
Transfinite Step-Indexing for Termination

Technical Report

Simon Spies, Neel Krishnaswami, Derek Dreyer

October 27, 2020

Contents

1 The Language λchan 2

2 Ordinals 5

3 Resources 7

4 Logical Relation 11

4.1 Kripke Logical Relation . 14

4.2 Resource Interpretation Properties . 15

4.3 Properties of the Type Interpretations . 20

4.4 Semantic Typing . 24

4.5 Compatibility Lemmas . 26

1

Values v ::= ` | () | n | b | λx.e | (v1, v2)
Expressions e ::= x | ` | () | n | b | e1; e2 | λx.e | e1 e2 | e1u e2 | iter(e, e0, x.eS)

| (e1, e2) | let (x, y) = e1 in e2 | if e then e1 else e2

| let (x, y) = chan() in e | get(e1, e2) | put(e1, e2)
Types A,B ::= 1 | B | N | A⊗B | A(B | GetA | PutA
Type Contexts Γ,∆ ::= · | Γ, x : A
Heap Values hv ::= E | V(v) | C(v)
Heaps h ::= · | ` 7→ hv , h

Figure 1: The language λchan

1 The Language λchan

In the present work, we consider the language λchan given in Figure 1, an extension of the

simply-typed λ-calculus with an implementation of asynchronous channels. A fresh channel

can be created with let (x, y) = chan() in e, where x is a handle for receiving values over

the new channel and y is a handle for sending values. The operation put can be used to send

values and the operation get to receive values.

We assign expressions a type A in the linear type system Γ ` e : A, de�ned in Figure 2.

Besides the base types 1,B,N, we have linear pairs A⊗ B and linear functions A(B. The

type GetA is used for the receive handle of a channel, indicating that the channel will transfer

a value of type A. Similarly, the type PutA is used for the send handle. We allow values of

arbitrary types A to be transferred through channels, including channel handles themselves

and functions possibly capturing channel handles. The context Γ is a linear context without

an ordering of the variables. We write Γ,∆ for the disjoint union of the contexts Γ and ∆.

We equip the language with a single-threaded, heap-based operational semantics, given in Fig-

ure 3. Operationally, each channel is represented by a single location ` in the heap, storing

either nothing E, a value V(v), or a continuation C(λx.e). Initially, the heap stores the empty

heap value E. If a value is sent over channel `with put(`, v), then the value is stored in memory

as V(v). If subsequently get(`, λx.e) is executed, then the continuation λx.e is invoked with

argument v and the state in the heap is restored to E. If from the initial state get(`, λx.e) is

executed, then the continuation is stored in the heap as C(λx.e) and invoked with argument

v once a corresponding put(`, v) is called. Besides the operations on channels, the operational

semantics allows standard, pure reductions for the simply typed λ-calculus. Reductions are al-

lowed to occur in any evaluation contextK , making it a call-by-value, left-to-right operational

semantics.

We write h[` 7→ hv] for the heap which returns hv for argument ` and h(`′) for any argument

`′ 6= `. Analogously, we use the notation to update �nite and in�nite maps with a new binding

in the remainder of this work. We assume substitution is capture avoiding, write e[v/x] for the

single-point substitution replacing xwith v in e, and e[θ] for the parallel substitution replacing

each free variable x in e with θx.

2

Γ ` e : A

x : A ` x : A

Γ ` e : B

Γ, x : A ` e : B · ` () : 1

Γ ` e1 : 1 ∆ ` e2 : A

Γ,∆ ` e1; e2 : A · ` b : B

Γ ` e : B ∆ ` e1 : A ∆ ` e2 : A

Γ,∆ ` if e then e1 else e2 : A · ` n : N
Γ ` e1 : N ∆ ` e2 : N

Γ,∆ ` e1u e2 : N

Γ ` e : N ∆ ` e0 : A x : A ` eS : A

Γ,∆ ` iter(e, e0, x.eS) : A

Γ ` e1 : A1 ∆ ` e2 : A2

Γ,∆ ` (e1, e2) : A1 ⊗A2

Γ ` e1 : A1 ⊗A2 ∆, x : A1, y : A2 ` e2 : B

Γ,∆ ` let (x, y) = e1 in e2 : B

Γ, x : A ` e : B

Γ ` λx.e : A(B

Γ ` e1 : A(B ∆ ` e2 : A

Γ,∆ ` e1 e2 : B

Γ ` e1 : GetA ∆ ` e2 : A(1

Γ,∆ ` get(e1, e2) : 1

Γ ` e1 : PutA ∆ ` e2 : A

Γ,∆ ` put(e1, e2) : 1

Γ, x : GetA, y : PutA ` e : B

Γ ` let (x, y) = chan() in e : B

Figure 2: Typing Rules

3

Evaluation Contexts K ::= · | K; e | K e′ | v K | (K, e) | (v,K) | let (x, y) = K in e′

| K u e | vuK | iter(K, e, x.e′) | iter(v,K, x.e)
| if K then e2 else e3 | get(K, e′) | get(v,K) | put(K, e′) | put(v,K)

e p e
′

(e, h) (e′, h)

(e, h) c (e′, h′)

(e, h) (e′, h′)

(e, h) (e′, h′)

(K[e], h) (K[e′], h′)

Pure Reduction

(); e p e

(λx.e) v p e[v/x]

if true then e1 else e2 p e1

if false then e1 else e2 p e2

let (x, y) = (v1, v2) in e p e[v1/x, v2/y]

num p n+m

iter(0, v, x.e) p v

iter(n+ 1, v, x.e) p iter(n, e[v/x], x.e)

Channel Reduction

(let (x, y) = chan() in e, h) c (e[`/x, `/y], h[` 7→ E]) if ` 6∈ domh

(get(`, λx.e), h) c ((), h[` 7→ C(λx.e)]) if h` = E

(get(`, λx.e), h) c (e[v/x], h[` 7→ E]) if h` = V(v)

(put(`, v), h) c ((), h[` 7→ V(v)]) if h` = E

(put(`, v), h) c (e[v/x], h[` 7→ E]) if h` = C(λx.e)

Figure 3: Operational Semantics

4

2 Ordinals

In this work, we only consider ordinals strictly smaller than ωω . Each such ordinal, denoted by

α, β, γ in the following, can be expressed in its Cantor normal form. That is, for each ordinal

α < ωω there is some k ∈ N and coe�cients a0, . . . , ak ∈ N such that α =
∑k

i=0 aiω
i ,

ωkak + · · ·+ ω0a0. We combine ordinals using natural addition [3].

De�nition 2.1 (Natural Addition). Let α =
∑k

i=0 ω
iai and β =

∑l
i=0 ω

ibi. We de�ne natural
addition by α ⊕ β ,

∑max(k,l)
i=0 ωi(ai + bi) where ai , 0 for i = k + 1, . . . , l and bi , 0 for

i = l + 1, . . . , k.

Lemma 2.1. Natural addition is associative and commutative, and 0 is an identity. Natural
addition is compatible with< on ordinals, meaning α < β implies α⊕ γ < β⊕ γ for all α, β, γ.
Natural addition is cancellative, meaning α⊕ γ = β ⊕ γ implies α = β.

Proof. Let α =
∑m

i=0 ω
iai, β =

∑n
i=0 ω

ibi, and γ =
∑p

i=0 ω
ici. We de�ne k , max(m,n, p)

and extendα, β, and γ with zeros by ai , 0 for i = m+1, . . . , k and bi , 0 for i = n+1, . . . , k
and ci , 0 for i = p + 1, . . . , k. As ωi · 0 = 0 and 0 + α = α for all i and α, we have

α =
∑k

i=0 ω
iai, β =

∑k
i=0 ω

ibi, and γ =
∑k

i=0 ω
ici.

1. Associativity. α ⊕ (β ⊕ γ) = α ⊕
∑k

i=0 ω
i(bi + ci) =

∑k
i=0 ω

i(ai + (bi + ci)) =∑k
i=0 ω

i((ai + bi) + ci) =
(∑k

i=0 ω
i(ai + bi)

)
⊕ γ = (α⊕ β)⊕ γ.

2. Commutativity. α⊕ β =
∑k

i=0 ω
i(ai + bi) =

∑k
i=0 ω

i(bi + ai) = β ⊕ α.

3. Identity. α⊕ 0 =
∑k

i=0 ω
i(ai + 0) =

∑k
i=0 ω

iai = α.

4. Compatibility. As α < β, we have α 6= β. Let j be the largest number such that aj 6= bj .

Clearly aj < bj as otherwise β > α. Since

∑j−1
i=0 ω

i(ai + ci) < ωj , we have:

α⊕ γ =
∑k

i=0 ω
i(ai + ci)

=
(∑k

i=j+1 ω
i(ai + ci)

)
+ ωj(aj + cj) +

(∑j−1
i=0 ω

i(aj + cj)
)

=
(∑k

i=j+1 ω
i(bi + ci)

)
+ ωj(aj + cj) +

(∑j−1
i=0 ω

i(ai + ci)
)

<
(∑k

i=j+1 ω
i(bi + ci)

)
+ ωj(1 + aj + cj)

≤
(∑k

i=j+1(bi + ci)ω
i
)

+ ωj(bj + cj)

≤
∑k

i=0 ω
i(bi + ci) = β ⊕ γ

5. Cancellation. We �rst show that if

∑k
i=0 ω

imi =
∑k

i=0 ω
ini, then mi = ni for all i =

0, . . . , k by induction on k. For k = 0 the claim is trivial. For k > 0, we �rst show mk =
nk. By way of contradiction assume mk 6= nk. Without loss of generality, let mk > nk.

Then

∑k
i=0 ω

imi ≥ ωkmk ≥ ωk(nk + 1) = ωknk + ωk > ωknk +
∑k−1

i=0 ω
ini =

5

∑k
i=0 ω

ini, a contradiction. Thus mk = nk. By left cancellation of ordinal addition, we

obtain

∑k−1
i=0 ω

imi =
∑k−1

i=0 ω
ini. By induction mi = ni for all i = 0, . . . , k − 1.

Let α⊕γ = β⊕γ. By assumption

∑k
i=0 ω

i(ai+ci) = α⊕γ = β⊕γ =
∑k

i=0 ω
i(bi+ci).

Thus, we have ai + ci = bi + ci for all i = 0, . . . , k. The claim follows with right

cancellation of + on natural numbers.

Natural addition gives rise to natural multiplication, a commutative, associative multiplication

operation which distributes over natural addition. In the present work, we resort to two special

cases, multiplication by natural numbers and multiplication by ω.

De�nition 2.2 (Natural Multiplication). Let α =
∑k

i=0 ω
iai. We de�ne n⊗ α ,

∑k
i=0 ω

iain

and ω ⊗ α ,
∑k

i=0 ω
i+1ai.

Lemma 2.2. Natural multiplication has the following properties:

0⊗ α = 0 1⊗ α = α (n1 + n2)⊗ α = n1 ⊗ α⊕ n2 ⊗ α n⊗ α ≤ ω ⊗ α

Proof. Let α =
∑m

i=0 ω
iai.

1. 0⊗ α = 0. Immediate from the de�nition.

2. 1⊗ α = α. Immediate from the de�nition.

3. (n1 + n2) ⊗ α = n1 ⊗ α ⊕ n2 ⊗ α. We have (n1 + n2) ⊗ α =
∑m

i=0 ω
iai(n1 + n2) =∑m

i=0 ω
i(ain1 + ain2) = (

∑m
i=0 ω

iain1)⊕ (
∑m

i=0 ω
iain2) = (n1 ⊗ α)⊕ (n2 ⊗ α).

