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Abstract

In this project, we explore how observational type theory, in particular Pujet’s TTobs system, can
be implemented in Haskell. We use the normalisation by evaluation technique to produce an effi-
cient normalisation function, which in turn is used to implement a bidirectional type checker. We
then extend the core TTobs calculus with quotient types and inductive types, allowing for greater
expressivity. To better the practicality of using the system also explore various proof-assistant
features, notably pattern unification for inferring terms which can be deduced from context. For
way of evaluation, we implement proofs within the system to exemplify the capabilities of the
implementation.
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Chapter 1

Introduction

Dependent type theories provide a framework for expressing programs with precise constraints,
with proofs of correctness directly part of the program itself. Alternatively, they are a language for
higher-order constructive logic associated with a mechanical procedure for checking correctness of
proofs. This project details the implementation of a type checker for a dependent type theory with
observational equality, called TTobs [1, 2]. By implementing this type system, we can automatically
check correctness of proofs.

Central to dependent type theory is a relation for deciding when two terms are equal. We
introduce a relation of definitional equalities which are simple enough to decide automatically. In
general, semantic equality between arbitrary terms is undecidable, so we introduce an notion of
propositional equality, living in the system itself.

Observational equality [3] is one formulation of propositional equality. It encodes computation
of equality types: equalities reduce to their components, meaning proofs are broken down. We
prove equality between terms by their observable behaviour, instead of how they were constructed.
Observational equality behaves well with proof-irrelevance, where certain types contain at most
one inhabitant with no computational meaning. When equality types are irrelevant, we recover
canonicity of equalities by asserting that all proofs are equal. We also recover desirable properties
which are impossible to prove in other settings, including function extensionality of proposition
extensionality.

We explore how to apply normalisation by evaluation (NbE) [4] to observational type the-
ory. NbE is a technique for efficiently computing normal forms of open terms by avoiding naïve
substitution.

Of particular interest is dealing with the proof-irrelevant layer of TTobs. As propositional
proofs do not reduce, they require special treatment. We develop a novel technique for dealing
with propositions in NbE in Section 3.2.3.

We first implement the core of TTobs, which includes the only the essential components neces-
sary. We design bidirectional typing rules and implement a type-checker (Section 3.3). Conversion
checking – deciding convertibility of terms – compares normal forms of terms computed using
NbE (Section 3.2). Next, we extend TTobs with a richer type system including quotient types
(Section 3.4) and inductive types (Section 3.5). Quotients allow us to maximally exploit observa-
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tional equality, by defining custom equivalence relations on types, and inductive types provide
recursive data-structures with induction principles.

We then add pattern unification, a tool for automatically inferring terms which are uniquely
determined from the surrounding context (Section 3.6). This does not extend the type theory
itself, but improves the practicality of writing programs.

1.1 Related work
Normalisation by evaluation, both typed and untyped, is described in [4], also for dependent types.
The implementation style for evaluation and bidirectional type-checking is based upon András
Kovács’ elaboration-zoo [5]. This is an extension of Coquand’s algorithm for type-checking
dependent types [6].

In [7], Fiore constructs a typed NbE algorithm from a categorical account. This is later
translated into Agda code.

Abel et. al. [8] describe normalisation in the presence of proof-irrelevance. They introduce
a special semantic value which canonically inhabits any proof-irrelevant type. This amounts to
proof erasure: proof witnesses are erased during evaluation.

TTobs is given by Pujet and Tabareau in [1] and [2]. Metatheory and decidability are their
primary focusses. They also gives the typing rules and theory behind quotient types and non-
recursive inductive, which we build upon here.

Another earlier observational type theory was given by Altenkirch et. al. [9]. This paper gives
the first example of an observational type theory, which reduces compromises from intensional
and extensional type theories. TTobs is inspired by this work, and in particular adds definitional
equality within proof-irrelevant types.
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Chapter 2

Background

In this chapter, we give the necessary background on dependent type theory in Section 2.1 and
normalisation by evaluation in Section 2.5 required for the following chapters.

2.1 Dependent type theory
Before introducing dependent type theory, consider the following grammar for the simply typed
lambda calculus with syntax for types and terms respectively.

A,B ::= > | ⊥ | N | A× B | A → B

t, u ::= x | ∗ | abort t | 0 | S t | rec(t, 0 → t0;S x → tS) | 〈t; u〉 | fst t | snd t | λx. t | t u

> is the unit type with one inhabitant, ∗, ⊥ is the uninhabited type with elimination principle
abort, and N is the type of Peano numbers generated by 0 and S, with a recursion principle rec.
Variables are placeholders which are substituted for other terms. We write t[u/x] for the term t

with each free occurrence of x replaced by u.
We generally use the convention of uppercase Latin letters, A, B, C, etc. for types and

lowercase Latin letters t, u, v, etc. for terms. Variables use letters x, y and z. We make a visual
distinction between object-language syntax using bold text (e.g. abort) and meta-language syntax
using sans-serif (e.g. Tm).

In a dependent type system, types depend on terms. A prominent example is dependent
function types, which allow the codomain type to depend on the value of the argument. We also
allow types and terms to depend on types and terms, giving the Calculus of Constructions [10].
Consider the following grammar from which we construct a dependent type system.

A,B, t, u ::= x Variable
| ∗ | > Unit
| abort t | ⊥ Empty
| 0 | S t | rec[z.C](t, 0 → t0; (S x) y → tS) | N Natural numbers
| 〈t; u〉 | fst t | snd t | Σ(x : A). B Dependent sums
| λx. t | t u | Π(x : A). B Dependent products
| U Universe
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Product and function types are replaced with Σ and Π types, their dependent analogues1. Both
of these forms introduce a variable x into B, expressing a dependency. There is a new term, U ,
representing the universe of types, also referred to as a sort. As types are now terms, they too
must be typeable. Natural number recursion includes a motive [z. C], which is an indexed return
type, or an induction hypothese. This makes rec an induction principle.

Next, we introduce typing rules for these terms. We have three kinds of rules: formation rules,
checking a type is valid, introduction forms, describing construction of a type, and elimination
forms for using a value of a type. The context Γ binds free variables in both the term and the
type in a judgement Γ ` t : A.

Consider the rules for Π-types.
Π-Form
Γ ` A : U Γ, x : A ` B : U

Γ ` Π(x : A). B : U

Π-Intro
Γ, x : A ` t : B

Γ ` λx. t : Π(x : A). B

Π-Elim
Γ ` t : Π(x : A). B Γ ` u : A

Γ ` t u : B[u/x]

The formation rule says Π(x : A). B has type U (read: is a type) when A is a type, and B is a
family of types indexed by A. The introduction rule says t must have type B in the extended
context Γ, x : A. This implies B lives in the context Γ, x : A: it is allowed to depend on the
argument to the function. Application substitutes the argument u for x in the return type, B.

Next we create typing rules for natural numbers.

N-Form

Γ ` N : U

N-Intro-0

Γ ` 0 : N

N-Intro-S
Γ ` t : N

Γ ` S t : N

N-Elim
Γ, z : N ` C : U Γ ` t : N Γ ` t0 : C[0/z] Γ, x : N, y : C[x/z] ` ts : C[S x/z]

Γ ` rec[z.C](t, 0 → t0; (S x) y → tS) : C[t/z]

The formation and introduction rules are as expected. The induction principle is more involved.
t0 is the base case. Indeed, it is an element of the motive at 0. tS is the inductive step. It
acts generically in a natural number, x, and accesses the hypothesis through the variable y. It
produces an element at index S x. Finally, the argument t picks out the inductively generated
value at index t. This is computed by applying the inductive step to the base value t times.

As U is itself a term, it has a typing rule.
U-Form

Γ ` U : U

This in fact leads to inconsistency in the system through the Burali-Forti paradox [11]. We
1Confusingly, dependent sums (Σ-types) are the analogue of products.
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ignore this problem here, noting it is resolved by introducing a countable hierarchy of universes
of increasing size – each universe satisfies Ui : Ui+1, so no universe contains itself.

2.1.1 Definitional equality

Up to this point, we cannot convert types. For example, consider terms f : Π(x : >).> and
u : (λx.>) ∗. We want to judge u : >, as (λx.>) ∗ computes to >, making f u : > valid. In
other words, (λx.>) ∗ should be equal to >. To address this, we introduce definitional equality,
Γ ` t ≡ u : A, which says t and u, both having type A, are equal. With this, we introduce another
typing rule

Conv
Γ ` t : A Γ ` A ≡ B : U

Γ ` t : B

On terms, definitional equality is βη-equivalence.
>-η

Γ ` t ≡ u : >

N-β0

Γ ` rec[z.C](0, 0 → t0; (S x) y → tS) ≡ t0 : C[0/z]

N-βS
rect ≜ rec[z.C](t, 0 → t0; (S x) y → tS)

Γ ` rec[z.C](S t, 0 → t0; (S x) y → tS) ≡ tS[t/x, rect/y] : C[S t/z]

Σ-β1

Γ ` fst 〈t; u〉 ≡ t : A

Σ-β2

Γ ` snd 〈t; u〉 ≡ u : B[t/x]

Σ-η

Γ ` 〈fst t; snd t〉 ≡ t : Σ(x : A). B

Π-β

Γ ` (λx. t) u ≡ t[u/x] : B[u/x]

Π-η

Γ ` λx. t x ≡ t : Π(x : A). B

β-rules correspond to reduction of terms, where an elimination form is adjacent to an introduction
form. η-rules correspond to unicity principles: they exhibit the canonical form inhabiting a
certain type (e.g. >-η shows ∗ is the only inhabitant of >). We do not have a η-rules for positive
types: such laws enforce canonical forms, but are expensive when deciding this relation, or even
undecidable. These rules define an equivalence relation on terms, however the β-rules are written
suggestively indicating reduction when read left-to-right.

Alongside these rules, we need congruence rules allowing definitional equality to act recursively
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on terms. For example, the following computes the term inside a projection when it is not a pair.
Cong-fst
Γ ` t ≡ u : Σ(x : A). B

Γ ` fst t ≡ fst u : A

Definitional equality on types computes by recursively comparing the subterms.
>-Conv

Γ ` > ≡ > : U

N-Conv

Γ ` N ≡ N : U

U-Conv

Γ ` U ≡ U : U

Π-Conv
Γ ` A ≡ A′ : U Γ, z : A ` B[z/x] ≡ B′[z/x′] : U

Γ ` Π(x : A). B ≡ Π(x′ : A′). B′ : U

Σ-type equality takes the same form as Π-type equality. For deciding definitional equality between
Π-types, we check the domains are equal under Γ, and the codomains are equal under Γ extended
with a fresh variable of type A. Note that B′ is well-typed under Γ, x : A′, but z has type A, so
this substitution is only well-typed after establishing A ≡ A′.

One final rule to tie this judgement together variable equality.
Var-Conv

Γ ` x ≡ x : A

This states that all variables are definitionally equal to themselves. In general different variables
are not convertible.

2.2 Observational type theory
Observational type theory gives a notion of propositional equality. For an account of inductive
equality, see Appendix A. The motivating idea is to equate terms using their observable behaviour
instead of a uniform construction [9]. Using this, we add axioms like function and proposition
extensionality to the system, without problems with normalisation. We enjoy canonicity due to
proof-irrelevance.

2.2.1 Proof irrelevance

Before introducing observational equality, we require proof-irrelevant propositions to create types
serving only as propositions. As mentioned in Section 2.1, (proof-relevant) types have sort U . We
introduce another sort, Ω, of proof-irrelevant types. To axiomatise irrelevance, we introduce the
following definitional equality rule

Ω-Irrelevance
Γ ` A : Ω Γ ` t : A Γ ` u : A

Γ ` t ≡ u : A

11



which says if two terms t and u both have type A, which is a propositition (it has sort Ω), then t

and u are equal. Therefore, we cannot distinguish between proofs, so their content is irrelevant,
implying proof-irrelevant types are subsingletons with at most one inhabitant.

2.2.2 Propositional logic

To define observational equality, we require additional machinery. We have a propositional uni-
verse containing proof-irrelevant types serving as propositions, however we have not discussed
how to construct them.

First, we repurpose > and ⊥ to act as true and false propositions (meaning they now live in
Ω) since they are already subsingletons.

Dependent logical implication and universal quantification are given by Π-types. We extend
Π-types with the ability to map between sorts.

Π-Form
Γ ` A : s Γ, x :s A ` B : s′

Γ ` Π(x :s A). B : s′

The symbol s is used for an arbitrary sort, U or Ω.
Note that the context and Π type include sort annotations, which are omitted when clear.
Dependent implication is given when both the sorts are Ω: it is a map from propositions to

propositions. Universal quantification is given when the domain is relevant: the type represents
an indexed family of propositions, and an inhabitant is a mapping from any element of the domain
to a corresponding proof. Note that the sort of a Π-type is given by the codomain sort, so both
implication and universal quantification are propositions.

We extend Σ-types in a similar manner. We reserve the notation of Σ-types for proof-relevant
dependent pairs, and introduce ∃ for propositional dependent pairs.

∃-Form
Γ ` A : s Γ, x :s A ` B : Ω

Γ ` ∃(x :s A). B : Ω

When s is Ω, we obtain dependent logical conjunction. When s is U , we instead have existential
quantification.

2.2.3 Observational equality

Observational equality is introduced as a family of types.
Eq-Form
Γ ` A : U Γ ` t : A Γ ` u : A

Γ ` t ∼A u : Ω

Eq-Intro
Γ ` A : U Γ ` t : A

Γ ` refl t : t ∼A t
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Eq-Elim
Γ ` t : A

Γ, x : A, p : t ∼A x ` C : Ω Γ ` u : C[t/x, refl t/p] Γ ` t′ : A Γ ` e : t ∼A t′

Γ ` transp(t, x p. C, u, t′, e) : C[t′/x, u/p]

We have a transport operator, transp for manipulating irrelevant proofs. This transports a
proof u, along a proof of equality, e. This is strong enough to prove that ∼A is a congruence: an
equivalence relation supporting function application either side of the equality. To manipulate
proof-relevant content via equality, we introduce a casting operator.

Cast
Γ ` A : s Γ ` B : s Γ ` e : A ∼s B Γ ` t : A

Γ ` cast(A,B, e, t) : B

Casting works with both proof-relevant and propositional types, though the latter is subsumed
by transp.

An important observation is that casts and transports do not compute on refl like J does with
inductive. This is a feature of irrelevance: we care only that we have an equality proof, not that
it is reflexivity.

Next, we discuss the definitional equalities associated with observational equality. The ob-
servational equality type t ∼A u behaves differently from other types we have seen. Equalities
reduce by decomposition into smaller components.

We give some of the rules for how equalities reduce (recall that reduction is expressed through
definitional equality). First, consider equalities concerning the natural numbers type.

Eq-N

Γ ` N ∼U N ≡ > : Ω

Eq-0

Γ ` 0 ∼N 0 ≡ > : Ω

Eq-S

Γ ` S n ∼N S n′ ≡ n ∼N n′ : Ω

Eq-S-0

Γ ` S n ∼N 0 ≡ ⊥ : Ω

Eq-0-S

Γ ` 0 ∼N S n ≡ ⊥ : Ω

Viewing propositions logically, > is the type of a true proposition, and ⊥ represents falsehood.
Thus, saying 0 ∼N 0 reduces to > is means it holds trivially. Similarly, 0 ∼N S n reducing to ⊥
means 0 ∼N S n is uninhabited: there are no proofs of this equality.

Next we define observational equality rules for Π and Σ types.
Eq-Π

a ≜ cast(A′, A, e, a′)

Γ ` Π(x :s A). B ∼U Π(x′ :s A
′). B′ ≡ ∃(e : A′ ∼s A). Π(a

′ : A′). B[a/x] ∼U B′[a′/x′] : Ω

Eq-Fun

Γ ` f ∼Π(x:A).B g ≡ Π(a : A). f a ∼B[a/x] g a : Ω

13



Eq-Ω

Γ ` P ∼Ω Q ≡ (P → Q) ∧ (Q → P ) : Ω

Eq-Σ
a′ ≜ cast(A,A′, e, a)

Γ ` Σ(x :s A). B ∼U Σ(x′ :s A
′). B′ ≡ ∃(e : A ∼s A

′). Π(a : A). B[a/x] ∼U B′[a′/x′] : Ω

Eq-Pair
ap B e ≜ transp(fst t, z _. B[fst t/x] ∼U B[z/x], refl B[fst t/x], fst u, e)

t2 ≜ cast(B[fst t/x], B[fst u/x], ap B e, snd t)

Γ ` t ∼Σ(x:A).B u ≡ ∃(e : fst t ∼A fst u). t2 ∼B[fst u/x] snd u : Ω

The rule Eq-Π says equality of Π-types is equivalent to showing that their domains are equal,
and for any argument a′ : A′, their codomains are equal2. Eq-Σ computes similarly, but with a
symmetric proof. The rule Eq-Fun says proving functions f and g are equal is equivalent to a
proof of pointwise equality. We note that this is precisely function extensionality, posed as a def-
initional axiom: the original motivation for pursuing observational equality. We equate functions
observationally by saying they are equal when they have the same observable behaviour. Eq-Ω
axiomatises propositional extensionality: equality of propositions is equivalent to bi-implication –
we denote non-dependent conjunction ∃(_ : A). B by A ∧ B. Eq-Pair says equality of pairs is
a pair of proofs that the first and second components are equal. We use ap (implemented using
transp) to apply the type family B to either side of the equality e.

Other rules for observational equality reduction are similar, with composite propositions
equated with the appropriate combination of their components, trivial propositions equating
to > and false propositions equating to ⊥.

2.2.4 Casting rules

Casts between relevant types also reduce. As a simple example, we consider casting in the natural
numbers.

Cast-0

Γ ` cast(N,N, e, 0) ≡ 0 : N

Cast-S

Γ ` cast(N,N, e, S n) ≡ S (cast(N,N, e, n)) : N

These rules simply proceed by recursion on the structure of the given number. This anticipates
more general positive types appearing later on.

2We could equivalently formulate this symmetrically, with a proof e : A ∼ A′. The chosen direction is more
convenient, as functions are contravariant in their domains.
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There are casting rules for Π and Σ types.
Cast-Π

a ≜ cast(A′, A, fst e, a′)

Γ ` cast(Π(x : A). B,Π(x′ : A′). B′, e, f) ≡
λa′. cast(B[a/x], B′[a′/x], snd e a′, f a) : Π(x′ : A′). B′

Cast-Σ
a′ ≜ cast(A,A′, fst e, fst t)

Γ ` cast(Σ(x : A). B,Σ(x′ : A′). B′, e, t) ≡ 〈a′; cast(B[fst t/x], B[a′/x], snd e (fst t), snd t)〉

Propositional equality types between Π and Σ types reduce, so the projections extract their sub-
proofs. In each case, the second projection is a family of proofs, so we apply an argument to
extract a particular proof.

