
13

Transfinite Step-Indexing for Termination

SIMON SPIES,MPI-SWS and Saarland University, Germany, and University of Cambridge, UK

NEEL KRISHNASWAMI, University of Cambridge, UK

DEREK DREYER,MPI-SWS, Germany

Step-indexed logical relations are an extremely useful technique for building operational-semantics-based

models and program logics for realistic, richly-typed programming languages. They have proven to be

indispensable for modeling features like higher-order state, which many languages support but which were

difficult to accommodate using traditional denotational models. However, the conventional wisdom is that,

because they only support reasoning about finite traces of computation, (unary) step-indexed models are only

good for proving safety properties like “well-typed programs don’t go wrong”. There has consequently been

very little work on using step-indexing to establish liveness properties, in particular termination.

In this paper, we show that step-indexing can in fact be used to prove termination of well-typed programs—

even in the presence of dynamically-allocated, shared, mutable, higher-order state—so long as one’s type

system enforces disciplined use of such state. Specifically, we consider a language with asynchronous channels,

inspired by promises in JavaScript, in which higher-order state is used to implement communication, and

linearity is used to ensure termination. The key to our approach is to generalize from natural number step-

indexing to transfinite step-indexing, which enables us to compute termination bounds for program expressions

in a compositional way. Although transfinite step-indexing has been proposed previously, we are the first to

apply this technique to reasoning about termination in the presence of higher-order state.

CCS Concepts: • Theory of computation→ Program reasoning; Control primitives; Program semantics.

Additional Key Words and Phrases: termination, transfinite step-indexing, higher-order state, linear types,

ordinals, channels, asynchronous computation, asynchronous programming, logical relations

ACM Reference Format:
Simon Spies, Neel Krishnaswami, and Derek Dreyer. 2021. Transfinite Step-Indexing for Termination. Proc.
ACM Program. Lang. 5, POPL, Article 13 (January 2021), 29 pages. https://doi.org/10.1145/3434294

1 INTRODUCTION

Logical relations are a powerful tool for proving properties about the behavior of programs in a

compositional, type-directed way. Starting with Tait [1967], who used logical relations to prove

termination in the simply-typed λ-calculus, the power of logical relations has steadily expanded

over time, as they have been applied to increasingly complex languages and type systems. For

instance, Girard et al. [1989] showed how to extend Tait’s method to prove termination of System F

(the polymorphic λ-calculus), and Reynolds [1983] generalized Girard’s method to support relational

reasoning about parametricity. More recently, the technique of step-indexing, due originally to Appel
and McAllester [2001] and subsequently refined by Ahmed [2004], showed how logical relations

AuthorsâĂŹ addresses: Simon Spies, MPI-SWS and Saarland University, Saarland Informatics Campus, Germany, and

University of Cambridge, UK, spies@mpi-sws.org; Neel Krishnaswami, University of Cambridge, UK, nk480@cl.cam.ac.uk;

Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART13

https://doi.org/10.1145/3434294

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

https://doi.org/10.1145/3434294
https://doi.org/10.1145/3434294

13:2 S. Spies, N. Krishnaswami, and D. Dreyer

could scale to handle features that had long proved awkward or impossible for denotational methods

to handle, notably recursive types and higher-order state (i.e., mutable references of any type).

In recent years, considerable effort has been devoted to defining increasingly expressive step-

indexed logical relations and step-indexed program logics [Ahmed et al. 2005; Morrisett et al. 2005;

Ahmed et al. 2010; Svendsen and Birkedal 2014; Jung et al. 2015, 2018a]. In all of the work cited

here, the step-indexed logical relations were used to prove safety properties such as “well-typed

programs don’t go wrong”. In contrast, little work has been devoted to the use of step-indexed

logical relations for proving liveness properties such as termination.
On the one hand, this is not surprising: the reason step-indexing was introduced in the first place

was to account for features like recursive types and higher-order state, which in general break ter-

mination. In particular, with unrestricted higher-order state, one can implement recursive functions

by backpatching and thus introduce non-termination, as witnessed by Landin’s knot [1964]
1
:

let r = ref (λu : q.u) in (r := λu . !r u); !r ()

The expression first creates a new reference r , initially storing the identity function. Subsequently,

with r := λu . !r u, the reference is updated to a function which calls the function stored at reference r .
Thereafter, if the function stored at reference r is called, it triggers an infinite execution, repeatedly

calling itself. Seeing as step-indexed logical relations are compatible with higher-order state, it is

reasonable to ask how they could possibly be used to establish that a language is terminating.

On the other hand, higher-order state in practice is often used in terminating ways. In particular,

it is often used to implement concurrency on top of a sequential substrate. In Concurrent ML,

for instance, concurrency is implemented by channels whose implementation is based on higher-

order state and continuations. This implementation strategy is very widely used: runtimes for

JavaScript use it to implement the promise abstraction [Friedman andWise 1976] to support writing

asynchronous, non-blocking programs. It is also essentially a terminating abstraction: programs

will only loop forever if a programmer writes a loop in client code. Following the approach of

Yoshida et al. [2004], the termination of such an abstraction can be ensured statically using a linear
type system. Specifically, in this paper, we consider a language λchan, which implements channels

using higher-order state and continuations (akin to promises in JavaScript), and which uses linearity

to enforce disciplined use of higher-order state.

Our main result is that, despite the fact that λchan’s implementation of channels relies crucially

on dynamically-allocated, shared, mutable, higher-order state, we can nevertheless use a novel

form of step-indexed logical relation to establish compositionally that all well-typed programs in

λchan terminate.

The starting point for our approach is the observation, due to Dockins and Hobor [2010, 2012]

and Mével et al. [2019], that safe termination of programs (i.e., termination in a value) can be

established in a step-indexed program logic if an upper bound n on the maximum length of an

execution is provided. Intuitively, this is because “termination within n steps” is no longer a liveness

property but rather a safety property: it can be falsified by examining only finite traces. Of course,

the question then becomes: how can one determine the right bound n? In the above-cited work,

this question was passed on to the user of the logic, who was expected to provide at least a partial

answer. In this paper, however, we are considering a linear type system that intrinsically guarantees

termination without requiring the programmer to provide any explicit resource bounds. We must

therefore develop a way to infer, compositionally, how each expression in a program contributes to

the termination bound of the whole program.

1
In the following, we use Standard ML syntax for unrestricted higher-order references. That is, we use ref for creating new

references, ! for reading from a reference, and := for updating a reference.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:3

Values v ::= ℓ | () | n | b | λx .e | (v1,v2)
Expressions e ::= x | ℓ | () | n | b | e1; e2 | λx .e | e1 e2 | e1 ∔ e2 | iter(e, e0,x .eS)

| (e1, e2) | let (x ,y) = e1 in e2 | if e then e1 else e2
| let (x ,y) = chan() in e | get(e1, e2) | put(e1, e2)

Types A,B ::= q | B | N | A ⊗ B | A ⊸ B | GetA | PutA
Type Contexts Γ,∆ ::= · | Γ,x : A
Heap Values hv ::= E | V(v) | C(v)
Heaps h ::= · | ℓ 7→ hv,h

Fig. 1. Syntax of λchan

There are several technical elements to our solution, but the most interesting and important

one is to generalize from natural number step-indexing to transfinite step-indexing. By employing

ordinals in our step-indices, we can compute compositional termination bounds for functions, even

though we do not know how their arguments will be instantiated or the heaps under which they

will be executed. This idea of transfinite step-indexing is not new: it has been previously proposed

by Schwinghammer et al. [2013] for defining logical relations for may and must equivalence in

a pure λ-calculus with countable nondeterminism. It was subsequently used by Svendsen et al.

[2016] in a setting with higher-order state to allow a finite number of decreases of the step-index

with each step of computation, but not to prove termination. To our knowledge, we are the first to

propose transfinite step-indexing for proving termination in the presence of higher-order state.

The rest of the paper is structured as follows. In Section 2, we introduce the language λchan for

programming with linearly-typed channels, and we motivate its design with a series of examples.

In Section 3, we explain the key idea of a transfinitely step-indexed logical relation and how we use

it to prove termination for λchan. In Section 4, we spell out the full details of our logical relation

and give proof sketches for some of our main results. In Section 5, we compare with related work,

and in Section 6, we conclude with a discussion of future work. The accompanying technical report

contains detailed proofs of all of the theorems stated in the paper [Spies et al. 2021].

2 ASYNCHRONOUS CHANNELS

In the present work, we consider the language λchan given in Figure 1, an extension of the simply-

typed λ-calculus with an implementation of asynchronous channels. A fresh channel can be created

with let (x ,y) = chan() in e , where x is a handle for receiving values over the new channel and y
is a handle for sending values. The operation put can be used to send values and the operation get

to receive values. For example, assuming a function print, the following expression creates a fresh

channel, registers the continuation λn.print(n) for the channel, and thereafter sends the value 42

over the channel, causing print(42) to be executed:

let (x ,y) = chan() in get(x , λn.print(n)); put(y, 42)

We assign expressions a type A in the linear type system Γ ⊢ e : A, defined in Figure 2. Besides

the base types q,B,N, we have linear pairs A ⊗ B and linear functions A ⊸ B. The type GetA
is used for the receive handle of a channel, indicating that the channel will transfer a value of

type A. Similarly, the type PutA is used for the send handle. We allow values of arbitrary types A
to be transferred through channels, including channel handles themselves and functions possibly

capturing channel handles. The context Γ is a linear context without an ordering of the variables.

We write Γ,∆ for the disjoint union of the contexts Γ and ∆.
As an example, we consider forwarding a value from one channel to another — a straightforward

operation using get and put. For instance, if cget : GetN and dput : PutN are channel handles, then

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:4 S. Spies, N. Krishnaswami, and D. Dreyer

Γ ⊢ e : A

x : A ⊢ x : A

Γ ⊢ e : B

Γ,x : A ⊢ e : B · ⊢ () : q

Γ ⊢ e1 : q ∆ ⊢ e2 : A

Γ,∆ ⊢ e1; e2 : A · ⊢ b : B

Γ ⊢ e : B ∆ ⊢ e1 : A ∆ ⊢ e2 : A

Γ,∆ ⊢ if e then e1 else e2 : A · ⊢ n : N

Γ ⊢ e1 : N ∆ ⊢ e2 : N

Γ,∆ ⊢ e1 ∔ e2 : N

Γ ⊢ e : N ∆ ⊢ e0 : A x : A ⊢ eS : A

Γ,∆ ⊢ iter(e, e0,x .eS) : A

Γ ⊢ e1 : A1 ∆ ⊢ e2 : A2

Γ,∆ ⊢ (e1, e2) : A1 ⊗ A2

Γ ⊢ e1 : A1 ⊗ A2 ∆,x : A1,y : A2 ⊢ e2 : B

Γ,∆ ⊢ let (x ,y) = e1 in e2 : B

Γ,x : A ⊢ e : B

Γ ⊢ λx .e : A ⊸ B

Γ ⊢ e1 : A ⊸ B ∆ ⊢ e2 : A

Γ,∆ ⊢ e1 e2 : B

Γ ⊢ e1 : GetA ∆ ⊢ e2 : A ⊸ q

Γ,∆ ⊢ get(e1, e2) : q

Γ ⊢ e1 : PutA ∆ ⊢ e2 : A

Γ,∆ ⊢ put(e1, e2) : q

Γ,x : GetA,y : PutA ⊢ e : B

Γ ⊢ let (x ,y) = chan() in e : B

Fig. 2. Typing Rules of λchan

we can forward the value from c to d with get(cget, λx .put(dput,x)). More generally, we define:

forward : GetA ⊗ PutA ⊸ q

forward ≜ λ(cget,dput). get(cget, λa : A. put(dput,a))

As done above, when giving examples, we use syntactic sugar to ease readability. We use n-ary
tuples and pattern matching syntax which can easily be derived from pairs and their elimination

operation let (x ,y) = e1 in e2. Further, we write let x = e in e ′ for (λx .e ′) e where convenient. For
the sake of readability, we add type annotations e : A in some cases.

We include booleans and natural numbers in the language as representatives of other algebraic

data types such as options, sums, and lists. For the purposes of this work, natural numbers already

cause the kind of problems that arise by the inclusion of, for example, lists. Put differently, without

natural numbers termination can be reduced to a term size argument, considering that the language

is linear. However, with the inclusion of natural numbers a size argument no longer applies and

the computational expressiveness is significantly increased. For example, it becomes possible to

implement duplication of natural numbers, multiplication, and exponentiation (see Section 2.3). To

define such functions, the language contains the iter construct, which enables recursion on natural

numbers in a generic fashion.