4. n ⊗ α ≤ ω ⊗ α. If α = 0, the claim is trivial. If α > 0, then one of the coe�cients

a0, . . . , am must be larger than zero. Let k be the largest k such that ak > 0. Then

n⊗α =
∑m

i=0 ω
iain =

∑k
i=0 ω

iain < ωk+1 ≤
∑k

i=0 ω
i+1ai =

∑m
i=0 ω

i+1ai = ω⊗α.

6

3 Resources

Capabilities p, q ::= get(`) | put(`) | al(`)
Capability Sets C,D ::= ∅ | C] {p}
Invariant Maps Φ ::= ∅ | Φ, ` : A
Resources R ::= (C,Φ, α) |
Resource Maps ρ ::= ∅ | ρ, ` 7→ R
Step-Indices i, j, k ::= (α,C)

In the logical relation, we incorporate the linearity of the type system in the form of resources [2,

4]. In our setting, each resource R is either invalid, meaning R = , or R is a triple (C,Φ, α)
where C is a set of capabilities, Φ an invariant map, and α an ordinal. In the logical relation,

we relate values, expressions, and heaps with the resources they own. Intuitively, we interpret

owning a resource R = (C,Φ, α) as the knowledge that the invariants ` : A ∈ Φ are enforced

in the heap typing relation, the right to execute instructions corresponding to capabilities inC ,

and the right to allocate α new channels. The capability get(`) corresponds to the right to

receive a value on channel `, the capability put(`) to the right to send a value over channel `,
and the capability al(`) to the right to physically allocate `, meaning to the right to add ` to

the heap. To combine two resources R and R′, we combine their components.

De�nition 3.1 (Resource Addition).

(C,Φ, α)⊕ (C ′,Φ′, α′) , (C ∪ C ′,Φ ∪ Φ′, α⊕ α′) if C#C ′ and Φ agΦ′

R⊕R′ , otherwise

where we write C #C ′, if C and C ′ are disjoint, meaning C ∩ C ′ = ∅ and we write Φ agΦ′, if
two invariant maps Φ and Φ′ agree, meaning ∀ ` ∈ dom Φ ∩ dom Φ′. Φ` = Φ′`.

We write XR, if R is a valid resource, meaning R 6= . A resource R is a subresource of R′,
written R v R′, if there exists some resource R′′ with R′ = R ⊕ R′′. We denote the empty

resource by ε , (∅, ∅, 0). In the following, it will sometimes be convenient to consider re-

sources which only consist of capabilities R
cap(C) , (C, ∅, 0), invariants R

inv(Φ) , (∅,Φ, 0),

or ordinals R
ord(α) , (∅, ∅, α). We write R

cap(p1,...,pn) for the resource R
cap({p1,...,pn}) and

R
inv(`1:A1,...,`n:An) for the resource R

inv({`1:A1,...,`n:An}).

In the remainder of this section, we establish some basic properties about the use of invariants

and resources in general.

Lemma 3.1.

1. IfΦ1 agΦ2, thenΦ1∪Φ2 is an invariant map. Further, dom(Φ1∪Φ2) = dom Φ1∪dom Φ2

and (Φ1 ∪ Φ2)` = Φ1` for all ` ∈ dom Φ1 and (Φ1 ∪ Φ2)` = Φ2` for all ` ∈ dom Φ2.

2. Φ1 ag(Φ2 ∪ Φ3) and Φ2 agΦ3 i� Φ1 agΦ2 and Φ1 agΦ3 and Φ2 agΦ3.

3. If Φ1 agΦ2, then Φ2 agΦ1.

4. If Φ1 ⊆ Φ2, then Φ1 agΦ2.

5. Φ ag ∅.

7

Proof.

1. Assume Φ1 agΦ2, that is ∀` ∈ dom Φ1 ∩ Φ2.Φ1` = Φ2`. Then Φ1 ∪ Φ2 is a function.

Clearly dom(Φ1 ∪ Φ2) = dom Φ1 ∪ dom Φ2. If ` ∈ dom Φ1, then (Φ1 ∪ Φ2)` = Φ1`
regardless of whether ` ∈ dom Φ2 or not with Φ1 agΦ2. Similarly, if ` ∈ dom Φ2, then

(Φ1 ∪ Φ2)` = Φ2` regardless of whether ` ∈ dom Φ1 or not with Φ1 agΦ2.

2. Let Φ1 ag(Φ2 ∪ Φ3) and Φ2 agΦ3. With the �rst claim we know that Φ2 ∪ Φ3 is an

invariant map. We show Φ1 agΦ2. Let ` ∈ dom Φ1∩dom Φ2. Then Φ1` = (Φ2∪Φ3)` =
Φ2` by the �rst claim. Analogously Φ1 agΦ3.

Let Φ1 agΦ2 and Φ1 agΦ3 and Φ2 agΦ3. Let ` ∈ dom Φ1 ∩ (dom Φ2 ∪ dom Φ3). If

` ∈ dom Φ2, then Φ1` = Φ2` = (Φ2 ∪ Φ3)` by the �rst claim. If ` ∈ dom Φ3, then

Φ1` = Φ3` = (Φ2 ∪ Φ3)` by the �rst claim.

3. Let Φ1 agΦ2 and ` ∈ dom Φ2∩dom Φ1. Then ` ∈ dom Φ1∩dom Φ2. The claim follows.

4. Since Φ1 ⊆ Φ2, we have Φ1` = Φ2` for all ` ∈ dom Φ1 ⊆ dom Φ2.

5. The set dom Φ ∩ dom ∅ is empty. Thus, the claim holds trivially.

Lemma 3.2. The resource addition ⊕ is associative, commutative, and ε is an identity. The
subresource relation v is re�exive, transitive, and ε v R and R v R⊕R′ for all R,R′. Validity
extends to subresources, meaning if XR and R′ v R, then XR′. The subresource relation is
compatible with resource addition, meaning if R v R′, then R⊕Rf v R′ ⊕Rf . If (C,Φ, α) v
(C ′,Φ′, α′), then C ⊆ C ′ and Φ ⊆ Φ′ and α ≤ α′.

Proof.

1. Associativity⊕. LetR1, R2, R3 be resources. We showR1⊕(R2⊕R3) = (R1⊕R2)⊕R3.

If both sides are , the claim follows.

Case R1 ⊕ (R2 ⊕ R3) = (C,Φ, α) for some C,Φ, α. Then by de�nition of ⊕ we have

C = C1∪C2∪C3 and Φ = Φ1∪Φ2∪Φ3 and α = α1⊕α2⊕α3 whereR1 = (C1,Φ1, α1)
and R2 = (C2,Φ2, α2) and R3 = (C3,Φ3, α3) such that C1 #(C2 ∪ C3) and C2 #C3

and Φ1 ag(Φ2 ∪Φ3) and Φ2 agΦ3. Thus, C1 #C2 and C1 #C3. Hence (C1 ∪C2) #C3.

Further, by Lemma 3.1 we have Φ1 agΦ2 and Φ1 agΦ3. Thus, (Φ1 ∪ Φ2) agΦ3. With

with Lemma 2.1, we obtain: (R1⊕R2)⊕R3 = ((C1 ∪C2)∪C3, (Φ1 ∪Φ2)∪Φ3, (α1⊕
α2)⊕ α3) = (C1 ∪ (C2 ∪ C3),Φ1 ∪ (Φ2 ∪ Φ3), α1 ⊕ (α2 ⊕ α3)) = R1 ⊕ (R2 ⊕R3)

Case (R1 ⊕ R2) ⊕ R3 = (C,Φ, α) for some C,Φ, α. Then by de�nition of ⊕ we have

C = C1 ∪ C2 ∪ C3 and Φ = Φ1 ∪ Φ2 ∪ Φ3 and α = α1 ⊕ α2 ⊕ α3 where R1 =
(C1,Φ1, α1) and R2 = (C2,Φ2, α2) and R3 = (C3,Φ3, α3) such that (C1 ∪ C2) #C3

and C1 #C2 and (Φ1 ∪ Φ2) agΦ3 and Φ1 agΦ2. Thus, C1 #C3 and C2 #C3. Hence

C1 #(C2∪C3). Further, by Lemma 3.1 Φ1 agΦ3 and Φ2 agΦ3 and thus Φ1 ag(Φ2∪Φ3).

With with Lemma 2.1, we obtain: R1⊕(R2⊕R3) = (C1∪(C2∪C3),Φ1∪(Φ2∪Φ3), α1⊕
(α2 ⊕ α3)) = ((C1 ∪ C2) ∪ C3, (Φ1 ∪ Φ2) ∪ Φ3, (α1 ⊕ α2)⊕ α3) = (R1 ⊕R2)⊕R3

8

2. Commutativity ⊕. Let R1, R2 be resources. We show R1 ⊕ R2 = R2 ⊕ R1. If R1 =
or R2 = , the claim is trivial. Let R1 = (C1,Φ1, α1) and R2 = (C2,Φ2, α2). If not

C1 #C2, thenR1⊕R2 = = R2⊕R1. If not Φ1 agΦ2, then by Lemma 3.1 not Φ2 agΦ1

and thusR1⊕R2 = = R2⊕R1. Otherwise,R1⊕R2 = (C1∪C2,Φ1∪Φ2, α1⊕α2) =
(C2 ∪ C1,Φ2 ∪ Φ1, α2 ⊕ α1) = R2 ⊕R1 with Lemma 2.1.

3. Identity ⊕. Let R be some resource. We show R ⊕ ε = R. If R = , the claim is trivial.

If R = (C,Φ, α), we have R ⊕ ε = (C ∪ ∅,Φ ∪ ∅, α⊕ 0) = (C,Φ, α) = R since C # ∅
and Φ ag ∅ by Lemma 3.1.

4. Re�exivity v. For any resource R, we have R⊕ ε = R. Thus R v R.

5. Transitivity v. Let R1 v R2 and R2 v R3. Then there are Rf and Rg such that R1 ⊕
Rf = R2 and R2 ⊕Rg = R3. Thus R1 ⊕ (Rf ⊕Rg) = R3 and thus R1 v R3.

6. ε v R. Follows with ε⊕R = R.

7. Validity. Assume XR and R′ v R. Then there is some Rf such that R = R′ ⊕ Rf .

Since XR, we have R = (C,Φ, α) for some C,Φ, α. Thus R′ = (C ′,Φ′, α′) for some

C ′,Φ′, α′ since R = R′ ⊕Rf .

8. Compatibility. Let R v R′. Then there is some R′′ such that R ⊕ R′′ = R′. Hence

R⊕Rf ⊕R′′ = R⊕R′′ ⊕Rf = R′ ⊕Rf . Thus R⊕Rf v R′ ⊕Rf .

9. Decomposition. Let (C,Φ, α)v(C ′,Φ′, α′). Then there is someRf such that (C ′,Φ′, α′)=
(C,Φ, α) ⊕ Rf . By de�nition of ⊕, we have Rf = (Cf ,Φf , αf) for some Cf ,Φf , αf
such that C ′ = C ∪ Cf and Φ′ = Φ ∪ Φf and α′ = α ⊕ αf . Since 0 ≤ αf , we have

α = α⊕ 0 ≤ α⊕ αf = α′.

Lemma 3.3.

1. (C,Φ, α) = Rcap(C) ⊕Rinv(Φ) ⊕Rord(α)

2. IfXR1 ⊕Rcap(C) and R2 ⊕Rcap(C) = R1 ⊕Rcap(C), then R2 = R1.

3. IfXR1 ⊕Rcap(C) and R2 ⊕Rcap(C) v R1 ⊕Rcap(C), then R2 v R1.

4. If R2 ⊕Rord(α) = R1 ⊕Rord(α), then R2 = R1.

5. If R2 ⊕Rord(α) v R1 ⊕Rord(α), then R2 v R1.

6. If Φ ⊆ Ψ, then Rinv(Φ) ⊕Rinv(Ψ) = Rinv(Ψ).

7. XR i� XR⊕Rord(α).

Proof.