The general form of casts on positive types is to determine the head constructor of the term,
and then use the same constructor to build a new term, proceeding to recursively cast the sub-
terms. For negative types with a canonical introduction form (e.g. Π and Σ), the η laws let us
preemptively determine the head constructor by η-expanding the term being cast.

When casting a type between equal universes, cast also reduces.
Cast-Univ

Γ ` cast(s, s, e, A) ≡ A : s

It seems natural to add a rule to reduce casts whenever the two types are definitionally equal;
after all, the term is already typeable under the target type. We might propose the rule

Cast-Eq
Γ ` A ≡ A′ : U

Γ ` cast(A,A′, e, t) ≡ t : A′

which subsumes many previous rules. However, this rule is problematic as it stands. If this rule
is treated as a reduction, then there are multiple paths to reduce some cast expressions, which
breaks determinism3. It also makes reduction and conversion checking mutually recursive.

Alternatively, this rule can exist within the conversion checking procedure, but this necessi-
tates backtracking. We opt for this strategy here.

Another alternative is to add a propositional constant which witnesses this equality [1].

2.3 Quotient types
Quotient types allow us to exploit the setoid structure of types [1] by explicitly defining an
equivalence relation over a pre-existing type. Types formed from a quotient must obey this
artificial equivalence relation as if it were observational equality.

Quotient types are formed constructively from an underlying (proof-relevant) base type, a
3At this point we have no distinction between reduction and definitional equality. Mathematically, they play

the same role, so this foreshadows future concerns.
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binary relation on this type and a proof that this relation is an equivalence. Let A be the base
type. A binary relation on A is a function R : A → A → Ω – each pair of elements maps to a
proposition which is either inhabited or not, making R a predicate. We require an explicit proof
that R is an equivalence relation.

The syntax for quotient types is as follows.

A/(x y. R, x Rr, x y xRy. Rs, x y z xRy yRz. Rt)

We use the shorthand notation A/R.
Quotient formation is typed by the following rule.

Quotient-Form
Γ ` A : U Γ, x : A, y : A ` R : Ω Γ, x : A ` Rr : R[x, x]

Γ, x : A, y : A, xRy : R[x, y] ` Rs : R[y, x]

Γ, x : A, y : A, z : A, xRy : R[x, y], yRz : R[y, z] ` Rt : R[x, z]

Γ ` A/(x y. R, x. Rr, x y xRy. Rs, x y z xRy yRz. Rt) : U

We first check that A is a relevant type, and R is a binary relation over A. The proof term Rr

is indexed over an arbitrary x : A, acting as a generic proof of reflexivity. The proofs Rs and Rt

act similarly, and symmetrise and compose proofs respectively.
Terms of the quotient type are introduced by π t, which projects a term t of the base type

into the quotient. The equivalence relation divides the underlying type into equivalence classes
of related elements; projection sends an element to its equivalence class. The typing rule is as
follows.

Quotient-Intro
Γ ` t : A

Γ ` π t : A/R

Finally, elimination is given by the term

Q-elim[z. B](x. tπ, x y xRy. t∼, u)

Elimination is a map out of the underlying type which preserves the equivalence relation. Con-
structively, this means associating the map with a proof that related elements in the quotient
map to observationally equal elements of the codomain.

Quotient-Elim
B[xRy] ≜ transp(π x, z _. B[π x] ∼s B[z], refl B[π x], π y, xRy)

Γ, z : A/R ` B : s Γ, x : A ` tπ : B[π x]

Γ, x : A, y : A, xRy : R[x, y] ` t∼ : cast(B[π x], B[π y], B[xRy], tπ x) ∼B[π y] (tπ y)

Γ ` u : A/R

Γ ` Q-elim[z. B](x. tπ, x y xRy. t∼, u) : B[π u]

The term tπ is the dependent map out of the underlying type A. t∼ is the proof that the
equivalence relation is respected as observational equality in the codomain. This way, we enforce
the opacity of quotient types: distinct elements from A might both be projected into A/R, but if
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they are related by R, they are no longer distinguishable.
Here, we treated xRy : R[x, y] as a proof of π x ∼A/R π y to create a proof B[π x] ∼s B[π y].

To justify this, we introduce observational equality rules for quotients in the following section.

2.3.1 Observational equality for quotient types

To integrate quotient types with observational type theory, we need to specify how observational
equality and casting behaves on them.

Between two quotient types, observational equality reduces to a composite equality between
the components: equality between the underlying types and the relations. The equivalence proofs
are irrelevant, and therefore trivially equal. The rule encapsulating this is

Quotient-Eq
x′ ≜ cast(A,A′, e, x) y′ ≜ cast(A,A′, e, y)

Γ ` A/R ∼U A′/R′ ≡ ∃(e : A ∼U A′). Π(x :s A).Π(y :s A).R[x, y] ∼Ω R′[x′, y′]

which steps to a dependent proof-irrelevant conjunction of proofs that the base types are equal,
and at any pair of elements, the relations are equal.

Equality on projected terms resolves to the equivalence relation R. This unifies the artifi-
cial equivalence relation with the observational-equality-induced setoid structure, justifying the
Quotient-Elim rule.

Quotient-Proj-Eq

Γ ` π t ∼A/R π u ≡ R[t, u]

We also have a casting rule between projected elements.
Quotient-Proj-Cast

Γ ` cast(A/R,A′/R′, e, π t) ≡ π (cast(A,A′, fst e, t))

We reduce casts when the term being cast reaches a normal form, by pushing the cast under the
projection. To do so, we project the first component of the equality proof e, where e is a pair of
proofs between the base types and the relations.

2.4 Inductive types
Inductive types are recursively-defined positive types with named constructors. Indexed inductive
types are type families parameterised by an index type A. Each constructor specifies the index
of the value it constructs and recursive occurences may use different indices.

We start with some simple examples.

Example 2.4.1 (Length indexed vectors). Consider the type Vec n of length n vectors of natural
numbers. We define the following inductive type.
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µVec : N → U .
[ Nil : Vec 0

; Cons : Π(n : N). N → Vec n → Vec (S n)

]

The Nil constructor creates a 0-length vector as it contains no data. The Cons constructor takes
a number and a length n vector to create a length n + 1 vector. As we work in a constructive
setting, we also require the witness n to be present in the constructor.

Our inductive types are first-class [12, 13] meaning we can bind them to variables, pass them
into functions and generally treat them as any other value. Terms representing inductive type
have the following form:

µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

The variable F is bound by µ. A represents the index type. We have a finite set of constructors,
each with a name Ci, data of type Bi, and an index ai, which depends on the data through xi.
The F at the end of each constructor is syntax indicating the type being constructed; it is not a
free variable.

We restrict inductive types to exactly one parameter and one value in each constructor. This
loses no expressivity (albeit is more difficult to use practically) but simplifies the theory and
implementation.

The formation rule for inductive types is as follows.
Inductive-Form

Γ ` A : U {Γ, F : A → U ` Bi : U}i
{Γ, F : A → U , xi : Bi[F ] ` ai : A}i

Γ ` µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] : A → U

This rule checks that A is a relevant type. Then, for each constructor, we bind F and check that
Bi is a type. Bi recursively refers to the whole type via the variable F . Finally, we check that
each index has type A.

Values of inductive types are created by the constructors. We use a trick called fording [3]
to allow all constructors build a value of type (µF ) a for any index a, but require a proof that
ai ∼A a, rather than enforcing this condition definitionally.

Inductive-Intro
µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

Γ ` t : Bi[µF/F ] Γ ` e : ai[µF/F, t/xi] ∼A a

Γ ` Ci (t, e) : (µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]) a

We implicitly check that Ci is a constructor in the inductive type. Then, we check that t has type
Bi, substituting µF into Bi to check subterms. Finally, we check e witnesses that a and ai are
equal.

Elimination of inductive types is single-level, total pattern matching. Totalilty is necessary
for consistency; unmatched patterns could prove arbitrary propositions. The rule for pattern
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matching follows.
Inductive-Elim
Γ ` t : (µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]) a Γ, x : (µF ) a ` C : s

{Γ, xi : Bi[µF/F ], ei : ai[µF, xi] ∼A a ` ti : C[(Ci (xi, ei))/x]}i
Γ ` match t as x return C with {Ci (xi, ei) → ti} : C[t/x]

First, we check the discriminant t has an inductive type. Then, we check the return type C

is a type family indexed by the inductive type. Finally, for every constructor Ci, we check
the corresponding branch ti has type C with Ci (xi, ei) substituted for x. Therefore, whichever
constructor is matched on is substituted into C, justifying the return type of the whole expression,
C[t/x].

This rule appears strange, as the type C does not abstract over the index. Suppose we match
on Nil : Vec 0 from Example 2.4.1, so x : Vec 0 ` C : s. In the Cons branch, we substitute Cons
into C. However, the given index of Cons is S n, so this appears ill-typed! But due to fording,
we can have Cons : Vec 0, given a proof S m ∼ 0. We have access to this proof e in the Cons
branch, but S m ∼ 0 ≡ ⊥, so we abort e into the correct return type. This makes sense, as the
Cons branch is unreachable.

We conclude matching with the β-reduction rule.
Inductive-β

Γ ` match (Ci (t, e)) as x return C with {Ci (xi, ei) → ti} ≡ ti[t/xi, e/ei]

This finds the matching branch and substitutes in the data from the constructor.

2.4.1 Observational equality for inductive types

Next we integrate inductive types with observational equality, so they interact with the rest of
the TTobs system.

First, we introduce observational equality between inductive types. We might wish to reduce
these to composite propositions proving the index and constructor types are equal. This is quite
complex, so we instead opt for only reducing syntactically equal inductive types. Therefore,
equality serves only to equate the indices. The reduction rule is

Eq-Inductive
µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

Γ ` (µF ) a ∼U (µF ) a′ ≡ a ∼A a′

Having a single index greatly simplifies this reduction – with an arbitrary number, we need to
compare telescopes of parameters with numerous casts to ensure deeper equations are well-typed.

Inductive equality between constructors behaves like equality between natural numbers. When
two constructors are equal, the proposition steps to equality of the contents. When the construc-
tors are different, the proposition steps to ⊥. This encodes injectivity of constructors – different
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constructors never construct equal values.
Eq-Cons
µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

Γ ` Ci (t, e) ∼(µF )a Ci (u, e
′) ≡ t ∼Bi[µF ] u

Eq-Cons-6=
Ci 6= Cj µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

Γ ` Ci (t, e) ∼(µF )a Cj (u, e
′) ≡ ⊥

Casts on constructors reduce by composing equality proofs to correct the indices. Here we
exploit the fording proof.

Cast-Cons
µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

Γ ` cast((µF ) a, (µF ) a′, e, Ci (t, e
′)) ≡ Ci (t, e

′ ◦ e)

Here, ◦ represents proof concatenation, defined by

(p : x ∼ y) ◦ (q : y ∼ z) ≜ transp(y, w _. x ∼ w, p, z, q)

The proofs have types e : a ∼A a′ and e′ : ai[µF, t] ∼A a, so their composite is e′◦e : ai[µF, t] ∼A a′,
making the constructor well typed at (µF ) a′. Note that casting only modifies the proof at the
top layer and never traverses the structure.

2.4.2 Mendler induction

Pattern matching as elimination for inductive types does not fully exploit inductive types. In
particular, we have no notion of induction or recursion over data-structures – we can look only
one level at a time with pattern matching. This motivates adding the induction principle, fix.
The design of fix is guided by the categorical intuition found in Appendix B.

We present fix, in a style extending Mendler recursion [14] to dependent induction.
Fix

µF ≜ µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

F [X] ≜ µF : A → U . [
−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[X/F ]) → F ai]

Γ, G : A → U , p : A, x : G p ` C : s

Γ, G : A → U , f : Π(p : A). Π(x : G p). C[G, p, x], p : A, x : F [G] p ` t : C[F [G], p, x]

Γ ` fix [µF as G] f p x : C = t : Π(p : A). Π(x : (µF ) p). C[µF, p, x]

We make two auxilliary definitions. We abbreviate the inductive type to µF . F [X] represents the
functor defining the inductive type applied to the type family X. This is defined by constructing
a new inductive type, where X is substituted for F into each Bi. Therefore, F [X] is mute in the
variable F . Intuitively, this represents adding a single layer of structure over the family X.

Next, we check that the fixed-point is well-formed. We require that the induction principle is
well-founded: recursive calls (corresponding to the induction hypotheses) occur only on strictly
smaller terms. Well-foundedness is essential for consistency of the system. Mendler induction
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operates by introducing a generic type family, G, on which we make recursive calls. Then, we lift
G to F [G]. This adds a single level on top of G, where each recursive position is replaced by the
opaque type G.

C is the induction hypothesis. It depends on the opaque variable G, the index p and x, the
argument of the fixed-point (one may note this is not very useful as G is opaque so nothing can
be learned from x; this is addressed in Section 2.4.3). The body of the fixed-point additionally
depends on the recursive function f , which acts only on G. Therefore, to invoke f recursively, we
deconstruct x : F [G] using pattern matching, so each recursive position is an element of G, and
can be passed to f . This ensures recursive calls occur only on subtrees.

Computation with fix occurs when it is applied to an index and a constructor.
Fix-β

fixf ≜ fix [µF as G] f p x : C = t

Γ ` fixf u (Ci (v, e)) ≡ t[µF/G, fixf/f, u/p, (Ci (v, e))/x]

The fixed-point reduces by substituting its own definition for f in t, so recursive calls have
access to the definition. The variable G is substituted with the inductive type µF , meaning the
fixed-point always semantically acts on the “real” type: the variable G indeed only serves as a
placeholder for statically ensuring termination. Finally, fixed-points only reduce when applied to
constructors – without this, conversion is undecidable, as fixed-points can unroll indefinitely.

Together, fixed-points and pattern matching admit catamorphisms: generalised folds over tree-
like structures. In the following section, we extension this to paramorphisms, providing primitive
recursion.

2.4.3 Views and paramorphisms

Mendler induction ensures fix is well-founded by restricting recursive appeals to the induction
hypothesis. However, in this process, we lose information about the inductive type.

This motivates extending catamorphisms to paramorphisms. We introduce an extra function
ι : Π(p : A). G p → (µF ) p which views the opaque type G as the inductive type it represents.
Semantically, this is the identity – after all, the variable G is substituted for the inductive type.

To type-check the body of the fixed-point, we need to lift ι : Π(p : A). G p → (µF ) p into
ι′ : Π(p : A). F [G] p → (µF ) p. This requires the defining functor of µF to lift indexed functions.
Strict positivity is a sufficient condition to construct this functor. However, we do not check strict
positivity, so we instead require an explicit definition.

We extend inductive type definitions to include a proof of functoriality.

µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] functor X Y f p x = t
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The extended typing rule now checks the functor action on functions.
Inductive-Form

F [Z] ≜ µF : A → U . [
−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[Z/F ]) → F ai]

Γ ` A : U {Γ, F : A → U ` Bi : U}i {Γ, F : A → U , xi : Bi[F ] ` ai : A}i
Γ, X : A → U , Y : A → U , f : Π(p : A). X p → Y p, p : A, x : F [X] p ` t : F [Y ] p

Γ ` µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] functor X Y f p x = t : A → U

The definition of F [Z] creates an inductive type without a functor instance. The new hypothesis
in this rule checks that t defines the functor action on functions. For correctness, we need proofs
that t satisfies the functor laws (F [idX ] = idF [X] and F [g ◦ f ] = F [g] ◦ F [f ]) which could be
checked by definitional equality. For simplicity, we ignore these proofs.

With this definition, we introduce a term fmap for projecting the functorial action from an
inductive type.

Fmap
F [Z] ≜ µF : A → U . [

−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[Z/F ]) → F ai]

µF ≜ µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] functor X Y f p x = t

Γ ` fmap [µF ] : Π(X : A → U). Π(Y : A → U). (Π(p : A). X p → Y p)

→ Π(p : A). F [X] p → F [Y ] p

We also introduce a term witnessing the in : F [µF ] → µF isomorphism.
Inductive-In

µF ≜ µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

F [X] ≜ µF : A → U . [
−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[X/F ]) → F ai]

Γ ` t : (F [µF ]) a

Γ ` in t : (µF ) a

Semantically, in is the identity function on constructors: in (Ci (t, e)) ≡ Ci (t, e)

With this infrastructure, we extend the typing rule for fixed-points.
Fix

µF ≜ µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

F [X] ≜ µF : A → U . [
−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[X/F ]) → F ai]

ι′ ≜ λp. λx. in (fmap [µF ] G µF ι p x) id ≜ λp. λx. x

Γ, G : A → U , ι : Π(p : A). G p → (µF ) p, p : A, x : G p ` C : s

Γ, G : A → U , ι : Π(p : A). G p → (µF ) p, f : Π(p : A). Π(x : G p). C[G, ι, p, x], p : A, x : F [G] p

` t : C[F [G], ι′, p, x]

Γ ` fix [µF as G view ι] f p x : C = t : Π(p : A). Π(x : (µF ) p). C[µF, id, p, x]

The variable ι is now accessible in both the induction hypothesis and the body of the fixed-point,
facilitating primitive recursion. At the top level, ι is substituted by the identity function. By
functoriality, this also means ι′ is in ◦ id, which also behaves as the identity.
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2.5 Normalisation by evaluation
We now turn away from the type theory, and towards how one might implement it. In particular,
we need a decision procedure for definitional equality of terms. This is done by comparing β-
normal forms structurally. β-normal forms are terms which cannot be further reduced. We do not
formally define reduction, but note that it corresponds to definitional equalities read left-to-right,
and excludes the η-laws.

Formally, a function nf, mapping terms to terms, computes β-normal forms if the conditions

(1) Γ ` t ≡ nf(t) (2) Γ ` t ≡ u =⇒ Γ ` nf(t) ≡η nf(u) (3) nf(nf(t)) = nf(t)

each hold. Condition (1) says the normal form nf(t) is definitionally equal to t (normalisation
does not alter the meaning of terms). (2) says definitionally equal terms have equal normal
forms. Note an important caveat here that we only require nf to compute β-normal terms; it does
not need to η-expand. The sub-relation ≡η relates terms which differ only by η-laws, but are
otherwise syntactically identical. We could alternatively define normalisation to compute η-long
normal forms and compare them purely structurally, though this is harder practically. Condition
(3) says normalisation is idempotent; iterating nf has no additional effect (= represents syntactic
equality).