We equip the language with a single-threaded, heap-based operational semantics, defined in Fig-

ure 3. Operationally, each channel is represented by a single location ℓ in the heap, storing either

nothing E, a value V(v), or a continuation C(λx .e). Initially, the heap stores the empty heap value E.

If a value is sent over channel ℓ with put(ℓ,v), then the value is stored in memory as V(v). If
subsequently get(ℓ, λx .e) is executed, then the continuation λx .e is invoked with argument v and

the state in the heap is restored to E. If from the initial state get(ℓ, λx .e) is executed, then the

continuation is stored in the heap as C(λx .e) and invoked with argument v once a corresponding

put(ℓ,v) is called. Besides the operations on channels, the operational semantics allows standard,

pure reductions for the simply typed λ-calculus. Reductions are allowed to occur in any evaluation

context K , making it a call-by-value, left-to-right operational semantics.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:5

Evaluation Contexts K ::= · | K ; e | K e ′ | v K | (K , e) | (v,K) | let (x ,y) = K in e ′

| K ∔ e | v ∔K | iter(K , e,x .e ′) | iter(v,K ,x .e)
| if K then e2 else e3 | get(K , e ′) | get(v,K) | put(K , e ′) | put(v,K)

e {p e
′

(e,h) { (e ′,h)

(e,h) {c (e
′,h′)

(e,h) { (e ′,h′)

(e,h) { (e ′,h′)

(K[e],h) { (K[e ′],h′)

Pure Reduction

(); e {p e

(λx .e) v {p e[v/x]

if true then e1 else e2 {p e1

if false then e1 else e2 {p e2

let (x ,y) = (v1,v2) in e {p e[v1/x ,v2/y]

n ∔m {p n +m

iter(0,v,x .e) {p v

iter(n + 1,v,x .e) {p iter(n, e[v/x],x .e)
Channel Reduction

(let (x ,y) = chan() in e,h) {c (e[ℓ/x , ℓ/y],h[ℓ 7→ E]) if ℓ < domh

(get(ℓ, λx .e),h) {c ((),h[ℓ 7→ C(λx .e)]) if hℓ = E

(get(ℓ, λx .e),h) {c (e[v/x],h[ℓ 7→ E]) if hℓ = V(v)

(put(ℓ,v),h) {c ((),h[ℓ 7→ V(v)]) if hℓ = E

(put(ℓ,v),h) {c (e[v/x],h[ℓ 7→ E]) if hℓ = C(λx .e)

Fig. 3. Operational Semantics of λchan

We write h[ℓ 7→ hv] for the heap which returns hv for argument ℓ and h(ℓ′) for any argument

ℓ′ , ℓ. Analogously, we use the notation to update finite and infinite maps with a new binding

in the remainder of this work. We assume substitution is capture avoiding, write e[v/x] for the
single-point substitution replacing x with v in e , and e[θ] for the parallel substitution replacing

each free variable x in e with θx .

2.1 Asynchronous Programming using Asynchronous Channels

In this and the following subsection, we explore how the asynchronous channels of λchan relate

to asynchronous programming encountered in practice. To that end, we first motivate how, con-

ceptually, channels enable a structured approach to asynchronous programming by generalizing

continuation-passing style (CPS). We then describe the connection between λchan’s channels and
promises, an abstraction used for asynchronous programming in JavaScript.

In asynchronous programming, a typical function one might encounter is input.onKeyPress :
(char ⊸ q) ⊸ q. It can be used to register an event handler char ⊸ q for the event of a key press

2
.

Its type suggests that it is the CPS transformation CPSA ≜ (A ⊸ q) ⊸ q of a value of type char, a
character. From the CPS perspective, the event handler char ⊸ q corresponds to the continuation

which will eventually be provided to run the computation.

In the literature, it is widely accepted that there is a close connection between asynchronous

programming and continuation passing style which has led to the introduction of monadic APIs

2
The linear function types are fitting here since, typically, the event handler is only executed once as it may have side

effects. We use types like char and option N for illustrative purposes even though they are not contained in the type system.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:6 S. Spies, N. Krishnaswami, and D. Dreyer

for interacting with asynchronous computations in CPS [Claessen 1999]:

return : A ⊸ CPSA bind : CPSA ⊗ (A ⊸ CPSB) ⊸ CPSB

return ≜ λa.λ f . f a bind ≜ λ(f ,д).λh. f (λa : A.д a h)

The monad abstraction allows us to compositionally build up event handlers. For example, given

a function toNum : char ⊸ option N, we can additionally parse the character of the key that was

pressed with:

map(input.onKeyPress, toNum) : CPS(option N)

wheremap is the usualmap onmonads given bymap(m, f) ≜ bind(m, λx .return(f x)). By chaining
calls to map and bind, increasingly complex event handlers can be constructed.

Unfortunately, with the CPS monad there is no way to provide the result of a computation from
the outside. For an instance of the monadm : CPSA the functions map and bind can only specify

how we want to use the result. We cannot use them, or any other function, to provide the result
of type A. The instancem : CPSA already encapsulates the computation required to produce the

result of type A. In this sense, the CPS monad represents a one-directional communication: we first
provide an encapsulated computation and subsequently, we specify how to use the result.

Asynchronous channels extend this mechanism by giving programmers fine-grained control

over when and how to provide values. They enable bi-directional communication. The operation
put can be used to return the result of an asynchronous computation. The operation get can be

used to register an event handler similar to what is offered by bind in the CPS monad. In fact, GetA
forms a similar monad with:

return : A ⊸ GetA bind : GetA ⊗ (A ⊸ GetB) ⊸ GetB

return ≜ λa.let
(
aget,aput

)
= chan() in

put(aput,a);aget

bind ≜ λ
(
aget, f

)
.let

(
bget,bput

)
= chan() in

get(aget, λa.get(f a, λb .put(bput,b)));bget

From the outside of the channel monad GetA, the put operation can be used at an arbitrary,

different point in the program to trigger the execution of (a potential chain of) continuations by

providing a value. For example, given cget : Get char we can map toNum over an asynchronously

computed character with map(cget, toNum) : Get (option N), as before. At an entirely different

point in the program, we can decide that the character will be provided upon a key press with

input.onKeyPress(λx .put(cput,x)), even after a continuation was registered.

The above example showcases a more general pattern of how we can connect the CPS monad

with the channel monad. If we have an encapsulated computation f : CPSA and a sending handle

aput : PutA, then we can use the sending handle to execute the computation and store the result in

the channel with f (λa.put(aput,a)). The resulting value can then be accessed at a different point in

the program using aget : GetA. Building upon these insights, we obtain the following translations:

exec : CPSA ⊸ GetA cps : GetA ⊸ CPSA

exec = λ f .let
(
aget,aput

)
= chan() in

f (λa.put(aput,a));aget

cps = λaget.λд.get(aget,д)

These translations between the CPS monad and the channel monad do not imply the two ap-

proaches are interchangeable. Not only do both approaches differ in their handling of communica-

tion (one-directional vs bi-directional), they also differ in their expressive power. For example, in the

absence of channels the CPS monad does not admit a function split : CPS(A⊗B) ⊸ CPSA⊗CPSB
which splits the computation of a pair into two computations of the individual components. The

reason is that, due to the linearity restriction, the computation may only be executed once but to

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:7

implement such a splitting both the left and the right hand side would have to evaluate the compu-

tation. In the context of asynchronous programming, linearity is a sensible restriction: evaluating

a computation twice is not only inefficient, especially in a setting with I/O operations, it is also

dangerous as the computation may be stateful, leading to undesired side effects.

In contrast, the channel monad allows for splitting a computation of a pair A ⊗ B into two

computations without violating linearity:

split : Get(A ⊗ B) ⊸ GetA ⊗ GetB

split = λcget.let
(
aput,aget

)
= chan() in

let

(
bput,bget

)
= chan() in

get(cget, λ(a,b).put(aput,a); put(bput,b));
(
aget,bget

)
2.2 Asynchronous Channels and Promises

In JavaScript, asynchronous programming is facilitated by the mechanism of promises: delayed
results for which continuations can be registered. Much like encapsulated computations in CPS,

promises are commonly used in a linear fashion to ensure predictable handling of effects. Below, we

show how the channels of λchan can be understood as a statically typed abstraction over promises

(which are dynamically typed in JavaScript), where the type system of λchan enforces the discipline

of linear usage. In particular, we demonstrate how channels can be used to encode the core of

promises, and then show how promises in conjunction with higher-order state can be used to

encode channels.

We encode a promise transferring a value of type A as an instance of the channel monad GetA
defined in Section 2.1. To construct a promise for the result of some computation, one provides

the CPS transformation of the computation. That is, one provides a function which takes as its

argument a continuation to be used for resolving the promise. For instance, we can create a promise

which is immediately resolved with value 42 with new Promise((resolve)=> {resolve(42)}). Here, the

notation (x) => {s} is JavaScript arrow syntax for an anonymous JavaScript function function (x){s}.

In the context of the present work, such functions can be read as λx .(s; ()). To encode the operation
for creating new promises in λchan, we use the function exec. That is, given an encapsulated

computationm : CPSA, we obtain a promise as exec(m) : GetA.
Promises offer the function Promise.resolve(v) as a short hand for creating a promise which is

immediately resolved with the value v. We encode Promise.resolve using the return operation of

the monad GetA.
Given a promise p, one may register a function f to be executed once the promise is resolved

with p.then(f). The function f may, in turn, return another delayed computation in the form of a

promise. Fittingly, we encode p.then(f) as bind(p, f) with the bind operation of the channel monad.

Now for the reverse direction. To encode channels using promises, we need to make the resolve

handle available outside of the scope of the function passed to the promise constructor. We do so

via JavaScript’s support for higher-order state:

1 function chan(){

2 let res = () => {}

3 let promise = new Promise ((resolve) => { res = resolve })

4 return { get: (f) => { promise.then(f) }, put: res }

5 }

The function first creates a higher-order reference res storing dummy value () => {}. Then, when

the new promise promise is created, res is backpatched with promise’s resolve handle. For the get

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:8 S. Spies, N. Krishnaswami, and D. Dreyer

operation, we return (f) => { promise.then(f) }, and for the put operation the captured resolve-

handle. Here, { get: ..., put: ... } creates a new object with the fields get and put.

Above, we have focused on encoding the core of promises in a linear setting. In JavaScript,

promises have additional behavior which we do not cover in the present work. First, we do not

account for additional behavior that is orthogonal to termination. For instance, promises offer

functionality for handling errors (called “rejecting a promise”), they flatten nested promises returned

in the then operation, and they allow resolving a promise multiple times (which has no effect).

Second, we do not consider uses of promises that violate linearity, such as providing multiple

continuations which are all executed with the value the promise is resolved with. Violations of

linearity can be used to introduce non-termination à la Landin’s knot
3
.

2.3 Additional Features of λchan

So far, we have focused solely on channels since they are the most interesting and distinctive

feature of λchan. However, it is difficult to write many interesting programs with linear channels

alone. Hence, we have included additional constructs in λchan for interacting with natural numbers

and booleans, which help to make λchan an expressive enough language to be worth studying.

One important aspect of λchan, which is reflective of asynchronous programming in practice, is

that, unlike channels, natural numbers and booleans are not subject to the linearity restriction. In

fact, the linearity restriction does not really apply to values of any ground type:

G F q | B | N | G1 ⊗ G2

Values of ground type can be duplicated by deconstructing and reconstructing them again. For

example, with the iter operation, we can define a duplication function for natural numbers

dupl(n) ≜ iter(n, (0, 0), (x ,y).(x + 1,y + 1)). With the linearity restriction lifted, we can define

all kinds of primitive recursive functions using iteration. For example, we can define multiplication

and exponentiation:

mult(m,n) ≜ iter(m, 0,x .x + n) exp(m,n) ≜ iter(m, 1,x .mult(x ,n))

Natural numbers and booleans also enable us to encode a common idiomatic use of JavaScript’s

for-loops. More precisely, loops of the form for (let i = 0; i < n; i++){ s }, where s does not

modify i, can be encoded as iter(n, 0, i .(s; i + 1)). If the for-loop uses state over ground types, we

can use arguments of the iteration to encode how the values change over time. For example, consider

the following JavaScript program which stores the nth Fibonacci number in a:

1 let a = 0, b = 1;

2 for (let i = 0; i < n; i++){

3 let tmp = b;

4 b = a + b;

5 a = tmp

6 }

We can encode this with iteration as let (a,b) = iter(n, (0, 1), (a,b).(b,a + b)) in a.

