts as a management node. All the machines have a 10GE
test NIC installed, either Intel 82599ES NICs or Solarflare
SFC9220 NICs. The NIC of each machine is recorded during
each benchmark run. Benchmark machines are equipped

1Even if only to adjust to small port-frequency variations.
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Fig. 1: The experimental setup used. One server is con-
nected to the network through NRG. Traffic from the
server and one client is captured using ExaNIC-HPT.

with Intel Xeon E5-2637 v4 3.50GHz CPUs and 64GiB of
RAM.

An Arista 7124FX switch connects the machines. STP and
LLDP are disabled to avoid uncontrolled traffic. A 3 m fiber
connects each machine to the switch. We use an ExaNIC
HPT [5] for traffic capture. The HPT captures at a resolution
of 250 ps, which enables our high-resolution analyses.
We use NRG, a NetFPGA-based latency appliance, intro-

duced by Zilberman et al. [19], to control the static latency
between one machine (the server) and the rest of the setup.
NRG is located between the server and the switch, and pro-
vides nano-second scale latency control. Unless noted oth-
erwise, all latencies are applied both on the Tx and on the
Rx side. Unlike other latency emulation tools (e.g., NetEm),
NRG provides high resolution and maintains precision even
under high data rates.
In this paper we discuss two benchmarks, Memcached

and Tensorflow, each with a single server/master and mul-
tiple clients/workers. Memcached runs using the Facebook
ETC workload [2], and it runs for 30 seconds. Memcached’s
server-side is saturated. Tensorflow uses the MNIST dataset,2
and it trains for 20,000 iterations. The capture data records
configuration-specific information. In addition, our dataset
includes records of two more benchmarks: Apache web
server and DNS.

3 DATASET
We study burstiness covering three axes: application, latency,
and traffic direction. We collect a large dataset of experimen-
tal results for each application. Our study covers over 200
experiments, not all of them discussed in the paper, and our
dataset includes additional, related traces. Our traces provide
sub-nanosecond resolution and approximately 30 ns clock
synchronization between traces captured on different cards.
We note that storage and run time were the two limiting fac-
tors of this study. We also make available a Python process-
ing framework as libpcap does not support sub-nanosecond
timestamps.

Our analysis focuses on the server-side data. Because our
benchmarks follow a client-server model, this reveals the
2http://yann.lecun.com/exdb/mnist/
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Fig. 2: Howwe define a burst in terms of x packetswith
an IPG of y ns.

burstiness that the switch experiences. All traffic passing
through the switch is going from or to the server machine.
Beyond the traces, we also collect metadata: benchmarking
machines’ logs (stdout, hardware configuration, syslogs),
capture card output logs, and NRG statistics logs.

Our dataset is available at [16]. The software environment
used is available at [15].

4 WHAT IS A BURST?
Bursts are traditionally defined as periods of high packet
arrival rates [9]. Existing work on microbursts has taken this
approach. Alizadeh et al. [1] define a microburst as burst of
traffic too short to be prevented by traditional congestion
control protocols. Zhang et al. [17] define microbursts as
small periods (<1ms) of high utilization. Their data were
sampled at a resolution of 25 µs: we assert that this is not
high enough resolution for data center networks as data
rate increases, as even on a 10G network link, more than a
megabyte of data can arrive within 1 ms.
We adopt a definition for bursts more appropriate for

buffer sizing. Instead of considering the amount of traffic, we
consider the traffic’s density, which partially resembles link
utilization. To define bursts, and microbursts, we consider
subsets of the question: How many packets become a burst?
How close should these packets be to each other? What is
the link utilization required to call a train of packets a burst?

4.1 Methodology
We define a burst as some sequence of x packets, each ar-
riving within y bit times of each other. Figure 2 shows this.
This definition yields a parameter space in x and y. In sec-
tion 4.2, we explore how best to select these parameters. This
definition allows for detection of microbursts on the scale of
individual packets. Because the meaning of a microsecond or
a nanosecond depends on data rate, we instead refer to “bit
time”. A given amount of data transmitted over a microsec-
ond at 10Gbpswill be 10 times denser than the same amount
of data transmitted at 100Gbps. In other words, a gap of y ns
corresponds to less burstiness at 100Gbps than at 10Gbps.
As our setup runs at 10Gbps, for the rest of this paper we
refer to y in units of nanoseconds, and note that this should
be scaled for other data rates.