Normalisation sends each term to a representative of its ≡-equivalence class. It is used to test
equality between terms by checking equality of their normal forms. Representatives of each class
are not unique, but are all equal up to η-equivalence, which is easy to check when equating terms
[6].

In dependent type-checking, it is necessary to normalise open expressions for checking defini-
tional equality. An implementation might perform normalisation by reduction rules using term
substitution. This fits the declarative mathematical style of typing rules, however in practice is
complex, error-prone and inefficient. The normalisation by evaluation (NbE) technique offers an
efficient alternative to normalise open terms.

The idea lies in constructing a semantic domain of values, rather than reducing them directly.
This domain is constructed to retain enough information to quote semantic values back to syntax.
The key property is that the terms produced by quoting are β-normal forms, so a normalisation
function is derived by first interpreting a term to a semantic value, and then quoting.

2.5.1 Semantic interpretation

To derive an NbE algorithm, we need an interpretation into a semantic domain. One way this
is achieved is by choosing a category with a structure capable of modelling the semantics of
the language. In this formulation, contexts and types are interpreted as objects, and well-typed
terms are morphisms. However, designing a suitable structure categorically becomes increasingly
difficult as the complexity of the language increases. Therefore, we use an untyped NbE algorithm,
like in [4].

To motivate NbE in a small dependently typed language, first consider the following syntax
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of terms, and their normal and neutral forms.

Tm 3 A,B, t, u ::= xi | ∗ | > | λ. t | t u | ΠA. B | U
Nf 3 v, w, V,W ::= ∗ | > | λ. v | ΠV. W | U | u
Ne 3 u, U ::= xi | u v

Variables are represented by de Bruijn indices, making binder names redundant. De Bruijn indices
replace variable names by the number of binders between the variable and its binding-site4. In
practice, names are retained at binding sites for quoting to human-readable terms.

All variables are neutral forms, regardless of their type – this means we allow non-η-unique
normal forms, for example the variable f and the term λx. f x are equal by η-equivalence, and
both normal forms.

We now construct a semantic domain D of values, given by the following mutually defined
abstract datatype.

D 3 a, b, A,B ::= Star | Unit | Lam (λt)ρ | Pi A (λt)ρ | U | ↑ e

Dne 3 e ::= Varl | App e a

Env 3 ρ ::= () | (ρ, a)

Environments are interpretations for contexts, represented by lists of values. In the Lam and Pi
constructors we have a closure (λt)ρ consisting of a term t ∈ Tm and an environment ρ ∈ Env.
Closures represent continuations – computations which need another value before proceeding.

In the semantic domain, we use de Bruijn levels for variables. Whereas de Bruijn indices count
the binders between the variable and the binding site, levels count from the top level down to the
binding site. Indices are problematic for semantic values because they change when moved under
binders, which amounts to inefficient traversals of terms during substitutions. On the other hand,
levels are constant for each variable, so substitutions avoid traversals.

An interpretation maps well-typed syntactic terms into the semantic domain. An interpreta-
tion in typed NbE is total by construction, however, in untyped NbE, we have no such guarantees,
so we settle for a partial interpretation map

[[_]]_ : Tm _ Env _ D

We use _ for partial meta-language functions.
This map is nonetheless constructed to be total on well-typed inputs. That is, if Γ ` t : A,

and ρ interprets Γ, then [[t]]ρ is defined.
4With respect to the tree structure of the term, not a string representation.
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With this, we give the semantics of terms in Tm

[[x0]](ρ, a) = a

[[xi+1]](ρ, a) = [[xi]]ρ

[[∗]]ρ = Star
[[>]]ρ = Unit
[[λ.t]]ρ = Lam (λt)ρ

[[t u]]ρ = [[t]]ρ · [[u]]ρ

[[ΠA. B]]ρ = Pi [[A]]ρ (λB)ρ

[[U ]]ρ = U

We also need a mutually defined application operator, _ · _ : D _ D _ D. This is given by

(Lam (λt)ρ) · a = [[t]](ρ, a)

(↑ e) · a = ↑(App e a)

Here we see how closure continuations work. We store the environment when the λ-term is
interpreted, which awaits one additional value: the argument to the function. When the Lam
value is applied to an argument a, we proceed by evaluating the stored term t with the extended
environment (ρ, a).

In the second case, a blocked neutral applied to a value becomes a blocked application; there
is no way to reduce it.

2.5.2 Quoting

The final component of NbE is the quoting function. This maps the semantic domain back into
syntactic terms, however it targets just those terms living in the Nf fragment. We define two
mutually recursive functions qNf

n : D _ Nf and qNe
n : Dne _ Ne. The subscript n represents the de

Bruijn level we are quoting at. This is used to recover the de Bruijn index of variables.

qNf
n (↑ e) = qNe

n (e)

qNf
n (Star) = ∗

qNf
n (Unit) = >

qNf
n (Lam (λt)ρ) = λ.qNf

n+1([[t]](ρ, ↑ Varn))
qNf

n (Pi A (λt)ρ) = Π(qNf
n (A)). (qNf

n+1([[t]](ρ, ↑ Varn)))
qNf

n (U) = U

qNe
n (Varl) = xn−l−1

qNe
n (App e a) = (qNe

n (e)) (qNf
n (a))

The interesting cases in quoting are Lam and Pi. In both cases, we quote a closure by creating a
fresh semantic variable and applying the closure to it. Note that semantic variables always quote
into variables, regardless of type. This re-emphasises that we do not η-expand at function types.
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Using de Bruijn levels for quoting ensures Varn is always fresh.
Now we have constructed a semantic interpretation map, which maps terms into the semantic

domain D, and a quoting function which maps semantic terms into normal forms. The final step
is to compose these to get a function

nbeΓ = qNf
|Γ| ◦ [[_]](↑Γ) : Tm _ Nf

where |Γ| represents the length of the context, and

↑⋄ = ()

↑Γ,x:A = (↑Γ, ↑ Var|Γ|)

constructs an environment of variables interpreting Γ.
To summarise, we constructed a partial function [[_]]_ which maps well-typed syntactic terms

Γ ` t : A and environments interpreting their free variables into a semantic domain D. Then we
created a quoting function qNf to convert values back into normal forms. By composing these, we
ended up with a normalisation function nbeΓ.
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Chapter 3

Implementation

In this chapter, we discuss the implementation of TTobs. The implementation is written in Haskell,
and makes extensive use of structural data types and declarative style to keep the implementation
as close as possible to the theory.

In Section 3.1, we cover the core syntax of the language. Then, we look at the implementation
of evaluation in Section 3.2. In Section 3.3 we implement the core typing rules of TTobs, followed
by extensions. Finally, we look at pattern unification in Section 3.6 which provides an essential
tool for using the system in practice. Figure 3.1 gives a high-level overview of the implementation.

String Source code

Parsing

Parse error PreTm Pre-syntax (Section 3.1)

Type inference and elaboration (Section 3.3.2)

Type error Tm All terms

TmU Nf TmΩ Relevant terms, normal forms and
irrelevant terms.

Interpretation and quoting

DU DΩ Semantic values (Section 3.2)

Conversion checking (Section 3.3.1) and
unification (Section 3.6)

Success Unification error

parseparse errors

infer errors infer

⊂

[[_]]U_

⊃

⊃

[[_]]Ω_

⊃

qNf

conv errorsconv

qΩ

Figure 3.1: A high-level overview of the interaction of the components in the type-checker.
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3.1 Syntax
Before discussing type-checking and normalisation by evaluation, we require an abstract syntax
for TTobs. In this section, we describe the core syntax; extensions are added later in this chapter.

TTobs is a dependent type system, so types depend on arbitrary terms and we create one
combined grammar for everything, as described in Section 2.1. The grammar for terms is given
in Figure 3.2, and is approximately the grammar given in [1] with the addition of let bindings
and type annotations – these are important with bidirectional type-checking.

s ::= U | Ω Universe sorts
A,B,C, t, u, e ::= x Variable

| s Universe
| λxs. t | t us | Π(x :s A). B Dependent products
| 0 | S t | rec[z.C](t, 0 → t0; (S x) y → tS) | N Natural numbers
| (t, u) | fst t | snd t | ∃(x : A). B Proof-irrelevant sums
| abortA t | ⊥ Empty type
| ∗ | > Unit type
| refl t | transp(t, x y. C, u, t′, e) | t ∼A u Observational equality
| cast(A,B, e, t) Casting
| let x :s A = t in u Let binding
| (t : A) Type annotation

Figure 3.2: Basic syntax for TTobs

Note that application is tagged with the sort of the argument, and λ-terms are annotated with
their domain sort. This is necessary for evaluation, but is always inferred during type-checking;
these annotations are not present in the source syntax.

This grammar inductively defines the type PreTm of pre-terms: syntactically well-formed, but
otherwise untyped terms.

We define another type Tm of well-typed terms. Every well-typed term has a (unique) sort:
U or Ω. We let TmU and TmΩ be terms with sort U and Ω respectively. Certain functions have
precondition restrictions on the terms they accept: notably, evaluation requires well-typed terms.
Pre-terms use named variables, but typed terms use de Bruijn indices.

Normals and neutrals are defined mutually as a predicate on Tm.

Nf 3 v, w, V,W ::= n | s | λx. v | Π(x :s V ). W | 0 | S v | N | ∃(x : V ). W | ⊥ | > | e
Ne 3 n,N ::= xi | n vs | rec[z.V ](n, 0 → v; (S x) y → w) | abortV t

| v ∼n w | n ∼N v | v ∼N n | n ∼U v | v ∼U n

| cast(N,N, e, n) | cast(N, V, e, v) | cast(V,N, e, v)

The normal forms are as expected and correspond to constructors and types. In contrast
to [1], these are not weak-head normal forms, so subterms are also required to be normal. The
neutral forms are somewhat more involved.

First, the observational equality type can be blocked in three places: the type of the terms,
or either of the terms themselves. There are no neutral forms when the type of the equality is at

28



a Π-type – this is because such equalities always reduce. Similarly, casts can also block in three
positions: either of the types, or the term being cast. Casts between universes and Π-types also
always reduce, and so cannot be blocked by the argument.

Second, we note proof-irrelevant terms appear indirectly. As they have no notion of reduction,
we say all proof-irrelevant terms are normal forms, albeit they are treated slightly differently. The
normal form e stands for any well-typed term with irrelevant sort.

Third, note that there are some overlapping cases in the definition of neutrals, for example
n ∼N v and v ∼N n, which overlap on x ∼N y.

3.2 Normalisation by evaluation
In Section 2.5, we exemplified untyped normalisation by evaluation. Here, we extend this to an
NbE algorithm for TTobs. The overall picture is the same: we give a semantic interpretation into
an untyped domain of values, and a quoting function to reconstruct normal forms. In TTobs we
must also account for proof-irrelevant propositions and complex reduction rules for propositions
and casts.

3.2.1 Relevant layer

The reduction of the proof-relevant fragment of TTobs is implemented as an untyped NbE algo-
rithm.

First, we construct the various domains data-structures in Figure 3.3. The domains DU and

DU 3 a, b, A,B ::= U s | Lam s F1 | Pi s A B1

| Z | S a | Nat | Exists A B1 | Empty | Unit
| ↑ e

Dne 3 e ::= Varl | App e d | Rec A1 e a F2

| Abort A p | Eq a A a′ | Cast A B p a
DΩ 3 p, q, P,Q ::= · · ·
D 3 d, f, g,D ::= V a | P p
Env 3 ρ ::= () | (ρ, d)
Closuresk 3 Ck ::= (λt)ρ : Closuresk

| Lift d : Closuresk
| EqFun s f C1 g : Closures1
| EqPi s D D′ C1 C ′

1 : Closures1
| EqPi′ s D D′ C1 C ′

1 p : Closures1
| CastPi s D D′ C1 C ′

1 p f : Closures1
ClosureUk 3 Ak,Bk,Fk

ClosureΩk 3 Pk,Qk

Figure 3.3: Semantic domains, environments and closures.

Dne represent proof-relevant values which reduce. The domain DΩ represents propositional values,
which are handled in Section 3.2.3. D is the union of DU and DΩ, and we often omit the injections
V and P.
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The neutral terms for observational equality and casting given in Section 3.1 are simplified
in semantic neutrals Dne – this is a tradeoff between a precise semantic domain, and a simpler
interpretation function. As the goal here is to implement the system, not prove its correctness,
we choose the simpler representation.

Environments contain values from both sorts. An environment interprets a context, where
each variable has a sort. It is a program invariant that the domain sort in each position in the
environment matches the typing context.

In Section 2.5.1, closures had a uniform representation of an environment and a term. Here,
there are multiple forms used to defunctionalise various reductions. We annotate closures with
their arity, as not all closures await a single argument. We use A, B, and F for closures with
relevant codomain, and P and Q for irrelevant codomain.

The precondition for relevant interpretation is well-typed terms of sort U ; that is, the set TmU .
Therefore, we construct the function

[[_]]U_ : TmU _ Env _ DU

We discuss interpretation of propositions, [[_]]Ω_, in Section 3.2.3. The interpretation is given in
Figure 3.4. The underlined functions and · are auxilliary functions handling reduction steps for

[[x0]]
U(ρ, a) = a

[[xi+1]]
U(ρ, d) = [[xi]]

Uρ

[[s]]Uρ = U s

[[λxs. t]]
Uρ = Lam s (λt)ρ

[[t us]]Uρ = ([[t]]Uρ) · ([[u]]sρ)
[[Π(x :s A). B]]Uρ = Pi s ([[A]]Uρ) (λB)ρ

[[0]]Uρ = Z
[[S t]]Uρ = S ([[t]]Uρ)

[[rec[z.C](t, 0 → t0; (S x) y → tS)]]
Uρ = rec((λC)ρ, [[t]]Uρ, [[t0]]

Uρ, (λtS)ρ)

[[N]]Uρ = Nat
[[∃(x : A). B]]Uρ = Exists ([[A]]Uρ) (λB)ρ

[[abortA t]]Uρ = ↑(Abort ([[A]]Uρ) ([[t]]Ωρ))
[[⊥]]Uρ = Empty
[[>]]Uρ = Unit

[[t ∼A u]]Uρ = eq([[t]]Uρ, [[A]]Uρ, [[u]]Uρ)
[[cast(A,B, e, t)]]Uρ = cast([[A]]Uρ, [[B]]Uρ, [[e]]Ωρ, [[t]]Uρ)

[[let x :s A = t in u]]Uρ = [[u]]U(ρ, [[t]]sρ)

[[(t : A)]]Uρ = [[t]]Uρ

Figure 3.4: Semantic interpretation for relevant terms into DU .

eliminators applied to introduction forms, defined mutually with evaluation.
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We also need a function

appU : ClosureUk _ D _ · · · _ D︸ ︷︷ ︸
k

_ DU

for applying a closure to k values of either sort. Applying arguments of the correct sort is a
semantic invariant and not statically type safe. This could be formalised more precisely with
closures annotated with a type-level list of sorts. We use the shorthand notation C[d1, . . . , dk] for
appU C d1 . . . dk. Closure application intuitively corresponds to substitution.

As many closures are used to defunctionalise specific operations, we define those alongside
their associated usage. To begin with, we give the simple generic cases of a continuation, (λt)ρ,
and Lift, which lifts a value into a constant closure which ignores each argument. These are the
primary closures used throughout.

appU (λt)ρ d1 . . . dk = [[t]]U(ρ, d1, · · · , dk)

appU (Lift a) d1 . . . dk = a

Application _ · _ : DU _ D _ DU is defined similarly to Section 2.5.1.

(Lam s F) · d = F [d]

(↑ e) · d = ↑(App e d)

Next, we introduce the semantics of natural number induction. This computes iteratively on
the structure of the number, and blocks when the principal argument is a neutral.

rec(A,Z, a0,FS) = a0

rec(A, S n, a0,FS) = FS[n, rec(A, n, a0,FS)]

rec(A, ↑ e, a0,FS) = ↑(Rec A e a0 FS)

3.2.2 Equality and casting

To complete the NbE semantic interpretation of TTobs, we define the reduction semantics for
equality types and casts.

In TTobs, propositions are mechanically broken down so propositions can be proven by their
parts. Similarly, existing proofs can be decomposed back into their components. As proofs
themselves are irrelevant, the power of proof manipulation relies on the reduction of propositions.
Reduction of equality types is implemented by the eq function, which we give mutually with the
relevant closure application cases in Figure 3.5.

Equality reduction implements an equality decision procedure for natural numbers. Equality
at Π-types implements function extensionality. Note that the reductino computation lives inside
the closure continuation. The case for irrelevant types implements propositional extensionality,
by stepping to a pair of implications A ↔ B.

Equality between relevant types in U is handled by cases. For natural numbers and universes,
this is a trivial conjunction of zero components, hence the unit type. For equality between Π-types,
this is a dependent conjunction of a proof the domains are equal, and a proof that the codomains
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eq(f,Pi s A B, g) = Pi A (EqFun s f B g)

eq(A,U Ω, B) = Exists (Pi A (Lift B)) (Lift (Pi B (LiftA)))
eq(Nat,U U ,Nat) = Unit
eq(U s,U U ,U s) = Unit

eq(A,U U , B) = Empty where hd(A) 6= hd(B)

eq(Pi s A B,U U ,Pi s A′ B′) = Exists (eq(A′,U s, A)) (EqPi s A A′ B B′)

eq(Z,Nat,Z) = Unit
eq(S a,Nat, S b) = eq(a,Nat, b)

eq(S a,Nat,Z) = Empty
eq(Z,Nat, S a) = Empty

eq(a,A, a′) = ↑(Eq a A a′)

appU (EqFun s f B g) d = eq(f · d,B[d], g · d)
appU (EqPi s A A′ B B′) p = Pi s A′ (EqPi′ s A A′ B B′ p)

appU (EqPi′ U A A′ B B′ p) a′ = eq(B[a],U U ,B′[a′]) where a ≜ cast(A′, A, p, a′)

appU (EqPi′ Ω A A′ B B′ p) q′ = eq(B[q],U U ,B′[q′]) where q ≜ PCast φ(A′) φ(A) p q′

Figure 3.5: Equality proposition reduction function.

are equal. This time, we need two defunctionalising closures – EqPi forwards the equality proof
into a second closure EqPi′ which performs the computation. This is necessary because we have
two positions requiring arity-one closures, so they cannot be combined. When the Π-types have
an irrelevant domain, we need a propositional witness of type A, so we use PCast and the freeze
function φ : D ↪→ DΩ for embedding relevant values into the irrelevant domain, both of which will
be introduced in Section 3.2.3.