3 KEY IDEAS

Operationally, asynchronous channels behave like unrestricted higher-order references. For a

single channel, represented by a location ℓ in the heap, the operational behavior is best described

by Figure 4. In particular, values can be stored in the heap and retrieved again as an argument to a

3
The λchan version of Landin’s knot is shown at the beginning of Section 3; it can be ported to a non-terminating JavaScript

program via the encoding of chan given above.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:9

EC(λx .e) V(v)

get(ℓ, λx .e)

put(ℓ,v)put(ℓ,v)

get(ℓ, λx .e)

Fig. 4. Unrestricted use

E

C(λx .e)

V(v)

E

get(ℓ, λx .e)

put(ℓ,v)

put(ℓ,v)

get(ℓ, λx .e)

Fig. 5. Linear use

continuation using the operations get and put. Thus, we can construct the equivalent of Landin’s

knot on channels as:

eknot ≜ let

(
cget, cput

)
= chan() in

let f = λu : q.get(cget, λ f .put(cput, f); f u) in

put(cput, f); f ()

The function f first retrieves itself from the channel with get. Subsequently, it stores itself again in

the channel with put and executes itself. We can trigger an infinite execution by first storing f in

the channel with put and thereafter executing f .
If we impose linearity as done by the type system Γ ⊢ e : A, the situation changes drastically:

Every closed, well-typed program ⊢ e : A terminates. Under the restriction of linearity, each channel

evolves according to Figure 5. There is a clear notion of progress associated with each operation

which makes it impossible to create cycles. In particular, there can be at most one put and one

get which prevents the construction of eknot. To the reader, it may be quite intuitive at this point

that the restrictions imposed by the type system are strong enough that well-typed programs

terminate. In fact, there is not even the duplication operation which can usually be found in linear

type systems [Morrisett et al. 2005; Brunel and Madet 2012]. Nevertheless, existing techniques for

proving termination for programs with higher-order state do not apply.

The issue is that λchan uses dynamic features such as implicit sharing (or aliasing), dynamic
allocation of references, and dynamic dependencies between references. Implicit sharing means that

access to a location is shared between multiple values—in our case, between a get handle GetA
and a put handle PutA, which can be used to transmit values through the location independently.

Dynamic allocation of references means that references can be allocated dynamically during a

program’s execution, using in our case the iter construct. (In this context, “dynamic” means that the

number of references allocated may depend dynamically on program values like inputs to functions

and is not statically determined.) Dynamic dependencies between references means that dependencies

between channels can similarly be created dynamically, depending on runtime values. For examples

of these features and a comparison to existing techniques, we refer the reader to Section 5.

If we were only interested in showing safety, meaning “well-typed programs don’t go wrong”,

instead of termination, ordinary step-indexed logical relations would be a perfect fit. In the literature,

they have been used successfully to prove safety of languages with all of these features and many

more [Ahmed 2004; Jung et al. 2018a]. In the present work, we use transfinite step-indexing and
linearity of the type system to define a step-indexed logical relation ensuring termination. To

motivate and explain the key ideas and the difference to existing step-indexed logical relations, we

first review how logical relations and step-indexed logical relations are traditionally defined.

3.1 A Logical Relations Primer

First, we consider a logical relation for the simply typed λ-calculus ensuring termination for each

closed expression of type a,b F q | a → b. For each type a, we give an interpretation of the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:10 S. Spies, N. Krishnaswami, and D. Dreyer

type for values (the value relation VJaK) and an interpretation of the type for expressions (the

expression relation EJaK):

VJqK ≜ {()}

VJa → bK ≜
{
λx .e

�� ∀v ∈ VJaK.e[v/x] ∈ EJbK
}

EJaK ≜
{
e
�� ∃v.e{∗v and v ∈ VJaK

}
Intuitively, the value relationVJaK contains a value v if v behaves like a value of type a, and the

expression relation EJaK contains an expression e if e terminates in a value inVJaK. The only value
of the unit type q is () and the function type a → b only contains a function λx .e if the function
applied to values v ∈ VJaK behaves like an expression of type b.

Given the type interpretations, the proof that every closed, well-typed expression terminates pro-

ceeds in two steps. First, we need to connect the type interpretationswhich only contain closed terms

to the type system, denoted by Γ ⊢ e : a below, which also covers open terms. To this end, we define a

semantic interpretation of the typing judgment of the language Γ ⊨ e : a ≜ ∀θ ∈ GJΓK. e[θ] ∈ EJaK,
where GJΓK ≜

{
θ
�� ∀x : a ∈ Γ. θx ∈ VJaK

}
contains closing substitutions inserting values from

the type interpretations. Next, we show soundness of the syntactic type system with respect to

the semantic typing, meaning if Γ ⊢ e : a, then Γ ⊨ e : a. The soundness proof usually proceeds

by induction on Γ ⊢ e : a, showing in each case that the respective typing rule is validated in the

semantic model, the logical relation, meaning we can replace occurrences of the syntactic notion

⊢ by the semantic notion ⊨. Soundness lets us deduce termination of well-typed programs. For

instance, in the case of ⊢ e : a, we obtain ⊨ e : a and thus e{∗v for some value v by unfolding the

definitions.

Now, consider extending the language with ML-style higher-order references a,b F · · · | a ref.

The extension by unrestricted higher-order references means it no longer makes sense to prove

termination. In particular, Landin’s knot [1964], the diverging expression from Section 1, becomes

typeable in the extended language. We are forced to change the desired semantic property of the

logical relation to safety: that is, if an expression e with heap h reduces in some number of steps n
to an expression e ′ with heap h′

which can no longer be reduced, written (e,h) {n (e ′,h′) ̸{,

then the resulting expression e ′ is a value.
To ensure safety, we need to modify the logical relation to additionally account for the heap. For

example, the expression !ℓ () is safe if the value stored at location ℓ in the heap is the function

λx .x , but not if the value stored there is (), since the expression () () does not reduce to a value.

We account for values in the heap in the form of invariants, ℓ : a, which may be understood as

type assignments to the locations in the heap. In the logical relation, we interpret invariants in

an additional relation, the heap typing relation HJΦK. Intuitively, the heap typing relation HJΦK
contains a heap h, if for each invariant ℓ : a ∈ Φ the value at location ℓ is contained inVJaK. For
references, we ensure in the value relationVJa refK that the invariant map Φ contains the right

invariant. To this end, we relate each value and expression additionally with an invariant map Φ,
representing all the invariants currently governing the heap. In the expression relation EJaK, we
need only prove safety under heaps that are well-typed given the current invariants. The resulting

logical relation is depicted in Figure 6.

Note that, in the definition of the type interpretations in Figure 6, to select expressions and

invariant maps that have the desired form, we use set comprehensions. In particular, the set VJqKi
contains ((),Φ) for any invariant map Φ, and the setHVJℓ : aK0 contains any pair of a value and

an invariant map.

Unfortunately, for our new heap-aware logical relation, we can no longer define it recursively

on the structure of types, as we did for the simple logical relation given earlier in the section. The

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:11

VJqKi ≜ {((),Φ)} VJa refKi ≜ {(ℓ,Φ) | ℓ : a ∈ Φ}

VJa → bKi ≜
{
(λx .e,Φ)

�� ∀j ≤ i,Φ′ ⊇ Φ,v.(v,Φ′) ∈ VJaKj ⇒ (e[v/x],Φ′) ∈ EJbKj
}

HJΦKi ≜
{
h
��
domh = domΦ and ∀ℓ : a ∈ Φ.(hℓ,Φ) ∈ HVJℓ : aKi

}
HVJℓ : aKi+1 ≜

{
(v,Φ)

�� (v,Φ) ∈ VJaKi
}

HVJℓ : aK0 ≜ {(v,Φ)}

EJaKi ≜

{
(e,Φ)

����� ∀j ≤ i,Φ′ ⊇ Φ,n ≤ j,h,h′, e ′.h ∈ HJΦ′Kj and (e,h) {n (e ′,h′) ̸{⇒

∃Φ′′ ⊇ Φ′,v. e ′ = v and h′ ∈ HJΦ′′Kj−n and (v,Φ′′) ∈ VJaKj−n

}
Fig. 6. Step-indexed logical relation with higher-order references

reason is as follows. In the expression relation EJqK, we refer to the heap typing relation HJΦK
for all invariant maps Φ, including {ℓ : q→ q}. Thus, unfolding the definition of the heap typing

relation, the expression relation EJqK indirectly depends on the value relation VJq → qK in a

negative (contravariant) position. Since VJq→ qK depends on EJqK, we encounter a circularity.
To resolve this circularity, Appel and McAllester [2001] introduced (and Ahmed [2004] refined)

the technique of step-indexing as a way of stratifying the definition. A natural number, the step-

index, is added in every relation (see the i and j in Figure 6) to ensure that recursive occurrences of

the logical relations are either at a smaller step-index or at the same step-index but at a structurally

smaller type. In particular, in the heap typing relation the step-index is decreased, thus avoiding

the circularity described above.

For an expression at step-index i , the logical relation provides guarantees about its operational

behavior for at most i steps of computation. Specifically, at step-index i the expression relation

ensures that the expression does not “get stuck”, i.e., terminate in a non-value, in the next i steps.
Why is the step-index tied to the execution steps in this way? At step-index 0, we have not

defined any relations of smaller step-index yet. As a consequence, we cannot use the logical relation

to constrain the shape or behavior of values contained in the heap typing relationHVJℓ : aK0 —
we allow any pair of a value and an invariant map. We do not have to provide any guarantees

about the value in the heap at step-index 0 because the step-indices are tied to the execution steps.

Specifically, it takes one step to load a value from the heap with !ℓ and at step-index 0 we only

provide guarantees about executions of length 0. At larger step-indices than 0, this step of !ℓ is
used to decrement the step-index such that it matches the one used by the value in the heap.

A consequence of relating step-indices to execution steps is that closure under smaller step-

indices becomes important. That is, if (e,Φ) ∈ EJaKi and j ≤ i , then (e,Φ) ∈ EJaKj , and similarly

for values. The reason this property is important is that as the execution proceeds and thereby

the step-index decreases, values stored for example in the heap should remain usable even if they

were of a larger step-index when they were inserted into the heap. To obtain closure under smaller

step-indices, we explicitly require it in the definitions of EJaKi andVJa → bKi with “∀j ≤ i”. For
the logical relation at other types, the property follows by induction.

Finally, having defined our step-indexed logical relations so that they ensure safety for executions

of length i , we can ensure that terms are safe for executions of arbitrary length by requiring that

they are contained in the logical relation for all step-indices i . Thus, we define the semantic typing

Γ ⊨ e : a ≜ ∀i .∀(θ ,Φ) ∈ GJΓKi .(e[θ],Φ) ∈ EJaKi where the context interpretation is given as

GJΓKi ≜
{
(θ ,Φ)

�� ∀x : a ∈ Γ. (θx ,Φ) ∈ VJaKi
}
.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:12 S. Spies, N. Krishnaswami, and D. Dreyer

3.2 Step-Indexed Termination

Wewill now proceed to explore how a step-indexed logical relation can be used not only for proving

safety of programs with higher-order state but also for proving termination. Before we do that, let

us step back and examine more generally what step-indexing achieves.

In general terms, let us say that we wish to prove a property P(e) concerning the execution of

a program e . With step-indexing, as we have already seen, the property becomes stratified by a

step index i into a family of properties Pi (e), where each Pi (e) only considers the first i steps of e’s
computation. Instead of directly proving P(e), step-indexing will allow us to prove ∀i .Pi (e). This
is good enough for establishing safety properties, because a safety property of e is precisely one

which can be determined from just looking at finite prefixes of e’s execution. Or put another way,
a safety property of e is one that can be falsified by exhibiting some finite prefix of e’s execution
trace for which the property does not hold.

