
Higher-Order Functional Reactive
Programming without Spacetime Leaks

Neelakantan R. Krishnaswami
Max Planck Institute for Software Systems (MPI-SWS)

neelk@mpi-sws.org

Abstract
Functional reactive programming (FRP) is an elegant approach
to declaratively specify reactive systems. However, the powerful
abstractions of FRP have historically made it difficult to predict and
control the resource usage of programs written in this style.

In this paper, we give a new language for higher-order reactive
programming. Our language generalizes and simplifies prior type
systems for reactive programming, by supporting the use of streams
of streams, first-class functions, and higher-order operations. We
also support many temporal operations beyond streams, such as
terminatable streams, events, and even resumptions with first-class
schedulers. Furthermore, our language supports an efficient imple-
mentation strategy permitting us to eagerly deallocate old values and
statically rule out spacetime leaks, a notorious source of inefficiency
in reactive programs. Furthermore, these memory guarantees are
achieved without the use of a complex substructural type discipline.

We also show that our implementation strategy of eager deallo-
cation is safe, by showing the soundness of our type system with a
novel step-indexed Kripke logical relation.

Categories and Subject Descriptors D.3.2 [Dataflow Languages]

Keywords Functional reactive programming; Kripke logical re-
lations; temporal logic; guarded recursion; dataflow; capabilities;
comonads

1. Introduction
Interactive programs engage in an ongoing dialogue with the envi-
ronment. An interactive program receives an input event from the
environment, and computes an output event, and then waits for the
next input, which may in turn be affected by the earlier outputs the
program has made. Examples of such systems range from embedded
controllers and sensor networks, up to graphical user interfaces, web
applications, and video games.

Programming interactive applications in general purpose pro-
gramming languages can be very confusing, since the different
components of the program do not typically interact via structured
control flow (such as loops or direct procedure calls), but instead
operate by registering state-manipulating callbacks with one another,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25-27, Boston, MA, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500588

which are then implicitly invoked by an event loop. Reasoning about
such programs is difficult, since each of these features – higher-order
functions, aliased imperative state, and concurrency – is challenging
on its own, and their combination takes us to the outer limits of what
verification can cope with.

These difficulties, plus the critical nature of many reactive
systems, have inspired a great deal of research into languages,
libraries and analysis techniques for reactive programming. Two
of the main strands of work on this problem are the synchronous
dataflow languages, and functional reactive programming.

Synchronous dataflow languages, such Esterel [5], Lustre [7],
and Lucid Synchrone [39], implement a computational model
inspired by Kahn networks. Programs are fixed networks of stream-
processing nodes that communicate with each other, each node
consuming and producing a statically-known number of primitive
values at each clock tick. These languages deliver strong guarantees
on space and time usage, and so see wide use in applications such
as hardware synthesis and embedded control software.

Functional reactive programming, introduced by Elliott and
Hudak [15], also works with time-varying values (rather than
mutable state) as a primitive abstraction. However, it provides a
much richer model than synchronous languages do. Signals are
first-class values, and can be used freely, including in higher-order
functions and signal-valued signals, which permits writing programs
which dynamically grow and alter the dataflow network. FRP has
been applied to problem domains such as robotics, games, music,
and GUIs, illustrating the power of the FRP model.

However, this power comes at a steep price. Modeling A-valued
signals as streams Aω (in the real-valued case, AR) and reactive
systems as functions Inputω → Outputω has several problems.
First, this model does not enforce causality (that is, output at time
n depends only upon inputs at earlier times), nor does it ensure
that feedback (used to define signals recursively) is well-founded.
Second, since the model of FRP abstracts away from resource
usage, it is easy to write programs with significant resource leaks
by inadvertently accumulating the entire history of a signal – that
is,“space leaks”.1 For example, consider the simple program below:

bad const : SN→ S (SN) 1
bad const ns = cons(ns, bad const ns) 2

The bad const function takes a stream of numbers as an argument,
and then returns that stream constantly. So if it receives the stream
(a, b, c, . . .), then it returns a stream of streams with (a, b, c, . . .) as
its first element, with (a, b, c, . . .) as its second element, and so on