The last case in eq is a fall-through case applicable only when no other case matches. Typing
invariants mean we only reach this when at least one position is blocked.
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The final component of evaluation is the cast function.

cast(Nat,Nat, p,Z) = Z
cast(Nat,Nat, p, S a) = S (cast(Nat,Nat, p, a))

cast(U s,U s, p, A) = A

cast(Pi s A B,Pi s A′ B′, p, f) = Lam s (CastPi s A A′ B B′ p f)

cast(A,B, p, a) = ↑(Cast A B p a)

appU (CastPi U A A′ B B′ p f) a′ = cast(B[a],B′[a′],PApp (PSnd p) φ(a′), f · a)

where a ≜ cast(A′, A,PFst p, a′)
appU (CastPi Ω A A′ B B′ p f) q′ = cast(B[q],B′[q′],PApp (PSnd p) q′, f · q)

where q ≜ PCast A′ A (PFst p) q′

Reduction for natural numbers proceeds by iteration on the structure when both types resolve to
N, and the argument is a constructor. Casting a function between two Π-types produces a new
λ-term which casts the argument from A′ to A, calls the original function f and then casts the
result back to B′[a′]. Note the proof manipulation implemented by propositional application and
projection terms, and the embedding φ : D ↪→ DΩ; more details in Section 3.2.3. Like before, we
give a fall-through case for when the cast is blocked.

3.2.2.1 Quoting

Quoting is defined as described in Section 2.5.2. We give two mutually recursive functions qNf
n :

DU _ Nf and qNe
n : Dne _ Ne for quoting the domain back into normal and neutral forms at de

Bruijn level n. Quoted terms have de Bruijn indices, so there are no explicit binder names included,
however in practice these names are preserved for printing human-readable strings. Proposition
quoting, q�

n, is similar, so we omit it here.
First, we define a helper function vsUn : Closurek _ DU to fully apply a closure to k fresh

semantic variables.

vsUn (A) = A[↑ Varn, . . . , ↑ Varn+k−1]

With this, we define quoting in Figure 3.6.
This function follows the expected pattern. The cases for equality and casting do not ensure

statically that they produce neutral forms. However, it is a program invariant that one position
will be a blocking neutral, so the term lands in Ne.

3.2.3 Propositional layer

Inhabitants of propositions living in universe Ω do not reduce. By removing the computational
behaviour of propositional proofs, we treat propositions as proof-irrelevant, caring only whether
an inhabitant exists, and not the data it contains. This is reflected in evaluation by never reducing
irrelevant terms.
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qNf
n (U s) = s

qNf
n (Lam s F) = λs. qNf

n+1(vsUn (F))

qNf
n (Pi s A B) = Π s

(
qNf

n (A)
)
.
(
qNf

n+1(vsUn (B))
)

qNf
n (Z) = 0

qNf
n (S a) = S (qNf

n (a))

qNf
n (Nat) = N

qNf
n (Exists A B) = ∃

(
qNf

n (A)
)
.
(
qNf

n+1(B[↑ PVarn])
)

qNf
n (Empty) = ⊥
qNf

n (Unit) = >
qNf

n (↑ e) = qNe
n (e)

qNe
n (Varl) = xn−l−1

qNe
n (App e a) = (qNe

n (e)) (qNf
n (a))

qNe
n (Rec A e a0 FS) = rec[qNf

n+1(vsUn (A))](qNe
n (e), qNf

n (a0); qNf
n+2(vsUn (FS)))

qNe
n (Abort A p) = abortqNfn (A) (q

Ω
n (p))

qNe
n (Eq a A a′) = qNf

n (a) ∼qNfn (A) qNf
n (a′)

qNe
n (Cast A B p a) = cast(qNf

n (A), qNf
n (B), qΩn (p), qNf

n (a))

Figure 3.6: Implementation of quoting for TTobs

3.2.3.1 Proof erasure

Inhabitants of propositions live solely for the purpose of type-checking. Well-typed terms are a
precondition for evaluation, so one strategy for handling proof-irrelevance is to erase irrelevant
terms at evaluation, as done in [8]. Practically, this amounts to introducing a single semantic
proposition. Therefore, we define DΩ ::= Witness as a type with one constructor, so all semantic
proofs contain no data. This simplifies the implementation, as many reduction rules in the system
are made complex by the intricate proof manipulations to ensure the reduced term is well-typed.

Unfortunately, this technique poses problems when quoting: all irrelevant information is
erased, so there is no hope of recoving arbitrary proofs. One solution is to indicate in the quoted
term where proofs exist, but leaving the witness blank. This solution falls short, as the quoted
term is no longer typeable, which is particularly important for pattern unification (Section 3.6).

3.2.3.2 Syntactic propositions

A natural alternative is to retain syntactic witnesses for proof terms during evaluation. The
motivation is that in NbE, reduction only occurs in semantic values, so the syntactic witnesses
are never reduced. For this, we define DΩ ::= Prop t ρ – a witness t and an environment ρ

interpreting the free variables in t.
This solution is still somewhat problematic, despite solving the problem with proof erasure.
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While they do not reduce, propositions still admit substitutions of their free variables which must
be accounted for. This is achieved using the closure of values, which are inserted in place of free
variables during quoting.

More challenging is the proof manipulation which occurs in casting reduction rules. This
requires inserting proof-relevant terms into the proof witness and shifting propositions to be well-
typed in a different context. Therefore, evaluation depends mutually on quoting, and care must
be taken to transform witnesses correctly. This solution is error-prone and unsatisfying, as we
would prefer evaluation and quoting not to become mutually dependent on each other.

3.2.4 Semantic propositions

Taking inspiration from the NbE treatment of proof-relevant values, we introduce a novel idea
for propositions designed to overcome the problems mentioned above. Instead of dealing with
syntactic proof witnesses, we create another semantic domain similar to DU . The idea is that
values in this domain never reduce, for example when an argument is applied to a λ-expression.
The only admitted reduction is substitution, which is handled by closures. Semantic propositions
use de Bruijn levels rather than indices, so it is never necessary to shift or quote terms during
evaluation. We note that semantic propositions also include embedded relevant terms, as relevant
data might appear as subterms in propositions. However, these subterms still never reduce.

The domain of semantic propositions has a similar structure to terms, except we introduce
explicit closures whenever there are bound variables, and use de Bruijn levels for variables.

DΩ 3 P,Q, p, q, e ::= PVarl | PU s | PLam s P1 | PApp p q | PPi s P Q1

| PZ | PS p | PRec Q1 p q P2 | PNat
| PPair p q | PFst p | PSnd p | PExists P Q1

| PAbort P p | PEmpty | POne | PUnit | PRefl p
| PTransp p Q2 q p′ e | PEq p P p′

| PCast P Q e p | PLet P p q | PAnn p P

We note even let bindings and type annotations have representation in semantic propositions.
Calligraphic letters represent closures, which are the same as in Section 3.2.1, but have values
from DΩ in place of DU .

Next, we introduce the inclusion φ : DU ↪→ DΩ, which we think of as freezing semantic values
into propositions so they may be used in proof terms. φ is defined mutually with Φk : ClosureUk _
ClosureΩk which embeds closures. The inclusion is natural, so we give only a few cases in Figure
3.7.

Semantic interpretation for propositions, [[_]]Ω_ : Tm _ Env _ DΩ, is particularly easy as
there are no reductions, apart from substitutions. We give only a few cases in the hope the rest
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φ(↑ e) = φNe(e)

φ(U s) = PU s

φ(Lam s F) = PLam s (Φ1(F))

φ(Exists B) = PExists (Φ1(B))
φ(Prop p) = p

φNe(Varl) = PVarl
φNe(App e a) = PApp (φne(e)) (φ(a))

φNe(App e p) = PApp (φne(e)) p

φNe(Rec A e a0 FS) = PRec (Φ1(A)) (φne(e)) (φ(a0)) (Φ2(FS))

Φk((λt)ρ) = (λt)ρ

Φk(Lift a) = Lift (φ(a))
Φ1(EqFun s f B g) = EqFun s (φ(f)) (Φ(B1)) (φ(g))

Figure 3.7: Partial implementation of freeze embedding φ : DU ↪→ DΩ

are obvious.

[[x0]]
Ω(ρ,P p) = p

[[x0]]
Ω(ρ,V a) = φ(a)

[[xi+1]]
Ω(ρ, d) = [[xi]]

Ωρ

[[λxs. t]]
Ωρ = PLam s (λt)ρ

[[t u]]Ωρ = PApp ([[t]]Ωρ) ([[u]]Ωρ)

Projections from the environment are like in relevant interpretation, only when the entry is
relevant, we freeze it with φ : DU _ DΩ. This handles substitution – syntactic variables xi

are substituted by values from the environment. λ-expressions introduce a closure which can
be entered, but this never happens due to application, only during quoting. Interpretation of
application always produces a PApp, even when the interpretation of t is PLam.

We also define a function appΩ : ClosureΩk _ D _ · · · _ D _ DΩ for applying closures. This
works similarly to appU , only no reduction occurs. For example, consider the case for EqFun

app� (EqFun s p Q p′) q = PEq (PApp p q) Q[q] (PApp p′ q)

where we replace each reduction operator by a constructor, compared to the relevant interpretation
(Figure 3.5).

Finally, we also have quoting for semantic propositions. This computes in the same way as
quoting for DU , by fully applying closures to fresh variables. We omit the details of this, and
point instead to the code.
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3.3 Type system
Central to the implementation of TTobs is the type-checker. We implement a bidirectional type-
checker [15] which either infers a type for a term or checks a term against a type. The choice
between these strategies is driven by the syntax of the term. Bidirectional type checking also
naturally determines when to invoke conversion checking.

3.3.1 Conversion checking

Conversion checking is used to decide the conversion relation ≡, operating on semantic values.
We pointed out in Section 2.5 that our NbE does not perform η-expansion. We still want

to check η-equality (for negative types), so this is implemented as part of conversion checking.
Conversion checking is term-directed, so η-expansion is triggered when one side of the conversion
equation has the canonical introduction form for a given type, and the other is neutral. We give
the following example for Π types

Π-η-Conv
Γ, x ` F [Vars|Γ|] ≡ t′ · Vars|Γ|

Γ ` Lam s F ≡ t′

Note that conversion checking is untyped, and Γ is in practice a de Bruijn level representing the
context length. We apply the closure F to the fresh variable. Then, we use the _ ·_ operator to
apply the same variable to the right hand side, and compare the results.

Conversion checking between irrelevant terms always succeeds. In fact, algorithmically we only
define conversion checking between values in DU . The only rule invoking conversion compares two
types, which always have sort U . Therefore, proof irrelevance is implemented by not comparing
irrelevant terms. Consider the following two conversion rules for applications.

App-U-Conv
Γ `↑ e ≡↑ e′ Γ ` a ≡ a′

Γ ` ↑(App e a) ≡ ↑(App e′ a′)

App-Ω-Conv
Γ ` ↑ e ≡ ↑ e′

Γ ` ↑(App e p) ≡ ↑(App e′ p′)

When the argument is irrelevant, there is no check that p ≡ p′, as it holds automatically.
We mentioned in Section 2.2.4 that we implement the definitional casting rule

Cast-Eq
Γ ` A ≡ A′ : U

Γ ` cast(A,A′, e, t) ≡ t : A′

in conversion checking.
The implementation uses the following rules.

Cast-Eq-Left
Γ ` A ≡ B Γ ` a ≡ a′

Γ ` Cast A B e a ≡ a′

Cast-Eq-Right
Γ ` A′ ≡ B′ Γ ` a ≡ a′

Γ ` a ≡ Cast A′ B′ e′ a′

Cast-Conv
Γ ` A ≡ A′ Γ ` B ≡ B′

Γ ` a ≡ a′

Γ ` Cast A B e a ≡ Cast A′ B′ e′ a′
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These rules require backtracking. When the left hand side of the equality is a cast between A

and B, we first check if A ≡ B. If this check fails, we proceed with Cast-Eq-Right, and if that
fails, Cast-Conv. This backtracking is necessary when comparing two casts – it is impossible
to know a priori which strategy to attempt first. With these rules, we allow this definitional
equation without breaking the determinism of evaluation.

3.3.2 Bidirectional type-checker

A bidirectional type-checker is an algorithmic method used to implement typing rules. In the
declarative type system, we used the judgement Γ ` t : A, but here we instead use two judgements

Γ; ρ ` t ⇒ A (infer) Γ; ρ ` t ⇐ A (check)

Besides the context Γ, we have an environment ρ interpreting Γ. This is because for some rules
we need to evaluate terms during type-checking. Typing always uses semantic types, A ∈ DU .
As well as type-checking, we elaborate terms. This maps well-typed pre-terms PreTm to Tm by
replacing variables with de Bruijn indices.

Intuitively, certain terms, for example abstractions λx. t are easier to check so we know how to
extend the context to check the body t. Inference is far harder, as the type of x in t is not known
a priori. On the other hand, certain terms such as applications t u admit inference. Checking
is difficult, as the return type has insufficient information to check t and u. Alternatively, if we
infer that t has type Π(x : A). B, we can check u : A, and infer t u : B[u/x].

In general, constructors are checked, and destructors are inferred. From this, we derive algo-
rithmic bidirectional rules from the declarative rules of the type theory. As examples, the rules
for abstractions and applications are

Π-I-Check
Γ, x :s A; (ρ,Vars|Γ|) ` t ⇐ B[Vars|Γ|]

Γ; ρ ` λx. t ⇐ Pi s A B

Π-E-Infer
Γ; ρ ` t ⇒ Pi s A B Γ; ρ ` u ⇐ A

Γ; ρ ` t u ⇒ B[[[u]]sρ]

When we extend the context with the variable x in Π-I-Check, we also extend the environment
with a fresh variable (we let Vars mean either Var or PVar depending on the sort). We apply the
closure B to this variable, giving a type to check against. When inferring the application, we
evaluate u in ρ, and apply the closure B.

Bidirectional rules also determine precisely when to invoke conversion checking. In particular,
all inferred terms can also be checked. We construct the rule

Conv-Check
Γ; ρ ` t ⇒ A′ Γ ` A ≡ A′

Γ; ρ ` t ⇐ A

This rule says to check such a term, we first infer a type for it then check the two are convertible.
The appeal of bidirectional rules is that they are simple to implement. In a sense, declarative

rules have an implicit existential quantification over types required for the derivation, however a
bidirectional system shows explicitly the source of all data required for each judgement.
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The reader may notice that a term like (λx. x) t is untypeable in this system. It is an
application, so it is inferred, but inference of an application requires inferring the type of λx. x,
which must be checked. In particular, we can only type normal forms. This is standard in many
systems, such as Agda [16]. We have a rule for transferring from checking to inference, Conv-
Check (where we have an excess of data), but switch from inference to checking (where we have
a lack of data) we need an explicit annotation.

To allow more general terms, we use both typed let-bindings and type annotations. Having
an explicit annotation allows us to invoke the checking procedure, even if the whole term is being
inferred. Consider the following rules

Let-Infer
Γ; ρ ` A ⇐ U s Γ; ρ ` t ⇐ [[A]]Uρ Γ, x :s [[A]]

Uρ; (ρ, [[t]]sρ) ` u ⇒ B

Γ; ρ ` let x :s A = t in u ⇒ B

Let-Check
Γ; ρ ` A ⇐ U s Γ; ρ ` t ⇐ [[A]]Uρ Γ, x :s [[A]]

Uρ; (ρ, [[t]]sρ) ` u ⇐ B

Γ; ρ ` let x :s A = t in u ⇐ B

Annotation-Infer
Γ; ρ ` A ⇒ U s Γ; ρ ` t ⇐ [[A]]Uρ

Γ; ρ ` (t : A) ⇒ [[A]]Uρ

The first two rules indicate that let-bindings can be checked or inferred, and the current process
is then forwarded to the subterm u after the in keyword. The term t is always checked, allowing
us to invoke checking from inference. We check against the type A, which is first evaluated. In
both cases, we extend the environment with the definition of the variable x, rather than just a
generic variable like with λ-terms before. This way, the concrete definition can be used during
typing. Annotations behave similarly.

An interesting exception to the rule that constructors are checked, is the term refl which
constructs a reflexivity proof for equality. This term is hard to check due to the reduction of
equality types – equalities frequently reduce to other type constructors. Therefore, reflexivity is
inferred.

Refl-Infer
Γ; ρ ` t ⇒ A

Γ; ρ ` refl t ⇒ eq([[t]]Uρ,A, [[t]]Uρ)

We trigger the equality reduction procedure in the inferred type. So, for example, refl 0 will infer
the type >, as we immediately reduce the type 0 ∼N 0.

Under this framework, the bidirectional formulation of rules for TTobs is implemented naturally
in code.
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3.4 Quotient types
Our first extension to the core of TTobs is quotient types. These types allow us to exploit the
setoid structure of types by explicitly defining an equivalence relation over a pre-existing type.
The theory of quotient types in TTobs is given in Section 2.3

We first extend the syntax with quotient types.

A,R, t, u ::= · · ·
| A/(x y. R, x Rr, x y xRy. Rs, x y z xRy yRz. Rt)

| π t | Q-elim[z. B](x. tπ, x y xRy. t∼, u)

Three new syntactic elements are introduced: formation from a base type and equivalence relation,
introduction projecting from the base type into the quotient, and elimination, giving an equality-
preserving map out of the quotient type.

Normal and neutral forms are given as follows.

Nf 3 v, w, V,W ::= · · ·
| V /(x y. W, x. Rr, x y xRy. Rs, x y z xRy yRz. Rt)

| π v

Ne 3 n,N ::= · · ·
| Q-elim[z. V ](x. vπ, x y xRy. t∼, n)

3.4.1 NbE for quotient types

Next, we turn to the NbE implementation, which closely follows the same patterns as the core
implementation given in Section 3.2.

First, we extend the domains with new semantic values. We also need three new closures to
defunctionalise the equality type reduction between quotient types.

DU 3 A,B, a, b ::= · · ·
| Quotient A B2 Pr

1 Ps
3 P t

5

| Qproj a
Dne 3 e ::= · · ·

| Qelim B1 F1 Q3 e

DΩ 3 P,Q, p, q ::= · · ·
| PQuotient P Q2 Pr

1 Ps
3 P t

5

| PQproj p
| PQelim P1 P ′

1 Q3 p

Closuresk 3 Ck ::= · · ·
| EqQuotientY p a D D′ C2 C2 : Closures1
| EqQuotientX p D D′ C2 C2 : Closures1
| EqQuotient D D′ C2 C2 : Closures1

The three closures are needed to defunctionalise the rule Quotient-Eq (Section 2.3.1), as it
introduces three binders.
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Relevant interpretation for quotients follows the same pattern as the core NbE algorithm.
Quotient types are interpreted into the Quotient constructor, with the appropriate closures. Pro-
jections are interpreted into the Qproj constructor. Elimination is defined by

[[Q-elim[z.B](tπ, t∼, u)]]
U(ρ) = Qelim((λB)ρ, (λtπ)ρ, (λt∼)ρ, [[u]]

Uρ)

where Qelim reduces quotient eliminators applied to projections.