Unfortunately, termination—the property we are interested in proving for λchan programs—is not

a safety property but rather a liveness property: it says that “eventually something good happens

(the program terminates with a value)”. There is no way to stratify “termination of e” into a step-

indexed family of termination predicatesTi (e) because there is no way (in general) to establish that

e does not terminate by only examining a finite prefix of e’s execution. How, then, can we use a

step-indexed logical relation to prove termination of λchan programs?

“Termination with a resource bound” as a safety property. As a first step toward answering

this question, let us take a page from prior work by Dockins and Hobor [2010, 2012] and Mével

et al. [2019]. Suppose that somehow we know an upper bound n on the number of steps it will take

e to terminate. The bound n here can be thought of as a kind of countable resource that we are given
up front—Mével et al. [2019] call this resource “time credits”. We can then imagine executing e on a

machine that consumes one resource unit at every step of computation. On such a machine, e is
safe to execute with initial resource n if and only if e evaluates to a value in at most n steps.

As this description suggests, by changing the property we wish to establish from “e terminates”

to “e terminates in at most n steps”, we can change a liveness property into a safety property!

In particular, unlike “e terminates”, the latter property can be determined by simply examining

the first n steps of e’s execution trace. Thus, we can recast this latter property using a family of

propositions Ti (e,n), defined (very roughly) as follows:

Ti (e,n) ≜ “if i ≥ n, then e terminates in at most n steps”

For i < n, the property Ti (e,n) holds trivially, but for i ≥ n, it is equivalent to “e terminates in at

most n steps”. Thus, a term e terminates in at most n steps if and only if ∀i .Ti (e,n). Moreover, the

property Ti (e,n) satisfies the essential criterion of step-indexed relations: it can be determined by

only looking at the first i steps of e’s execution.
Dockins and Hobor [2010, 2012] and Mével et al. [2019] used step-indexed relations in the manner

of Ti (e,n) to build models of logics for proving that programs adhere to resource bounds. However,

in their work, the user of the logic needed to supply the bound n explicitly in their logical assertions.

In contrast, we want to prove termination for λchan, in which the type system relies on linearity to

ensure termination but does not mention any resource bounds explicitly. How can we do it?

Computing the resource bound compositionally. Intuitively, the idea is to change the logical
relation EJAKi so that (likeTi (e,n) above) it is a predicate on both a term e and its resource bound n,
and to change the definition of semantic typing (Γ ⊨ e : A) so that it asserts the existence of some
bound n on the number of steps e will take to terminate. Restricting attention for the moment to

the simplified case of closed terms, the definition of · ⊨ e : A will thus look somewhat like the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:13

following (changes underlined):

· ⊨ e : A ≈ ∃n.∀i .∀Φ.(e,Φ,n) ∈ EJAKi

As part of the soundness proof (i.e., proving that syntactic typing implies semantic typing), we

must then show how to automatically compute the witness for the existentially-quantified bound n.
Computing this bound turns out to be rather subtle because it must be done compositionally. For

example, suppose we were to just naively choose the bound n for a term e based on how many

steps e itself will take to terminate. We would then run into trouble in proving semantic soundness

for λchan, where we have to establish (among other things) that · ⊨ f : A ⊸ B and · ⊨ e : A implies

· ⊨ f e : B. To establish this, we must compute a resource bound n for f e solely from the resource

bounds nf and ne already computed for f and e , without knowing anything about what those

terms are. But this is impossible: f and e could both be values, in which case nf and ne could both

be 0, while f e could take an arbitrarily long time to execute. Similarly, for an expression such as

put(ℓ,v) which potentially executes an unknown continuation in the heap, the execution can take

arbitrarily long.

Therefore, rather than compute a bound for e based only on the resources needed for e itself to
terminate, we will instead compute e’s local contribution to the resource bound of any program it is

a part of. And thanks to the linear nature of the λchan type system, we will be able to compute a

resource bound for a whole λchan program as a predictable combination of the local contributions

of its subexpressions.

Thus far, we have treated resources as synonymous with natural numbers, but we will see

shortly that natural numbers are not good enough. In the subsections that follow, we will mo-

tivate by example what form resources should take and how resource bounds can be computed

compositionally.

3.3 Towards a Transfinite Model of Resources

At first glance, natural numbers seem like a good choice for modeling the resource that is consumed

at every execution step. For example, consider the expression:

esingle ≜ let

(
cget, cput

)
= chan() in get(cget, λx .x); put(cput, ())

It creates a single fresh channel and uses it to send the unit value (). The expression terminates in 4

execution steps and correspondingly consumes 4 units of resource during its execution.

Counting “serious” steps. Frustratingly, natural numbers are already not expressive enough

to cover termination of simple, pure expressions if resources are consumed for every step. For

instance, consider the function:

edupl ≜ λm.iter(m, (0, 0), (m1,m2).(m1 ∔ 1,m2 ∔ 1))

which duplicates its argument, a natural numberm. If resources are consumed for every step, the

number of steps cannot be bounded by a single natural number n as the number of steps depends

on the argumentm.

The expression edupl is already contained in the simply typed λ-calculus where every expression

terminates. Intuitively, the addition of a heap should not impact the termination guarantees one

obtains for pure computations in the simply typed λ-calculus. Luckily, Dreyer et al. [2010, 2011]
established that actually we only need to count “serious” steps: computation steps that are connected

with the feature that is motivating our use of step-indexing in the first place. In particular, their

step-indexed relations only counted steps related to folding/unfolding at recursive types and

manipulation of the heap. We will adopt a similar, relaxed approach.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:14 S. Spies, N. Krishnaswami, and D. Dreyer

Cgl

Cgl\{get(ℓ1)}

Cgl\{put(ℓ1)}
...

Cgl\{get(ℓn)}

Cgl\{put(ℓn)}

· · ·

· · ·

· · ·

· · ·

∅

Fig. 7. Decrease of the global capability set

To explain the relaxed approach we will adopt, let us first consider a simplified setting: proving

termination of expressions where the channels ℓ1, . . . , ℓn have already been allocated and no fresh

channels will be allocated. Under this assumption, we can associate a capability with each channel

operation. We associate put(ℓ) with a put on channel ℓ and get(ℓ) with a get on channel ℓ. In our

simplified setting, the set Cgl = {put(ℓi), get(ℓi) | i = 1, . . . ,n} contains all the capabilities that can
be used during the execution.

As a first approximation, we consider finite sets of capabilities as resources instead of natural

numbers. Instead of a natural number n, one may think of a capability set C as the resource

consumed by executing the corresponding operations in C . Under the simplifying assumption,

the global set of capabilities Cgl then evolves according to Figure 7: it decreases according to the

well-founded relation C ⊊ C ′
. Given that the relation C ⊊ C ′

is well-founded, finite capability sets

are suitable as step-indices for the stratification of circularities in the logical relation. The intuition

is that at step-index C , the logical relation guarantees termination of all expressions which only

use operations corresponding to the capabilities in C . For example, at step-index {put(ℓ1), get(ℓ2)},
the relation will be sufficiently expressive to guarantee termination of get(ℓ2, λx .x); put(ℓ1, 42)
consuming {put(ℓ1), get(ℓ2)} and put(ℓ1, 0) consuming {put(ℓ1)} but will not provide guarantees
about the termination of put(ℓ3, 0) as {put(ℓ3)}, the resource it consumes, is not contained in the

step-index.

Transfinite step-indexing. Even if we tweak the logical relation to only consume resources

for operations which manipulate the heap, it is still insufficient for guaranteeing termination of all
λchan expressions. In general, expressions allocate fresh channels which invalidates the assumption

that we can fix a set of channels ℓ1, . . . , ℓn before the execution. Allocating a fresh channel ℓ′

increases the resource by get(ℓ′) and put(ℓ′), if we use capability sets as resources. Unfortunately,

adding capabilities to a capability set makes it unusable as a step-index: step-indices may only

decrease during the execution.

The solution is to additionally bound the number of fresh channels that are allocated by an

ordinal α . Whenever an expression allocates a fresh channel ℓ′, it consumes a fragment of the

ordinal α and obtains the resources get(ℓ′) and put(ℓ′). To understand why we use an ordinal to

bound the number of channels that are allocated instead of a natural number, consider the following

expression:

edynamic ≜ λn.iter(n, (), _.esingle)

The function performs a dynamic number of heap allocations which cannot be determined before

the argument n of the function is known. The ordinal ω is large enough to bound the number of

channels that are allocated by edynamic, regardless of the argument. In this setting, the ordinal ω2

may then be understood as the right to finitely often pick a finite number of channels to allocate,

for example in a nested iteration.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:15

Formally, we use pairs of ordinals and capability sets (α ,C) as resources and by extension as

step-indices. For step-indices, we order them lexicographically, meaning (α ,C) < (α ′,C ′) ≜ α <
α ′ ∨ (α = α ′ ∧C ⊊ C ′), to obtain a well-founded relation. A decrease in the ordinal indicates that

fresh channels have been allocated, and a decrease in the capability set indicates that the channel

operations have been executed. The lexicographic ordering allows us to add fresh capabilities to C
whenever we decrease α . We use the well-founded partial order to stratify the circularities in the

definition of the logical relation — similar to the case of natural numbers and finite capability sets.

Fittingly, we also denote the pairs of ordinal and capability set (α ,C) by i, j , and k in the following,

and use them as indices for the type interpretations.

3.4 Computing Resource Bounds

Now that we have the right notion of resource, we can define step-indexed type interpretations

EJAKi and VJAKi , which can be used to to obtain termination guarantees if we know the right

resource bound. For the resource bound, due to our transfinite resource model, we no longer have

to bound the number of steps the program will take — it suffices to bound the number of channels

it will allocate. Since we do not want to put the burden of providing this bound on the user, the

question remains how we can actually determine a sufficient resource bound statically.

To understand how we determine such a bound, consider the following example:

e42 ≜ let

(
cget, cput

)
= chan() in get(cget, λn.iter(n ∔ 1, (), _.esingle)); put(cput, 41)

The expression e42 allocates 42 channels when executed. To determine that indeed 42 channels are

allocated, one needs to symbolically execute the program, including simulating the heap. Clearly,

we cannot just execute expressions to statically determine their resource consumption. Instead,

we are going to “compute” compositionally a sufficient bound on the number of channels that are

allocated during the proof of semantic soundness.

Before explaining how exactly we compute the bound, we first show how we define the semantic

typing judgment:

Γ ⊨ e : A ≜ ∃α .∀i .∀(θ ,Rθ) ∈ GJΓKi .(e[θ],Rθ ⊕ Rord(α)) ∈ EJAKi

where GJΓKi is the context interpretation, relating closing substitutions θ to the resources that

the values inside them need in order to terminate safely. Technically, the resources we use in the

logical relation also incorporate invariants to ensure that the expression terminates safely. For now,
we will ignore that detail and just think of them as a pair of an ordinal and a set of capabilities. In

this sense, the resource Rord(α) corresponds to the pair (α , ∅).
Using ordinals, it is almost trivial to compute the number of channels that are allocated during

the proof of semantic soundness. For let (x ,y) = chan() in e , we account for the channel allocation
by picking α ≜ αe ⊕ 1 where αe is an upper bound on the number of channels that are allocated by

executing e . Here, we write α ⊕ 1 for the natural addition [Hessenberg 1906] of α and 1 (see below).

For sequential composition e1; e2, we pick α ≜ α1 ⊕ α2 where α1 is an upper bound for e1 and α2 an
upper bound for e2. Similarly, we pick α ≜ α1 ⊕ α2 for get(e1, e2) and put(e1, e2).

For variables, we pick the bound α ≜ 0. The bound 0 is sufficient since in the closing substitution θ
every value comes equipped with its own resource, following the approach of compositionally

distributing the contributions of each expression. For unit, Booleans, and natural numbers, we also

pick the bound α ≜ 0.

For functions λx .e , we pick α ≜ αe where αe is an upper bound for the number of channels that

are allocated by e . Picking α ≜ αe works because the ordinal αe was chosen independently of the

the context interpretation and thus is a sufficient upper bound regardless of which value is inserted

for x . For function application e1 e2, we pick α ≜ α1 ⊕ α2 where α1 is an upper bound for e1 and α2

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:16 S. Spies, N. Krishnaswami, and D. Dreyer

let

(
cget, cput

)
= chan() in get(cget, λn.iter(n ∔ 1, (), _.esingle)); put(cput, 41)

1

ω ⊗ 1 = ω

ω

0

ω ⊕ 1

Fig. 8. Computation of the bound of e42

an upper bound for e2. The expression e1 evaluates to a function which already accounts for the

resource it will consume during execution.

