
Programming in C and C++ - Supervision 3

Nandor Licker

October 2019

1 Classes

Q1 Implement a template <typename T, size t N> class SmallVector which stores N elements inline
in the class, placing the rest into a heap-allocated block which is resized as elements are added and
removed. The class should support the following:

• Correct copy constructors and assignment operators

• Correct move constructors and move assignment operators (C++11)

• push back, pop back, size

• Constructing from an initializer list (C++11)

• Indexing operator operator [] (unsigned index)

• Compatibility with range-based for (C++11)

Q2 Define a base class for intrusive list nodes and a class for intrusive lists. Should be used as:

class Element : public IntrusiveNode<Element> {

...

};

IntrusiveList<Element> List;

List.add(new Element());

List.add(new Element());

for (Element *E : List) {

...

}

Q3 Why is it important to define destructors as virtual?

Q4 Provide two examples where the compiler can devirtualize a call to a virtual method (replace the
indirection with a direct call) and two where it cannot.

2 Metaprogramming

Q1 Defined a function template <class T, int N> T pow(T arg) which computes argN .

Q2 What happens if you try to define const int x = pow<10>(2)?

Q3 Implement a template <typename T> constexpr T pow(T arg, int n). Remember that C++14 al-
lows for loops to be evaluated at compile time in constexpr. Isn’t that lovely?

Q4 Implement a method template<typename T> bool CheckAddUB(T a, T b, T &result) which returns
true if adding a and b results in undefined behaviour.

Hint: you will need a different implementation for signed and unsigned integers. Use std::enable if

and std::is unsigned. You could also consider using if constexpr introduced in C++17.

1


