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ABSTRACT
Latency penalty in Ethernet links beyond 10Gb/s is due to forward
error correction (FEC) blocks. In the worst case a single-hop penalty
approaches the latency of an entire cut-through switch. Latency
jitter is also introduced, making latency prediction harder, with
large peak to peak variance. These factors stretch the tail of latency
distribution in Rack-scale systems and Data Centers, which in turn
degrades performance of distributed applications. We analyse the
underlying mechanisms, calculate lower bounds and propose a
different approach that would reduce the penalty, allow control
over latency and feedback for application level optimisation.

1 INTRODUCTION
Latency has been long known to have an adverse effect on systems,
from the annoyance users feel when a website is slow to load, to
application performance degradation [27]. Patterson et al. [20] ob-
served over a decade ago that bandwidth improvements are made
at the expense of latency, and in particular that the rate of net-
work latency improvement stagnates next to the rate of bandwidth
improvement.

Over the last decade, network bandwidth has improved from
10Gb/s to 400Gb/s per port [5]. Switch traversal latency has also
improved, going down from 10-30µs [24] to 300ns [16]. The in-
troduction of new link speeds is, unexpectedly, threatening the
continued decline in end-to-end latency. Forward Error Correction
(FEC), used to reduce the bit error rate on a link, has led to an
increase in latency that will affect all network devices.

As Figure 1 shows, at 25Gb/s the additional latency contributed
by FEC is at the order of a frame traversal through a commodity
cut-through switch [25], and twice the latency through a state-of-
the-art switch [9]. At 100Gb/s, FEC latency is at the order of a read
transaction from a DRAM. Beyond 100Gb/s, a decoding time that
is not link-speed dependent becomes the dominant latency contrib-
utor (as shown in Figure 2), and the FEC block has to be further
buffered. These numbers are no longer negligible, especially with
the increasing popularity of scale out systems and in in-network
applications, requiring remote access.

To quote Cheshire [6]: “Once you have bad latency you’re stuck
with it”. Therefore it is important to understand why we are stuck
with FEC-induced latency, and what is the scale of the latency
penalty.

In this paper we examine how the FEC chosen by recent IEEE
Ethernet standards [12–14] introduces latency and its jitter. We
compare the effect on cut-through and store-and-forward switches
and calculate the jitter envelope. Finally, we propose a different
design that has lower latency and utilizes FEC to monitor link health
and provide latency prediction. This proposal fits latency-sensitive
environments, such as intra-data center connections and Rack-scale
systems.

Figure 1: Comparing the scale of latency in components of
networked-systems. FEC induced latency is marked in red.

Figure 2: Accumulation time and decoding time for different
types of links. A device clock of 1GHz is assumed for the
decoding delay.

The rest of this paper is organized as follows: In Section 2 we
explain why FEC is used and its inherent latency. Section 3 explains
howmapping of Ethernet frames to FEC blocks leads to high latency
jitter. A roadmap to latency-sensitive design paradigm is presented
in Section 4, whereas Section 5 discusses related work. We conclude
our analysis in Section 6.

2 MOTIVATION
The bare minimum requirement of a networked system is that
frames are going through. This is quantified by the Frame Loss
Ratio (FLR). Simply put, a physical link is required to pass Ethernet
frames from one port to another without loosing too many of them.
This is the role of the physical layer, which cuts the frames into
bits, and moves them across media, e.g., copper, fiber optics. Many
techniques exist in order to move these bits faster, but all have the
effect of higher Bit Error Ratio (BER) as data rate increases, which
in turn increases the FLR. In order to avoid high FLR, an FEC was
added in recent interconnect standards. The goal of the FEC is to
achieve FLR lower than a given target, e.g. 6.2 × 10−10 [12].



Figure 3: Generic RS decoder architecture. De-serialized bits
are accumulated and buffered, an accumulation delay noted
as Taccns. Only after all bits were accumulated, a decoding
algorithm, sometimes referred to as key equation solver or
KES, starts and takes Tdecns to finish.

FEC codes used by the recent interconnect standards [12] are
Reed-Solomon (RS) block codes [23]. As a new block of data arrives
at the receiver, it is first checked for errors. This requires accumulat-
ing all bits of the block and holding them in a buffer as illustrated in
Figure 3. As a consequence, the first bit of the block is experiencing
the maximal delay, as it has to wait for the rest of the N − 1 bits of
the FEC block to arrive. We refer to this delay as the accumulation
delay (Tacc ). The accumulation delay depends on the block size and
the link bandwidth, but not on the clock frequency of the device:
switch or network interface card (NIC).