For iteration iter(e, e0,x .eS), we pick α ≜ αe ⊕ α0 ⊕ (ω ⊗ αS) where αe is the upper bound

for e , α0 is the upper bound for e0, and αS is the upper bound for eS . Here, we write ω ⊗ αS for

the natural multiplication of ω and αS (see below). By bounding the number of locations that are

allocated during iteration by ω ⊗ αS , we do not even attempt to do any inference or prediction

on the semantics of expressions. The result of e is guaranteed to be some natural number n so

ω ⊗ αS is certainly going to be sufficient as it is larger than n ⊗ αS . Similarly, we over-approximate

if e then e1 else e2 with αe ⊕ α1 ⊕ α2 where αe is the bound for e , α1 the bound for e1, and α2 the
bound for e2.

Following these rules, we compute α = 1 for esingle, α = 0 for edupl, and α = ω for edynamic. For e42,
we compute α = ω ⊕ 1, as depicted in Figure 8. As the example e42 shows, the bounds we compute

are not and do not have to be tight at all due to the fact that we use ordinals.

In the computations above, we use natural addition α ⊕ β to combine ordinals instead of standard

ordinal addition (denoted by α + β below). To explain why, we consider esingle; edynamic. If we used

standard ordinal addition to combine the ordinals, then esingle; edynamic would be bounded by 1 + ω,
but under standard ordinal addition, 1 + ω = ω. The execution of esingle will already allocate a

channel which means it will consume the resource Rord(1). To consume the resource, it would have

to decrement ω to some natural number n. This natural number n would then have to bound the

number of channels allocated by edynamic. As mentioned above, before the argument of edynamic is

known, we cannot bound the number of channels that are allocated by a natural number n.
The issue with standard ordinal addition is that it is not commutative. We would like to have

1 + ω = ω + 1 since ω + 1 is strictly larger than ω and thus can be decreased to ω. We circumvent

the problem of non-commutativity by using natural addition following da Rocha Pinto et al. [2016].

Natural addition on ordinals, defined in Section 4, is quite well-behaved and enjoys many of the same

properties as addition on natural numbers, such as commutativity and cancellativity. Analogous

to natural addition is natural multiplication (also defined in Section 4), a commutative notion of

multiplication on ordinals which, as explained above, we use to bound iteration.

4 LOGICAL RELATION

In this section, we define a step-indexed logical relation for λchan and use it to prove safe termination

of closed, well-typed λchan programs. Analogous to the logical relation of Section 3.1, the type

interpretations (depicted in Figure 9) consist of a value relation VJAKi , a heap typing relation

HJΦKi , and an expression relation EJAKi where the step-indices i, j,k are now transfinite and of

the form (α ,C) for some ordinal α and capability setC . In the following, we incrementally introduce

and motivate the individual components.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:17

Resources, Step-Indices, and Logical State
Capabilities p,q ::= get(ℓ) | put(ℓ) | al(ℓ)
Capability Sets C,D ::= ∅ | C ⊎ {p}
Invariant Maps Φ ::= ∅ | Φ, ℓ : A
Resources R ::= (C,Φ,α) |
Resource Maps ρ ::= ∅ | ρ, ℓ 7→ R
Step-Indices i, j,k ::= (α ,C)
Logical State s ::= Start | Cont | Val | Done

Logical State Map σ ::= ∅ | σ , ℓ 7→ s

Value Relation

VJqKi ≜ {((), ϵ)} VJBKi ≜ {(true, ϵ), (false, ϵ)} VJNKi ≜ {(n, ϵ) | n ∈ N}

VJGetAKi ≜ {(ℓ, ({get(ℓ)} , {ℓ : A} , 0))} VJPutAKi ≜ {(ℓ, ({put(ℓ)} , {ℓ : A} , 0))}

VJA ⊗ BKi ≜
{
((v1,v2) ,R1 ⊕ R2)

�� (v1,R1) ∈ VJAKi and (v2,R2) ∈ VJBKi
}

VJA ⊸ BKi ≜
{
(λx .e,Re)

�� ∀j ≤ i, (v,Rv) ∈ VJAKj . (e[v/x],Rv ⊕ Re) ∈ EJBKj
}

Heap Typing

HJΦKi ≜
{
(h,σ , ρ)

����� domΦ = domh = domσ = dom ρ and

∀ℓ : A ∈ Φ. (hℓ,σℓ, ρℓ) ∈ HVJℓ : AKi

}
HVJℓ : AKα,C ≜ {(E, Start, ϵ), (E,Done, ϵ)}

∪
{
(V(v),Val,R)

�� ∃C ′. C = C ′ ⊎ {put(ℓ)} and (v,R) ∈ VJAKα,C ′

}
∪
{
(C(v),Cont,R)

�� ∃C ′. C = C ′ ⊎ {get(ℓ)} and (v,R) ∈ VJA ⊸ qKα,C ′

}
Expression Relation

EJAKi ≜

(e,Re)
�������
∀j ≤ i,Rf ,Φ,h,σ , ρ. RIj (Re ,Rf ,Φ,h,σ , ρ) ⇒

∃k ≤ j,Φ′ ⊇ Φ,h′,σ ′, ρ ′,v,Rv . RIk (Rv,Rf ,Φ′,h′,σ ′, ρ ′)

and (e,h){∗(v,h′) and σ d∗ σ ′
and (v,Rv) ∈ VJAKk

where

RIα,C (Re ,Rf ,Φ,h,σ , ρ) ≜ (h,σ , ρ) ∈ HJΦKα,C and usedσ #C and

∃D.C = D ⊎ idxσ and Re ⊕ Rf ⊕
⊕

ℓ∈dom ρ ρℓ ⊑ (D,Φ,α)

idx(ℓ,Val) = {put(ℓ)}

idx(ℓ,Cont) = {get(ℓ)}

idx(ℓ, s) = ∅ othw.

idxσ =
⋃

ℓ∈domσ

idx(ℓ,σℓ)

used(ℓ,Done) = {al(ℓ), get(ℓ), put(ℓ)}

used(ℓ, s) = {al(ℓ)} othw.

usedσ =
⋃

ℓ∈domσ

used(ℓ,σℓ)

Fig. 9. Logical Relation

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:18 S. Spies, N. Krishnaswami, and D. Dreyer

Resources and ownership. In the logical relation, we relate each program component (i.e., each
expression, value, and value in the heap) with a resource, its local contribution to safe termination.

Each resourceR is either a triple (C,Φ,α)whereC is a set of capabilities,Φ an invariantmap, andα an

ordinal, or it is invalid, meaning R = . We think of these resources as being owned by the respective

program component, following existing work on substructural type systems [Krishnaswami et al.

2012]. Intuitively, we interpret owning a resource R = (C,Φ,α) as: (1) the knowledge that the

invariants ℓ : A ∈ Φ are enforced in the heap typing relation
4
, (2) the right to execute instructions

corresponding to capabilities in C , and (3) the right to allocate α new channels. The capability

get(ℓ) corresponds to the right to receive a value on channel ℓ, the capability put(ℓ) to the right to

send a value over channel ℓ, and the capability al(ℓ) to the right to physically allocate ℓ, meaning

the right to add ℓ to the heap. To obtain ownership of fresh capabilities get(ℓ), put(ℓ), and al(ℓ), we
require giving up ownership of a fraction of α during the execution in the expression relation.

Given that each program component owns its own resource, to reason about composite expres-

sions or interactions with the heap, we define an operation R ⊕ R′
to combine them:

(C,Φ,α) ⊕ (C ′,Φ′,α ′) ≜ (C ∪C ′,Φ ∪ Φ′,α ⊕ α ′) if C#C ′
and Φ agΦ′

R ⊕ R′ ≜ otherwise

For capability sets, we ensure linear use with a disjoint union where C #C ′
means C and C ′

are

disjoint. The disjoint union ensures that we cannot combine the resources of expressions with

overlapping capabilities. In other words, capabilities cannot be duplicated and thus convey the

exclusive right to perform the respective operation.

For invariant maps, we take the union of both maps, provided they do not assign two different

types to a single location, denoted by Φ1 agΦ2. Invariants can be duplicated (since {ℓ : A} ag {ℓ : A})
and thus can be shared between program components. They do, however, have to agree on the

type of the value exchanged over the channel.

For ordinals, we use natural addition. We only work with ordinals α , β,γ strictly smaller thanωω
.

Each such ordinal can be expressed in its Cantor normal form, intuitively a polynomial over powers

of ω. More precisely, for each ordinal α < ωω
, there is some k ∈ N and coefficients a0, . . . ,ak ∈ N

such that α =
∑k

i=0 aiω
i ≜ ωkak + · · · + ω0a0. In this representation, natural addition may be

understood as polynomial addition. Formally, given two ordinals α =
∑k

i=0ω
iai and β =

∑l
i=0ω

ibi ,

we define natural addition by α ⊕ β ≜
∑

max(k,l)
i=0 ωi (ai + bi) where ai ≜ 0 for i = k + 1, . . . , l and

bi ≜ 0 for i = l + 1, . . . ,k .
Resources with the operation ⊕ form a commutative monoid. This is, in part, due to the fact that

natural addition is quite well-behaved, satisfying many of the laws already satisfied by addition on

natural numbers.

Lemma 4.1. Natural addition is associative and commutative, and 0 is an identity. Natural addition
is compatible with < on ordinals, meaning α < β implies α ⊕γ < β ⊕γ for all α , β ,γ . Natural addition
is cancellative, meaning α ⊕ γ = β ⊕ γ implies α = β .

Natural addition gives rise to natural multiplication, a commutative multiplication operation

which distributes over natural addition. In the present work, we use only two special cases:

Multiplication by natural numbers n ⊗ α ≜
∑k

i=0ω
i (n · ai) and multiplication by ω defined as

ω ⊗ α ≜
∑k

i=0ω
i+1ai where α is given in Cantor normal form as α =

∑k
i=0ω

iai . Importantly, we

have n ⊗ α ≤ ω ⊗ α which allows us to bound iteration (the inequality is strict for α , 0).

4
Compared to the logical relation in Section 3.1, this is a minor difference in that given the invariant ℓ : A, the channel
represented by ℓ is used to exchange a value of type A instead of store a value of type A.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:19

Lemma 4.2. Natural multiplication has the following properties:

0 ⊗ α = 0 1 ⊗ α = α (n1 + n2) ⊗ α = n1 ⊗ α ⊕ n2 ⊗ α n ⊗ α ≤ ω ⊗ α

We write R ⊑ R′
, if R′ = R ⊕ R′′

for some R′′
and denote the empty resource by ϵ ≜ (∅, ∅, 0).

In the following, it will sometimes be convenient to consider resources which only consist of

capabilities Rcap(C) ≜ (C, ∅, 0), invariants Rinv(Φ) ≜ (∅,Φ, 0), or ordinals Rord(α) ≜ (∅, ∅,α).

Value relation. In the value relationVJAKi , we relate values that semantically inhabit the type

Awith the resources they own. Unit, Booleans, and natural numbers only own the empty resource ϵ .
Inhabitants of GetA are locations ℓ that own the resource Rget(ℓ,A) ≜ ({get(ℓ)} , {ℓ : A} , 0). Owner-
ship of get(ℓ) entails the right to perform a get on location ℓ and ownership of ℓ : A guarantees

that the invariant ℓ : A is satisfied by the heap in the heap typing relation HJΦKi . Analogously,
inhabitants of PutA are locations ℓ that own the resource Rput(ℓ,A) ≜ ({put(ℓ)} , {ℓ : A} , 0). For
linear pairs A ⊗ B, we combine the resources owned by the individual components. In the interpre-

tation of the linear function type A ⊸ B, a function is related to those resources that are required

to execute the body safely, provided the resources owned by the argument are added.

