
University of Cambridge
Department of Computer Science and Technology

Supervision 1 – Michaelmas 2018
Semantics of Programming Languages

Guidelines:

• When drawing a derivation tree, do not draw it all at once. Split it into multiple
derivation trees and name different parts of it.

• Clearly state what rules you are applying.

• In your code, stay consistent with the formatting and write paragraph-like comments
that are easy to read.

• Make sure your code compiles with either Poly/ML or MLton if you’re using Standard
ML, ocamlc/ocamlopt from opam if you’re using OCaml and OpenJDK if you’re using
Java.

• If possible, use Standard ML over the alternatives (not required).

• And above all, be precise and unambiguous with your statements. Do not use terminology
that can be interpreted in different ways depending on the context such as strongly
typed or weakly typed. Be precise and elaborate what you mean with the terminology
you do use.

• Unless explicitly stated otherwise, the definition of L1 referred to in a given question
is the original definition from the course notes, not a modified version from any of the
other questions.

• Clearly structure your proofs. Number each statement in the proof that you intend to
use later on. Make sure you don’t shadow any variables in your proofs.

• In this supervision sheet, we use the λ notation to denote anonymous functions, fn,
in ML. This comes from λ-calculus.1

Q.1) Consider the proof of determinacy in the lecture notes. What rule could be added
such that determinacy does not hold anymore? Explain exactly where the proof would not
hold.

Q.2) Prove type-safety of L1 (Hint: this is essentially a lemma of two theorems proven in
the lecture notes!).

1https://en.wikipedia.org/wiki/Lambda calculus

Computer Science Part IB

Q.3) Prove uniqueness of typing for L1.

Q.4) In the lecture notes, the progress theorem in L1 is stated as follows:

Theorem 1 (Progress) If Γ ` e : τ and dom(Γ) ⊆ dom(s) then either e is a value or
∃e′, s′.〈e, s〉 −→ 〈e′, s′〉.

Suppose that we omit the condition dom(Γ) ⊆ dom(s). Could we still prove progress? If
so, present a full, rigorous proof of progress without the condition. Otherwise, elaborate
exactly where the proof would fail and present a simple example L1 program which type
checks and yet gets stuck.

Q.5) Function typing is more subtle than it might seem at first.

1. Functions in L2 require explicit type annotation of their binders, unlike functions in
(say) SML. When are these type annotations used? What does their presence simplify?

2. L2 without while or store operations is strongly normalizing; that is, all well-typed
programs written in this fragment of L2 will terminate. However, in lambda calculus,
(λx.x x) (λx.x x) is a term which β-reduces to itself (i.e., it is an “infinite loop”).2 We
can write this term in L2 syntax and evaluation of this term would not get stuck; so,
why is this not a well-typed L2 program?

Q.6) The implementation of L2 uses De Bruijn indices3 and its substitution function for
computing [e/x]e′ considers only the case of closed e.

1. Why is this not a problem for the existing implementation? (That is, what feature of
the semantics guarantees that we never need to consider substitution with open e?)

2. Write a function to turn the De Bruijn notation into one with named binders, inventing
names as you see fit.

3. Consider generalizing substitution to work under a common prefix of binders, so that,
for example, one can interpret the meta-language term λf.[(λz.z f)/x](λy.f x y) arising
from β reduction under the binder in the λ-calculus term λf.(λx.λy.f x y) (λz.z f).
(In De Bruijn notation, that’s λ(λλv2 v1 v0) (λv0 v1) and the result is λλv1 (λv0 v2) v0.)
If you get this to work, pat yourself on the back; if not, try to have identified the basic
pieces you would need and don’t sweat the details.

Q.7) Continuation-machine semantics. Consider the small-step evaluation of the L2 program

(λx0.x0) ((λx1.x1) ((λx2.x2) (· · · ((λxn.xn) y) · · ·))).

2This expression is also a good place to start thinking about “Y combinators” which permit more general
recursion in a λ-calculus without special syntax for recursive definitions.

3For all their attractiveness, both theoretical and practical, De Bruijn indices are widely understood to
be cylon detectors (https://mazzo.li/epilogue/index.html%3Fp=773.html).

Computer Science Part IB

Note how often we end up repeating the same set of justifications, e.g. the “app2” rule, just
to get back to the place we just did a reduction, only to make another small step and then
do it all over again.4 Let’s address this by keeping better track of what we already know.

1. We will need a notion of a “one-hole context” of an evaluation: the outer expression in
which the expression being reduced is contained. The grammar for such contexts is

C[•] ::= (• op e) | (v op •) | (l := •) | (• ; e) | (if • then e else e) | . . .

Note the similarity between the possibilties here and the “purely structural” reduction
rules; write out the rest of the grammar rule.

2. Introduce a new judgement form, 〈s, e, κ〉 −→ 〈s′, e′, κ′〉 in which κ is a sequence of
contexts (C[•];C[•]; . . .). The inference rules for this form will mimic the existing
reduction rules, but with an interesting twist. For examples,

〈s, v, (k[•];κ)〉 −→ 〈s, k[v], κ〉 val 〈s, !l, κ〉 −→ 〈s, s(l), κ〉 deref

¬(e1 value)

〈s, if e1 then e2 else e3, κ〉 −→ 〈s, e1, (if • then e2 else e3;κ)〉 if3

Where by k[v] we mean the context k[•] with its • replaced with v, which will be an
expression: if k[•] = (v op •) then k[w] = (v op w). Write out a representative sample
of the rest of the rules, including “fn”, the CBV value-value application rule. What is
the twist (where are the −→s)?

3. Write (a representative sample of) an interpreter in ML for these semantics. How does
the twist translate into implementation? Is that useful?

4. Suppose we add the following rule to the definition of −→; does the provable set of
judgements change?5

〈s, !l, (k;κ)〉 −→ 〈s, k[s(l)], κ〉 deref2

5. Prove, or at least consider how you would prove, the equivalence of these semantics
and the small-step semantics given in lecture.

6. Mind-bending extra thoughts: Introduce sequences of contexts as new values,
denoted κ̄, and a pair of primitive operations, callcc and resume, defined thus:

〈s, callcc e, κ〉 −→ 〈s, e, (• κ̄;κ)〉 callcc 〈s, resume κ̄ e, κ′〉 −→ 〈s, e, κ〉
resume-v

¬(e1 value)

〈s, resume e1 e2, κ′〉 −→ 〈s, e1, (resume • e2;κ)〉
resume-e

4Because it takes k uses of “app2” to reach the kth application and the reduction removes only one
application from the expression, it takes O(n2) total rule applications to show that this program −→∗ y.
https://accidentallyquadratic.tumblr.com/

5Inference rules which do not change the set of provable judgements, even if they add completely different
proof trees, are called “admissible.”

Computer Science Part IB

Given an initial context (sequence) κ, what is the evaluation of callcc (λk.k)? of
callcc (λk.resume k e)? of (λn.resume n n) (callcc (λk.k))? In light of the last
answer, what do you think

(λn.(λi.if i ≥ 0 then li := i+(−1); la := i+!la; resume n n else !la) !li) (callcc (λk.k))

evaluates to if, initially, li 7→ 3 and la 7→ 0?