Qelim(B,Fπ,P∼,Qproj b) = Fπ[b]

Qelim(B,Fπ,P∼, ↑ e) = ↑(Qelim B Fπ P∼ e)

Elimination reduces when the argument is of the normal form Qproj b by calling the function Fπ

with the argument b.
Irrelevant interpretation, [[_]]Ω_, is trivial. Once again, there is no reduction when an elimi-

nator is applied to a projection.
Quoting also takes the same form as before. The rule for quoting quotient types is very

cumbersome, as we fully apply each closure to fresh variables, so we omit the full rule here. The
full details are seen in the code.

3.5 Inductive types and Mendler induction
Our next extension is to add inductive types to TTobs. Inductive types allow for sum-of-product
data types with named constructors. Furthermore, inductive types recursively refer to themselves
in constructors, and may be indexed. A detailed account of the theory is given in Section 2.4.

First, we extend the syntax with inductive types.

A,B,C,M, t, u ::= · · ·
| µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

| µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] functor X Y f p x = t

| Ci (t, e) | match t as x return C with {Ci (xi, ei) → ti}i
| fix [M as G] f p x : C = t | fix [M as G view ι] f p x : C = t

| in t | lift[M ] A | fmap[M ](A,B, f, u, t)

We note that we have parallel versions of inductive type and fixed-points definitions. This is due
to practicality considerations, and means it is not necessary to always provide a functor instance
when defining a type. This is in fact particularly useful when defining functor instances, as we
can access the inductive type within the functor definition. Morally, every inductive type must
define an underlying functor, however we do not enforce it syntactically. A future extension might
include a strict positivity check, from which a functor instance could be automatically derived.

Fixed-points first specify the inductive type they act on. This is given by the term M ,
which must resolve to an inductive type definition statically. In Mendler induction, we control
termination by giving the inductive type an opaque name in recursive calls – this name is made
explicit by the variable G. We then have three binders: f , the recursively-bound name of the
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function, p the index parameter and x, the value. C represents the induction hypothesis, or return
type, and t is the body of the definition.

The second fixed-point construction admits a view parameter ι. When the view is used, the
inductive type M must include a functor instance. The view parameter extends the fixed-point
to a paramorphism supporting primitive recursion.

Next, we have a term in witnessing the defining isomorphism of inductive types. This is useful
within fixed-points using views, as lifting ι : Π(p : A). G p → (µF ) p to ι′ : Π(p : A). F [G] p →
(µF ) p is defined as the composition of the functorial action on ι and in. We also give a term
lift[M ] A, which again requires M be an inductive type. This term is the functor action on
objects – it lifts type family A to M [A]. Similarly, fmap is the action on functions. These three
terms, in, lift and fmap, are admissible – each can be avoided by repeating the definition they
expand into.

Constructors and pattern matching are as defined in Section 2.4.
We also need to specify the normal and neutral forms. We omit the normal forms for inductive

types without functor instances and fixed-points without views; they follow the same shape as
those presented.

Nf 3 v, w, V,W ::= · · ·
| µF : V → U . [

−−−−−−−−−−−−−−−→
Ci : (xi : Wi) → F vi] functor X Y f p x = v

| (µF : V → U . [
−−−−−−−−−−−−−−−→
Ci : (xi : Wi) → F vi] functor X Y f p x = v) w

| Ci (v, e) | fix [V as G view ι] f p x : W = v

| (fix [V as G view ι] f p x : W = v) w

Ne 3 n,N ::= · · ·
| match n as x return V with {Ci (xi, ei) → vi}i
| (fix [V as G] f p x : W = v) w n

| in n | lift[N ] V | fmap[N ](V,W, v, w, w′)

Note that since inductive types form type families, they can be applied to an argument. Such
applications never reduce; hence also are in normal form.

We described fixed-points as an elimination principle for inductive types. However, fixed-
points also introduce Π-types. Therefore, a fixed-point in isolation is a normal form. Similarly,
when applied to a single index parameter, we also have a normal form. When the final parameter
is applied, we block if the term is a neutral form. This is to avoid infinite unfolding of syntactic
fixed-points.

The lift and fmap terms block when their inductive type is unknown – we cannot lift type
families and functions without the definition at hand. in blocks when applied to a neutral.

3.5.1 NbE for inductive types

As usual, the first step for NbE is to extend the domains, driven by the structure of the normal
and neutral forms. Like before, we omit values for inductive types without functor definitions (in
practice, we have optional value for the functor definition).
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D 3 A,B, a, b ::= · · ·
| Mu A (List (B1,A2)) F5 (Maybe a)

| Cons Name a p | Fix A B4 F5 (Maybe a)

Dne 3 e ::= · · ·
| Match e B1 (List A2)

| FixApp A B4 F5 a e

| In e | Lift E A | Fmap E A B a b c

The semantic value of inductive types, Mu, contains the index type, followed by a list of pairs
representing constructor types and indices. We have an optional value representing the application
of the inductive type to an index; as noted before, this never reduces. There is a similar structure
for fixed-points. Constructors hold both a value and a fording term. DΩ and Closure are also
extended, but we omit them here.

The neutral form FixApp represents the case when a neutral argument is applied to a fixed-
point. As mentioned before, this does not reduce.

We do not explicitly define the semantic propositions here, but as usual we have a semantic
proposition for every term which maintain the term structure, but include closures for each binder.
We also omit the defunctionalising closures.

The extension of semantic interpretation and evaluation now includes more intricate reduction
rules, especially in application reduction. First, we give the semantics of the newly added terms.

[[µF : A → U . [
−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai] functor X Y f p x = t]]Uρ =

Mu ([[A]]Uρ) [(λBi)ρ, (λai)ρ]i (λt)ρ Nothing

[[Ci (t, e)]]
Uρ = Cons Ci ([[t]]

Uρ) ([[e]]Ωρ)

[[match t as x return C with {ti}i]]Uρ = match([[t]]Uρ, (λC)ρ, [(λai)ρ]i)

[[fix [M as G view ι] f p x : C = t]]Uρ = Fix ([[M ]]Uρ) (λC)ρ (λt)ρ Nothing
[[in t]]Uρ = in([[t]]Uρ)

[[lift[M ] A]]Uρ = lift([[M ]]Uρ, [[A]]Uρ)

[[fmap[M ](A,B, f, u, t)]]Uρ = fmap([[M ]]Uρ, [[A]]Uρ, [[B]]Uρ, [[f ]]Uρ, [[u]]Uρ, [[t]]Uρ)

The implementations of match, lift, fmap and in are omitted here, but found in the code.
Reduction of fixed points is a special case of application, as fixed-points are functions. We

extend _ · _ from Section 3.2.1 as follows.

(Mu A cs F Nothing) · a = Mu A cs F (Just a)
(Fix A C F Nothing) · a = Fix A C F (Just a)

(Fix A C F (Just a)) · (Cons Ci b p) = F [A, id, Fix A C F Nothing, a,Cons Ci b p]

(Fix A C F (Just a)) · (↑ e) = ↑(FixApp A C F a e)

When either a semantic inductive type, or semantic fixed-point have not been applied to their
index parameter (indicated by their final component being Nothing), we shift this parameter
into the value. When a fixed-point with an index is applied to a constructor, we invoking the
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closure F . First, the inductive type is passed in. Then, we pass the identity function, defined as
id ≜ λ_ a → a in for the view parameter. Next, we pass the whole fixed-point to give F recursive
access to the definition. Finally, we pass the index and the constructor value.

The propositional interpretation [[_]]Ω_ and quoting are also extended to support inductive
types. Both of these functions are entirely mechanical, so we choose to omit their explicit con-
struction.

3.6 Pattern unification
With the extended type system in place, we turn to a very different part of the implementation.
Pattern unification [17, 18] does not extend the type theory, but instead makes writing proofs
more practical. Often when writing dependently typed programs, many terms are kept purely
for bookkeeping purposes, and are uniquely determined from the surrounding context. Pattern
unification deduces these unique terms and substitutes them into the code to reduce unnecessary
handwritten code.

An example of this phenomenon is the map function

map : Π(A : U). Π(B : U). (A → B) → List A → List B

When called, we write

map A B f ls

In particular, we write the types A and B, even if we know the type of f is A → B.
When type-checking this term, we work from left-to-right. First, we infer the type of map.

We then check each argument in turn. When we reach f , we check against the type A → B. As
f is a variable, we infer the type A → B, then check these types are convertible.

Consider instead if the values A and B were omitted, and replaced by unknown term place-
holders ?m1 and ?m2 called metavariables. These stand for terms which are currently unknown,
but should be solved for. During checking we now attempt the conversion ?m1 →?m2 ≡ A → B.
This is satisfied by defining ?m1 := A and ?m2 := B.

We rewrite the term as

map _ _ f ls

where _ represents a “hole” to be inferred. A natural extension of this is truly implicit parameters
which are omitted altogether; we leave this as future work.

3.6.1 The metacontext

Syntactically, we leave holes in the program. Each hole represents a metavariable.
Metavariables require a new context which records solutions. This context contains both

solved and unsolved metavariables. Metacontexts are defined by the following structure:

Σ ::= · | Σ, ?mi | Σ, ?mi := t | Σ, ?si | Σ, ?si := s
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We have entries stating variables exist, and entries mapping variables to their definitions. The
definitions are syntactic terms.

As noted, metavariables are solved during conversion checking. Solving metavariables is a
stateful action. We only ever commit to definitionally unique solutions, so we reuse the first
solution we find. The type and conversion checking judgements are now of the form

Σ; Γ; ρ ` t⇝ t′ ⇐ A; Σ′ Σ; Γ; ρ ` t⇝ t′ ⇒ A; Σ′ Σ; Γ ` t ≡ u; Σ′

where Σ is the initial metacontext, updated to Σ′ with new solutions. We also make the elaborated
term t′ explicit in the judgement. The metacontext is threaded through judgements monadically.

We add an inference rule for holes.
Hole-Infer

?mi, ?mj fresh in Σ

Σ; Γ ` _ ⇝ ?mi ⇒?mj; Σ, ?mj, ?mi

To infer a hole, we create two new metavariables, one representing the term, and one representing
its type. We add both to the metacontext.

3.6.2 Solving metavariables

To motivate metavariable solving, we first inspect a syntactic reduction system. We relate this
to NbE in the next section.

The syntactic form of metavariables is extended to include a parallel substitution. A parallel
substitution, Γ ` σ : ∆, is a map from context Γ to ∆. Here, σ is a list of terms typed in Γ, one
for each variable in ∆. We can act contravariantly on a term ∆ ` t : A by replacing each free
variable with its definition in σ, giving a term Γ ` t[σ] : A[σ] typed in Γ.

We give some cases of substitution on terms.

x0[σ, t] = t

xi+1[σ, t] = xi[σ]

(t u)[σ] = (t[σ]) (u[σ])

(λx. t)[σ] = λx. (t[� σ, x0])

(Π(x : A). B)[σ] = Π(x : A[σ]). B[� σ, x0]

Here, � shifts the substitution pointwise: each term shifts its free de Bruijn indices by one. In
the λ and Π cases, we extend the substitution by a variable x0. This behaves as the identity on
nested variables, as σ should not update them.

An example of when substitution is triggered is in reducing an application. we reduce Γ `
(λx. t) u ⇒ t[� idΓ, u].

The motivation behind adding substitutions is that metavariables stand for an unknown term,
which might depend on its free variables. So, we maintain a substitution to apply when the term
is known. We write ?mi[σ] for the metavariable with a captured substitution σ.

At the point the metavariable is created, it is typed under a context Γ. We initialise the
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captured substitution to idΓ: the identity substitution. This is updated when another substitution
is applied. We add the following definition to the substitution procedure.

mi[σ][σ
′] =?mi[σ ◦ σ′]

Composition of substitutions σ ◦ σ′ is defined by replacing free variables in σ by their definitions
in σ′.

The substitution σ on a metavariable ?mi[σ] has type ∆ ` σ : Γ, where Γ is context ?mi was
created in, and ∆ is the context typing ?mi[σ]. Therefore, σ is a list of ∆-typed definitions for
each free variable in Γ.

Now we consider the case of conversion checking ?mi[σ] against t in context ∆.

Σ;∆ `?mi[σ] ≡ t; Σ′

The equation ∆ `?mi[σ] ≡ t gives a constraint on the definition of ?mi. If we can solve
this equation for ?mi, such that the solution is unique up to definitional equality, then we have
achieved our goal.

To find a solution, we construct a partial right-inverse substitution σ−1 for ∆ ` σ : Γ. This
σ−1 is a section of σ, meaning σ ◦ σ−1 = idΓ.

With σ−1, we solve the equation as follows.

Γ `?mi[σ][σ
−1] ≡ t[σ−1]

Γ `?mi ≡ t[σ−1]

yielding a solution ?mi := t[σ−1] in context Γ.
A unique σ−1 solving the equation ∆ `?mi[σ] ≡ t is constructible when the following pattern

conditions are met.

1. The substitution σ contains only variables;

2. No variable in σ appears more than once;

3. Every free variable in t appears in σ;

4. The metavariable ?mi does not appear in t.

We call the first two conditions linearity. The third condition checks there are no escaping
variables: variables used in the solution which are not in scope at Γ. The final condition is the
occurs check which prevents self-referential solutions.

There is one subtlety to the first condition when a variable is defined by a let-binding. We
say t is defined in a substitution when it arises from a reduction

Γ ` let x : A = t in u ⇒ u[� idΓ, t]

Definitions violate linearity, as they are arbitrary terms, not variables. However, since definitions
can be unfolded, we ignore them during the linearity check.

As σ contains a unique variable xi from ∆ for each variable yj in Γ, there is an injective map
s : Γ↣ ∆, sending yj 7→ xi. This is precisely a partial inverse σ−1: at each variable xi in ∆, if
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there is a unique yj such that s(yj) = xi, then σ−1
i = yj. Otherwise, σ−1

i is undefined. Since every
free variable in t appears in σ, t[σ−1] never accesses an undefined position in σ−1.

3.6.3 Pattern unification and NbE

In the NbE world, substitutions become environments. Instead of lists of terms, environments
are lists of values interpreting the free variables of a term.

We begin by extending the domains of values and propositions. We also add a data-structure
for partial renamings.

Dne 3 e ::= · · ·
| Meta ?mi ρ

DΩ 3 p ::= · · ·
| PMeta ?mi ρ

Renaming 3 θ ::= () | (θ,Varl) | (θ,⇑)

In both domains, the semantic metavariable is the variable with an environment. Metavariables
are also neutral – they block further computation. Note that unlike regular variables, metavari-
ables can unblock when solved.

Partial renamings are lists of variables (represent as de Bruijn levels) and undefined values, ⇑.
We equivalently view renamings as partial functions on variables.

Semantic evaluation now requires ambient access to the metacontext Σ to substitute in solved
metavariables. In practise, this is achieved using a reader monad providing implicit access to the
metacontext.

[[?mi]]
Uρ = [[t]]Uρ when Σ = Σ′, ?mi := t,Σ′′

[[?mi]]
Uρ = Meta ?mi ρ when Σ = Σ′, ?mi,Σ

′′

[[?mi]]
Ωρ = [[t]]Ωρ when Σ = Σ′, ?mi := t,Σ′′

[[?mi]]
Ωρ = PMeta ?mi ρ when Σ = Σ′, ?mi,Σ

′′

When the solved term exists in the metacontext, we evaluate it in the current environment.
Otherwise, we store the environment and metavariable in a semantic meta value.

Metavariables are solved during conversion checking. For example, we might have an equation

∆ ` Meta ?mi ρ ≡ a

In the previous section, we described how partial inverse substitutions are created. We create
a partial function invert : Env _ Renaming which succeeds when the environment satisfies the
linearity conditions.

In conversion checking, we always compare values. However, metavariable solutions are terms.
Therefore, when applying the renaming ρ−1 to the value a, we both update free variables and
quote the semantic value into a term. We define a function renamen?mi

: DU _ Renaming _ TmU .
Like with quoting, the level n representing the depth we rename at. We also have access to the
metavariable ?mi for the occurs check.
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renamen?mi
(Vark)θ = xn−l+1 when θ(Vark) = Varl

renamen?mi
(Meta ?mj)θ =?mj when ?mi 6=?mj

renamen?mi
(↑ (App n a))θ = (renamen?mi

(↑ n)θ) (renamen?mi
(a)θ)

renamen?mi
(↑ (Lam s F))θ = λs. (renamen+1

?mi
(F [Varn])(θ,Varn+1))

The first rule ensures the variable Vark is not escaping; by checking it is defined in θ. The second
rule implements the occurs check by ensuring the metavariable ?mi does not appear in its own
solution. This way, we isolate the concerns of linearity, which depends only on the environment
ρ, from the other checks. When going under a binder, we apply the closure to a fresh variable
and extend the renaming in the natural way.

The final step is to piece these parts together to solve metavariables in conversion checking,
then update the metacontext.

Conv-Solve
ρ−1 =̇ invert(ρ) t =̇ rename|∆|

?mi
(a)ρ−1

(Σ, ?mi,Σ
′);∆ `?mi[ρ] ≡ a; (Σ, ?mi := t,Σ′)

Both invert and rename might (validly) fail, so we take =̇ to mean both that the result is defined,
and is assigned to the variable on the left. When both of the hypotheses are defined, we find a
valid solution for the metavariable and replace it in the metacontext.

3.6.4 Extended unification for negative types

We can extend pattern unification to apply to more general situations. Currently we cannot solve
equations when the metavariable is inside an eliminator, even when there is a unique solution.
Consider the follow example equations

Γ ` fst (?m[σ]) ≡ t Γ ` (?m′[σ]) x ≡ t′

In both cases, the metavariable has a negative type with a single constructor. Therefore, we can
expand the metavariables using the η law. We therefore define ?m := 〈?m1; ?m2〉 and ?m′ :=

λ. ?m′
1 for freshly created metavariables ?m1, ?m2 and ?m′.