1. By de�nition since C # ∅ and Φ ag ∅ by Lemma 3.1.

2. Assuming XR1 ⊕ Rcap(C), we have R1 = (C1,Φ1, α1) for some C1,Φ1, α1 such that

C1 #C . Further,R2 = (C2,Φ2, α2) such thatC2 #C . By assumption (C1∪C,Φ1, α1) =

9

(C2 ∪ C,Φ2, α2). Since C1 #C and C2 #C , we have C1 = C2.

3. By assumptionR2⊕Rcap(C)⊕Rf = R1⊕Rcap(C). Thus by the second claim,R2⊕Rf =
R1. Hence R2 v R1.

4. If R1 = , then R2 = and the claim follows. If R2 = , then R1 = and the claim

follows. Let R1 = (C1,Φ1, α1) and R2 = (C2,Φ2, α2) for some C1, C2,Φ1,Φ2, α1, α2.

By assumption (C1,Φ1, α1 ⊕ α) = (C2,Φ2, α2 ⊕ α). The claim follows with right

cancellation of natural addition, see Lemma 2.1.

5. By assumptionR2⊕Rord(α)⊕Rf = R1⊕Rord(α). Thus by the second claim,R2⊕Rf =
R1. Hence R2 v R1.

6. If Φ ⊆ Ψ, then Φ agΨ by Lemma 3.1. Thus R
inv(Φ) ⊕Rinv(Ψ) = R

inv(Φ∪Ψ) = R
inv(Ψ).

7. Follows by case analysis on R.

10

4 Logical Relation

In this section, we de�ne the logical relation of the language λchan. In Figure 4, we give the

de�nition of the type interpretations. In Section 4.1, we prove that the type interpretations are

Kripke logical relations. In Section 4.2 and Section 4.3, we prove several properties about the

type interpretations which enable compact proofs of the compatibility lemmas. In Section 4.4,

we de�ne the semantic typing judgement Γ � e : A and in Section 4.5, we prove the com-

patibility lemmas required to prove that its a sound model of the syntactic typing judgement

Γ ` e : A.

Step-Indices As step-indices, we use pairs of ordinals and sets of capabilities i, j, k ::=
(α,C). On step-indices, we de�ne the lexicographic ordering:

(α,C) < (α′, C ′) , α < α′ ∨ (α = α′ ∧ C (C ′)

and as usual de�ne i ≤ j , i < j ∨ i = j.

We de�ne the value relation VJAKi, the heap typingHJΦKi, and the expression relation EJAKi
by recursion on the step-index i. For a �xed step-index i, we de�ne the value relation VJAKi
and the expression relation EJAKi by recursion on the type A. More precisely, at step-index i
the heap typing HJΦKi depends on VJBKj for j < i and arbitrary types B, the value relation

VJAKi depends on EJBKj for j ≤ i and B structurally smaller than A, and the expression

relation EJAKi depends on VJAKj for j ≤ i and onHJΦKj for j ≤ i and arbitrary Φ.

Lemma 4.1. If (α,C) ≤ (α′, C ′), then (α,C \D) ≤ (α′, C ′ \D).

Proof. If α < α′, then (α,C \ D) ≤ (α,C) < (α′, C ′ \ D). If α = α′, then C ⊆ C ′. Hence

C \D ⊆ C ′ \D. Thus (α,C \D) ≤ (α,C ′ \D) = (α′, C ′ \D).

Value Relation In the value relation VJAKi, we relate values that semantically inhabit the

type A with the resources they own. Unit, Booleans, and natural numbers only own the

empty resource ε. Inhabitants of GetA are locations ` that own the resource R
get(`,A) ,

({get(`)} , {` : A} , 0). Ownership of get(`) entails the right to perform a get on location `
and ownership of ` : A guarantees that the invariant ` : A is satis�ed by the heap in the heap

typing relationHJΦKi. Analogously, inhabitants of PutA are locations ` that own the resource

R
put(`,A) , ({put(`)} , {` : A} , 0). For linear pairs A ⊗ B, we combine the resources owned

by the individual components. In the interpretation of the linear function type A (B, a

function is related to those resources that are required to execute the body safely, provided the

resources owned by the argument are added.

Logical State There is no physical di�erence between a channel in its initial state and a

channel after it has been used to exchange a value: in both cases, the channel location stores

the value E. However, there is a logical di�erence, which matters for keeping track of resource

11

Step-Indices and Logical State

Step-Indices i, j, k ::= (α,C)
Logical State s ::= Start | Cont | Val | Done
Logical State Map σ ::= ∅ | σ, ` 7→ s

σ 99K σ[` 7→ Start] if ` /∈ domσ

σ 99K σ[` 7→ Val] if σ` = Start

σ 99K σ[` 7→ Cont] if σ` = Start

σ 99K σ[` 7→ Done] if σ` = Val

σ 99K σ[` 7→ Done] if σ` = Cont

Value Relation

VJ1Ki , {((), ε)} VJBKi , {(true, ε), (false, ε)} VJNKi , {(n, ε) | n ∈ N}

VJGetAKi , {(`, ({get(`)} , {` : A} , 0))} VJPutAKi , {(`, ({put(`)} , {` : A} , 0))}

VJA⊗BKi , {((v1, v2) , R1 ⊕R2) | (v1, R1) ∈ VJAKi and (v2, R2) ∈ VJBKi}

VJA(BKi , {(λx.e,Re) | ∀j ≤ i, (v,Rv) ∈ VJAKj . (e[v/x], Rv ⊕Re) ∈ EJBKj}

Heap Typing

HJΦKi ,

{
(h, σ, ρ)

∣∣∣∣∣ dom Φ = domh = domσ = dom ρ and

∀` : A ∈ Φ. (h`, σ`, ρ`) ∈ HVJ` : AKi

}

HVJ` : AKα,C , {(E, Start, ε), (E,Done, ε)}
∪
{

(V(v),Val, R)
∣∣ ∃C ′. C = C ′] {put(`)} and (v,R) ∈ VJAKα,C′

}
∪
{

(C(v),Cont, R)
∣∣ ∃C ′. C = C ′] {get(`)} and (v,R) ∈ VJA(1Kα,C′

}
Expression Relation

EJAKi ,

(e,Re)

∣∣∣∣∣∣∣
∀j ≤ i, Rf ,Φ, h, σ, ρ. RIj(Re, Rf ,Φ, h, σ, ρ)⇒
∃k ≤ j,Φ′ ⊇ Φ, h′, σ′, ρ′, v, Rv. RIk(Rv, Rf ,Φ

′, h′, σ′, ρ′)

and (e, h) ∗(v, h′) and σ 99K∗ σ′ and (v,Rv) ∈ VJAKk

where

RIα,C(Re, Rf ,Φ, h, σ, ρ) , (h, σ, ρ) ∈ HJΦKα,C and usedσ#C and

∃D.C = D] idxσ and Re ⊕Rf ⊕
⊕

`∈dom ρ ρ` v (D,Φ, α)

idx(`,Val) = {put(`)}
idx(`,Cont) = {get(`)}

idx(`, s) = ∅ othw.

idxσ =
⋃

`∈domσ

idx(`, σ`)

used(`,Done) = {al(`), get(`), put(`)}
used(`, s) = {al(`)} othw.

usedσ =
⋃

`∈domσ

used(`, σ`)

Figure 4: Logical Relation

12

usage in our logical relation. Thus, to distinguish both states, we introduce the notion of the

logical state of a channel. The logical state of every channel in the heap is tracked in a state

map σ. We evolve it according to the transition relation σ 99K σ′. Each fresh channel starts

in the state Start and is then advanced to Done, either by storing a value or a continuation in

between.

Heap Typing The heap typing relation HJΦKi ensures that the values in the heap satisfy

the invariants ` : A ∈ Φ. More precisely, the heap typing relation HJΦKi relates the logical

state σ with the physical heap h and the resources owned by values in the heap ρ such that the

invariants in Φ are upheld.

Expression Relation In the expression relation EJAKi, to execute an expression e owning

resource Re, we assume some global invariant map Φ, a current logical state map σ, a current

heap h, and a current resource map ρ. To remain compositional, following the approach of

Ahmed et al. [1], we additionally assume some frame resource Rf , representing the resource

owned by a potential context in which e could be executed. We then show that the resource
interpretation RI is preserved during the execution with a potential decrease in the step-index.

That is, we assume the resource interpretation is initially satis�ed and show that at the end of

the execution the resource interpretation is satis�ed for some resourceRv owned by the result

v, some extended invariant map Φ′, some updated logical state map σ′, some updated heap h′,
and some updated resource map ρ′. After the execution, we ensure that the logical state map

was advanced according to the transition relation 99K and that the result v is contained in the

value relation.

The resource interpretation RIα,C(Re, Rf ,Φ, h, σ, ρ) serves three purposes: First, it ensures

that the heap is well-typed given the current invariant map Φ with (h, σ, ρ) ∈ HJΦKα,C . Sec-

ond, with Re ⊕ Rf ⊕
⊕

`∈dom ρ ρ` v (D,Φ, α) we ensure ownership of resources has the

intuitive meaning. For the resources owned by di�erent program components, the invariant

maps must all agree and be contained in the global invariant map Φ, the capability sets must

be pairwise disjoint and contained in the step-index since D ⊆ C , and the sum of all ordinals

must be at most α. The latter guarantees that we can compositionally decrease the global step-

index by locally decreasing the ordinal in the resource of an expression. For example, if the

expression resource is Re = R′ ⊕ R
ord(1), we can decrease α and allocate new capabilities by

giving up the resource R
ord(1).

Third, the resource interpretation enforces that capabilities are used according to the following

state transition system with tokens [5], where “tokens” in our case are capabilities:

Start
al(`)

Cont
al(`),get(`)

Val
al(`),put(`)

Done
al(`),get(`),put(`)

al(`)
get(`) put(`)

put(`) get(`)

13

Below every state are the capabilities currently owned by that state. Formally, for a state map σ,

the capabilities currently owned by σ are given by idxσ∪usedσ. The functions idxσ and usedσ
distinguish between two modes in which capabilities can be owned byσ, depending on whether

they are still contained in the step-index or not. We transfer the capability put(`) (resp. get(`))

to idxσ at the point where a value (resp. continuation) is stored in the heap. We move them

to usedσ at the point where the continuation or value is retrieved during the execution. If the

state map σ owns capabilities, then no program component can own those capabilities since

Re ⊕Rf ⊕
⊕

`∈dom ρ ρ` v (D,Φ, α) where D# idxσ and D# usedσ.

Lemma 4.2.

1. idx(`, s) # used(`, s)

2. If ` 6= `′, then idx(`, s) # used(`′, s′).

3. Rcap(idxσ) =
⊕

`∈domσ Rcap(idx(`,σ`)).

4. If ` ∈ domσ, then al(`) ∈ usedσ.

5. al(`) /∈ idx(`, s) and al(`) /∈ idxσ.

Proof. 1. Immediate from the de�nition of idx and used.

2. Immediate from the de�nition of idx and used since the capabilities in idx(`, s) only

mention the location ` and the capabilities in used(`′, s′) only mention the location `′.