The second type of delay caused by this FEC is the decoding
delay (Tdec ), which is the time it takes the device to find the location
of errors within a block and correct them. The decoding delay
depends on the chosen code, decoder and the device clock, but
not on the link-speed. We assume a reference decoder, efficient at
least as reported in [26]. The literature depicts decoders that take
more clock cycles, for example [4, 19]. We illustrate in Figure 2 the
accumulation and decoding delay for different types of copper and
fiber optic links.

3 THE FEC EFFECT DECODED
Figure 2 shows two trends. The first is that the accumulation delay
drops with link speed. This is because when using the same number
of bits in an FEC block, the faster they are transmitted the faster
they are accumulated. The second trend is that the decoding time
remains constant per FEC type. Since there are only two FEC types
demonstrated in Figure 2, the decoding delay is shown to be either
15ns or 31ns .

Figure 4 shows three representative examples of how a frame
could be mapped into an FEC block. A frame consists of a desti-
nation field, a source field, the payload and the Frame Checksum
(FCS). An FEC block consists of data and redundancy bits. A frame
can thus be mapped to the data bits of an FEC block only, as the
redundancy bits are generated by an encoder. As the offset between

Figure 4: The three cases of a frame offset within an FEC
block: A: the entire frame is contained within the FEC block,
B: offset of the frame from start of FEC block causes part of
the frame to be mapped into a second FEC block, and C: suf-
ficient offset causes part of the frame header to be mapped
into a second FEC block.

Figure 5: Latency incurred on a 64B frame as a function
of header offset within an FEC block. Three important do-
mains are marked A,B,C corresponding to Figure 4

a frame’s header and the beginning of an FEC block increases, the
latency due to accumulation reduces. When the frame overflows to
another FEC block, additional latency is incurred. This is depicted
in Figure 5, for a frame of 64Bytes, which is less than a tenth of an
FEC block of size of 5140 bits of data, on a 25Gb/s link.

3.1 FEC’s effect on switches
The effect of FEC on latency differs between store-and-forward (SF)
and cut-through (CT) switches. Store and forward switches wait for
the entire frame to arrive, and for the FCS field to be checked, before
processing the frame. Cut-through switches will start processing
the frame as soon as the header has arrived [8]. Consider three
cases, indicated in Figure 4:

• A frame is completely contained within an FEC block.
• A frame header of is contained within one FEC block, but
part of the data and FCS is in the next FEC block.
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Figure 6: Marginal latency added to store and forward and
cut-through switch over a single hop, using 25Gb/s with FEC.
For a cut-through switch the worst case scenario does not
depend on the frame size. For a store and forward switch, as
the frame size exceeds 5,136 bits, overflow to the next FEC
block is inevitable as an FEC block contains a maximum of
5,140 bits of data. When exceeding 10,280 bits, overflow to
yet another FEC block occurs, and decoding delay adds up.
The analysis does not take into account control bits, which
make the latter numbers lower.

• Part of the header (e.g., Ethernet MAC destination address) is
contained in the first FEC block, while the rest of the header
and the payload are in a second FEC block.

In the first and last cases, store and forward and cut-through
switches will experience the same total latency, TA and T B corre-
spondingly :

TA = Tacc −Tof f set +Tdec

and
TC = (Tacc −Tof f set ) +Tacc + 2 ×Tdec

whereTacc is the accumulation delay, i.e.: latency due to accumula-
tion of the block, Tdec is the latency due to the decoding process,
and Tof f set is the bit time multiplied by: the number of bits be-
tween the first bit of the block and first bit of the frame as in Figure 4.
The middle case is different: a cut through switch will only need to
wait for the header, and therefore will experience a total latency,
T B , of

T B
Cut−throuдh = Tacc −Tof f set +Tdec

while the store and forward switch will wait for both FEC blocks to
arrive, i.e.:

T B
Store and f orward = (Tacc −Tof f set ) +Tacc + 2 ×Tdec

In the common worst case for 25Gb/s up to

246ns = (Tacc −Tof f set ) +Tacc + 2 ×Tdec

are added.
This calculation, however, does not take into account the accu-

mulation that was bound to happen anyway for a store and forward
switch. While a cut-through switch accumulates 16 bits of header, a
store and forward switch would have had to accumulate the entire
frame anyway. Once reducing the frame accumulation time, we
obtain a more complete picture of FEC’s effect on the two types of
switches, especially on a cut through switch. This is depicted in
Figure 6 as the marginal latency. Clearly the impact of the marginal
latency on a cut-through switch is devastating: the cut through
switch not only becomes akin to a store and forward switch, pro-
cessing frames of (close to) FEC block size, but also suffers from
a latency penalty in the order of traversing an entire cut-through
switch.