Now the eliminators can compute, so we resolve the equations to

Γ `?m1[σ] ≡ t Γ `?m′
1[� σ, x] ≡ t′

both of which now have the form from the previous section, and can be solved provided the
pattern conditions hold.

48



Chapter 4

Evaluation

In this chapter, we evaluate our TTobs implementation. The goal of this project was to create a
suitable, practical implementation of TTobs [2, 1].

We give a quantitative evaluation of the features of the system. Expressivity of the language is
important, but also tools such as helpful error messages allow the user to efficiently write correct
code.

4.1 Error messages
Bidirectional type-checking identifies locations for suitable errors, for example when rules have
hypotheses with a specific structure, we throw an error when the shape of the term is incorrect.
We start with lexer and parser errors which detect an ill-formed term. We then have precise errors
for type-checking, inference, conversion and pattern unification.

One of the most prominent errors is the conversion error, thrown when conversion between
two types fails. The error message shows the macroscopic view of the two types when checking
began, and the specific point at which conversion failed.

While error messages are extremely useful, they are problematic for more complex terms.
Quoted terms are normal forms, which tend to be extremely large because let-definitions are
always unfolded. A useful future improvement would add controlled unfolding of let-bindings to
avoid unnecessary expansions which harm readability.

4.2 Proof assistant tools
In Section 3.6, we introduced pattern unification. This tool assists users by reconstructing terms
from the surrounding context, helping reduce verbosity of programs. Furthermore, we introduce
syntactic sugar which creates terms with holes in them.

A useful example of this is in proof concatenation. We include a term trans(A,B,C, e, e′)1

which concatenates proofs e : A ∼ B and e′ : B ∼ C. In general, we need the endpoints A, B
1trans (transitivity) is admissible as it is subsumed by transp (transport).
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and C for type-checking. But often the endpoints are inferrable from e and e′. Therefore, we
introduce the following shorthand.

e ◦ e′ ≜ trans(_,_,_, e, e′)

Another tool we include is proof goals. Goals are inserted into the source code to throw an
error at a specific location. The error message indicates the expected type at that point, if known.
Additionally, goals optionally contain lists of terms whose types are reported to the user. We
write

?{t1, t2, . . . , tn}

For example, consider the following example program, in which we insert a proof goal.

let f : ℕ → ℕ =
λx. S x

in
let x : ℕ =
S (S (S 0))

in
f ?{f, x}

Running the checker on this input, we get the following message.

[error]: Found proof goal.
╭──▶ <test-file>@8:7-8:14
│

8 │ f ?{f, x}
• ┬──────
• ╰╸ Expected type [ℕ] at goal.
•
• List of relevant terms and their types:
• f : ℕ → ℕ
• x : ℕ

─────╯

4.3 Quotient types example
We demonstrate implementation of the Booleans via a quotient on the natural numbers. This
works by creating an equivalence relation which artificially equates all numbers n ≥ 1, leaving
exactly two elements: zero and “everything else”. The full code for this example is given in
Appendix C.

The implementation has two primary components: the relation R and proof it is an equivalence,
and the dependent if expression to eliminate the booleans. Since our underlying type is N,
the equivalence proofs are by induction. The proofs themselves are somewhat complex, but
manageable. Elimination of quotients requires an underlying function on the base type, and a
proof that the equivalence relation is preserved. The preservation proof is relatively complex, and
again proven by natural number induction.
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It is very hard to write such a proof without the assistance of the type-checker. We make use
of pattern unification when writing equality proofs, and utilise the syntactic sugar t ∼ u, which
infers the type at which the equality is formed. We also use use e ◦ e′ for proof concatenation.

We use goals to help write proof terms. In fact, goals also help us simplify code. Consider the
following subterm of the proof in Appendix C, lines 31− 33.

rec(x'. R x' (S l) → R (S l) (S k) → R x' (S k),
. λ_. w,
_ _. λ_. λ_. *, x)

If we place a goal in the code, we quickly learn the expected type is

rec(_. Ω, ⊥, _ _. ⊤, x) → ⊤ → rec(_. Ω, ⊥, _ _. ⊤, x)

which is inhabited by λw. λ_. w. This helps us determine this nonobvious simplification.

4.4 Simply typed lambda calculus example
Our final example exhibits Fiore’s implementation of NbE for the simply typed lambda calculus
[7]. This proof demonstrates the expressivity of the system, and makes extensive use of inductive
types. Despite the proof being almost 500 lines long, the type-checker completes in under three
seconds The code listing is found in Appendix D.

In this proof, we use mix-fix operators. These let us construct custom mathematical syntax,
for example [[τ ]] for type denotations. We also redefine various type constructors to more readable
names, for example we alias the 'Function constructor.

let _⇒_ : Type ! → Type ! → Type ! =
λdom. λcod. 'Function ((dom; cod), *)

in
...

A major difficulty encountered was making mutually inductive definitions for normal and
neutral forms. We have no direct mutual definitions, so we instead use a work-around. We
construct a datatype representing the union of normals and neutrals, and use the index as a
predicate to divide the definition into two types. A similar trick is used in defining the quote and
unquote functions, which are mutually recursive.

While this demonstrates a difficult barrier in the system, it also shows the expressive capabil-
ities, and that even in a relatively primitive stage, it is possible to construct complex proofs.
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Chapter 5

Conclusions

In this project, we used untyped normalisation by evaluation to create the first implementation
of TTobs. We designed suitable bidirectional typing rules to implement the typing relation. Then,
we constructed an NbE algorithm to produce normal forms of terms for conversion checking. We
introduced a novel technique for handling semantic propositions using a second untyped domain
and another interpretation function performing no reduction besides substitution.

On top of the core calculus in [1] and [2], we added extensions of quotient types and inductive
types. Quotient types exhibit the power of observational equality by providing control over
the equivalence relation in types – a feature hard to recreate in other popular proof assistants.
Inductive types are essential to use the language in a practical setting; datatypes are a core feature
of any language. We designed and implemented a well-founded induction principle for inductive
types corresponding to primitive recursion. Facilitating induction over arbitrary structures is
another key feature of a useful proof assistant.

We added pattern unification to improve the practicality of using the system – with it, we can
omit terms which are automatically determined from the context. Alongside this, we introduced
proof goals to give type information while writing programs.

Overall, the product created throughout this project was a success and proved capable of
implementing challenging proofs. While implementing these examples, the tool responded with
useful messages to guide the user in filling out the details of the proof.

5.1 Future work
Designing a fully featured proof assistant is a huge task. Therefore, there are a large number
of extensions this work would benefit from. We mentioned various extensions throughout the
exposition, but here highlight some interesting ideas.

• Quotient inductive types [19]. A useful extension would be inductive definitions specifying
quotients directly. The user would specify the points of a type, and equalities between them.
The equivalence relation would be the reflexive transitive closure of the defined paths.

• Irrelevant proof term solver. Pattern unification only commits to definitionally unique
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solutions. By definition, irrelevant terms are unique, so we might create a more aggressive
solver which searches for proofs of a given proposition.

• Explicit mutual induction. Currently, we implement mutually defined datatypes and func-
tions using a proxy. This is impractical and becomes very verbose. A first-class notion of
mutual induction would make this process much easier.

• Generalised pattern matching. Nested pattern matching would allow for easier destructuring
of datatypes. Matching on built-in types like natural numbers and Σ-types would offer
greater flexibility, especially in nested patterns.
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Appendix A

Inductive propositional equality

Here we give background on Martin-Löf-style inductive equality. This is not central to the TTobs

system, as we introduce the alternative notion of observational equality. Also, we do not revisit
these rules, so they are only serve as a reference.

Definitional equality decides many equalities between terms. However, there exist many se-
mantically equivalent terms which are not definitionally equal; for example some equalities must
be proven by induction. Propositional equality allows us to construct an explicit proof of equality
between terms, and use it to judge them equal. With equality types, we introduce a form of
Martin-Löf Type Theory [20].

We add the following terms to the grammar given in Section 2.1.

A,B, t, u ::= · · · | refl t | J [x z.C](t, u, v) | t =A u Propositional equality

t =A u is the type of proofs that t equals u at type A. In a constructive setting, proofs
themselves are objects. The introduction form refl t constructs a reflexivity proof for any term at
any type. The eliminator J is a based path-induction principle on equality proofs [21]. This means
we create a motive C which depends on a variable x, and a proof that t =A x. We start with a
value u inhabiting C when x is defined as t – therefore, in this context, they x is definitionally
equal to t. We then pull the endpoint x from t to t′ along their proof of equality, v. This path
induction is based because the first endpoint stays fixed throughout. This is provably equivalent
to full path induction, where both endpoints are transported ??.

Typing rules for inductive equality are as follows.
Id-Form
Γ ` A : U Γ ` t : A Γ ` u : A

Γ ` t =A u : U

Id-Intro
Γ ` t : A

Γ ` refl t : t =A t

Id-Elim
Γ ` t : A

Γ ` t′ : A Γ, x : A, z : t =A x ` C : U Γ ` u : t =A t′ Γ ` v : C[t/x, refl t/z]
Γ ` J [x z.C](t, t′, u, v) : C[t′/x, u/z]

The formation and refl rules are self-explanatory. The induction principle is more involved. The
motive is a family indexed by a term x : A and an equality proof z : t =A x. The term u : t =A t′
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is a proof that t is equal to t′. We then give a term v which inhabits C[t, refl t], so the endpoints
of the equality proof are definitionally equal. This lets us locally treat propositional equality as
if it were definitional. The result of the J eliminator is the term v is transported along the proof
of equality u : t =A t′: the motive C now mentions t′ in place of t.

Example A.0.1 (Casting). Given a propositional proof p : A =U B of equality, we construct a
casting function.

J [B′ _. A → B′](A,B, p, λx.x) : A → B

where A → B is shorthand for the non-dependent Π type Π(_ : A).B. The motive says to
construct a function type A → B, it suffices to construct a function of type A → A. J then
transports the codomain to B using the proof A =U B. Of course, A ≡ A (definitional equality),
so the identity function inhabits A → A.

As with the other types, we have definitional equality rules.

Id-β

Γ ` J [x z.C](t, t, refl t, v) ≡ v : C[t/x, refl t/z]

Id-Eq
Γ ` A ≡ A′ : U

Γ ` t ≡ t′ : A Γ ` u ≡ u′ : A

Γ ` (t =A u) ≡ (t′ =A′ u′) : U

The β rule says J reduces when its argument is a reflexivity proof, at which point v has the
correct type. This indicates Example A.0.1 ultimately dissolves to the identity function, which
makes sense: casting from A to B should amount to doing nothing.

Despite only having a single constructor, refl, propositional equality types express many prop-
erties. Nonetheless, there are still useful properties which cannot be proven. A notable example is
function extensionality, where proving pointwise equality of two functions is insufficient to prove
the functions themselves are equal. At first, it seems a reasonable extension to add the rule

FunExt
Γ ` p : Π(z : A). f z =B[z/x] g z

Γ ` ext(p) : f =Π(x:A). B g

however this breaks canonicity, meaning there are closed identity proofs which never reduce to
refl, and J blocks on these proofs. A resolution is to add equality reflection, postulating that
propositional equalities hold definitionally, but this breaks decidability of type checking [22].

This propositional equality is proof relevant: the proof itself is a term with computational
content. It is, in particular, possible to construct definitionally distinct proofs of equality between
two terms. For this reason it makes sense to reason with iterated proofs of equality (i.e. equalities
between equalities, and so on). This gives rise to an ∞-groupoid structure on types [21], where
equalities are witnessed up to higher equivalences, which themselves have higher witnesses and
so on. In TTobs, we instead have a setoid structure. Setoids are sets equipped with a truncated
equivalence relation. That is to say, there are no higher equivalences: all proofs of equality are
definitionally unique.
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Appendix B

Categorical interpretation of Mendler
induction

To motivate the induction principle, we look at inductive types from a categorical perspective. We
view inductive type definitions as defining an endofunctor F̂ : UA → UA on the functor category
UA representing A-indexed types. This functor is a sum-of-products signature functor defined in
the form

F̂ (F ) = B1 +B2 + · · ·+Bn

where each Bi is some functor A → U , possibly depending on F . In particular, given a functor
X : A → U , we obtain a new type family F̂ (X) : A → U . Here, X is thought of as an
interpretation for the free variable F in each type Bi. Now suppose we start with the empty
type family E – that is, at each index p : A, E(p) is the empty type. Consider the type F̂ (E).
Every constructor which depends on the free variable F will be empty, as it is a product with the
empty family. Therefore, the only inhabitants are those which do not include recursive data; in
other words the trees of depth at most one. Iterating the endofunctor again introduces another
level to these trees, and so on. Ultimately, we want to reach a fixed point with this process –
that is, when adding one more layer does not add more elements to the type. This type must
satisfy F̂ (µF̂ ) ∼= µF̂ , meaning substituting the family µF̂ into F̂ gives the same type µF̂ (up to
isomorphism). In this sense, µF̂ is a fixed point of the functor F̂ .

For elimination of inductive types, we need an induction principle. Categorically, this is given
by a univeral mapping-out property from the object µF̂ . In particular, for every other functor
X : A → U with a morphism F̂ (X)

ϕ−→ X, we want a (unique) map µF̂
fixX−−→ X such that the

diagram

F̂ (µF̂ ) µF̂

F̂ (X) X

∼=

F̂ (fixX) fixX

ϕ

commutes. Here, fixX is a natural transformation, so given an index p : A, we have a function
from the inductive type at index p, (µF̂ )p, to Xp. This is the diagram for an initial F̂ -algebra,
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which is indeed a suitable construction for inductive types. By Lambek’s lemma, this additionally
gives us the desired isomorphism between F̂ (µF̂ ) and µF̂ witnessed by

F̂ (µF̂ )
in−→ µF̂

µF̂
out−→ F̂ (µF̂ )

We generalise the induction principle fixX to allow the type Xp to depend on the value of type
(µF̂ )p for the fully dependent induction principle.

The type-theoretic induction principle given in Section 2.4.2 does in fact correspond to the
initial algebra µF̂ . Recall the following typing rule.

Fix
µF ≜ µF : A → U . [

−−−−−−−−−−−−−−→
Ci : (xi : Bi) → F ai]

F [X] ≜ µF : A → U . [
−−−−−−−−−−−−−−−−−−−→
Ci : (xi : Bi[X/F ]) → F ai]

Γ, G : A → U , p : A, x : G p ` C : s

Γ, G : A → U , f : Π(p : A). Π(x : G p). C[G, p, x], p : A, x : F [G] p ` t : C[F [G], p, x]

Γ ` fix [µF as G] f p x : C = t : Π(p : A). Π(x : (µF ) p). C[µF, p, x]

In fact, f is really a natural transformation between G and C, and therefore a morphism in
the functor category UA. We can lift it using F̂ to give F̂ (f) : F̂ (G) → F̂ (C). We consider x as an
element of F̂ (G), so F̂ (f)(x) is an element of F̂ (C) as an immediate consequence from the data
of G, f and x. Since t is a map from this data into C, we can equivalently view t categorically
as a morphism F̂ (C) → C, making (C, t) a candidate F̂ -algebra; in this sense Mendler recursion
does indeed correspond with the unique induction morphism fixC : µF̂ → C induced by initiality.

Section 2.4.3 details how we extend the induction principle for inductive types to allow prim-
itive recursion. This operates by introducing an extra parameter ι : Π(p : A). G p → (µF ) p,
which allows us to “view” the opaque type G as the real type µF .

Categorically, ι is a natural transformation G → µF̂ . Therefore, we can lift it using F̂ to get
a natural transformation F̂ (ι) : F̂ (G) → F̂ (µF̂ ). But, F̂ (µF̂ ) is isomorphic to µF̂ , so we define

ι′ ≜ in ◦ F̂ (ι) : F̂ (G) → µF̂

At the top level of the rule, we substitute the identity function in for ι. In typing the body, t,
we create ι′ = in ◦ F̂ (ι). This becomes in ◦ F̂ (id). By functoriality, F̂ (id) = id. So this resolves
to in, which is an isomorphism, and behaves like an identity.
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Appendix C

Code for quotient types example

Here we give a formalisation implementing Booleans as a quotient on the natural numbers.

1 let cast_compose : (A :U U) → (B :U U) → (C :U U)
2 → (AB :Ω A ~ B) → (BC :Ω B ~ C)
3 → (x :U A)
4 → cast(A, C, AB ∘ BC, x) ~ cast(B, C, BC, cast(A, B, AB, x)) =
5 λA. λB. λC. λAB. λBC. λx.
6 transp(B,
7 B' BB'.
8 cast(A, B', AB ∘ BB', x) ~ cast(B, B', BB', cast(A, B, AB, x)),
9 refl (cast(A, B, AB, x)), C, BC)

10 in
11 let R : ℕ → ℕ → Ω =
12 λx. λy. rec(_. Ω, rec(_. Ω, ⊤, _ _. ⊥, y), _ _. rec(_. Ω, ⊥, _ _. ⊤, y), x)
13 in
14 let Rr : (x :U ℕ) → R x x =
15 λx. rec(z. R z z, *, _ _. *, x)
16 in
17 let Rs : (x :U ℕ) → (y :U ℕ) → R x y → R y x =
18 λx. λy. rec(y'. R x y' → R y' x,
19 rec(x'. R x' 0 → R 0 x', λw. w, _ _. λw. w, x),
20 k _. rec(x'. R x' (S k) → R (S k) x', λw. w, _ _. λw. w, x),
21 y)
22 in
23 let Rt : (x :U ℕ) → (y :U ℕ) → (z :U ℕ) → R x y → R y z → R x z =
24 λx. λy. λz. rec(z'. R x y → R y z' → R x z',
25 rec(y'. R x y' → R y' 0 → R x 0,
26 λx0. λ_. x0,
27 k _. λ_. λw. abort(R x 0, w),
28 y),
29 k _. rec(y'. R x y' → R y' (S k) → R x (S k),
30 λ_. λw. abort(R x (S k), w),
31 l _. rec(x'. R x' (S l) → R (S l) (S k) → R x' (S k),
32 λw. λ_. w,
33 _ _. λ_. λ_. *, x), y), z)
34 in
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35 let Bool : U =
36 ℕ / (x y. R x y,
37 x. Rr x, x y xRy. Rs x y xRy, x y z xRy yRz. Rt x y z xRy yRz)
38 in
39 let true : Bool = π 0 in
40 let false : Bool = π (S 0) in
41 let if : (B :U Bool → U) → (c :U Bool) → B true → B false → B c =
42 λB. λc. λt. λf.
43 let congB : (x :U ℕ) → (y :U ℕ) → R x y → B (π x) ~ B (π y) =
44 λx. λy. λxRy. ap(U, x. B x, (π x : Bool), π y, xRy)
45 in
46 let choose : (x :U ℕ) → B (π x) =
47 λx. rec(x'. B (π x'), t, k _. cast(B false, B (π (S k)),
48 congB (S 0) (S k) *,
49 f), x)
50 in
51 let presTRhs : (x :U ℕ) → (y :U ℕ) → R x y → Ω =
52 λx. λy. λxRy.
53 (choose x) ~ cast(B (π y), B (π x), congB y x (Rs x y xRy), choose y)
54 in
55 let presT : (x :U ℕ) → (y :U ℕ) → Ω =
56 λx. λy. (xRy :Ω R x y) → presTRhs x y xRy
57 in
58 let pres : (x :U ℕ) → (y :U ℕ) → presT x y =
59 λx. λy. rec(x'. presT x' y,
60 rec(y'. presT 0 y',
61 λ_. refl t,
62 l _. λw. abort(presTRhs 0 (S l) w, w),
63 y),
64 k _.
65 rec(y'. presT (S k) y',
66 λw. abort(presTRhs (S k) 0 w, w),
67 l _. λ_. cast_compose (B false) (B (π (S l))) (B (π (S

k)))↪→

68 (congB (S 0) (S l) *)
69 (congB (S l) (S k) *)
70 f, y), x)
71 in
72 Q-elim(z. B z, x. choose x, x y e. pres x y e, c)
73 in
74 if (λb. if (λ_. U) b ℕ (ℕ × ℕ)) true (S 0) (0; S (S 0))

Lines 11 − 12 implement the equivalence relation R on the naturals. We relate R 0 0 and
R (S n) (S m) for all n,m ∈ N. This gives two equivalence classes, {0} and {1, 2, 3, . . . }.