2
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Next, we explore how changing x andy affects the lengths
and link utilization of bursts for given traces. To calculate
the average bandwidth during a microburst, we define:

BW =
∑

Packets in Burst Packet Size(s)
tend,last-tstart,first

And link utilization is BW/Link Capacity.

4.2 Parameter Selection
Our approach requires two parameters: the inter-packet gap
(IPG) between consecutive packets, and minimum number
of consecutive packets with this IPG (or smaller) for the
sequence of packets to be considered a burst.

To choose these parameters, we run the applications with
five clients/workers and one server, and analyze the collected
traces. We directly extract IPG,3 and calculate bandwidth
within 100 µs windows. This window size fits multiple 1.5KB
packets, and provides a “high-level” view. The repository
includes similar analyses, conducted at 1 µs and 10 µs. We
then consider the 95th, 99th, 99.9th, and 99.99th percentiles
within this distribution. Table 1 shows these for each applica-
tion. Bandwidth is the link utilization multiplied by 10Gbps.
For clarity, the IPG used in the table, and through the rest of
this section, accounts for an average 16 ns inter-frame gap
(IFG) and preamble4.

The values in the table show stark differences between
applications, both in terms of utilization and of IPG. In ad-
dition, even for the same application, client-to-server and
server-to-client traffic is different, e.g., Memcached’s replies
(server-to-client) have ×2.75 higher 99th percentile utiliza-
tion than Memcached’s requests (client-to-server).

4.3 Burst Length
Using our high-resolution traces, we explore the question of
What is the length of a burst? by looking at the packet trains
at the tail, determined by bandwidths at the 99th percentile
and beyond. We use the mean IPG during these tails, and
require a burst to have a minimum a number of consecutive
packets: more than two, four or eight, each within the given
IPG.
Figure 3 shows the length of incoming (client-to-server)

Memcached query bursts. The more stringent the require-
ment on number of packets within a burst, the higher the
probability a burst is very long. This is partly by definition,
as all bursts of more than 2 packets and y IPG will emcom-
pass all bursts of more than 4 and 8 packets of the same IPG.
In Memcached, bursts can be short: for more than 2 pack-
ets within 287 ns of each other (2p287ns) the probability of
3Note that this is not inter-arrival time.
4The repository provides data without this constant, e.g., for deficit idle
counter analysis.
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Fig. 3: The length of incoming bursts in Memcached.
xpyns represents the x and y burst parameters used.
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Fig. 4: The bandwidth of incoming bursts in Mem-
cached. xpyns represents the burst parameters used.

minimum burst size (three packets) is 75%. However, the tail
can be quite long (up to 77 packets) as shown on the eight
packet, 287 ns line (8p287ns).

Figure 4 shows how the incoming bandwidth depends on
the parameters used. Observed bandwidths are generally
grouped by the IPG parameter. At 8 packets with 287 ns IPG,
we have identified a distinct group of bursts: 75% of these
bursts have bandwidth greater than 9.5Gbps, a series of truly
back-to-back packets. We can see that bandwidth utilization
during other burst definition-groups is fairly low, although
long-tails do exist.
In Tensorflow, packets did not arrive at consistent inter-

vals. Packets arrived at intervals of: 1 ns, 1 ns, 1 ns, 8 ns. This
keeps the mean IPG low (and hence, the bandwidth high),
but means that the 4 ns we derived above does not accurately
capture the bursts. To accommodate this insight, we have
used larger IPGs (10ns) in the analysis of Tensorflow.
Figures 5 and 6 show the results of Tensorflow analysis.