3. For any location `, the set idx(`, σ`) contains only capabilities with the location `. Thus

idx(`, σ`) #
⋃

`′∈L, 6̀=`′
idx(`′, σ`′)

for all ` ∈ domσ and L ⊆ domσ. Thus,

⊕
`∈domσ Rcap(idx(`,σ`)) is valid and:⊕

`∈domσ

R
cap(idx(`,σ`)) = R

cap(
⋃
`∈domσ idx(`,σ`)) = R

cap(idxσ)

4. We have al(`) ∈ used(`, s) for any s. Thus, if ` ∈ domσ, we have al(`) ∈ used(`, σ`) ⊆⋃
`∈domσ used(`, σ`) = usedσ.

5. Immediate from the de�nition of idx.

4.1 Kripke Logical Relation

The logical logical relation is a Kripke relation in the step-index. More precisely, the value

relation VJAKi and the expression relation EJAKi are closed under smaller step-indices. The

heap typing relationHJΦKi is almost closed under smaller step-indices as the following lemma

shows:

14

Lemma 4.3. Let i = (α,C) ≥ (β,D) = j.

1. EJAKi ⊆ EJAKj
2. VJAKi ⊆ VJAKj
3. If (hv , s, R) ∈ HVJ` : AKi and idx(`, s) ⊆ D, then (hv , s, R) ∈ HVJ` : AKj .

4. If (h, σ, ρ) ∈ HJΦKi and idxσ ⊆ D, then (h, σ, ρ) ∈ HJΦKj .

Proof.

1. The claim EJAKi ⊆ EJAKj is immediate from the de�nition: For any k ≤ j, we have

k ≤ i by transitivity. The claim then follows by assumption.

2. By induction on A. The claim is trivial for 1, B, N, GetA, and PutA.

For A ⊗ B, let (v,R) ∈ VJA ⊗ BKi. Then there are v1, v2 and R1, R2 such that v =
(v1, v2),R = R1⊕R2, (v1, R1) ∈ VJAKi, and (v2, R2) ∈ VJBKi. By induction, we know

(v1, R1) ∈ VJAKj and (v2, R2) ∈ VJBKj . Hence ((v1, v2), R1 ⊕R2) ∈ VJA⊗BKj .

For A (B the claim follows immediately from the de�nition of VJA (BK: Let

(λx.e,Re) ∈ VJA (BKi and k ≤ j and (v,Rv) ∈ VJAKk. Then k ≤ i. Hence, by

(λx.e,Re) ∈ VJA(BKi, we have (e[v/x], Rv ⊕Re) ∈ EJBKk.

3. By case analysis on s. Trivial for Start and Done.

For Val, we have hv = V(v) and C = C ′] {put(`)} for some C ′ and v such that

(v,R) ∈ VJAKα,C′ . Since put(`) ∈ idx(`,Val) ⊆ D, we know that D = D′] {put(`)}
for some D′. Since (β,D) ≤ (α,C), we have (β,D′) ≤ (α,C ′) by Lemma 4.1. By the

second claim, it follows that (v,R) ∈ VJAKβ,D′ .

ForCont, we havehv = C(v) andC = C ′]{get(`)} for someC ′ and v such that (v,R) ∈
VJA (1Kα,C′ . Since get(`) ∈ idx(`,Cont) ⊆ D, we know that D = D′] {get(`)}
for some D′. Since (β,D) ≤ (α,C), we have (β,D′) ≤ (α,C ′) by Lemma 4.1. By the

second claim, it follows that (v,R) ∈ VJA(1Kβ,D′ .

4. Follows immediately from the �rst claim since idx(`, s) ⊆ idxσ for all ` 7→ s ∈ σ.

4.2 Resource Interpretation Properties

In the compatibility lemmas for the channel operations, we update the resource interpreta-

tion during the execution. The lemmas in this section capture how we update the resource

interpretation.

For the resource interpretation RIi(Re, Rf ,Φ, h, σ, ρ) we use the following equivalent formu-

lation in the proofs:

15

Lemma 4.4. RIα,C(Re, Rf ,Φ, h, σ, ρ) i�

(h, σ, ρ) ∈ HJΦKα,C and usedσ#C and sum(ρ)⊕Re ⊕Rf ⊕Rcap(idxσ) v (C,Φ, α)

where sum(ρ) ,
⊕

`∈dom ρ ρ`

Proof. For the forward direction, let RIα,C(Re, Rf ,Φ, h, σ, ρ). Then (h, σ, ρ) ∈ HJΦKα,C and

usedσ#C and C = D] idxσ and Re ⊕Rf ⊕ sum(ρ) v (D,Φ, α). By Lemma 3.2, we have:

(Re ⊕Rf ⊕ sum(ρ))⊕R
cap(idxσ) v (D,Φ, α)⊕R

cap(idxσ) = (C,Φ, α)

The claim follows with commutativity of ⊕.

For the backward direction, let (h, σ, ρ) ∈ HJΦKα,C and usedσ#C and sum(ρ)⊕Re⊕Rf ⊕
R

cap(idxσ) v (C,Φ, α). Then idxσ ⊆ C by Lemma 3.2. ThusC = D] idxσ for some capability

set D. Hence, we have sum(ρ) ⊕ Re ⊕ Rf ⊕ R
cap(idxσ) v (D,Φ, α) ⊕ R

cap(idxσ). Thus,

by Lemma 3.3, we have sum(ρ)⊕Re⊕Rf v (D,Φ, α). The claim follows with commutativity

of ⊕.

We can move resources from the expression into the frame and back:

Lemma 4.5. RIi(R1 ⊕R2, Rf ,Φ, h, σ, ρ) i� RIi(R1, R2 ⊕Rf ,Φ, h, σ, ρ)

Proof. Follows immediately from associativity of ⊕:

sum(ρ)⊕ (R1 ⊕R2)⊕Rf ⊕Rcap(idxσ) = sum(ρ)⊕R1 ⊕ (R2 ⊕Rf)⊕R
cap(idxσ)

The resource interpretation is a�ne, in particular in the ordinal resources. For example, we

can trade in the right to allocate ω fresh locations for the right to allocate n fresh locations for

some n ∈ N.

Lemma 4.6. If RIβ,C(Re ⊕Rord(α), Rf ,Φ, h, σ, ρ) and α′ ≤ α, then there is some β′ ≤ β such
that RIβ′,C(Re ⊕Rord(α′), Rf ,Φ, h, σ, ρ).

Proof. By Lemma 3.2, we haveR
ord(α) v sum(ρ)⊕Re⊕Rord(α)⊕Rf ⊕Rcap(idxσ) v (C,Φ, β)

and thus β = βf ⊕ α for some βf . We de�ne β′ , βf ⊕ α′. Then β′ ≤ β by Lemma 2.1. Thus,

(β′, C) ≤ (β,C). By Lemma 3.2, we have idxσ ⊆ C . Since (h, σ, ρ) ∈ HJΦKβ,C , we have

(h, σ, ρ) ∈ HJΦKβ′,C by Lemma 4.3. Lastly:

sum(ρ)⊕Re ⊕Rord(α) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, β)

⇒ sum(ρ)⊕Re ⊕Rord(α) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, βf)⊕R
ord(α) (β = βf ⊕ α)

⇒ sum(ρ)⊕Re ⊕Rf ⊕Rcap(idxσ) v (C,Φ, βf) (Lemma 3.3)

⇒ sum(ρ)⊕Re ⊕Rord(α′) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, βf)⊕R
ord(α′) (Lemma 3.2)

⇒ sum(ρ)⊕Re ⊕Rord(α′) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, β′) (β′ = βf ⊕ α′)

16

Lemma 4.7. If RIα,C(R1 ⊕R2, Rf ,Φ, h, σ, ρ), then RIα,C(R1, Rf ,Φ, h, σ, ρ).

Proof. By assumption, we have (h, σ, ρ) ∈ HJΦKα,C and usedσ#C and sum(ρ)⊕R1⊕R2⊕
Rf ⊕Rcap(idxσ) v (C,Φ, α). Thus sum(ρ)⊕R1 ⊕Rf ⊕Rcap(idxσ) v (C,Φ, α) and the claim

follows.

We can trade in one ordinal resource for the capabilities associated with some fresh channel `.

Lemma 4.8. If RIα,C(Re ⊕ Rord(1), Rf ,Φ, h, σ, ρ), then there is some ` and β with α = β ⊕ 1
and RIβ,C]{al(`),put(`),get(`)}(Re ⊕Rcap(get(`),put(`),al(`)), Rf ,Φ, h, σ, ρ).

Proof. By Lemma 3.2, we haveR
ord(1) v sum(ρ)⊕Re⊕Rord(1)⊕Rf ⊕Rcap(idxσ) v (C,Φ, α)

and thus α = β ⊕ 1 for some β. Let ` be some fresh location such that ` /∈ domσ and

al(`), get(`), put(`) /∈ C . We abbreviate D , {al(`), get(`), put(`)}. We have:

sum(ρ)⊕Re ⊕Rord(1) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, α)

⇒ sum(ρ)⊕Re ⊕Rord(1) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, β)⊕R
ord(1) (α = β ⊕ 1)

⇒ sum(ρ)⊕Re ⊕Rf ⊕Rcap(idxσ) v (C,Φ, β) (Lemma 3.3)

⇒ sum(ρ)⊕Re ⊕Rcap(D) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, β)⊕R
cap(D) (Lemma 3.2)

⇒ sum(ρ)⊕Re ⊕Rcap(D) ⊕Rf ⊕Rcap(idxσ) v (C]D,Φ, β) (D#C)

By assumption, we have (h, σ, ρ) ∈ HJΦKα,C . Further, idxσ ⊆ C] D by Lemma 3.2. Since

(β,C] D) < (α,C), we have (h, σ, ρ) ∈ HJΦKβ,C]D by Lemma 4.3. Since by assumption

usedσ#C , we have usedσ#C]D as D = {al(`), get(`), put(`)} and ` /∈ domσ.

In the above lemma, we extend the capability set C in the step-index with the capabilities

al(`), get(`), and put(`). Due to the lexicographic ordering, we obtain the resource interpre-

tation at a smaller step-index by decreasing α. We refer to the above lemma as the logical

allocation since the heap h is left unchanged. The following lemma allows for the physical

allocation of `, meaning trading the capability al(`) in for extending the heap h by the fresh

location `.

Lemma 4.9. If RIα,C(Re ⊕Rcap(al(`)), Rf ,Φ, h, σ, ρ), then
RIα,C\{al(`)}(Re ⊕Rinv(`:A), Rf , (Φ, ` : A), h[` 7→ E], σ[` 7→ Start], ρ[` 7→ ε]).

Proof. By Lemma 3.2, we have R
cap(al(`)) v sum(ρ) ⊕ Re ⊕ Rcap(al(`)) ⊕ Rf ⊕ Rcap(idxσ) v

(C,Φ, α). Hence, we have {al(`)} ⊆ C and thus C = C ′] {al(`)} for some C ′. Since

usedσ#C , we have al(`) /∈ usedσ. Thus ` /∈ domσ by Lemma 4.2. From (σ, h, ρ) ∈
HJΦKα,C , we know dom Φ = dom ρ = domσ and thus ` /∈ dom Φ and ` /∈ dom ρ. We

17

have:

sum(ρ)⊕Re ⊕Rcap(al(`)) ⊕Rf ⊕Rcap(idxσ) v (C,Φ, α)

⇒ sum(ρ)⊕Re ⊕Rcap(al(`)) ⊕Rf ⊕Rcap(idxσ) v (C ′,Φ, α)⊕R
cap(al(`))

⇒ sum(ρ)⊕Re ⊕Rf ⊕Rcap(idxσ) v (C ′,Φ, α) (Lemma 3.3)

⇒ sum(ρ)⊕Re ⊕Rinv(`:A) ⊕Rf ⊕Rcap(idxσ) v (C ′,Φ, α)⊕R
inv(`:A) (Lemma 3.2)

⇒ sum(ρ)⊕Re ⊕Rinv(`:A) ⊕Rf ⊕Rcap(idxσ) v (C ′, (Φ, ` : A), α) (` /∈ dom Φ)

⇒ sum(ρ[` 7→ ε])⊕Re ⊕Rinv(`:A) ⊕Rf ⊕Rcap(idx(σ[`7→Start])) v (C ′, (Φ, ` : A), α) (∗)

where (∗) is true since ` /∈ dom ρ and ` /∈ domσ. We have idx(σ[` 7→ Start]) ⊆ C ′

by Lemma 3.2. Thus, by Lemma 4.3, we have (h, σ, ρ) ∈ HJΦKα,C′ . Since (E,Start, ε) ∈
HVJ` : AKα,C′ , we have (h[` 7→ E], σ[` 7→ Start], ρ[` 7→ ε]) ∈ HJΦ, ` : AKα,C′ . By assumption

usedσ#C . Hence used(σ[` 7→ Start]) = {al(`)}] usedσ#C ′.