Logical state. There is no physical difference between a channel in its initial state and a channel

after it has been used to exchange a value (as depicted in Figure 5): in both cases, the channel

location stores the value E. However, there is a logical difference, which matters for keeping track

of resource usage in our logical relation. Thus, to distinguish both states, we introduce the notion

of the logical state of a channel. The logical state of every channel in the heap is tracked in a state

map σ , which evolves according to the relation σ d σ ′
induced by the following transition system:

Start

Cont

Val

Done

Heap typing. The heap typing relation HJΦKi ensures that the values in the heap satisfy the

invariants ℓ : A ∈ Φ. More precisely, the heap typing relationHJΦKi relates the logical state σ with

the physical heap h and the resources owned by values in the heap ρ such that the invariants in Φ
are upheld.

Recall from Section 3 that themain purpose of step-indices is to stratify the definition of the logical

relation. To achieve such a stratification, we need to decrease the step-index for the occurrence

of the value relation inside of the heap typing relation. We decrease the step-index by removing

a capability from the step-index in the cases Val and Cont in the definition ofHVJℓ : AKα,C . By
decreasing the step-index at this point, we inadvertently weaken the assurances about values in

the heap — as usual for a step-indexed logical relation. In this logical relation, the weakening

is not consequential due to linear use of capabilities. Linear use of capabilities ensures that the

capabilities that are removed in HVJℓ : AKα,C are not used by the values stored in the heap or any

other expression. For instance, the capability get(ℓ) is required to store the continuation λx .e at
location ℓ. Linearity ensures that in an execution of the continuation, the capability get(ℓ) cannot
be used as it was used to store λx .e in the heap in the first place.

Note that in a conventional step-indexed logical relation the heap typing relation enjoys a

downward closure property
5
: if an element is in the heap typing relation at step-index i , then it

is also contained at all smaller step-indices j ≤ i . The logical relation presented here does not
enjoy the downward closure property in its general form. For example, in the base case (0, ∅),
the equivalent of step-index 0, the heap typing relation HVJℓ : AK0, ∅ contains (E, Start, ϵ) and
(E,Done, ϵ) instead of “all values”. For the logical relation presented here, it suffices to have the

5
We elaborate more on the downward closure property itself and its interpretation in Section 4.1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:20 S. Spies, N. Krishnaswami, and D. Dreyer

weaker downward closure properties stated as parts (3) and (4) of Lemma 4.3. This weaker version

suffices because in the cases where we use the downward closure property (the compatibility

lemmas for iter, get, put, and chan) the additional precondition is satisfied which is ensured by the

definition of the resource interpretation.

Expression relation. The expression relation EJAKi forms the heart of the logical relation.

Intuitively, we relate an expression e with the resource Re , if we can use the resource Re to execute e
to some value v with residual resource Rv . More precisely, to execute an expression e owning

resource Re in the expression relation, we assume some global invariant map Φ, a current logical
state map σ , a current heap h, and a current resource map ρ. To remain compositional, following the

approach of Morrisett et al. [2005], we additionally assume some frame resource Rf , representing
the resource owned by a potential context in which e could be executed. We then show that

the resource interpretation RI is preserved during the execution with a potential decrease in the

step-index. That is, we assume the resource interpretation is initially satisfied and show that at

the end of the execution the resource interpretation is satisfied for some resource Rv owned by

the result v, some extended invariant map Φ′
, some updated logical state map σ ′

, some updated

heap h′
, and some updated resource map ρ ′. After the execution, we ensure that the logical state

map was advanced according to the transition relationd and that the result v is contained in the

value relation.

The resource interpretationRIα,C (Re ,Rf ,Φ,h,σ , ρ) serves three purposes: First, it ensures that the
heap is well-typed given the current invariant map Φ with (h,σ , ρ) ∈ HJΦKα,C . Second, it ensures
ownership of resources has the meaning described above with Re ⊕ Rf ⊕

⊕
ℓ∈dom ρ ρℓ ⊑ (D,Φ,α).

For the resources owned by different program components, the invariant maps must all agree

and be contained in the global invariant map Φ, the capability sets must be pairwise disjoint and

contained in the step-index since D ⊆ C , and the sum of all ordinals must be at most α . The latter
guarantees that we can compositionally decrease the global step-index by locally decreasing the

ordinal in the resource of an expression. For example, if the expression resource is Re = R′ ⊕ Rord(1),

we can decrease α and allocate new capabilities by giving up the resource Rord(1).

Third, the resource interpretation enforces that capabilities are used according to the following

state transition system with tokens [Turon et al. 2013], where “tokens” in our case are capabilities:

Start

al(ℓ)

Cont

al(ℓ),get(ℓ)

Val

al(ℓ),put(ℓ)

Done

al(ℓ),get(ℓ),put(ℓ)

al(ℓ)
get(ℓ) put(ℓ)

put(ℓ) get(ℓ)

Below every state are the capabilities currently owned by that state. Formally, for a state map σ ,
the capabilities currently owned by σ are given by idxσ ∪ usedσ . The functions idxσ and usedσ
distinguish between two modes in which capabilities can be owned by σ , depending on whether

they are still contained in the step-index or not. We transfer the capability put(ℓ) (resp. get(ℓ))
to idxσ at the point where a value (resp. continuation) is stored in the heap. We move them

to usedσ at the point where the continuation or value is retrieved during the execution. If the

state map σ owns capabilities, then no program component can own those capabilities since

Re ⊕ Rf ⊕
⊕

ℓ∈dom ρ ρℓ ⊑ (D,Φ,α) where D # idxσ and D # usedσ .

As an example of how capabilities are transferred, we consider e ≜ get(ℓ, λx .x); put(ℓ, ()) with
resource Rcap({get(ℓ),put(ℓ)}) at step-index (0, {get(ℓ), put(ℓ)}). Initially, the expression owns the

capabilities get(ℓ) and put(ℓ) and the logical state of ℓ must be Start (otherwise the expression could

not own both capabilities). With the execution of get(ℓ, λx .x), the capability get(ℓ) is transferred to
the capabilities owned by the logical state, specifically idx(ℓ,Cont), while the remaining expression

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:21

(); put(ℓ, ()) only retains the capability put(ℓ). Note that get(ℓ) remains in the step-index. While

keeping capabilities of operations that have already been executed as part of the step-index may

seem counterintuitive, it allows us to decrease the step-index in the heap typing relation HJΦKα,C
by removing them. When we eventually execute put(ℓ, ()), we move the capability put(ℓ) owned by
the expression, and the capability get(ℓ) contained in idx(ℓ,Cont), to used(ℓ,Done). At this point,
the capabilities are removed from the step-index.

4.1 Kripke Relation

Similar to traditional step-indexed logical relations, the logical relation for λchan is a Kripke logical
relation. Characteristic for a Kripke logical relation is a notion of worldsw and a partial orderw ⪯ w ′

relating worlds with “future” worlds and a monotonicity property with respect to future worlds: if

a value is contained in worldw , then it is contained in all future worldsw ′ ⪰ w . This monotonicity

property ensures that knowledge or assurances that we have about program components remain

true during execution where the world is gradually advanced.

In this logical relation, step-indices may be considered worlds with the notion of a future world

corresponding to a smaller step-index. That is (α ,C) ⪯ (β ,D) if and only if (α ,C) ≥ (β ,D). In our

setting, a future world describes a future state of the program in the sense that a decrease in the

ordinal and an increase in the capability set corresponds to fresh channels being allocated and a

decrease in the capability sets to the respective channel operations being used.

The following lemma, Lemma 4.3, ensures closure under future worlds, meaning the type

interpretations are closed under smaller step-indices. More precisely, the value relation and the

expression relation are closed under future worlds while the heap typing relation is almost closed

under future worlds. For heap typing, we have to ensure that whenever we move to a future world

(β ,D) < (α ,C), we do not discard capabilities which are still used to decrease the step-index of

values in the heap.

Lemma 4.3. Let i = (α ,C) ≥ (β ,D) = j.

(1) EJAKi ⊆ EJAKj
(2) VJAKi ⊆ VJAKj
(3) If (hv, s,R) ∈ HVJℓ : AKi and idx(ℓ, s) ⊆ D, then (hv, s,R) ∈ HVJℓ : AKj .
(4) If (h,σ , ρ) ∈ HJΦKi and idxσ ⊆ D, then (h,σ , ρ) ∈ HJΦKj .

For the expression relation, the question arises why the relation is closed under smaller step-

indices given that termination is not closed under taking fewer steps. The answer is contained in

the definition of the expression relation. If the step-index is decreased below the capabilities and

the ordinal contained in the resource of the expression, the implication in the definition of the

relation becomes trivially true.

In contrast to traditional step-indexed logical relations such as the one from Section 3, this logical

relation, specifically the value relation, is not closed under larger invariant maps. We have opted

for not closing the value relation under larger invariant maps or larger resources in general as it is

somewhat counterintuitive to the notion of ownership: in a setting with closure under extended

resources, the unit value () could own the invariant ℓ : N and the capability put(ℓ). It suffices that

the expression relation is closed under larger invariants maps and resources in general:

Lemma 4.4. (1) If (e,Re ⊕ Rord(α)) ∈ EJAKi and α ≤ β , then (e,Re ⊕ Rord(β)) ∈ EJAKi .
(2) If (e,Re) ∈ EJAKi , then (e,Re ⊕ R) ∈ EJAKi .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:22 S. Spies, N. Krishnaswami, and D. Dreyer

4.2 Semantic Typing

To obtain a termination result for well-typed expressions from the logical relation, we connect

the type system Γ ⊢ e : A to the type interpretations using a semantic typing judgement Γ ⊨ e : A.
To define Γ ⊨ e : A, recall that the relations VJAKi and EJAKi are defined on closed values

and expressions while the type system Γ ⊢ e : A is defined on open expressions, tracking free

variables in the type context Γ. We close the expression with a substitution from the context

interpretation GJΓKi :

GJ·Ki ≜ {(θ , ϵ)}

GJΓ,x : AKi ≜
{
(θ ,Rθ ⊕ R)

�� (θ ,Rθ) ∈ GJΓKi and (θx ,R) ∈ VJAKi
}

Γ ⊨ e : A ≜ ∃α .∀i .∀(θ ,Rθ) ∈ GJΓKi .(e[θ],Rθ ⊕ Rord(α)) ∈ EJAKi
For the context interpretation, we assume the values inserted by the closing substitution come

equipped with their own resources, following the compositional approach to resource consumption.

Recall that with the ordinal α in the definition of Γ ⊨ e : A, we give an upper bound on the

number of channels that will be allocated during the execution of e . We require the bound α to be

chosen independently of the step-index i . Otherwise, for step-index (β ,C) the ordinal α ≜ β ⊕ 1

would make the judgement trivially true regardless of the expression e . As a consequence, the
ordinal α also has to be chosen independently of the closing substitution (θ ,Rθ) ∈ GJΓKi similar to

how we bound functions without knowing the argument.

4.2.1 Soundness. Before we can deduce termination using the semantic typing Γ ⊨ e : A, we first
have to prove the syntactic typing system Γ ⊢ e : A sound:

Theorem 4.5. If Γ ⊢ e : A, then Γ ⊨ e : A.

As for traditional logical relations, the proof proceeds by induction on the typing derivation. For

each typing rule, we prove a corresponding compatibility lemma — a lemma that says we can

replace all occurrences of the syntactic typing ⊢ in the rule with the semantic typing ⊨.
Given the rules for “computing” α from Section 3.4, the remaining proofs of the compatibility

lemmas are quite similar to those of a traditional step-indexed logical relation. In particular, the

logical relation satisfies many of the typical properties of step-indexed logical relations such as:

Lemma 4.6. (1) VJAKi ⊆ EJAKi .
(2) If (e,Re) ∈ EJAKi and e ′{∗ e , then (e ′,Re) ∈ EJAKi .
(3) If (e,Re) ∈ EJAKi and ∀j ≤ i, (v,Rv) ∈ VJAKj . (K[v],Rv ⊕ RK) ∈ EJBKj ,

then (K[e],Re ⊕ RK) ∈ EJBKi .

First, every value in the value relation is already contained in the expression relation. Second, we

can take steps which do not manipulate the heap, written e ′{∗ e . Third, we can reason about

composite expressions K[e] by reasoning about e and the remaining expression K[v] after e has
been executed, if we abstract over the result v (sometimes referred to as the “bind” lemma).

To illustrate how these properties are used in the proof of a typical compatibility lemma, we

showcase sequential composition:

Lemma 4.7.