Lines 14− 33 prove that R is an equivalence relation.
Lines 35− 40 construct a new type of Booleans by quotienting the naturals with the relation

R, and values for true and false.
Lines 41 − 72 implement the dependent eliminator for the Booleans: if. This includes an

underlying map choose (lines 46− 49), which sends 0 to t and all other numbers to f . We then
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prove that this preserves the relation R on lines 51− 70. This is enough information to construct
a map out of the Booleans.

Line 74 shows a simple use-case of the dependent eliminator. We first specify the return type:
in the true branch, we return a number, and in the false branch, a pair of numbers. Then we
provide the data for the two branches.

62



Appendix D

Code for simply typed lambda calculus
example

Here we give the code listing for the NbE implementation of the simply typed lambda calculus.

1 let Type : 1 → U =
2 μTy : 1 → U.
3 [ 'Unit : 1 → Ty !
4 ; 'Product : (Ty ! × Ty !) → Ty !
5 ; 'Function : (Ty ! × Ty !) → Ty !
6 ]
7 functor A B f _ x =
8 match x as _ return (lift [Ty] B) ! with
9 | 'Unit (_, _) → 'Unit (!, *)

10 | 'Product (τ₁-τ₂, _) → 'Product ((f ! (fst τ₁-τ₂); f ! (snd τ₁-τ₂)), *)
11 | 'Function (τ₁-τ₂, _) → 'Function ((f ! (fst τ₁-τ₂); f ! (snd τ₁-τ₂)), *)
12 in
13 let 1 : Type ! = 'Unit (!, *) in
14 let _✶_ : Type ! → Type ! → Type ! =
15 λt. λu. 'Product ((t; u), *)
16 in
17 let _⇒_ : Type ! → Type ! → Type ! =
18 λdom. λcod. 'Function ((dom; cod), *)
19 in
20 let F↓T =
21 μCtx : 1 → U.
22 [ 'Empty : 1 → Ctx !
23 ; 'Extend : (Ctx ! × Type !) → Ctx !
24 ]
25 functor A B f _ x =
26 match x as _ return (lift [Ctx] B) ! with
27 | 'Empty (_, _) → 'Empty (!, *)
28 | 'Extend (Γ-τ, _) → 'Extend ((f ! (fst Γ-τ); snd Γ-τ), *)
29 in
30 let · : F↓T ! = 'Empty (!, *) in
31 let _∷_ : F↓T ! → Type ! → F↓T ! =
32 λΓ. λτ. 'Extend ((Γ; τ), *)
33 in
34 let Ix =
35 μIx : (Type ! × F↓T !) → U.
36 [ 'Ix0 : (τ-Γ : Type ! × F↓T !) → Ix (fst τ-Γ; (snd τ-Γ) ∷ (fst τ-Γ))
37 ; 'IxS : (τ-Γ-τ' : Σ(τ : Type !). (Σ(Γ : F↓T !). Type ! × Ix (τ; Γ)))
38 → Ix (fst τ-Γ-τ'; (fst (snd τ-Γ-τ')) ∷ (fst (snd (snd τ-Γ-τ'))))
39 ]
40 in

63



41 let F↓τ̃ : (F↓T ! × F↓T !) → U =
42 λCs.
43 let Δ : F↓T ! = fst Cs in
44 let Γ : F↓T ! = snd Cs in
45 (τ :U Type !) → Ix (τ; Δ) → Ix (τ; Γ)
46 in
47 let Term =
48 μTm : (Type ! × F↓T !) → U.
49 [ 'Var : (τ-Γ : Σ(τ : Type !). Σ(Γ : F↓T !). Ix (τ; Γ))
50 → Tm (fst τ-Γ; fst (snd τ-Γ))
51 ; 'One : (Γ : F↓T !) → Tm (1; Γ)
52 ; 'Pair : (τ₁-τ₂-Γ : Σ(τ₁ : Type !). Σ(τ₂ : Type !).
53 Σ(Γ : F↓T !). (Tm (τ₁; Γ) × Tm (τ₂; Γ)))
54 → Tm ((fst τ₁-τ₂-Γ) ✶ (fst (snd τ₁-τ₂-Γ)); fst (snd (snd τ₁-τ₂-Γ)))
55 ; 'Fst : (τ₁-Γ : Σ(τ₁ : Type !). Σ(Γ : F↓T !).
56 Σ(τ₂ : Type !). Tm ((τ₁ ✶ τ₂); Γ))
57 → Tm (fst τ₁-Γ; fst (snd τ₁-Γ))
58 ; 'Snd : (τ₂-Γ : Σ(τ₂ : Type !). Σ(Γ : F↓T !).
59 Σ(τ₁ : Type !). Tm ((τ₁ ✶ τ₂); Γ))
60 → Tm (fst τ₂-Γ; fst (snd τ₂-Γ))
61 ; 'Lambda : (τ₁-τ₂-Γ : Σ(τ₁ : Type !). Σ(τ₂ : Type !).
62 Σ(Γ : F↓T !). Tm (τ₂; (Γ ∷ τ₁)))
63 → Tm ((fst τ₁-τ₂-Γ) ⇒ (fst (snd τ₁-τ₂-Γ)); fst (snd (snd τ₁-τ₂-Γ)))
64 ; 'App : (τ₂-Γ : Σ(τ₂ : Type !). Σ(Γ : F↓T !). Σ(τ₁ : Type !).
65 Tm ((τ₁ ⇒ τ₂); Γ) × Tm (τ₁; Γ))
66 → Tm (fst τ₂-Γ; fst (snd τ₂-Γ))
67 ]
68 in
69 let Form =
70 μForm : 1 → U. ['Ne : 1 → Form !; 'Nf : 1 → Form !]
71 in
72 let Ne : Form ! = 'Ne (!, *) in
73 let Nf : Form ! = 'Nf (!, *) in
74 let Normal =
75 μNormal : (Form ! × (Type ! × F↓T !)) → U.
76 [ 'VVar : (τ-Γ : Σ(τ : Type !). Σ(Γ : F↓T !). Ix (τ; Γ))
77 → Normal (Ne; (fst τ-Γ; fst (snd τ-Γ)))
78 ; 'VOne : (Γ : F↓T !) → Normal (Nf; (1;Γ))
79 ; 'VPair : (τ₁-τ₂-Γ : Σ(τ₁ : Type !). Σ(τ₂ : Type !). Σ(Γ : F↓T !).
80 Normal (Nf; (τ₁; Γ)) × Normal (Nf; (τ₂; Γ)))
81 → Normal (Nf; ((fst τ₁-τ₂-Γ) ✶ (fst (snd τ₁-τ₂-Γ)); fst (snd (snd τ₁-τ₂-Γ))))
82 ; 'VFst : (τ₁-Γ : Σ(τ₁ : Type !). Σ(Γ : F↓T !). Σ(τ₂ : Type !).
83 Normal (Ne; (τ₁ ✶ τ₂; Γ)))
84 → Normal (Ne; (fst τ₁-Γ; fst (snd τ₁-Γ)))
85 ; 'VSnd : (τ₂-Γ : Σ(τ₂ : Type !). Σ(Γ : F↓T !). Σ(τ₁ : Type !).
86 Normal (Ne; (τ₁ ✶ τ₂; Γ)))
87 → Normal (Ne; (fst τ₂-Γ; fst (snd τ₂-Γ)))
88 ; 'VLambda : (τ₁-τ₂-Γ : Σ(τ₁ : Type !). Σ(τ₂ : Type !). Σ(Γ : F↓T !).
89 Normal (Nf; (τ₂; (Γ ∷ τ₁))))
90 → Normal (Nf; ((fst τ₁-τ₂-Γ) ⇒ (fst (snd τ₁-τ₂-Γ)); fst (snd (snd τ₁-τ₂-Γ))))
91 ; 'VApp : (τ₂-Γ : Σ(τ₂ : Type !). Σ(Γ : F↓T !). Σ(τ₁ : Type !).
92 Normal (Ne; (τ₁ ⇒ τ₂; Γ)) × Normal (Nf; (τ₁; Γ)))
93 → Normal (Ne; (fst τ₂-Γ; fst (snd τ₂-Γ)))
94 ]
95 in
96 let M : Type ! → F↓T ! → U = λτ. λΓ. Normal (Ne; (τ; Γ)) in
97 let N : Type ! → F↓T ! → U = λτ. λΓ. Normal (Nf; (τ; Γ)) in
98 let pshf : (τ :U Type !) → (Δ :U F↓T !) → M τ Δ
99 → (Γ :U F↓T !) → F↓τ̃ (Δ; Γ) → M τ Γ =