Lemma 4.10. If RIα,C(Re, Rf ,Φ, h, σ, ρ) and ` : A ∈ Φ and (hv , s, R) ∈ HVJ` : AKα,C and
used(`, s) \ used(`, σ`) ⊆ D and

ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ) = R⊕R′e ⊕Rcap(idx(`,s)) ⊕Rcap(D) ⊕Rinv(Φ),

then RIα,C\D(R′e, Rf ,Φ, h[` 7→ hv], σ[` 7→ s], ρ[` 7→ R]).

Proof. By assumption sum(ρ)⊕Re⊕Rf⊕Rcap(idxσ) v (C,Φ, α). We abbreviate the resources

that remain unchanged RF := (
⊕

`′∈dom ρ,`′ 6=` ρ`
′) ⊕ Rf ⊕ (

⊕
`′∈domσ,`′ 6=`Rcap(idx(`′,σ`′))).

Then RF ⊕ ρ`⊕Re ⊕Rcap(idx(`,σ`)) v (C,Φ, α) by Lemma 4.2.

RF ⊕ ρ`⊕Re ⊕Rcap(idx(`,σ`)) v (C,Φ, α)

⇒ RF ⊕ ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ) v (C,Φ, α)⊕R
inv(Φ) (Lemma 3.2)

⇒ RF ⊕ ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ) v (C,Φ, α) (Lemma 3.3)

⇒ RF ⊕R⊕R′e ⊕Rcap(idx(`,s)) ⊕Rcap(D) ⊕Rinv(Φ) v (C,Φ, α)

⇒ RF ⊕R⊕R′e ⊕Rcap(idx(`,s)) ⊕Rcap(D) v (C,Φ, α) (Lemma 3.2)

⇒ RF ⊕R⊕R′e ⊕Rcap(idx(`,s)) ⊕Rcap(D) v (C \D,Φ, α)⊕R
cap(D) (∗)

⇒ RF ⊕R⊕R′e ⊕Rcap(idx(`,s)) v (C \D,Φ, α) (Lemma 3.3)

⇒ sum(ρ[` 7→ R])⊕R′e ⊕Rf ⊕Rcap(idx(σ[` 7→s])) v (C \D,Φ, α) (Lemma 4.2)

where (∗) follows with D ⊆ C which holds given RF ⊕ R ⊕ R′e ⊕ Rcap(idx(`,s)) ⊕ Rcap(D) v
(C,Φ, α) by Lemma 3.2.

By assumption, we haveC # usedσ. We show (C\D) # used(σ[` 7→ s]). By way of contradic-

tion, assume p ∈ C \D and p ∈ used(σ[` 7→ s]). Since C # usedσ, we have p /∈ usedσ. Thus

p /∈ used(`, σ`) and p ∈ used(`, s). Hence p ∈ used(`, s) \ used(`, σ`) ⊆ D, a contradiction.

By assumption we have (h, σ, ρ) ∈ HJΦKα,C and (hv , s, R) ∈ HVJ` : AKα,C . Thus, by de�ni-

tion we have (h[` 7→ hv], σ[` 7→ s], ρ[` 7→ R]) ∈ HJΦKα,C . With Lemma 4.3, it su�ces to show

idx(σ[` 7→ s]) ⊆ C \D which follows from sum(ρ[` 7→ R]) ⊕ R′e ⊕ Rf ⊕ Rcap(idx(σ[`7→s])) v
(C \D,Φ, α) by Lemma 3.2.

18

Once a location has been allocated, the following lemma, Lemma 4.11, characterises how we

can update the resource interpretation. From the state Start, the resource interpretation may

be updated to the Val state by giving up the resources for the value v and the resourceR
put(`,A)

which contains the capability put(`). The resource Rv associated with the value is transferred

to the heap while the capability put(`) is transferred to the logical state and remains part of the

step-index. Analogously, we can store a continuation in the heap and advance the logical state

to Cont. If the heap currently stores a value with logical state Val, we can advance the state to

Done and remove the resource Rv from the resource map. We decrease the current step-index

(α,C) to the smaller step-index (α,C \ {get(`), put(`)}). Analogously, we can advance from

the state where a continuation is stored to the Done state.

Lemma 4.11. Let RIα,C(Re, Rf ,Φ, h, σ, ρ).

1. If σ` = Start and ρ` = ε and Re = Rv ⊕Rput(`,A) and (v,Rv) ∈ VJAKα,C , then
RIα,C(ε, Rf ,Φ, h[` 7→ V(v)], σ[` 7→ Val], ρ[` 7→ Rv]).

2. If σ` = Start and ρ` = ε and Re = Rλ ⊕Rget(`,A) and (v,Rλ) ∈ VJA(1Kα,C , then
RIα,C(ε, Rf ,Φ, h[` 7→ C(v)], σ[` 7→ Cont], ρ[` 7→ Rλ]).

3. If σ` = Val and ρ` = Rv and Re = Rλ ⊕Rget(`,A), then
RIα,C\{get(`),put(`)}(Rv ⊕Rλ, Rf ,Φ, h[` 7→ E], σ[` 7→ Done], ρ[` 7→ ε]).

4. If σ` = Cont and ρ` = Rλ and Re = Rv ⊕Rput(`,A), then
RIα,C\{get(`),put(`)}(Rv ⊕Rλ, Rf ,Φ, h[` 7→ E], σ[` 7→ Done], ρ[` 7→ ε]).

Proof. We prove each of the claims using Lemma 4.10. For each case, we have ` : A ∈ Φ
because R

get(`,A) v Re or R
put(`,A) v Re from which ` : A ∈ Φ follows by Lemma 3.2 since

Re v sum(ρ)⊕Re ⊕Rf ⊕Rcap(idxσ) v (C,Φ, α).

1. We pick D , ∅ = used(`,Val) \ used(`,Start). We show (V(v),Val, Rv) ∈ HVJ` :
AKα,C . We have put(`) ∈ C as R

put(`,A) v Re v (C,Φ, α) by Lemma 3.2. Thus, there

is some C ′ such that C = C ′] {put(`)}. By Lemma 4.3, we have (v,Rv) ∈ VJAKα,C′ .

Lastly, we have by Lemma 3.2 and Lemma 3.3:

ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ)

=ε⊕Rv ⊕Rput(`,A) ⊕ ε⊕Rinv(Φ) (Def. idx)

=ε⊕Rv ⊕Rcap(put(`)) ⊕Rinv(`:A) ⊕ ε⊕Rinv(Φ)

=Rv ⊕ ε⊕Rcap(put(`)) ⊕Rcap(D) ⊕Rinv(Φ) (` : A ∈ Φ, R
cap(∅) = ε)

=Rv ⊕ ε⊕Rcap(idx(`,Val)) ⊕Rcap(D) ⊕Rinv(Φ) (Def. idx)

2. We pick D , ∅ = used(`,Cont) \ used(`,Start). We show (C(v),Cont, Rλ) ∈ HVJ` :
AKα,C . We have get(`) ∈ C as R

get(`,A) v Re v (C,Φ, α) by Lemma 3.2. Thus, there

is some C ′ with C = C ′] {get(`)}. By Lemma 4.3, we have (v,Rλ) ∈ VJA(1Kα,C′ .

19

Lastly, we have by Lemma 3.2 and Lemma 3.3:

ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ)

=ε⊕Rλ ⊕Rget(`,A) ⊕ ε⊕Rinv(Φ)

=ε⊕Rλ ⊕Rcap(get(`)) ⊕Rinv(`:A) ⊕ ε⊕Rinv(Φ) (Def. idx)

=Rλ ⊕ ε⊕Rcap(get(`)) ⊕Rcap(D) ⊕Rinv(Φ) (` : A ∈ Φ, R
cap(∅) = ε)

=Rλ ⊕ ε⊕Rcap(idx(`,Cont)) ⊕Rcap(D) ⊕Rinv(Φ) (Def. idx)

3. We pick D , {get(`), put(`)} = used(`,Done) \ used(`,Val). By de�nition, we have

(E,Done, ε) ∈ HVJ` : AKα,C . Lastly, we have by Lemma 3.2 and Lemma 3.3:

ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ)

=Rv ⊕Rλ ⊕Rget(`,A) ⊕Rcap(put(`)) ⊕Rinv(Φ) (Def. idx)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(get(`),put(`)) ⊕Rinv(`:A) ⊕Rinv(Φ)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(D) ⊕Rinv(Φ) (` : A ∈ Φ)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(idx(`,Done)) ⊕Rcap(D) ⊕Rinv(Φ) (Def. idx)

4. We pick D , {get(`), put(`)} = used(`,Done) \ used(`,Cont). By de�nition, we have

(E,Done, ε) ∈ HVJ` : AKα,C . Lastly, we have by Lemma 3.2 and Lemma 3.3:

ρ`⊕Re ⊕Rcap(idx(`,σ`)) ⊕Rinv(Φ)

=Rλ ⊕Rv ⊕Rput(`,A) ⊕Rcap(get(`)) ⊕Rinv(Φ) (Def. idx)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(get(`),put(`)) ⊕Rinv(`:A) ⊕Rinv(Φ)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(D) ⊕Rinv(Φ) (` : A ∈ Φ)

=ε⊕ (Rv ⊕Rλ)⊕R
cap(idx(`,Done)) ⊕Rcap(D) ⊕Rinv(Φ) (Def. idx)

4.3 Properties of the Type Interpretations

The expression relation is closed under larger resources, in particular in the number of locations

that can be allocated. We can always weaken the number to a larger bound:

Lemma 4.12. 1. If (e,Re ⊕Rord(α)) ∈ EJAKi and α ≤ β, then (e,Re ⊕Rord(β)) ∈ EJAKi.

2. If (e,Re) ∈ EJAKi, then (e,Re ⊕R) ∈ EJAKi.

Proof. 1. Let (γ,C) ≤ i and RIγ,C(Re⊕Rord(β), Rf ,Φ, h, σ, ρ). Then there is some γ′ ≤ γ
such that RIγ′,C(Re ⊕ R

ord(α), Rf ,Φ, h, σ, ρ) by Lemma 4.6. Since γ′ ≤ γ, we have

(γ′, C) ≤ (γ,C) ≤ i. By assumption, there is some k ≤ (γ′, C) and Φ′ ⊇ Φ and

h′, σ′, ρ′ and (v,Rv) ∈ VJAKk such that RIk(Rv, Rf ,Φ
′, h′, σ′, ρ′) and σ 99K∗ σ′ and

(e, h) ∗(v, h′). The claim follows with k ≤ (γ′, C) ≤ (γ,C).

20

2. Let j ≤ i and RIj(Re ⊕ R,Rf ,Φ, h, σ, ρ). Then RIj(Re, Rf ,Φ, h, σ, ρ) by Lemma 4.7.

The claim follows by the assumption (e,Re) ∈ EJAKi.