3.2 Latency jitter
FEC does not only add latency: the variation of frame offset within
an FEC block is accumulated over each hop and results in jitter. This
is best demonstrated by examining the latency added by FEC when

Figure 7: Latency as a function of frame size. The latency en-
velope (min-max) incurred by FEC for traversing a fat-tree
topology. Shown for both cut-through and store and forward
switches.

traversing a Fat-Tree [1] topology as in Figure 8. Figure 7 demon-
strates the effect of FEC alone, for a given frame size, traversing
five hops through the network. The latency envelope is contained
by the difference between the highest latency line and the lowest
latency line. As the figure shows, traversing multiple hops through
a network introduces significant jitter, as in every hop the header’s
offset within an FEC block varies.

3.2.1 Jitter on multi-lane links using FEC. The case of inter-
connects made of multiple lanes, say four (e.g., 100Gb/s), is different:
by stripping the FEC blocks over four physical lanes on the transmit
side and marshalling them on the receive side, we get the same
appearance as if the accumulation time was reduced by a factor of
1/4. However, there is a hidden pitfall to note here: marshalling
requires alignment and de-skew, as one physical lane may be longer
than another. The contributors to a lane’s length are many: from the
trace on the circuit board and a fiber’s length to the delay within an
optical transceiver. The standard allows for up to 180ns latency due
to this reason, but in practice this value is typically considerably
lower. While Figure 2 shows latency components as induced by FEC,
it does not account for any de-skew latency, which is deployment
specific and not induced by the FEC.

3.2.2 Link Heterogeneous Systems. Another potential con-
tributor to latency jitter is the use of different link speeds over paths.
For example, as data centers gradually grow over time and add new
equipment, higher link speeds may be used in newly deployed
switches. Figure 8 demonstrates a case where a cluster is gradually
upgraded from 25 and 100Gb/s links to a 400Gb/s infrastructure. A
frame traversing from source to sink may go through one of two
paths, marked in red and green. Using numbers from 2, a frame
traversing the red path would experience 92ns more latency than if
it were to traverse the red path, even without taking frame offset
within the FEC block into account. If multi path routing is allowed,
latency jitter is introduced into the system. It should be noted that
the topology presented in Figure 8 has sufficient symmetry to make
finding such examples hard, and on the other handmake calculating
bounds on latency jitter easy. However, topologies which are non
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Figure 8: A cluster under a gradual upgrade. White switches
can sustain any link speed up to 400Gb/s, while blue
switches can sustain only 25 or 100Gb/s links. Dashed lines
are limited to 25 or 100Gb/s. There are two significantly dif-
ferent paths from the source to the sink, one following the
red path, the other following the green path. 25 → 100 →

100 → 100 → 100 → 50 for the red path and 25 → 400 →

400 → 400 → 400 → 50 for the green path. The result is a
latency jitter of 92ns.

symmetric should allow elaborate examples and make the analysis
harder.

4 POSSIBLE SOLUTIONS
In this section we describe potential solutions that naturally emerge
when looking at an end to end system, and in particular - a con-
trolled one.

4.1 Context
The best place to look for solutions is by examining the (multiple)
FEC codes that were not chosen by the standards [7]. In the con-
text of the FEC, latency was perceived as secondary to bandwidth.
Stronger FEC with lower FLR have been traded off for higher band-
width. The distinction that this is a no-return decision was already
made in [6], twenty years ago. Once the code parameters were
chosen for 100Gb/s, they were propagated to later standards such
as for 50Gb/s and 400Gb/s.

4.2 Future directions
IEEE standards focus on existing types of networks. For new tech-
nologies, and emerging solutions, different considerations may ap-
ply. As an example, for rack-scale systems that require shorter links
and substantially lower latency we need to re-think the latency-
bandwidth trade off. In particular, a way is needed to control latency,
not to mention predict it. Any solution that presumes to aid in low-
ering latency and providing an accurate prediction of latency should
consider:

• Codes with sufficiently short accumulation time.
• A decoder that has an adjustable decoding time.
• Tracking of error types and characteristics, not just BER.
• A mechanism for feeding back metrics to upper layers.

In addition, we assert that for reliability purposes, there should be
an option to trade almost all bandwidth for coding gain. This is to
ensure data transmission until the problem is diagnosed and solved.
This case applies especially for temperature fluctuations and time
dependant degradation.

4.3 Other Reed-Solomon codes
The Reed-Solomon codes picked by the standards were not the
only potential coders. A different candidate that would reduce
accumulation time would be an RS(N=255,K=241,m=8) code that
requires accumulating just 2,040 bits. This code requires slightly
more bandwidth as its rate is 2410/2550 = 0.945 vs. 5140/5280 =
0.973 used for 25Gb/s links. The meaning is either reducing the data
bandwidth by 2.8%, or increasing the signalling rate, sometimes
referred to as “over-clocking”. Trading bandwidth for lower latency
is not a new practice, also adopted by high-frequency trading and
proposed in, e.g., [2]. This solution also has the benefit of reducing
the accumulated block buffer, marked in Figure 3.

