
IB Computer Design - Supervision 2

Nandor Licker <nl364@cl.cam.ac.uk>

Due noon before the day of supervision

Q1 2018 Paper 5 Question 1

Q2 2017 Paper 5 Question 1

Q3 2013 Paper 5 Question 1

Q4 2014 Paper 5 Question 1

Q5 Write instruction sequences to load the following 32-bit values into a register on the following architec-
tures: i386, amd64, ARMv7, AArch64, THUMB, RISC-V, and MIPS.

• 1969

• 229 + 42

• −123.0

• The address of a global variable named x

For the address, consider both executables and shared libraries.

Q6 You are to design a very simple computer, with a single register and 256 bytes of memory. The list of
instructions you should implement follows:

• load addr : Loads a byte from memory into the accumulator.

• store addr : Stores a byte into memory from the accumulator.

• jz addr : Jumps to an address if the accumulator is 0.

• imm imm: Loads an immediate into the accumulator.

• sub addr : Subtracts the value located at addr from the accumulator.

• add addr : Adds the value located at addr to the accumulator.

• in: Inputs a byte from an external port.

• stop: Stops the CPU.

1. Write a program to compute the nth Fibonacci number, where n is read using the in instruction.
The result should be stored in the accumulator on exit. The sequence starts at 1: 1, 1, 2, 3, ...

2. How many bytes are required to encode individual instructions? Can you pack the imm instruction
into a single byte? Can you modify the jmp instruction to pack it into a single byte? What are
the tradeoffs? Show the encoding of all instructions (do not compress them).

3. Encode your Fibonacci program.

4. How many cycles are required to execute each instruction? What stages do you need to break
down each instruction to (instruction fetch, decode, operand fetch, writeback etc)? Draw a state
machine (as a graph) where the nodes represent a stage (work executed in a single cycle) and the
edges the instructions that are being executed. Do all instructions execute in the same number
of cycles? For example, the sub instruction would be broken down into the following steps:

• opcode <= mem[pc]

pc <= pc + 1

• addr <= mem[pc]

pc <= pc + 1

1



• operand <= mem[addr]

• add <= acc - operand

5. Implement the computer in SystemVerilog. Use the Fibonacci example as a testbench. Do not
forget the reset signal to set the processor to a sensible state.

6. Draw a diagram of the computer, indicating memory, ALU, any multiplexers, microcode, etc.

Page 2