100 λτ. λΔ.
101 (fix [Normal as N] pshf f-τ'-Δ' v :
102 let f = fst f-τ'-Δ' in
103 let τ' = fst (snd f-τ'-Δ') in
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104 let Δ' = snd (snd f-τ'-Δ') in
105 (Γ :U F↓T !) → F↓τ̃ (Δ'; Γ) → Normal (f; (τ'; Γ)) =
106 let f = fst f-τ'-Δ' in
107 let τ' = fst (snd f-τ'-Δ') in
108 let Δ' = snd (snd f-τ'-Δ') in
109 λΓ. λρ.
110 match v as _ return Normal (f; (τ'; Γ)) with
111 | 'VVar (τ'-Δ''-ix, pf) →
112 let τ' = fst τ'-Δ''-ix in
113 let Δ'' = fst (snd τ'-Δ''-ix) in
114 let ix = snd (snd τ'-Δ''-ix) in
115 let ρ' =
116 cast(F↓τ̃ (Δ'; Γ), F↓τ̃ (Δ''; Γ),
117 ap(U, Ξ. F↓τ̃ (Ξ; Γ), _, _, sym (snd (snd pf))), ρ)
118 in
119 'VVar ((τ'; (Γ; ρ' τ' ix)), <fst pf, <fst (snd pf), refl Γ>>)
120 | 'VOne (_, pf) → 'VOne (Γ, <fst pf, <fst (snd pf), refl Γ>>)
121 | 'VPair (τ₁-τ₂-Δ''-t-u, pf) →
122 let τ₁ = fst τ₁-τ₂-Δ''-t-u in
123 let τ₂ = fst (snd τ₁-τ₂-Δ''-t-u) in
124 let Δ'' = fst (snd (snd τ₁-τ₂-Δ''-t-u)) in
125 let t = fst (snd (snd (snd τ₁-τ₂-Δ''-t-u))) in
126 let u = snd (snd (snd (snd τ₁-τ₂-Δ''-t-u))) in
127 let ρ' =
128 cast(F↓τ̃ (Δ'; Γ), F↓τ̃ (Δ''; Γ),
129 ap(U, Ξ. F↓τ̃ (Ξ; Γ), _, _, sym (snd (snd pf))), ρ)
130 in
131 'VPair ((τ₁; (τ₂; (Γ; (pshf (Nf; (τ₁; Δ'')) t Γ ρ';
132 pshf (Nf; (τ₂; Δ'')) u Γ ρ')))),
133 <fst pf, <fst (snd pf), refl Γ>>)
134 | 'VFst (τ₁-Δ''-τ₂-t, pf) →
135 let τ₁ = fst τ₁-Δ''-τ₂-t in
136 let Δ'' = fst (snd τ₁-Δ''-τ₂-t) in
137 let τ₂ = fst (snd (snd τ₁-Δ''-τ₂-t)) in
138 let t = snd (snd (snd τ₁-Δ''-τ₂-t)) in
139 let ρ' =
140 cast(F↓τ̃ (Δ'; Γ), F↓τ̃ (Δ''; Γ),
141 ap(U, Ξ. F↓τ̃ (Ξ; Γ), _, _, sym (snd (snd pf))), ρ)
142 in
143 'VFst ((τ₁; (Γ; (τ₂; pshf (Ne; (τ₁ ✶ τ₂; Δ'')) t Γ ρ'))),
144 <fst pf, <fst (snd pf), refl Γ>>)
145 | 'VSnd (τ₂-Δ''-τ₁-t, pf) →
146 let τ₂ = fst τ₂-Δ''-τ₁-t in
147 let Δ'' = fst (snd τ₂-Δ''-τ₁-t) in
148 let τ₁ = fst (snd (snd τ₂-Δ''-τ₁-t)) in
149 let t = snd (snd (snd τ₂-Δ''-τ₁-t)) in
150 let ρ' =
151 cast(F↓τ̃ (Δ'; Γ), F↓τ̃ (Δ''; Γ),
152 ap(U, Ξ. F↓τ̃ (Ξ; Γ), _, _, sym (snd (snd pf))), ρ)
153 in
154 'VSnd ((τ₂; (Γ; (τ₁; pshf (Ne; (τ₁ ✶ τ₂; Δ'')) t Γ ρ'))),
155 <fst pf, <fst (snd pf), refl Γ>>)
156 | 'VLambda (τ₁-τ₂-Δ''-t, pf) →
157 let τ₁ = fst τ₁-τ₂-Δ''-t in
158 let τ₂ = fst (snd τ₁-τ₂-Δ''-t) in
159 let Δ'' = fst (snd (snd τ₁-τ₂-Δ''-t)) in
160 let t = snd (snd (snd τ₁-τ₂-Δ''-t)) in
161 let ρ' : F↓τ̃ (Δ'' ∷ τ₁; Γ ∷ τ₁) =
162 λτ. λix.
163 match ix as _ return Ix (τ; Γ ∷ τ₁) with
164 | 'Ix0 (τ''-Ξ, pf') → 'Ix0 ((fst τ''-Ξ; Γ),
165 <fst pf', <refl Γ, snd (snd pf')>>)
166 | 'IxS (τ''-Ξ-τ'-ix, pf') →
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167 let τ'' = fst τ''-Ξ-τ'-ix in
168 let Ξ = fst (snd τ''-Ξ-τ'-ix) in
169 let τ' = fst (snd (snd τ''-Ξ-τ'-ix)) in
170 let ix =
171 cast(Ix (τ''; Ξ), Ix (τ; Δ'),
172 <fst pf', fst (snd pf') ∘ snd (snd pf)>,
173 snd (snd (snd τ''-Ξ-τ'-ix)))
174 in
175 'IxS ((τ; (Γ; (τ'; ρ τ ix))), <refl τ, <refl Γ, snd (snd pf')>>)
176 in
177 'VLambda ((τ₁; (τ₂; (Γ; pshf (Nf; (τ₂; Δ'' ∷ τ₁)) t (Γ ∷ τ₁) ρ'))),
178 <fst pf, <fst (snd pf), refl Γ>>)
179 | 'VApp (τ₂-Δ'-τ₁-t-u, pf) →
180 let τ₂ = fst τ₂-Δ'-τ₁-t-u in
181 let Δ'' = fst (snd τ₂-Δ'-τ₁-t-u) in
182 let τ₁ = fst (snd (snd τ₂-Δ'-τ₁-t-u)) in
183 let t = fst (snd (snd (snd τ₂-Δ'-τ₁-t-u))) in
184 let u = snd (snd (snd (snd τ₂-Δ'-τ₁-t-u))) in
185 let ρ' =
186 cast(F↓τ̃ (Δ'; Γ), F↓τ̃ (Δ''; Γ),
187 ap(U, Ξ. F↓τ̃ (Ξ; Γ), _, _, sym (snd (snd pf))), ρ)
188 in
189 'VApp ((τ₂; (Γ; (τ₁; (pshf (Ne; (τ₁ ⇒ τ₂; Δ'')) t Γ ρ';
190 pshf (Nf; (τ₁; Δ'')) u Γ ρ')))),
191 <fst pf, <fst (snd pf), refl Γ>>)
192 ) (Ne; (τ; Δ))
193 in
194 let ⟦_⟧_ : Type ! → F↓T ! → U =
195 (fix [Type as Ty] SemTy _ ty : F↓T ! → U = λΓ.
196 match ty as _ return U with
197 | 'Unit (_, _) → 1
198 | 'Product (p, _) →
199 let τ₁ = fst p in
200 let τ₂ = snd p in
201 SemTy ! τ₁ Γ × SemTy ! τ₂ Γ
202 | 'Function (f, _) →
203 let τ₁ = fst f in
204 let τ₂ = snd f in
205 (Δ :U F↓T !) → F↓τ̃ (Γ; Δ) → SemTy ! τ₁ Δ → SemTy ! τ₂ Δ) !
206 in
207 let Π : F↓T ! → F↓T ! → U =
208 (fix [F↓T as Ctx] Env _ Γ : F↓T ! → U = λΔ.
209 match Γ as _ return U with
210 | 'Empty (_, _) → 1
211 | 'Extend (Γ-τ, _) →
212 let Γ = fst Γ-τ in
213 let τ = snd Γ-τ in
214 Env ! Γ Δ × ⟦ τ ⟧ Δ) !
215 in
216 let rn : (Γ :U F↓T !) → (Δ :U F↓T !) → F↓τ̃ (Δ; Γ) → (τ :U Type !)
217 → ⟦ τ ⟧ Δ → ⟦ τ ⟧ Γ =
218 λΓ. λΔ. λρ.
219 (fix [Type as Ty view ι] rn _ τ : ⟦ (ι ! τ) ⟧ Δ → ⟦ (ι ! τ) ⟧ Γ =
220 match τ as τ' return
221 let τ' : Type ! = in (fmap[Type](Ty, Type, ι, !, τ')) in
222 ⟦ τ' ⟧ Δ → ⟦ τ' ⟧ Γ
223 with
224 | 'Unit (_, _) → λ_. !
225 | 'Product (τ₁-τ₂, _) →
226 let τ₁ = fst τ₁-τ₂ in
227 let τ₂ = snd τ₁-τ₂ in
228 λpair.
229 let t = fst pair in
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230 let u = snd pair in
231 (rn ! τ₁ (fst pair); rn ! τ₂ (snd pair))
232 | 'Function (τ₁-τ₂, _) →
233 let τ₁ = fst τ₁-τ₂ in
234 let τ₂ = snd τ₁-τ₂ in
235 λf. λΔ'. λρ'. f Δ' (λχ. λix. ρ' χ (ρ χ ix))) !
236 in
237 let lookup : (τ :U Type !) → (Γ :U F↓T !) → Ix (τ; Γ)
238 → (Δ :U F↓T !) → Π Γ Δ → ⟦ τ ⟧ Δ =
239 λτ. λΓ.
240 (fix [Ix as I] lookup τ-Γ ix : (Δ :U F↓T !) → Π (snd τ-Γ) Δ → ⟦ (fst τ-Γ) ⟧ Δ =
241 let τ = fst τ-Γ in
242 let Γ = snd τ-Γ in
243 λΔ. λenv.
244 match ix as _ return ⟦ τ ⟧ Δ with
245 | 'Ix0 (τ'-Γ', pf) →
246 let Γ' = snd τ'-Γ' in
247 let env-cast =
248 cast(Π Γ Δ, Π (Γ' ∷ τ) Δ, ap(U, Ξ. Π Ξ Δ, _, Γ' ∷ τ, sym (snd pf)), env)
249 in
250 snd env-cast
251 | 'IxS (τ'-Γ'-τ''-ix, pf) →
252 let τ' = fst τ'-Γ'-τ''-ix in
253 let Γ' = fst (snd τ'-Γ'-τ''-ix) in
254 let τ'' = fst (snd (snd τ'-Γ'-τ''-ix)) in
255 let ix = snd (snd (snd τ'-Γ'-τ''-ix)) in
256 let ix' =
257 cast(I (τ'; Γ'), I (τ; Γ'), ap(U, χ. I (χ; Γ'), _, _, fst pf), ix)
258 in
259 let env-cast =
260 cast(Π Γ Δ, Π (Γ' ∷ τ') Δ, ap(U, Ξ. Π Ξ Δ, _, Γ' ∷ τ', sym (snd pf)), env)
261 in
262 lookup (τ; Γ') ix' Δ (fst env-cast)) (τ; Γ)
263 in
264 let __⟦_⟧__ : (Γ :U F↓T !) → (τ :U Type !) → Term (τ; Γ)
265 → (Δ :U F↓T !) → Π Γ Δ → ⟦ τ ⟧ Δ =
266 λΓ. λτ.
267 (fix [Term as Tm ] eval τ-Γ tm : (Δ :U F↓T !) → Π (snd τ-Γ) Δ → ⟦ (fst τ-Γ) ⟧ Δ =
268 let τ = fst τ-Γ in
269 let Γ = snd τ-Γ in
270 λΔ. λenv.
271 match tm as _ return ⟦ τ ⟧ Δ with
272 | 'Var (τ'-Γ'-ix, pf) →
273 let τ' = fst τ'-Γ'-ix in
274 let Γ' = fst (snd τ'-Γ'-ix) in
275 let ix = snd (snd τ'-Γ'-ix) in
276 let env' =
277 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
278 in
279 cast(⟦ τ' ⟧ Δ, ⟦ τ ⟧ Δ,
280 ap(U, τ''. ⟦ τ'' ⟧ Δ, _, _, fst pf), lookup τ' Γ' ix Δ env')
281 | 'One (_, pf) → cast(1, ⟦ τ ⟧ Δ, ap(U, τ'. ⟦ τ' ⟧ Δ, 1, τ, fst pf), !)
282 | 'Pair (τ₁-τ₂-Γ'-t-u, pf) →
283 let τ₁ = fst τ₁-τ₂-Γ'-t-u in
284 let τ₂ = fst (snd τ₁-τ₂-Γ'-t-u) in
285 let Γ' = fst (snd (snd τ₁-τ₂-Γ'-t-u)) in
286 let t = fst (snd (snd (snd τ₁-τ₂-Γ'-t-u))) in
287 let u = snd (snd (snd (snd τ₁-τ₂-Γ'-t-u))) in
288 let env' =
289 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
290 in
291 let vt : ⟦ τ₁ ⟧ Δ =
292 eval (τ₁; Γ') t Δ env'
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293 in
294 let vu : ⟦ τ₂ ⟧ Δ =
295 eval (τ₂; Γ') u Δ env'
296 in
297 cast(⟦ τ₁ ⟧ Δ × ⟦ τ₂ ⟧ Δ, ⟦ τ ⟧ Δ,
298 ap(U, τ'. ⟦ τ' ⟧ Δ, τ₁ ✶ τ₂, τ, fst pf), (vt; vu))
299 | 'Fst (τ₁-Γ'-τ₂-t, pf) →
300 let τ₁ = fst τ₁-Γ'-τ₂-t in
301 let Γ' = fst (snd τ₁-Γ'-τ₂-t) in
302 let τ₂ = fst (snd (snd τ₁-Γ'-τ₂-t)) in
303 let t = snd (snd (snd τ₁-Γ'-τ₂-t)) in
304 let env' =
305 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
306 in
307 let vt : ⟦ τ₁ ⟧ Δ × ⟦ τ₂ ⟧ Δ =
308 eval (τ₁ ✶ τ₂; Γ') t Δ env'
309 in
310 cast(⟦ τ₁ ⟧ Δ, ⟦ τ ⟧ Δ, ap(U, τ'. ⟦ τ' ⟧ Δ, _, _, fst pf), fst vt)
311 | 'Snd (τ₂-Γ'-τ₁-t, pf) →
312 let τ₂ = fst τ₂-Γ'-τ₁-t in
313 let Γ' = fst (snd τ₂-Γ'-τ₁-t) in
314 let τ₁ = fst (snd (snd τ₂-Γ'-τ₁-t)) in
315 let t = snd (snd (snd τ₂-Γ'-τ₁-t)) in
316 let env' =
317 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
318 in
319 let vt : ⟦ τ₁ ⟧ Δ × ⟦ τ₂ ⟧ Δ =
320 eval (τ₁ ✶ τ₂; Γ') t Δ env'
321 in
322 cast(⟦ τ₂ ⟧ Δ, ⟦ τ ⟧ Δ, ap(U, τ'. ⟦ τ' ⟧ Δ, _, _, fst pf), snd vt)
323 | 'Lambda (τ₁-τ₂-Γ'-t, pf) →
324 let τ₁ = fst τ₁-τ₂-Γ'-t in
325 let τ₂ = fst (snd τ₁-τ₂-Γ'-t) in
326 let Γ' = fst (snd (snd τ₁-τ₂-Γ'-t)) in
327 let t = snd (snd (snd τ₁-τ₂-Γ'-t)) in
328 let env' =
329 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
330 in
331 let Λt : (Δ' :U F↓T !) → F↓τ̃ (Δ; Δ') → ⟦ τ₁ ⟧ Δ' → ⟦ τ₂ ⟧ Δ' =
332 λΔ'. λf. λχ.
333 let rn-env : (Ξ :U F↓T !) → Π Ξ Δ → F↓τ̃ (Δ; Δ') → Π Ξ Δ' =
334 (fix [F↓T as Ctx view ι] rn-env _ Ξ : Π (ι ! Ξ) Δ → F↓τ̃ (Δ; Δ')
335 → Π (ι ! Ξ) Δ' =
336 match Ξ as Ξ' return
337 let Ξ'' : F↓T ! = in (fmap[F↓T](Ctx, F↓T, ι, !, Ξ')) in
338 Π Ξ'' Δ → F↓τ̃ (Δ; Δ') → Π Ξ'' Δ'
339 with
340 | 'Empty (_, _) → λ_. λ_. !
341 | 'Extend (Ξ'-τ', _) →
342 let Ξ' = fst Ξ'-τ' in
343 let τ' = snd Ξ'-τ' in
344 λε-χ. λρ. (rn-env ! Ξ' (fst ε-χ) ρ; rn Δ' Δ ρ τ' (snd ε-χ))) !
345 in
346 eval (τ₂; Γ' ∷ τ₁) t Δ' (rn-env Γ' env' f; χ)
347 in
348 cast ((Δ' :U F↓T !) → F↓τ̃ (Δ; Δ') → ⟦ τ₁ ⟧ Δ' → ⟦ τ₂ ⟧ Δ', ⟦ τ ⟧ Δ,
349 ap(U, τ'. ⟦ τ' ⟧ Δ, τ₁ ⇒ τ₂, _, fst pf), Λt)
350 | 'App (τ₂-Γ'-τ₁-t-u, pf) →
351 let τ₂ = fst τ₂-Γ'-τ₁-t-u in
352 let Γ' = fst (snd τ₂-Γ'-τ₁-t-u) in
353 let τ₁ = fst (snd (snd τ₂-Γ'-τ₁-t-u)) in
354 let t = fst (snd (snd (snd τ₂-Γ'-τ₁-t-u))) in
355 let u = snd (snd (snd (snd τ₂-Γ'-τ₁-t-u))) in
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356 let env' =
357 cast(Π Γ Δ, Π Γ' Δ, ap(U, Ξ. Π Ξ Δ, _, _, sym (snd pf)), env)
358 in
359 let val : ⟦ τ₂ ⟧ Δ =
360 (eval (τ₁ ⇒ τ₂; Γ') t Δ env') Δ (λ_. λx. x) (eval (τ₁; Γ') u Δ env')
361 in
362 cast(⟦ τ₂ ⟧ Δ, ⟦ τ ⟧ Δ, ap(U, τ'. ⟦ τ' ⟧ Δ, _, _, fst pf), val)) (τ; Γ)
363 in
364 let q-u : (τ :U Type !) →
365 (f :U Form !) → (Γ :U F↓T !) →
366 (match f as _ return U with
367 | 'Ne (_, _) → M τ Γ → ⟦ τ ⟧ Γ
368 | 'Nf (_, _) → ⟦ τ ⟧ Γ → N τ Γ) =
369 λτ. (fix [Type as Ty view ι] q-u _ τ :
370 (f :U Form !) → (Γ :U F↓T !) →
371 (match f as _ return U with
372 | 'Ne (_, _) → M (ι ! τ) Γ → ⟦ (ι ! τ) ⟧ Γ
373 | 'Nf (_, _) → ⟦ (ι ! τ) ⟧ Γ → N (ι ! τ) Γ) =
374 let q : (τ' :U Ty !) → (Γ' :U F↓T !) → ⟦ (ι ! τ') ⟧ Γ' → N (ι ! τ') Γ' =
375 λτ'. q-u ! τ' Nf
376 in
377 let u : (τ' :U Ty !) → (Γ' :U F↓T !) → M (ι ! τ') Γ' → ⟦ (ι ! τ') ⟧ Γ' =
378 λτ'. q-u ! τ' Ne
379 in
380 λf. λΓ.
381 match f as f return
382 let τ' : Type ! = in (fmap[Type](Ty, Type, ι, !, τ)) in
383 match f as _ return U with
384 | 'Ne (_, _) → M τ' Γ → ⟦ τ' ⟧ Γ
385 | 'Nf (_, _) → ⟦ τ' ⟧ Γ → N τ' Γ
386 with
387 -- Unquote
388 | 'Ne (_, _) →
389 (match τ as τ' return
390 let τ' : Type ! = in (fmap[Type](Ty, Type, ι, !, τ')) in
391 M τ' Γ → ⟦ τ' ⟧ Γ
392 with
393 | 'Unit (_, _) → λ_. !
394 | 'Product (τ₁-τ₂, _) →
395 let τ₁ = fst τ₁-τ₂ in
396 let τ₂ = snd τ₁-τ₂ in
397 λm. (u τ₁ Γ ('VFst ((ι ! τ₁; (Γ; (ι ! τ₂; m))),
398 refl ((Ne; (ι ! τ₁; Γ)) : Form ! × (Type ! × F↓T !))));
399 u τ₂ Γ ('VSnd ((ι ! τ₂; (Γ; (ι ! τ₁; m))),
400 refl ((Ne; (ι ! τ₂; Γ)) : Form ! × (Type ! × F↓T !)))))
401 | 'Function (τ₁-τ₂, _) →
402 let τ₁ = fst τ₁-τ₂ in
403 let τ₂ = snd τ₁-τ₂ in
404 let τ₁⇒τ₂ : Type ! = (ι ! τ₁) ⇒ (ι ! τ₂) in
405 λm. λΔ. λρ. λχ.
406 u τ₂ Δ ('VApp ((ι ! τ₂; (Δ; (ι ! τ₁; (pshf τ₁⇒τ₂ Γ m Δ ρ; q τ₁ Δ χ)))),
407 refl ((Ne; (ι ! τ₂; Δ)) : Form ! × (Type ! × F↓T !))))
408 )
409 -- Quote
410 | 'Nf (_, _) →
411 (match τ as τ return
412 let τ' : Type ! = in (fmap[Type](Ty, Type, ι, !, τ)) in
413 ⟦ τ' ⟧ Γ → N τ' Γ
414 with
415 | 'Unit (_, _) → λ_. 'VOne (Γ, <*, <*, refl Γ>>)
416 | 'Product (τ₁-τ₂, _) →
417 let τ₁ = fst τ₁-τ₂ in
418 let τ₂ = snd τ₁-τ₂ in
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419 λp.
420 let t = fst p in
421 let u = snd p in
422 'VPair ((ι ! τ₁; (ι ! τ₂; (Γ; (q τ₁ Γ t; q τ₂ Γ u)))),
423 <*, <<refl (ι ! τ₁), refl (ι ! τ₂)>, refl Γ>>)
424 | 'Function (τ₁-τ₂, _) →
425 let τ₁ = fst τ₁-τ₂ in
426 let τ₁' = ι ! τ₁ in
427 let τ₂ = snd τ₁-τ₂ in
428 let τ₂' = ι ! τ₂ in
429 λf.
430 let χ : ⟦ τ₁' ⟧ (Γ ∷ τ₁') =
431 u τ₁ (Γ ∷ τ₁') ('VVar ((τ₁'; (Γ ∷ τ₁'; 'Ix0 ((τ₁'; Γ),
432 <refl τ₁', <refl Γ, refl τ₁'>>))),
433 <*, <refl τ₁', <refl Γ, refl τ₁'>>>))
434 in
435 let ↑ : F↓τ̃ (Γ; Γ ∷ τ₁') =
436 λτ'. λixΓ. 'IxS ((τ'; (Γ; (τ₁'; ixΓ))), <refl τ', <refl Γ, refl τ₁'>>)
437 in
438 'VLambda ((τ₁'; (τ₂'; (Γ; q τ₂ (Γ ∷ τ₁') (f (Γ ∷ τ₁') ↑ χ)))),
439 <*, <<refl τ₁', refl τ₂'>, refl Γ>>))) ! τ
440 in
441 let q : (τ :U Type !) → (Γ :U F↓T !) → ⟦ τ ⟧ Γ → N τ Γ =
442 λτ. q-u τ Nf
443 in
444 let u : (τ :U Type !) → (Γ :U F↓T !) → M τ Γ → ⟦ τ ⟧ Γ =
445 λτ. q-u τ Ne
446 in
447 let nbe : (τ :U Type !) → (Γ :U F↓T !) → Term (τ; Γ) → N τ Γ =
448 λτ. λΓ. λt.
449 let xs : Π Γ Γ =
450 (fix [F↓T as Ctx view ι] xs _ Γ : Π (ι ! Γ) (ι ! Γ) =
451 match Γ as Γ return
452 let Γ' : F↓T ! = in (fmap[F↓T](Ctx, F↓T, ι, !, Γ)) in
453 Π Γ' Γ'
454 with
455 | 'Empty (_, _) → !
456 | 'Extend (Γ'-τ, _) →
457 let Γ' = fst Γ'-τ in
458 let Γ'' = ι ! Γ' in
459 let τ = snd Γ'-τ in
460 let χ : ⟦ τ ⟧ (Γ'' ∷ τ) =
461 u τ (Γ'' ∷ τ) ('VVar ((τ; (Γ'' ∷ τ; 'Ix0 ((τ; Γ''),
462 <refl τ, <refl Γ'', refl τ>>))),
463 <*, <refl τ, <refl Γ'', refl τ>>>))
464 in
465 let shift : (Δ :U F↓T !) → Π Δ Γ'' → Π Δ (Γ'' ∷ τ) =
466 (fix [F↓T as Ctx view ι] shift _ Δ : Π (ι ! Δ) Γ'' → Π (ι ! Δ) (Γ'' ∷ τ) =
467 match Δ as Δ return
468 let Δ' : F↓T ! = in (fmap[F↓T](Ctx, F↓T, ι, !, Δ)) in
469 Π Δ' Γ'' → Π Δ' (Γ'' ∷ τ)
470 with
471 | 'Empty (_, _) → λ_. !
472 | 'Extend (Δ'-τ', _) →
473 let Δ' = fst Δ'-τ' in
474 let τ' = snd Δ'-τ' in
475 let ↑ : F↓τ̃ (Γ''; Γ'' ∷ τ) =
476 λτ''. λixΓ''.
477 'IxS ((τ''; (Γ''; (τ; ixΓ''))), <refl τ'', <refl Γ'', refl τ>>)
478 in
479 λenv. (shift ! Δ' (fst env); rn (Γ'' ∷ τ) Γ'' ↑ τ' (snd env))
480 ) !
481 in
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482 (shift (ι ! Γ') (xs ! Γ'); χ)
483 ) ! Γ
484 in
485 q τ Γ (Γ τ ⟦ t ⟧ Γ xs)
486 in
487 nbe 1 · ('App ((1; (·; (1;
488 ('Lambda ((1; (1; (·;
489 'Var ((1; (· ∷ 1; 'Ix0 ((1; ·), <*, <*, *>>))),
490 <*, <*, *>>)))),
491 <<*, *>, *>);
492 'One (·, <*, *>))))),
493 <*, *>))
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