4.4 Non Block Codes, and programmable
decoding time

Reed-Solomon codes are not the only family of codes that can be
used. A family of convolutional codes with various rates could
be used to trade bandwidth for a stronger code, while sharing the
same Viterbi decoder [10]. This coupling allows “programming” the
latency in advance by changing the code usedwhile maintaining the
same hardware. This is because the latency incurred by the Viterbi
algorithm could be bounded by the decoding window, which is
effectively the number of bits the decoder needs to accumulate bits
before they are decoded. In order to avoid a long decoding window,
a stronger code can be chosen, which trades bandwidth for coding
gain, rather than latency. Figure 9 compares such codes with an
RS(N=255,K=241,m=8) code. The figures show the performance of
each code at different regions of signal to noise ratio.

4.5 Putting it all together
Figure 10 proposes an architecture for a controlled system that
enables optimizing latency and bandwidth given a link’s conditions
and performance. The architecture includes the receiver’s ability
to request an FEC change. A feedback to the control plane would
include the effective bandwidth on the link, FLR, latency statistics,
and would be used for load balancing and routing. In this sense
we can assure not only programming the characteristics of a link,
but also maintaining real time statistics on it with the option to act
upon it in the application layer. The gearbox presented in Figure 10
is to provide smooth transition between FEC schemes, as opposed
to drastic and changes that may require a link up cycle, i.e.: no
dropping and restarting of the link occurs.

5 RELATEDWORK
The fight against latency is held across the board. Be it in hard-
ware, code design, scheduling, time-slotting, protocol handshaking
and overhead. It is being characterized, controlled where possible,
reduced when achievable. In this section we touch on just a few
examples. Optimization of latency via packet time slot allocation
and path assignment is demonstrated in [21]. Analysis of events and
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Code code distance symbol size [bits] overhead Tacc [ns] Tdec [ns]
RS(528,514,10,7) 15 10 2.7% 211ns 15ns
RS(255,241,8,7) 15 8 5.8% 81.6ns 15ns
RS(230,215,12,7) 15 12 6.5% 110.4ns 15ns
RS(300,285,9,7) 15 12 4.9% 108ns 15ns

Table 1: A comparison between types of Reed-Solomon codes. Despite the code distance being the same, the symbol sizes are
different, so the total number of bits B in the block is different. We assume a 25Gbps link, which means a bit time of 0.04ns.
The parameterTacc is calculated usingTacc = B×0.04ns. E.g.: doubling the bandwidth would halveTacc . We also assume a 1GHz
clock, and that the decoding time is proportional to the code distance, which results in Tdec being equal to the code distance
in ns. Finally, the overhead of the code is calculated as the ratio between the number of parity bits to data bits. An extensive
study of Reed-Solomon with similar parameters can be found in [7].

Figure 9: Comparison between output bit error rate of sev-
eral codes, as a function of signal to noise ratio (SNR). We
assume an additive white Gaussian channel. Themore noise
inflicted on the channel, stronger code is needed tomaintain
the same output bit error ratio.

overheads in the micro-second order are portrayed in [3], which
also explains the difficulty in porting solutions from High Perfor-
mance Computing to data centers and even proposes re-examining
layering and abstraction. Latency measurement such as [22, 27]
are important for characterisation and understanding of latency
components on applications’ performance. At the same time work
similar to [2] provides insights into the trade-off between latency
and bandwidth. In [11] redesign of the network stack and introduc-
tion of a new transport protocol guarantee low latency completion
for short flows. Adjustable latency at the expense of reliability, and
adaptive FEC is presented in [15].

6 CONCLUSIONS
In this paper we presented “why” and “how” latency is introduced
by FEC in high speed links. We demonstrated that frame offset can

Figure 10: A fully aware system with feedback. Continu-
ous and smooth transition between FEC schemes is offered,
avoiding link dropping and restarting.

cause significant latency jitter, and that link heterogeneous systems
may accumulate it. In practice, FEC turns cut-through switches into
store-and-forward switches, handling FEC block size frames.

It is of paramount importance that we understand that whatever
latency injected to the system could never be taken off. It is also
suggested that instead of a bottom up design (first link, then ap-
plication) we should strive to a top down design. We proposed a
programmable FEC gearbox that allows trading between latency
and bandwidth to achieve performance. Feedback from this FEC
gearbox is ported to the control plane, for latency to be controlled
and prescribed. Future work will have to advance in two fronts:
1. understanding how latency impacts applications and 2. finding
efficient FEC schemes that obey these observations. This vision of
co-designed application and hardware is in the core of rack-scale
systems.
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