Γ ⊨ e1 : q ∆ ⊨ e2 : A

Γ,∆ ⊨ e1; e2 : A

Proof Sketch. By assumption, we have α1 for e1 such that ∀i .∀(θ ,Rθ) ∈ GJΓKi .(e1[θ],Rθ ⊕

Rord(α1)) ∈ EJqKi and α2 for e2 such that ∀i .∀(θ ,Rθ) ∈ GJ∆Ki .(e2[θ],Rθ ⊕Rord(α2)) ∈ EJAKi . We pick

for e1; e2 the ordinal α1 ⊕ α2.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:23

Let (θ ,Rθ) ∈ GJΓ,∆Ki . An induction on ∆ shows that Rθ = R1 ⊕ R2 for some R1,R2 such

that (θ ,R1) ∈ GJΓKi and (θ ,R2) ∈ GJ∆Ki . From the assumptions about e1 and e2, we obtain

(e1[θ],R1 ⊕ Rord(α1)) ∈ EJqKi and (e2[θ],R2 ⊕ Rord(α2)) ∈ EJAKi . It remains to show:

(e1[θ]; e2[θ],R1 ⊕ Rord(α1) ⊕ R2 ⊕ Rord(α2)) ∈ EJAKi

With Lemma 4.6, it suffices to show (v1; e2[θ],Rv1 ⊕ R2 ⊕ Rord(α2)) ∈ EJAKj for all j ≤ i and
(v1,Rv1) ∈ VJqKj . By definition of VJqKj , we know v1 = () and Rv1 = ϵ . The claim follows

with Lemma 4.6 and Lemma 4.3 given the pure reduction (); e2[θ] { e2[θ]. □

Most of the remaining compatibility lemmas consist of similar routine context manipulations

and applications of the properties of the logical relation outlined above. The only notable difference

compared to standard compatibility lemmas of other logical relations is the instantiation of the

existential quantifier which we have sketched in Section 3.4 for the interesting cases. In the few

non-standard cases, those concerning channels and iteration, we sketch the proofs for closed

expressions:

Lemma 4.8.

∀ℓ.(e[ℓ/x , ℓ/y],Re ⊕ Rget(ℓ,A) ⊕ Rput(ℓ,A)) ∈ EJBKi
(let (x ,y) = chan() in e,Re ⊕ Rord(1)) ∈ EJBKi

Proof Sketch. To execute let (x ,y) = chan() in e , we first assume the resource interpretation

at some step-index j ≤ i . Based on the locations allocated in the heap and the capabilities contained

in the step-index, we pick a fresh location ℓ. We update the resource interpretation by adding

ℓ 7→ Start to the logical state, ℓ 7→ E to the heap, and ℓ : A to the invariant map. Further, we replace

the resource Rord(1) with Rget(ℓ,A) and Rput(ℓ,A) and, in the process, we decrease the step-index to

some j ′ < j according to the lexicographic ordering. That is, we trade in a fraction of the ordinal in

the step-index (which is at least 1 since the expression owns Rord(1)) for additional capabilities. We

then use the assumption to execute e[ℓ/x , ℓ/y] and obtain the resource interpretation at the end of

the execution of e[ℓ/x , ℓ/y] for some step-index k ≤ j ′ < j. □

Lemma 4.9.

(vch,Rch) ∈ VJGetAKi (vλ ,Rλ) ∈ VJA ⊸ qKi
(get(vch,vλ),Rch ⊕ Rλ) ∈ EJqKi

Proof Sketch. By definition ofVJGetAKi , the value vch and thus the entire expression owns

Rget(ℓ,A) for some ℓ, including the capability get(ℓ). Thus, the logical state of ℓ is either Start or Val
since the logical state cannot also own get(ℓ).
If the logical state is Start, we store the continuation λx .e in the heap and advance the logical

state to Cont. Fittingly, we transfer ownership of the capability get(ℓ) to the logical state.

If the logical state is Val, there is some value v stored at location ℓ in the heap. We update the

logical state of ℓ to Done. The ownership of get(ℓ) is transferred from the expression to the logical

state, specifically used, and the ownership of put(ℓ) is transferred from idx to used. Fittingly, we

remove both capabilities from the step-index. For the value v the heap typing relation provides

guarantees for the decreased step-index. We use these guarantees to execute the continuation with

the value v. □

Lemma 4.10.

(vch,Rch) ∈ VJPutAKi (v,Rv) ∈ VJAKi
(put(vch,v),Rch ⊕ Rv) ∈ EJqKi

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:24 S. Spies, N. Krishnaswami, and D. Dreyer

Proof Sketch. Analogous to Lemma 4.9. By definition ofVJPutAKi , the value vch and thus the

entire expression owns Rput(ℓ,A) for some ℓ, including the capability put(ℓ). Thus, the logical state
of ℓ is either Start or Cont. If the logical state is Start, we store the value v in the heap, giving

up put(ℓ). If the logical state is Cont, we update the logical state of ℓ to Done, giving up put(ℓ).
Subsequently, we use the assumption about the value v to execute the continuation stored in the

heap. □

Lemma 4.11.

(e,R) ∈ EJNKi (e0,R0) ∈ EJAKi (λx .eS ,Rord(αS)) ∈ VJA ⊸ AKi
(iter(e, e0,x .eS),R ⊕ R0 ⊕ Rord(ω⊗αS)) ∈ EJAKi

Proof Sketch. Using Lemma 4.6, we first evaluate e to some n ∈ N. Subsequently, we decrease
Rord(ω⊗αS) to Rord(n⊗αS) with Lemma 4.4 and similarly decrease the step-index. Thereafter, it remains

to show that:

(e0,R0) ∈ EJAKj (λx .eS ,Rord(αS)) ∈ VJA ⊸ AKj
(iter(n, e0,x .eS),R0 ⊕ Rord(n⊗αS)) ∈ EJAKi

for some j ≤ i . This claim follows by an induction on n and routine applications of Lemma 4.3

and Lemma 4.6 to evaluate the n iterations of λx .eS . □

4.2.2 Termination. Given the soundness of the type system, it is straightforward to prove termina-

tion of well-typed expressions. The only non-determinism in λchan is in the name of the locations

that are chosen during execution, making it sufficient to prove weak normalization:

Corollary 4.12. If · ⊢ e : A, then (e, ·){∗(v,h) for some value v and heap h.

Proof Sketch. We have · ⊨ e : A by Theorem 4.5 and hence ∀i .(e[id], ϵ ⊕ Rord(α)) ∈ EJAKi
for some ordinal α . We pick i ≜ (α , ∅). Unfolding the definition of EJAKi , the claim follows with

RIi (Rord(α), ϵ, ∅, ·, ∅, ∅), which holds by definition. □

5 RELATEDWORK

Termination in the presence of higher-order state, without step-indexing. There is some

prior work on proving termination for languages with higher-order state, but in that work the

expressiveness of the languages considered was restricted to such an extent that step-indexed

logical relations were not required.

Morrisett et al. [2005] use a logical relation without step-indices to prove termination of L3, a
linear language with higher-order mutable references. Although references in L3 can be aliased

arbitrarily, the exclusive right to access and modify a reference, called a capability, must be passed

around explicitly and may not be duplicated. As a result, L3 is not expressive enough to implement

the asynchronous channels of λchan, since they require implicit sharing (multiple references to the

same location with the right for modification). For example, consider the following well-typed

λchan expression:

eshare ≜ get(dget, λx .get(cget, λy.print(x ∔y))); get(d
′
get
, λx .put(cput,x))

Here, cget : GetN and cput : PutN can refer to the same channel, yet individually convey the right

to modify its state. The continuations λx .get(cget, λy.print(x ∔y)) and λx .put(cput,x) thus both
capture the right to modify the channel c . If the capability to modify a channel were exclusive, as

in L3, then only one of the continuations could capture it and there would be no way to transfer

that capability to the other one, especially since in general we do not know which continuation

gets invoked first. More generally, if one has to explicitly transfer the capability to access a channel

between its sender and receiver ends, then that requires having some separate communication

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:25

mechanismM for transferring the capability, which in turn defeats the purpose of using the channel:

the values sent on the channel might as well be transferred directly usingM .

Boudol [2010] ensures termination in the presence of higher-order state by stratifying memory

into different regions. He introduces an effect type system where a region context statically provides

a well-founded ordering on the memory regions. Functions stored in the heap which manipulate

references in region r may only be stored in a region r ′ > r . For asynchronous channels, static
dependency restrictions rule out a number of dynamic characteristics such as dynamic dependencies
between channels and dynamic allocation of channels. For example, consider the function:

λb .let
(
cget, cput

)
= chan() in let

(
dget,dput

)
= chan() in

if b then forward(cget,dput);
(
cput,dget

)
else forward(dget, cput);

(
dput, cget

)
which allocates two channels c,d and forwards one to the other. Before the argumentb is known, the
order between the region which contains c and the region which contains d cannot be determined.

Furthermore, with a static order on regions, dynamic allocation has to be restricted and it becomes

impossible to type:

λn.let
(
cget, cput

)
= chan() in

let y = iter(n, cget,x .let
(
dget,dput

)
= chan() in forward(x ,dput);dget) in

(
y, cput

)
which creates a chain of channels c0, . . . , cn forwarding a value according to c0 → c1 → · · · → cn .
The function cannot be typed if static dependencies between regions are fixed, since a dynamic

number of regions would be needed.

Step-indexed logics for termination in the presence of higher-order state. There exist a few
step-indexed logics for proving termination of programs in languages with higher-order state, but

these logics require the user of the logic to supply termination measures explicitly.

Dockins and Hobor [2010] introduce a step-indexed program logic for proving termination of

programs with function pointers. Unlike λchan, their language does not support dynamic allocation

of references. In their logic, step-indexed by natural numbers, each function f must be equipped

with a termination measure t which maps memory states to natural numbers. While they do give

some higher-order examples where they construct the termination measure explicitly, we conjecture

that it would be very hard at best to construct a logical relation where the termination measure is

inferred compositionally. As explained above, if natural numbers are used, the termination measure

is oftentimes closely connected to the semantic behavior of the function. In the present work, we

rely on a transfinite step-indexing technique which allows us to use ordinals instead of explicit

termination measures.

Mével et al. [2019] define time credits in the step-indexed program logic Iris [Jung et al. 2015,

2018b]. Time credits allow for proving complexity properties of programs in Iris, including programs

with higher-order state, by explicitly counting their steps. But the step count has to be provided

explicitly by the user. If one attempts to compute compositionally the number of steps to scale

their technique to a logical relation, one encounters the problems discussed in Section 3 since the

step-indices of the logic are natural numbers.

Implicit complexity. Girard [1995] introduces the field of implicit complexity where type

systems for variants of light linear logic have been shown to only admit programs with polynomial

running time. As part of this line of work, Madet and Amadio [2011]; Brunel and Madet [2012]

use a clever counting technique for the term size to prove termination in a light linear language

with higher-order references. Their proof relies on the property that reduction decreases the

size of the expression and heap. In the present work, this property is not satisfied since, e.g.,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

13:26 S. Spies, N. Krishnaswami, and D. Dreyer

iter(42, (), _.esingle) { iter(41, esingle, _.esingle) does not decrease in size. Brunel and Madet even

prove that every program in their language terminates in polynomial time. The language λchan
enables computations of exponential runtime using the iter construct. That is, we can create an

expression of exponential runtime using the function exp(m,n) from Section 2, making the language

strictly more powerful.

The addition of a primitive iteration shows how fragile syntactic approaches based on term size

are. Syntactic approaches break for seemingly insignificant changes. For example, if we add the

typing rule ⊢ λx . (x ,x) : N ⊸ N ⊗ N which constitutes a minor violation of linearity, an argument

about the term size decreasing for reduction goes out the window. In contrast, our logical relation

can cope with this addition. We have ⊨ λx .(x ,x) : N ⊸ N ⊗ N since the expression λx . (x ,x) is
contained in EJN ⊸ N ⊗ NKi with resource ϵ for all step-indices. In fact, we can add duplication

rules for all ground types G F q | B | N | G1 ⊗ G2 since, semantically, values of those types own

the resource ϵ . More generally, it is semantically sound for any value or expression which owns ϵ
(or only invariants) to be duplicated.

Transfinite step-indexing. In the literature, transfinite step-indexing has already been used to

define logical relations but not for termination in combination with higher-order state. For example,

Schwinghammer et al. [2013] and Bizjak et al. [2014] use step-indexing up to the first uncountable

ordinal ω1 to define a logical relation for reasoning about may and must equivalence of programs

with countable non-determinism. Svendsen et al. [2016] use step-indexing up to ω2
to allow a finite

number of decreases of the step-index with each step of computation.