The following lemma is useful in proofs of standard compatibility lemmas. First, every value

in the value relation is already contained in the expression relation. Second, we can take steps

which do not manipulate the heap, de�ned by e′ e , ∀h.(e, h) (e′, h), to prove that an

expression is contained in the logical relation. Third, we can reason about composite expres-

sions K[e] by reasoning about e and the remaining expression K[v] after e has been executed,

if we abstract over the result v.

Lemma 4.13. 1. VJAKi ⊆ EJAKi.

2. If (e,Re) ∈ EJAKi and e′ ∗ e, then (e′, Re) ∈ EJAKi.

3. If (e,Re) ∈ EJAKi and ∀j ≤ i, (v,Rv) ∈ VJAKj . (K[v], Rv ⊕RK) ∈ EJBKj ,
then (K[e], Re ⊕RK) ∈ EJBKi.

Proof. 1. Let (v,Rv) ∈ VJAKi and j ≤ i and RIj(Rv, Rf ,Φ, h, σ, ρ). Then (v,Rv) ∈ VJAKj
by Lemma 4.3. The claim follows with (v, h) ∗(v, h) and σ ∗ σ.

2. Let (e,Re) ∈ EJAKi and e′ ∗ e and j ≤ i and RIj(Rv, Rf ,Φ, h, σ, ρ). By assumption,

there exist k ≤ j and Φ′ ⊇ Φ and h′, σ′, ρ′, v, Rv such that RIk(Rv, Rf ,Φ
′, h′, σ′, ρ′) and

(v,Rv) ∈ VJAKk and (e, h) ∗(v, h′). The claim follows with (e′, h) ∗(e, h) ∗(v, h′).

3. Let j ≤ i and RIj(Re ⊕ RK , Rf ,Φ, h, σ, ρ). By Lemma 4.5, we have RIj(Re, RK ⊕
Rf ,Φ, h, σ, ρ). By assumption, there exist some j′ ≤ j and Φ′ ⊇ Φ and h′, σ′, ρ′, v, Rv
such that RIj′(Rv, RK ⊕ Rf ,Φ

′, h′, σ′, ρ′) and σ 99K∗ σ′ and (v,Rv) ∈ VJAKj′ and

(e, h) ∗(v, h′). By Lemma 4.5, RIj′(Rv ⊕ RK , Rf ,Φ′, h′, σ′, ρ′) follows. By assump-

tion, (K[v], Rv ⊕ RK) ∈ EJBKj . Thus, there exists some k ≤ j′ and Φ′′ ⊇ Φ′ and

h′′, σ′′, ρ′′, v′, R′v such that RIk(R
′
v, Rf ,Φ

′′, h′′, σ′′, ρ′′) and σ′ 99K∗ σ′′ and (v′, R′v) ∈
VJBKk and (K[v], h′) ∗(v′, h′′). We have (K[e], h) ∗(K[v], h′) ∗(v′, h′′) andσ 99K∗

σ′ 99K∗ σ′′ and k ≤ j′ ≤ j.

The following four lemmas are the compatibility lemmas on closed expressions for creating

channels, for receiving values over them, for sending values over them, and for closing them.

Lemma 4.14.
∀`.(e[`/x, `/y], Re ⊕Rget(`,A) ⊕Rput(`,A)) ∈ EJBKi

(let (x, y) = chan() in e,Re ⊕Rord(1)) ∈ EJBKi

Proof. Let (α,C) ≤ i and RIα,C(Re ⊕Rord(1), Rf ,Φ, h, σ, ρ). By Lemma 4.8, we have

RIβ,C]{al(`),put(`),get(`)}(Re ⊕Rcap(al(`),get(`),put(`)), Rf ,Φ, h, σ, ρ)

21

for some β with α = β⊕1 and some location `. We have (C]{al(`), put(`), get(`)}) # usedσ
by the de�nition ofRI and thus ` /∈ domσ by Lemma 4.2. With (h, σ, ρ) ∈ HJΦKα,C , we further

have ` /∈ domh and ` /∈ dom Φ and ` /∈ dom ρ. By Lemma 4.9, we have:

RIβ,C]{get(`),put(`)}(Re ⊕Rcap(get(`),put(`)) ⊕Rinv(`:A)︸ ︷︷ ︸
=R

get(`,A)⊕Rput(`,A)

, Rf , (Φ, ` : A), h′, σ′, ρ′)

for h′ , h[` 7→ E] and σ′ , σ[` 7→ Start] and ρ′ , ρ[` 7→ ε]. By assumption (e[`/x, `/y], Re⊕
R

get(`,A)⊕Rput(`,A)) ∈ EJBKi. Since β < α by Lemma 2.1, we have (β,C]{get(`), put(`)}) <
(α,C) ≤ i. Hence, there is some (β′, C ′) ≤ (β,C]{get(`), put(`)}) and Φ′ ⊇ (Φ, ` : A) with

RIβ′,C′(Rv, Rf ,Φ
′, h′′, σ′′, ρ′′)

for some h′′, σ′′, ρ′′, (v,Rv) ∈ VJBKβ′,C′ . Further, σ′ 99K∗ σ′′ and (e[`/x, `/y], h′) ∗(v, h′′).

We have (β′, C ′) ≤ (β,C] {put(`), get(`)}) ≤ (α,C) and Φ′ ⊇ (Φ, ` : A) ⊇ Φ. Since

` /∈ domσ and ` /∈ domh, we have σ 99K σ′ 99K∗ σ′′ and (let (x, y) = chan() in e, h)
(e[`/x, `/y], h′) ∗(v, h′′).

Lemma 4.15.
(vch, Rch) ∈ VJGetAKi (vλ, Rλ) ∈ VJA(1Ki

(get(vch, vλ), Rch ⊕Rλ) ∈ EJ1Ki

Proof. Let (α,C) ≤ i and RIα,C(Rch ⊕ Rλ, Rf ,Φ, h, σ, ρ). By (vch, Rch) ∈ VJGetAKi, we

know vch = ` and Rch = R
get(`,A) for some `. By Lemma 3.2, we have R

get(`,A) v (C,Φ, α)
andXR

get(`,A)⊕Rcap(idxσ) and thus get(`) ∈ C and get(`) /∈ idxσ and ` : A ∈ Φ. Further, we

have usedσ#C . Thus, get(`) /∈ usedσ follows. Further, unfolding the de�nition of RIα,C , we

have (h`, σ`, ρ`) ∈ HVJ` : AKα,C . Since get(`) /∈ usedσ and get(`) /∈ idxσ, either σ` = Start
or σ` = Val.

1. Let σ` = Start. By (h`, σ`, ρ`) ∈ HVJ` : AKα,C , we have h` = E and ρ` = ε.
By Lemma 4.3, we have (vλ, Rλ) ∈ VJA(1Kα,C . Hence, with Lemma 4.11 we have:

RIα,C(ε, Rf ,Φ, h[` 7→ C(vλ)], σ[` 7→ Cont], ρ[` 7→ Rλ])

We de�ne h′ , h[` 7→ C(vλ)], σ′ , σ[` 7→ Cont], and ρ′ , ρ[` 7→ Rλ]. By de�nition

(get(`, vλ), h) ∗((), h′) and σ 99K∗ σ′. Further, by de�nition ((), ε) ∈ VJ1Kα,C .

2. Let σ` = Val. By (h`, σ`, ρ`) ∈ HVJ` : AKα,C , we have C = C1] {put(`)} for some

C1 and h` = V(v) and ρ` = Rv for some (v,Rv) ∈ VJAKα,C1 . Since get(`) ∈ C , there

is some C2 such that C2 = C1] {get(`)}. By Lemma 4.3 (v,Rv) ∈ VJAKα,C2 . Thus, by

de�nition of the value relation VJA (1Ki, we have vλ = λx.e for some x and e such

that (e[v/x], Rv ⊕Rλ) ∈ EJ1Kα,C2 . By Lemma 4.11, we obtain:

RIα,C2(Rv ⊕Rλ, Rf ,Φ, h[` 7→ E], σ[` 7→ Done], ρ[` 7→ ε])

Thus, there are some (β,C3) ≤ (α,C2) and Φ′ ⊇ Φ, h′, σ′, ρ′ and (v′, R′v) ∈ VJ1Kβ,C3 ,

such that RIβ,C3(R′v, Rf ,Φ
′, h′, σ′, ρ′) and (e[v/x], h[` 7→ E]) ∗(v′, h′) and σ[` 7→

Done] 99K∗ σ′.

22

We have (β,C3) ≤ (α,C2) ≤ (α,C) and Φ′ ⊇ Φ. Further, we have (get(`, λx.e), h)
(e[v/x], h[` 7→ E]) ∗(v′, h′). Lastly, σ 99K σ[` 7→ Done] 99K∗ σ′.

Lemma 4.16.
(vch, Rch) ∈ VJPutAKi (v,Rv) ∈ VJAKi

(put(vch, v), Rch ⊕Rv) ∈ EJ1Ki

Proof. Let (α,C) ≤ i and RIα,C(Rch ⊕ Rv, Rf ,Φ, h, σ, ρ). By (vch, Rch) ∈ VJPutAKi, we

know vch = ` and Rch = R
put(`,A) for some `. By Lemma 3.2, we have R

put(`,A) v (C,Φ, α)
andXR

put(`,A)⊕Rcap(idxσ) and thus put(`) ∈ C and put(`) /∈ idxσ and ` : A ∈ Φ. Further, we

have usedσ#C . Thus, put(`) /∈ usedσ follows. Further, unfolding the de�nition of RIα,C , we

have (h`, σ`, ρ`) ∈ HVJ` : AKα,C . Since put(`) /∈ usedσ and put(`) /∈ idxσ, either σ` = Start
or σ` = Cont.

1. Let σ` = Start. By (h`, σ`, ρ`) ∈ HVJ` : AKα,C , we have h` = E and ρ` = ε.
By Lemma 4.3, we have (v,Rv) ∈ VJAKα,C . Hence, with Lemma 4.11 we have:

RIα,C(ε, Rf ,Φ, h[` 7→ V(v)], σ[` 7→ Val], ρ[` 7→ Rv])

We de�ne h′ , h[` 7→ V(v)], σ′ , σ[` 7→ Val], and ρ′ , ρ[` 7→ Rv]. By de�nition

(put(`, v), h) ∗((), h′) and σ 99K∗ σ′. Further, by de�nition ((), ε) ∈ VJ1Kα,C .

2. Let σ` = Cont. By (h`, σ`, ρ`) ∈ HVJ` : AKα,C , we have C = C1] {get(`)} for

some C1 and h` = C(vλ) and ρ` = Rλ for some (vλ, Rλ) ∈ VJA (1Kα,C1 . Since

put(`) ∈ C , there is some C2 such that C2 = C1] {put(`)}. By Lemma 4.3, we have

(v,Rv) ∈ VJAKα,C2 . Thus, by de�nition of the value relation VJA (1Kα,C1 we have

vλ = λx.e for some x and e such that (e[v/x], Rv ⊕ Rλ) ∈ EJ1Kα,C2 . By Lemma 4.11,

we obtain:

RIα,C2(Rv ⊕Rλ, Rf ,Φ, h[` 7→ E], σ[` 7→ Done], ρ[` 7→ ε])

Thus, there are some (β,C3) ≤ (α,C2) and Φ′ ⊇ Φ, h′, σ′, ρ′ and (v′, R′v) ∈ VJ1Kβ,C3 ,

such that RIβ,C3(R′v, Rf ,Φ
′, h′, σ′, ρ′) and (e[v/x], h[` 7→ E]) ∗(v′, h′) and σ[` 7→

Done] 99K∗ σ′.

We have (β,C3) ≤ (α,C2) ≤ (α,C) and Φ′ ⊇ Φ. Further, we have (put(`, v), h)
(e[v/x], h[` 7→ E]) ∗(v′, h′). Lastly, σ 99K σ[` 7→ Done] 99K∗ σ′.