First, we can see that bursts are significantly longer than in
3



Application Packet Size 95th 99th 99.9th 99.99th
(Median) Utilization IPG Utilization IPG Utilization IPG Utilization IPG

Memcached 156B 7.72% 1492ns 9.14% 1241ns 15.60% 675ns 30.34% 287ns
Tensorflow 1518B 99.6% 4.8ns 99.62% 4.8ns 99.64% 4.8ns 99.65% 4.8n

Table 1: The tail bandwidths reached by each application using a 100 µswindow. The table indicates client/worker
to server communication. The IPG specified indicates the median IPG for a given utilization.
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Fig. 5: Tensorflow incoming burst lengths.
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Fig. 6: Tensorflow incoming burst bandwidths.

Memcached (Figure 5) and can reach more than 1,000 pack-
ets. This is due to Tensorflow’s two-phase algorithm [14],
which means that workers send large batches of data — the
neural network’s edge weights. These large batches mean
Tensorflow is network bound for periods of time. In contrast,
Memcached is memory bound, which limits data rate (and
in turn, the burstiness). For these reasons, Tensorflow is a
far burstier application than Memcached. The longest bursts
are a on a different order of magnitude from the Memcached
results, where the bursts are at most 77 packets long. This
suggests that applications should see different buffer sizes.
Furthermore, a thousand packets are over a megabyte in
size, and are not a microburst; no one should expect a buffer
similar in size to such a burst. Memcached’s 77 packets are

2000 4000 6000 8000 10000
Burst Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Server Traffic (Bandwidths): 

 2p1492ns
 4p1492ns
 8p1492ns

 2p1241ns
 4p1241ns
 8p1241ns

 2p675ns
 4p675ns
 8p675ns

 2p287ns
 4p287ns
 8p287ns

Fig. 7: The outgoing burst bandwidth in Memcached.
xpyns represents the burst parameters used.

roughly 12KB, a number closer to commonly used per-port
buffers.

4.4 The effects of server aggregation
There is a key difference between data arriving at a server
and data sent from the server: the data arriving at the server
is at best semi-synchronized, while the data from the server
can be completely aggregated. There are also protocol asym-
metries: the Memcached server typically generates longer re-
sponses than requests, so outgoing bandwidth requirements
are more taxing than incoming bandwidth requirements.
These differing behaviors suggest that under some scenarios
asymmetric buffer sizing policies can more effectively use
available resources.

Figures 7 and 8 show the effects of this server-side aggre-
gation. We can see both higher bandwidths during bursts
(Figure 7) and longer burst lengths (Figure 8). As an example,
for incoming packets, if we see an eight packets long burst,
there is a 25% chance that we will see more than 11 packets
in the burst. However, in the outgoing traffic, if we see a
burst eight packets long, there is a 25% chance that there will
be more than 15 packets in the burst. The bandwidth graph
shows similar increases in utilization.
Thus, there are two arguments here that buffer sizing in

switches should not be symmetric: application workloads
are not symmetrical, and, further, the effect of aggregation
of messages is stronger close to the server/aggregation side.
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Fig. 8: The outgoing burst length inMemcached. xpyns
represents the burst parameters used.
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Fig. 9: The length of incoming bursts in Memcached
with 50 µs of artificial delay. xpyns represents the burst
parameters used.

4.5 How does latency affect burst size?
To observe the effect of latency on bursts, we use the NRG
tool described earlier to control the latency visible to the ap-
plications. Our experiments range in additive latency from
0us to 1ms, with a minimum step of 25us, as we see little
effect below that [11, 19]. The base latency of our setup is
roughly 10us. Figure 9 shows the effect at 50us latency (100us
RTT). There is a small difference in the burst lengths; in par-
ticular, bursts are less likely to be very long. In Memcached,
as latency increases, the probability of long bursts decreases.

In Tensorflow, we see little difference as latency increases.
This means that even with much longer latencies we still
see bursts of over a thousand packets. These figures are
omitted as they resemble previous ones. An important note
to consider is that this analysis is based on bursts with a very
small IPG of 10ns. At larger IPGs, differences may be visible.

5 DISCUSSION AND RELATEDWORK
We address the questionWhat is a burst? in the context of
current-day data center applications. We focus our attention
on application-level bursts, considering one application at
a time. We leverage sub-nanosecond resolution traces to
explore burst lengths defined in terms of packet IPG. Our
work provides an analysis of the resolution needed to record
microbursts at 10G, and can be scaled to higher bandwidths.