6 CONCLUSIONS AND FUTUREWORK

In the present work, we have used transfinite step-indexing to prove termination of one specific

language, the calculus λchan. Naturally, this begs the question: what can be done with transfinite

step-indexing beyond proving termination of λchan?

Compilation of reactive programming languages. Over the past decade, a series of papers
have studied how functional reactive programming (FRP) arises via the Curry-Howard correspon-

dence for temporal logic [Krishnaswami and Benton 2011; Jeltsch 2012; Jeffrey 2012; Jeltsch 2013;

Krishnaswami 2013; Cave et al. 2014; Bahr et al. 2019]. The core idea behind these calculi is that proof

term assignments for temporal logic offer good programming languages for reactive programming.

These languages model interactive programs like GUIs with coinductive resumptions [Cave et al.

2014], which take an input and eventually produce an output and a new resumption representing

the new state of the system. The execution of such programs will then invoke these resumptions

via an event loop, which of course may not terminate. However, the proof-theoretic properties of

the calculus (like strong normalization) ensure that each input/output interaction prompted by

invoking a resumption will terminate.

The normalization properties of the aforementioned reactive programming calculi are typically

stated in terms of source-level reductions, but we would like to ensure that these properties continue

to hold when we compile reactive programs to lower-level code, in which event-based programming

is implemented by means of callbacks and channels. If we knew that termination at the source level

ensured termination at the object code level, then the normalization property of the calculi would

let us conclude that well-typed interactive programs have finite response: we would know that

they would react in finite time to any user input. Transfinite step-indexing seems like a promising

candidate for proving this kind of compilation scheme correct.

Transfinite step-indexing for termination. We conjecture that a termination result can still

be obtained if λchan is extended with features such as parallelism, (countable) non-determinism,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

Transfinite Step-Indexing for Termination 13:27

general higher-order linear references, and inductive data types other than natural numbers, all of

which would be natural generalizations for future work. In particular, we believe that, even in the

presence of these extensions, ordinals can still be used to compute upper bounds compositionally.

In the present work, the compositional computation of upper bounds is enabled by linearity.

What if the language of interest is not linear? We remark that, for entire languages, termination

does not hold in general higher-order settings without imposing some restrictions, such as (but

not necessarily) linearity. Those restrictions are what enable intrinsic termination arguments, as

opposed to user-provided termination measures. In the more general case of a non-linear language,

the compositional computation of bounds may still be applicable to linear fragments of the language.

It would be interesting to develop a type system which combines such compositionally inferred

bounds for linear fragments with user-provided bounds for non-linear fragments.

Transfinite step-indexing beyond termination. We believe that transfinitely step-indexed

logical relations will have applications in proving other properties for languages with higher-order

state that have fallen outside the reach of traditional step-indexed logical relations. These include

termination-preserving refinement and progress (e.g., always-eventually) properties.
To answer some of the above questions, we plan to use transfinite step-indexing to develop a

transfinite version of the program logic Iris [Jung et al. 2018b]. Such a logic would offer a more

abstract and language-independent way of interacting with transfinite step-indices. Furthermore,

we plan to define a transfinite notion of time credits in our transfinite version of Iris, which could

then be used to establish the termination result of this paper with a simpler, higher-level proof.

Transfinite time credits would also allow us to consider termination at the level of individual

functions or programs rather than entire languages.

ACKNOWLEDGMENTS

We thank Lars Birkedal, Lennard GÃďher, Daniel Gratzer, Robbert Krebbers, and Joseph Tassarotti

for helpful discussions about transfinite step-indexing. We additionally thank Alan Schmitt and the

anonymous reviewers for their detailed and helpful feedback.

This research was supported in part by a European Research Council (ERC) Consolidator Grant

for the project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Programme

(grant agreement no. 683289).

REFERENCES

Amal Ahmed, Andrew W Appel, Christopher D Richards, Kedar N Swadi, Gang Tan, and Daniel C Wang. 2010. Semantic

foundations for typed assembly languages. ACM Transactions on Programming Languages and Systems (TOPLAS) 32, 3
(2010), 1–67. https://doi.org/10.1145/1709093.1709094

Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2005. A step-indexed model of substructural state. In Proceedings of the
Tenth ACM SIGPLAN International Conference on Functional Programming (Tallinn, Estonia) (ICFP ’05). Association for

Computing Machinery, New York, NY, USA, 78âĂŞ91. https://doi.org/10.1145/1086365.1086376

Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Ph.D. Dissertation. Princeton University.

Andrew W Appel and David McAllester. 2001. An indexed model of recursive types for foundational proof-carrying code.

ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 5 (2001), 657–683. https://doi.org/10.1145/

504709.504712

Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2019. Simply RaTT: a Fitch-style modal calculus for

reactive programming without space leaks. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–27.

https://doi.org/10.1145/3341713

Aleš Bizjak, Lars Birkedal, and Marino Miculan. 2014. A model of countable nondeterminism in guarded type theory. In

Proceedings of TLCA. https://doi.org/10.1007/978-3-319-08918-8_8

Gérard Boudol. 2010. Typing termination in a higher-order concurrent imperative language. Information and Computation
208, 6 (2010), 716–736. https://doi.org/10.1016/j.ic.2009.06.007

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/1086365.1086376
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3341713
https://doi.org/10.1007/978-3-319-08918-8_8
https://doi.org/10.1016/j.ic.2009.06.007

13:28 S. Spies, N. Krishnaswami, and D. Dreyer

Aloïs Brunel and Antoine Madet. 2012. Indexed realizability for bounded-time programming with references and type

fixpoints. In Asian Symposium on Programming Languages and Systems. Springer, 264–279. https://doi.org/10.1007/978-

3-642-35182-2_19

Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka. 2014. Fair reactive programming. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, San Diego,

California, USA, 361–372. https://doi.org/10.1145/2535838.2535881

Koen Claessen. 1999. A poor man’s concurrency monad. Journal of Functional Programming 9, 3 (1999), 313–323. https:

//doi.org/10.1017/S0956796899003342

Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland. 2016. Modular termination

verification for non-blocking concurrency. In European Symposium on Programming. Springer, 176–201. https://doi.org/

10.1007/978-3-662-49498-1_8

Robert Dockins and Aquinas Hobor. 2010. A theory of termination via indirection. In Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Robert Dockins and Aquinas Hobor. 2012. Time bounds for general function pointers. Electronic Notes in Theoretical
Computer Science 286 (2012), 139–155. https://doi.org/10.1016/j.entcs.2012.08.010

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical relations. Logical Methods in Computer
Science 7, 2:16 (2011). https://doi.org/10.2168/LMCS-7(2:16)2011

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational modal logic for higher-order stateful

ADTs. In POPL. 185–198. https://doi.org/10.1145/1706299.1706323

Daniel Friedman and David Wise. 1976. The impact of applicative programming on multiprocessing. In International
Conference on Parallel Processing. 263–272.

Jean-Yves Girard. 1995. Light linear logic. In Logic and Computational Complexity, Daniel Leivant (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 145–176. https://doi.org/10.1007/3-540-60178-3_83

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Cambridge University Press.

Gerhard Hessenberg. 1906. Grundbegriffe der Mengenlehre. Vol. 1. Vandenhoeck & Ruprecht.

Alan Jeffrey. 2012. LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive programs.

In Proceedings of the sixth workshop on Programming Languages meets Program Verification, PLPV 2012, Philadelphia, PA,
USA, January 24, 2012. Philadelphia, PA, USA, 49–60. https://doi.org/10.1145/2103776.2103783

Wolfgang Jeltsch. 2012. Towards a common categorical semantics for linear-time temporal logic and functional reactive

programming. Electronic Notes in Theoretical Computer Science 286 (2012), 229–242. https://doi.org/10.1016/j.entcs.2012.

08.015

Wolfgang Jeltsch. 2013. Temporal logic with "until", functional reactive programming with processes, and concrete process

categories. In Proceedings of the 7th Workshop on Programming Languages Meets Program Verification (Rome, Italy) (PLPV
’13). ACM, New York, NY, USA, 69–78. https://doi.org/10.1145/2428116.2428128

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the foundations of the

Rust programming language. PACMPL 2, POPL, Article 66 (2018). https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018). https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. ACM New York, NY, USA, 637–650.

https://doi.org/10.1145/2676726.2676980

Neelakantan R. Krishnaswami. 2013. Higher-order functional reactive programming without spacetime leaks. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, Boston, Massachusetts,

USA, 221–232. https://doi.org/10.1145/2500365.2500588

Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric semantics of reactive programs. In 2011 IEEE 26th
Annual Symposium on Logic in Computer Science. IEEE Computer Society, Washington, DC, USA, 257–266. https:

//doi.org/10.1109/LICS.2011.38

Neelakantan R Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. 2012. Superficially substructural types. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming. 41–54. https://doi.org/10.

1145/2398856.2364536

Peter J Landin. 1964. The mechanical evaluation of expressions. Comput. J. 6, 4 (1964), 308–320. https://doi.org/10.1093/

comjnl/6.4.308

Antoine Madet and Roberto M Amadio. 2011. An elementary affine λ-calculus with multithreading and side effects. In

International Conference on Typed Lambda Calculi and Applications. Springer, 138–152. https://doi.org/10.1007/978-3-

642-21691-6_13

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

https://doi.org/10.1007/978-3-642-35182-2_19
https://doi.org/10.1007/978-3-642-35182-2_19
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1016/j.entcs.2012.08.010
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1007/3-540-60178-3_83
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1145/2428116.2428128
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1145/2398856.2364536
https://doi.org/10.1145/2398856.2364536
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1007/978-3-642-21691-6_13
https://doi.org/10.1007/978-3-642-21691-6_13

Transfinite Step-Indexing for Termination 13:29

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time receipts in Iris. In European Symposium
on Programming. Springer, 3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Greg Morrisett, Amal Ahmed, and Matthew Fluet. 2005. L3: A linear language with locations. In Typed Lambda Calculi and
Applications, Paweł Urzyczyn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 293–307. https://doi.org/10.1007/

11417170_22

John C Reynolds. 1983. Types, abstraction and parametric polymorphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress. 513–523.

Jan Schwinghammer, Aleš Bizjak, and Lars Birkedal. 2013. Step-indexed relational reasoning for countable nondeterminism.

Logical Methods in Computer Science 9 (2013). https://doi.org/10.2168/LMCS-9(4:4)2013

Simon Spies, Neel Krishnaswami, and Derek Dreyer. 2021. Transfinite step-indexing for termination. Technical Report.
https://plv.mpi-sws.org/transfinite-step-indexing/termination/

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In Proceedings of ESOP. https:

//doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transfinite step-indexing: Decoupling concrete and logical

steps. In European Symposium on Programming. Springer, 727–751. https://doi.org/10.1007/978-3-662-49498-1_28

William W Tait. 1967. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic 32, 2 (1967),
198âĂŞ212. https://doi.org/10.2307/2271658

Aaron J Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-grained

concurrency. In POPL. ACM New York, NY, USA, 343–356. https://doi.org/10.1145/2480359.2429111

Nobuko Yoshida,Martin Berger, and Kohei Honda. 2004. Strong normalisation in the π -calculus. Information and Computation
191, 2 (2004), 145–202. https://doi.org/10.1016/j.ic.2003.08.004

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 13. Publication date: January 2021.

https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1007/11417170_22
https://doi.org/10.1007/11417170_22
https://doi.org/10.2168/LMCS-9(4:4)2013
https://plv.mpi-sws.org/transfinite-step-indexing/termination/
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.2307/2271658
https://doi.org/10.1145/2480359.2429111
https://doi.org/10.1016/j.ic.2003.08.004

	Abstract
	1 Introduction
	2 Asynchronous Channels
	2.1 Asynchronous Programming using Asynchronous Channels
	2.2 Asynchronous Channels and Promises
	2.3 Additional Features of chan

	3 Key Ideas
	3.1 A Logical Relations Primer
	3.2 Step-Indexed Termination
	3.3 Towards a Transfinite Model of Resources
	3.4 Computing Resource Bounds

	4 Logical Relation
	4.1 Kripke Relation
	4.2 Semantic Typing

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