For the remaining expressions, properties about their behavior follow from the lemmas above.

We showcase iteration. For iteration iter(n, e′, x.e), the function that is iterated λx.e cannot

make use of capabilities of existing channels. Otherwise, the capabilities would have to be

duplicated for repeated iteration. The function may however allocate fresh channels. If α is an

upper bound on the number of locations that are allocated by λx.e, regardless of the argument,

23

then n⊗α is an upper bound on the number of locations that are allocated when iterating the

function n-times. If the number of iterations is not known before the execution, we can bound

it by ω ⊗ α.

Lemma 4.17.
(e′, R′e) ∈ EJAKi (λx.e,Rord(α)) ∈ VJA(AKi

(iter(n, e′, x.e), R′e ⊕Rord(n⊗α)) ∈ EJAKi

Proof. By induction on n for arbitrary i, e′, and R′e. With Lemma 4.13, it su�ces to show

(iter(n, v, x.e), Rv ⊕Rord(n⊗α)) ∈ EJAKi for all j ≤ i and (v,Rv) ∈ VJAKj .

1. Case n = 0. AsR
ord(0⊗α) = ε and iter(0, v, x.e) v, the claim follows with Lemma 4.13

and (v,Rv) ∈ VJAKj .

2. Case n > 0. By de�nition iter(n, v, x.e) iter(n− 1, e[v/x], x.e). With Lemma 4.13

and Lemma 2.2, it su�ces to show (iter(n− 1, e[v/x], x.e), Rv⊕Rord(α)⊕Rord((n−1)⊗α)) ∈
EJAKj . Since (v,Rv) ∈ VJAKj and (λx.e,R

ord(α)) ∈ VJA (AKi and j ≤ i, we have

(e[v/x], Rv ⊕Rord(α)) ∈ EJAKj . The claim follows by induction and Lemma 4.3.

Lemma 4.18.

(e,R) ∈ EJNKi (e0, R0) ∈ EJAKi (λx.eS , Rord(αS)) ∈ VJA(AKi
(iter(e, e0, x.eS), R⊕R0 ⊕Rord(ω⊗αS)) ∈ EJAKi

Proof. By Lemma 4.13, it su�ces to show:

(iter(v, e0, x.eS), Rv ⊕R0 ⊕Rord(ω⊗αS)) ∈ EJAKj

for all j ≤ i and (v,Rv) ∈ VJNKj . By de�nition of VJNKj , we have v = n for some n ∈ N and

Rv = ε. Since n⊗ αS ≤ ω ⊗ αS by Lemma 2.2, by Lemma 4.12 it su�ces to show:

(iter(n, e0, x.eS), R0 ⊕Rord(n⊗αS)) ∈ EJAKj

The claim follows with Lemma 4.3 and Lemma 4.17.

4.4 Semantic Typing

To de�ne the semantic typing judgement Γ � e : A, we close the expression with a substitution

from the context interpretation GJΓKi:

GJ·Ki , {(θ, ε)}
GJΓ, x : AKi , {(θ,Rθ ⊕R) | (θ,Rθ) ∈ GJΓKi and (θx,R) ∈ VJAKi}

Γ � e : A , ∃α.∀i.∀(θ,Rθ) ∈ GJΓKi.(e[θ], Rθ ⊕Rord(α)) ∈ EJAKi

24

Context Interpretation Before we proceed to prove semantic soundness, we establish the

following properties of the context interpretation GJΓKi.

Lemma 4.19. If (θ,Rθ) ∈ GJΓ,∆Ki, then Rθ = R1 ⊕ R2 for some resources R1, R2 such that
(θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki.

Proof. By induction on ∆.

1. Case ·. Then (θ,Rθ) ∈ GJΓKi. The claim follows with R1 , Rθ and R2 , ε.

2. Case ∆, x : A. Then (θ,Rθ) ∈ GJΓ,∆, x : AKi. Thus, Rθ = R′θ ⊕ R for some R′θ, R
with (θx,R) ∈ VJAKi and (θ,R′θ) ∈ GJΓ,∆Ki. By induction, there are R1, R

′
2 such that

R′θ = R1 ⊕R′2 and (θ,R1) ∈ GJΓKi and (θ,R′2) ∈ GJ∆Ki. We de�ne R2 , R′2 ⊕R. By

de�nition, (θ,R2) ∈ GJ∆, x : AKi.

Lemma 4.20.

1. If θ =dom Γ θ
′ and (θ,R) ∈ GJΓKi, then (θ′, R) ∈ GJΓKi.

2. If i ≤ j, then GJΓKj ⊆ GJΓKi.

Proof. Both by induction on Γ. For the second, we use Lemma 4.3.

Lemma 4.21. If Γ, x : A is de�ned and (θ,Rθ) ∈ GJΓKi and (v,Rv) ∈ VJAKi, then (θ[x 7→
v], Rθ ⊕Rv) ∈ GJΓ, x : AKi.

Proof. By de�nition of GJΓ, x : AKi it su�ces to show (θ[x 7→ v], Rθ) ∈ GJΓKi. As type

contexts are linear, we know x /∈ dom Γ. Thus θ[x 7→ v] =dom Γ θ. The claim follows

with Lemma 4.20.

Semantic Soundness In the following, we prove semantic soundness of the type system Γ `
e : A with respect to the semantic interpretation Γ � e : A. The proof proceeds by induction

using compatibility lemmas in each case. We prove those compatibility lemmas in Section 4.5.

Given the semantic soundness proof, it is then straightforward to derive termination.

Theorem 4.1. If Γ ` e : A, then Γ � e : A.

Proof. By induction on Γ ` e : A using Lemmas 4.22 to 4.37.

Corollary 4.1. If · ` e : A, then (e, ·) ∗(v, h) for some value v and heap h.

Proof. By Lemma 4.1, we have · � e : A. Thus, there is some α such that:

∀i.(e[id], ε⊕R
ord(α)) ∈ EJAKi

since (id , ε) ∈ GJ·Ki for all i by de�nition. We pick i , (α, ∅). Thus (e,R
ord(α)) ∈ EJAKi. By

de�nition of EJAKi, it su�ces to show RIi(Rord(α), ε, ∅, ·, ∅, ∅). By de�nition (·, ∅, ∅) ∈ HJ∅Ki.
Further, used ∅ = ∅# ∅. Lastly, sum(∅)⊕R

ord(α) ⊕ ε⊕Rcap(idx ∅) = R
ord(α) v (∅, ∅, α).

25

4.5 Compatibility Lemmas

Lemma 4.22.

x : A � x : A

Proof. Pick α , 0. Let (θ,R) ∈ GJx : AKi. Then (θx,R) ∈ VJAKi. It remains to show

(x[θ], R⊕R
ord(0)) ∈ EJAKi. As (x[θ], R⊕R

ord(0)) = (θx,R), the claim follows with Lemma 4.13.

Lemma 4.23.
Γ � e : B

Γ, x : A � e : B

Proof. By assumption, we have some αe for e. We pick α , αe. Let (θ,Rθ) ∈ GJΓ, x : AKi.
Then Rθ = R1 ⊕ R2 for some R1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJx : AKi
by Lemma 4.19. It remains to show (e[θ], R1 ⊕ Rord(α) ⊕ R2) ∈ EJBKi. By Lemma 4.12, it

su�ces to show:

(e[θ], R1 ⊕Rord(α)) ∈ EJBKi
which follows by assumption with (θ,R1) ∈ GJΓKi.

Lemma 4.24.

· � () : 1

Proof. Pick α , 0. Let (θ,R) ∈ GJ·Ki. It remains to show (()[θ], R
ord(0)) ∈ EJ1Ki. As

(()[θ], R
ord(0)) = ((), ε) ∈ VJ1Ki, the claim follows with Lemma 4.13.

Lemma 4.25.
Γ � e1 : 1 ∆ � e2 : A

Γ,∆ � e1; e2 : A

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. ThenRθ = R1⊕R2 for someR1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show (e1[θ]; e2[θ], R1 ⊕Rord(α1) ⊕R2 ⊕Rord(α2)) ∈ EJAKi.

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJ1Ki. By Lemma 4.13, it su�ces to show:

(v1; e2[θ], Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJAKj

for all j ≤ i and (v1, Rv1) ∈ VJ1Kj . By de�nition of VJ1Kj , we know v1 = () and Rv1 = ε. By

assumption (e2[θ], R2⊕Rord(α2)) ∈ EJAKi. The claim follows with Lemma 4.13 and Lemma 4.3

given the pure reduction (); (e2[θ]) e2[θ].

Lemma 4.26.

· � b : B

26

Proof. Pick α , 0. Let (θ,R) ∈ GJ·Ki. It remains to show (b[θ], R
ord(0)) ∈ EJBKi. As

(b[θ], R
ord(0)) = (b, ε) ∈ VJBKi, the claim follows with Lemma 4.13.

Lemma 4.27.
Γ � e : B ∆ � e1 : A ∆ � e2 : A

Γ,∆ � if e then e1 else e2 : A

Proof. By assumption, we have αe for e, α1 for e1, and α2 for e2. We pick α , αe ⊕ α1 ⊕ α2.

Let (θ,Rθ) ∈ GJΓ,∆Ki. Then Rθ = R1 ⊕ R2 for some R1, R2 such that (θ,R1) ∈ GJΓKi and

(θ,R2) ∈ GJ∆Ki by Lemma 4.19. Thus, it remains to show:

(if e[θ] then e1[θ] else e2[θ], R1 ⊕Rord(αe) ⊕R2 ⊕Rord(α1⊕α2)) ∈ EJAKi

By assumption (e[θ], R1 ⊕Rord(αe)) ∈ EJBKi. Thus, by Lemma 4.13, it su�ces to show:

(if v then e1[θ] else e2[θ], Rv ⊕R2 ⊕Rord(α1⊕α2)) ∈ EJAKj

for all j ≤ i and (v,Rv) ∈ VJBKj . By de�nition of the value relation, we have Rv = ε and

v = true or v = false.

1. Let v = true. By assumption (e1[θ], R2 ⊕ R
ord(α1)) ∈ EJAKi. By Lemma 4.12 and

Lemma 4.3, we have (e1[θ], R2⊕Rord(α1⊕α2)) ∈ EJAKj . The claim follows with Lemma 4.13

since if true then e1[θ] else e2[θ] e1[θ].

2. Let v = false. By assumption (e2[θ], R2 ⊕ R
ord(α2)) ∈ EJAKi. By Lemma 4.12 and

Lemma 4.3, we have (e2[θ], R2⊕Rord(α1⊕α2)) ∈ EJAKj . The claim follows with Lemma 4.13

since if false then e1[θ] else e2[θ] e2[θ].

Lemma 4.28.

· � n : N

Proof. Pick α , 0. Let (θ,R) ∈ GJ·Ki. It remains to show (n[θ], R
ord(0)) ∈ EJNKi. As

(n[θ], R
ord(0)) = (n, ε) ∈ VJNKi, the claim follows with Lemma 4.13.

Lemma 4.29.
Γ � e1 : N ∆ � e2 : N

Γ,∆ � e1u e2 : N

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. ThenRθ = R1⊕R2 for someR1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show (e1[θ]u e2[θ], R1 ⊕Rord(α1) ⊕R2 ⊕Rord(α2)) ∈ EJNKi.