Others have used different definitions of microbursts. For
example, Zhang et al. [17] use a windowed approach to de-
tect periods of high utilization. However, their windowed
approach breaks down for bursts longer or shorter than the
window. As we have shown, these are both very common.
Further, the 25 µs resolution data used by Zhang et al. limits
their approach to window sizes large enough for hundreds
of packets at 10G, more than enough to fill a small buffer.

At higher bandwidths, higher resolutions will be required
to enable similarly detailed analyses. Our work suggests
that differences in burstiness can be seen on the scale of 10
bytes, which is a mere 0.8 ns at 100G. Scaling our mechanism
for detecting bursts is important for more than just higher
bandwidths. Modern network devices can have more than
256 ports. Our detection mechanism is scalable to devices
with many ports because it relies only on the IPG between
packets and a static packet count. The question over what
constitutes the most useful measure of burst size remains.
Should the measurement be made in terms of packets or bits?
The answer may well depend on the device, e.g., whether the
buffer is assigned in fixed-size units, of if buffer assignment
is flexible and bus-width alignment is the only restriction.

Burst size on its own should not dictate buffer size. Many
other factors come into play, such as resource availability,
QoS guarantees, and SLAs. Nevertheless, burst size is an
important indicator for buffer sizing because it highlights
the peak throughputs network devices can expect.

Limitations of the study. To achieve reproducibility, our
study has limited scale. We run our experiments with at
most seven machines. Further, we only run a small num-
ber of applications, which are not representative of today’s
heterogeneous data center cloud environment, much less
the Internet. This is largely due to resource constraints; the
applications we ran produced more than 2 TB of data which
required significant processing time. This data restriction
similarly limited the number of iterations we used. Finally,
our work does not have network-wide visibility: our con-
clusions are drawn exclusively from the perspective of the
server. Although this reveals instances of burstiness, we don’t
have true switch-internal visibility. Further understanding
can be gained by combining server- and client-side traces.
This work describes an analysis that will fit clusters run-

ning homogeneous workloads [2]; it is less suited to cloud
5



environments running many user applications. Nevertheless,
we believe that our work can provide relevant and interesting
insights into buffer sizing.

Future Work. Our dataset includes more applications and
network-parameter variations than covered in this paper,
and we intend to explore these in an extended version. Our
work contains relevant information for data center buffers.
Internet traces such as CAIDA [4] provide an opportunity for
similar analysis of Internet traffic. Traces from real data cen-
ters also provide an opportunity for further analysis. How-
ever, such data are largely lacking due to privacy concerns
among other issues. Facebook has released a trace [2], but
this trace is sampled to 1/30,000 packets, making it infeasible
to use for IPG-based analysis. Even without traces from fur-
ther afield, we intend to explore a wider range of applications
in more complete contexts, using synchronized client-server
traces to observe burstiness.

6 CONCLUSION
This work analyzes burstiness using a definition based on the
gap between packets, rather than the amount of aggregated
data. Our work shows that even at 10G, sub-microsecond
precision is required to understand application burstiness.
We present a methodology for understanding burstiness with
high-resolution packet traces. Our traces help understand
the traffic load that buffers in data center switches face on
small timescales.

Our analysis of two data center applications, Memcached
and Tensorflow, shows that each application behaves differ-
ently in terms of burstiness. Results indicate that Tensorflow
exhibits far burstier behavior, with the median burst length
approximately 16 times longer than Memcached. We argue
that required buffer sizes are application dependent.

Our exploration of the effect of server aggregation demon-
strates that the server synchronization increases burst-related
bandwidth spikes. We argue that in cluster workloads buffer
sizes need not be symmetrical on different ports.
Finally, our investigation into the effect of latency on

burst size finds that additional latency decreased burstiness
for Memcached, but did not affect maximum burst size for
Tensorflow. Thus, we propose that switches handling low-
latency paths (e.g., top-of-rack switches) may need larger
buffers per flow than those handling higher-latency paths
(e.g., core switches). This approach resembles other works
pushing buffering to the edge [18].
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