27

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJNKi. By Lemma 4.13, it su�ces to show:

(v1u e2[θ], Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJNKj

for all j ≤ i and (v1, Rv1) ∈ VJNKj . By assumption (e2[θ], R2 ⊕ R
ord(α2)) ∈ EJNKi and

by Lemma 4.3 (e2[θ], R2 ⊕Rord(α2)) ∈ EJNKj . Thus, by Lemma 4.13, it su�ces to show:

(v1u v2, Rv1 ⊕Rv2) ∈ EJNKk

for all k ≤ j and (v2, Rv2) ∈ VJNKk. By de�nition of VJNK_, we know v1 = n1 and v2 = n2

and R1 = ε and R2 = ε for some n1, n2 ∈ N. As (n1 + n2, ε) ∈ VJNKk, the claim follows

with Lemma 4.13 given the pure reduction n1un2 n1 + n2.

Lemma 4.30.
Γ � e : N ∆ � e0 : A x : A � eS : A

Γ,∆ � iter(e, e0, x.eS) : A

Proof. By assumption, we haveαe for e, α0 for e0, andαS for eS . We pickα , αe⊕α0⊕ω⊗αS .

Let (θ,Rθ) ∈ GJΓ,∆Ki. Then Rθ = R1 ⊕ R2 for some R1, R2 such that (θ,R1) ∈ GJΓKi and

(θ,R2) ∈ GJ∆Ki by Lemma 4.19. Thus, it remains to show:(
iter(e[θ], e0[θ], x.eS [θ[x 7→ x]]), R1 ⊕Rord(αe) ⊕R2 ⊕Rord(α0) ⊕Rord(ω⊗αS)

)
∈ EJAKi

We have (e[θ], R1 ⊕ Rord(αe)) ∈ EJNKi and (e0[θ], R2 ⊕ Rord(α0)) ∈ EJAKi by assumption.

Hence, by Lemma 4.18, it su�ces to show:

(λx.eS [θ[x 7→ x]], R
ord(αS)) ∈ VJA(AKi

Let j ≤ i and (v,Rv) ∈ VJAKj . We show (eS [θ[x 7→ x]][v/x], R
ord(αS) ⊕ Rv) ∈ EJAKj . By

de�nition (θ[x 7→ v], Rv) ∈ GJx : AKj and thus by assumption (eS [θ[x 7→ v]], Rv⊕Rcap(αS)) ∈
EJAKj . The claim follows with eS [θ[x 7→ x]][v/x] = eS [θ[x 7→ v]].

Lemma 4.31.
Γ � e1 : A1 ∆ � e2 : A2

Γ,∆ � (e1, e2) : A1 ⊗A2

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. Then Rθ = R1 ⊕ R2 for some R1, R2 and (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show ((e1[θ], e2[θ]) , R1⊕Rord(α1)⊕R2⊕Rord(α2)) ∈ EJA1⊗A2Ki.

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJA1Ki. By Lemma 4.13, it su�ces to show:

((v1, e2[θ]) , Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJA1 ⊗A2Kj

for all j ≤ i and (v1, Rv1) ∈ VJA1Kj . We have (e2[θ], R2 ⊕Rord(α2)) ∈ EJA2Ki by assumption

and thus (e2[θ], R2 ⊕Rord(α2)) ∈ EJA2Kj by Lemma 4.3. By Lemma 4.13, it su�ces to show:

((v1, v2) , Rv1 ⊕Rv2) ∈ EJA1 ⊗A2Kk

for all k ≤ j and (v2, Rv2) ∈ VJA2Kk. The claim follows with Lemma 4.12 and Lemma 4.3.

28

Lemma 4.32.
Γ � e1 : A1 ⊗A2 ∆, x : A1, y : A2 � e2 : B

Γ,∆ � let (x, y) = e1 in e2 : B

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. Then Rθ = R1 ⊕ R2 for some R1, R2 and (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show:

(let (x, y) = e1[θ] in e2[θ[x 7→ x, y 7→ y]], R1 ⊕Rord(α1) ⊕R2 ⊕Rord(α2)) ∈ EJBKi

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJA1 ⊗A2Ki. By Lemma 4.13, it su�ces to show:

(let (x, y) = v in e2[θ[x 7→ x, y 7→ y]], Rv ⊕R2 ⊕Rord(α2)) ∈ EJBKj

for all j ≤ i and (v,Rv) ∈ VJA1 ⊗ A2Kj . By de�nition of the value relation, we have

v = (v1, v2) and R = Rv1 ⊕ Rv2 for some (v1, Rv1) ∈ VJA1Kj and (v2, Rv2) ∈ VJA2Kj .
By Lemma 4.13, it su�ces to show

(e2[θ[x 7→ v1, y 7→ v2]], Rv1 ⊕Rv2 ⊕R2 ⊕Rord(α2)) ∈ EJBKj

since let (x, y) = (v1, v2) in e2[θ[x 7→ x, y 7→ y]] e2[θ[x 7→ x, y 7→ y]][v1/x, v2/y] =
e2[θ[x 7→ v1, y 7→ v2]]. By Lemma 4.20, we have (θ,R2) ∈ GJ∆Kj . Thus, (θ[x 7→ v1, y 7→
v2], R2 ⊕ Rv1 ⊕ Rv2) ∈ GJ∆, x : A1, y : A2Kj by Lemma 4.21. The claim follows by the

assumption for e2.

Lemma 4.33.
Γ, x : A � e : B

Γ � λx.e : A(B

Proof. By assumption we have some αe for e. We pick α , αe. Let (θ,Rθ) ∈ GJΓKi. It remains

to show (λx.(e[θ[x 7→ x]]), Rθ ⊕ R
ord(α)) ∈ EJA (BKi. By Lemma 4.13, (λx.(e[θ[x 7→

x]]), Rθ ⊕Rord(α)) ∈ VJA(BKi su�ces. Let j ≤ i and (v,Rv) ∈ VJAKj . We show:

(e[θ[x 7→ x]][v/x], Rθ ⊕Rord(α) ⊕Rv) ∈ EJBKj

By Lemma 4.20, we have (θ,Rθ) ∈ GJΓKj . Hence (θ[x 7→ v], Rθ ⊕ Rv) ∈ GJΓ, x : AKj
by Lemma 4.21. By assumption, we have (e[θ[x 7→ v]], Rθ⊕Rv⊕Rord(α)) ∈ EJBKj . The claim

follows with e[θ[x 7→ v]] = e[θ[x 7→ x]][v/x].

Lemma 4.34.
Γ � e1 : A(B ∆ � e2 : A

Γ,∆ � e1 e2 : B

29

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. ThenRθ = R1⊕R2 for someR1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show (e1[θ] e2[θ], R1 ⊕Rord(α1) ⊕R2 ⊕Rord(α2)) ∈ EJBKi.

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJA(BKi. By Lemma 4.13, it su�ces to show:

(v1 e2[θ], Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJBKj

for all j ≤ i and (v1, Rv1) ∈ VJA (BKj . By assumption, we have (e2[θ], R2 ⊕ Rord(α2)) ∈
EJAKi and thus (e2[θ], R2⊕Rord(α2)) ∈ EJAKj by Lemma 4.3. Hence, by Lemma 4.13, it su�ces

to show:

(v1 v2, Rv1 ⊕Rv2) ∈ EJBKk
for all k ≤ j and (v2, Rv2) ∈ VJAKk. By de�nition of VJA (BKj , we know v1 = λx.e for

somex and e. Further, we have (e[v2/x], Rv1⊕Rv2) ∈ EJBKk. The claim follows by Lemma 4.13

given the pure reduction (λx.e) v2 e[v2/x].

Lemma 4.35.
Γ � e1 : GetA ∆ � e2 : A(1

Γ,∆ � get(e1, e2) : 1

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. ThenRθ = R1⊕R2 for someR1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show (get(e1[θ], e2[θ]), R1⊕Rord(α1)⊕R2⊕Rord(α2)) ∈ EJ1Ki.
By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJGetAKi. By Lemma 4.13, it su�ces to show:

(get(v1, e2[θ]), Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJ1Kj

for all j ≤ i and (v1, Rv1) ∈ VJGetAKj . By assumption, we have (e2[θ], R2 ⊕ Rord(α2)) ∈
EJA (1Ki and thus by Lemma 4.3 it follows (e2[θ], R2 ⊕ Rord(α2)) ∈ EJA (1Kj . Hence,

by Lemma 4.13, it su�ces to show:

(get(v1, v2), Rv1 ⊕Rv2) ∈ EJ1Kk

for all k ≤ j and (v2, Rv2) ∈ VJA(1Kk. The claim follows with Lemma 4.15 and Lemma 4.3.

Lemma 4.36.
Γ � e1 : PutA ∆ � e2 : A

Γ,∆ � put(e1, e2) : 1

Proof. By assumption, we have α1 for e1 and α2 for e2. We pick α , α1 ⊕ α2. Let (θ,Rθ) ∈
GJΓ,∆Ki. ThenRθ = R1⊕R2 for someR1, R2 such that (θ,R1) ∈ GJΓKi and (θ,R2) ∈ GJ∆Ki
by Lemma 4.19. It remains to show (put(e1[θ], e2[θ]), R1⊕Rord(α1)⊕R2⊕Rord(α2)) ∈ EJ1Ki.

By assumption (e1[θ], R1 ⊕Rord(α1)) ∈ EJPutAKi. By Lemma 4.13, it su�ces to show:

(put(v1, e2[θ]), Rv1 ⊕R2 ⊕Rord(α2)) ∈ EJ1Kj

30

for all j ≤ i and (v1, Rv1) ∈ VJPutAKj . By assumption, we have (e2[θ], R2 ⊕ Rord(α2)) ∈
EJAKi. Thus, (e2[θ], R2 ⊕Rord(α2)) ∈ EJAKj by Lemma 4.3. Hence, by Lemma 4.13, it su�ces

to show:

(put(v1, v2), Rv1 ⊕Rv2) ∈ EJ1Kk
for all k ≤ j and (v2, Rv2) ∈ VJAKk. The claim follows with Lemma 4.16 and Lemma 4.3.

Lemma 4.37.
Γ, x : GetA, y : PutA � e : B

Γ � let (x, y) = chan() in e : B

Proof. By assumption we have some αe for e. We pick α , αe ⊕ 1. Let (θ,Rθ) ∈ GJΓKi. We

show (let (x, y) = chan() in (e[θ[x 7→ x, y 7→ y]]), Rθ⊕Rord(αe)⊕Rord(1)) ∈ EJBKi. To show

the claim, we use Lemma 4.14. Let ` be some location. It remains to show:

(e[θ[x 7→ x, y 7→ y]][`/x, `/y], Rθ ⊕Rcap(αe) ⊕Rget(`,A) ⊕Rput(`,A)) ∈ EJBKi

By de�nition (`, R
get(`,A)) ∈ VJGetAKi and (`, R

put(`,A)) ∈ VJPutAKi. Thus, we have:

(θ[x 7→ `, y 7→ `], Rθ ⊕Rget(`,A) ⊕Rput(`,A)) ∈ GJΓ, x : GetA, y : PutAKi

with Lemma 4.21. The claim follows by assumption with e[θ[x 7→ x, y 7→ y]][`/x, `/y] =
e[θ[x 7→ `, y 7→ `]].

31

References

[1] A. Ahmed, M. Fluet, and G. Morrisett. L3
: a linear language with locations. Fundamenta

Informaticae, 77(4):397–449, 2007.

[2] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages 366–378.

IEEE, 2007.

[3] G. Hessenberg. Grundbegri�e der Mengenlehre, volume 1. Vandenhoeck & Ruprecht, 1906.

[4] N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Super�cially substructural types. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming,

pages 41–54, 2012.

[5] A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for

�ne-grained concurrency. In POPL, pages 343–356. ACM New York, NY, USA, 2013.

32

	1 The Language chan
	2 Ordinals
	3 Resources
	4 Logical Relation
	4.1 Kripke Logical Relation
	4.2 Resource Interpretation Properties
	4.3 Properties of the Type Interpretations
	4.4 Semantic Typing
	4.5 Compatibility Lemmas