1 In reactive programming, the phrase “space leak” usually refers only to
memory leaks arising from capturing too much history, since they form
the species of memory leak that functional programmers are unused to
debugging. Relatedly, there are also “time leaks”, which occur when a signal
is sampled infrequently. Under lazy evaluation, infrequent sampling can lead
to the head of a stream growing to become a large computation.

indefinitely. This is a perfectly natural, even boring, mathematical
function on streams, but many implementations leak memory. Con-
sider the following diagram, illustrating how a stream data structure
evolves over time:

t = 0 . . .

t = 1 . . .

t = 2 . . .

t = 3 . . .

a b c d e

a b c d e

a b c d e

a b c d e

Here, a stream is a computation incrementally producing values.
At time 0, the stream yields the value “a”, and at time 1, it yields
the value “b”, and so on. Each value in a double-circle represents
the stream’s current value at time t, and the values in white circles
represent the stream’s future values, and the values in gray circles
represent the stream’s past values. (So there are n gray circles at
time n.)

If a pointer to the head of a stream persists, then at time n all
of the first n + 1 values of the stream will be accessible, and so
we will need to store all the values the stream has produced – all
of the grey nodes, plus the double-circled node. Thus, at time n,
we will have to store n elements of history, which means that the
memory usage of the bad const function will be O(n) at time n.
So the accidental use of a function like bad const in a long-running
program will eventually consume all of the memory available.

To avoid this problem, a number of alternative designs, such
as such as event-driven FRP [43] and arrowized FRP [35], have
been proposed. The common thread in this work is to give up on
treating signals as first-class values, and instead offer a collection
of combinators to construct stream transformer functions (that is,
functions of type SA→ SB) from smaller ones. Streams of streams
(and other time-dependent values) are forbidden, and each of the
exported combinators is designed to ensure that only efficient stream
transformers can be constructed.

Restricting programmers to indirect access to streams is akin
to a first-order programming style, since it makes it difficult to
abstract over stream-manipulating operations. This restriction is
also quite similar to those synchronous dataflow languages impose,
and Liu et al. [30] exploit this resemblance to develop a compilation
scheme (reminiscent of the Bohm-Jacopini theorem) to compile
arrow programs into efficient single-loop code, much as compilers
for Esterel and Lucid do. Sculthorpe and Nilsson [40] extend the
arrowized approach further, by using dependent types to enforce
causality.

However, dynamic modification of the dataflow graph is very
natural for interactive programs. For example, in a graphical pro-
gram, we may wish to associate dataflow networks with windows,
which are created and destroyed as a program executes. To support
this, arrowized FRP libraries need to add additional combinators to
restore dynamic behavior. These combinators make unwanted mem-
ory leaks possible once more (though less easily than in the original
FRP). They also have a somewhat ad-hoc flavor: since first-class
and higher-order stream types are unavailable, somewhat complex
and strange types are needed to encode typical usage patterns.

To recover a more natural programming style, Krishnaswami and
Benton [27] proposed a lambda-calculus for stream programming
based on the guarded recursion calculus of Nakano [34], which
ensured by typing that all definitions are causal and well-founded.
Jeffrey [19] and Jeltsch [22] further observed that it is possible to
use the formulas of linear temporal logic [38] as types for reactive

programs. However, while all of these papers offer a coherent
account of causality (not using values from the future, and ensuring
that all recursive definitions are guarded), none of them have much
to say about the memory behavior of their programs.

To resolve this problem, Krishnaswami et al. [28] gave a calculus
which retains the causality checking and fully higher order style of
[19, 22, 27], but which also uses linear types to control the memory
usage of reactive programs. This calculus passes around linearly-
typed tokens representing the right to allocate stream values, which
ensures that no program can ever allocate a dataflow graph which is
larger than the total number of permissions passed in. This solution
works, but is too precise to be useful in practice. The exact size
of the dataflow graph is revealed in a program’s type, and so even
modest refactorings lead to massive changes in the type signature of
program components.

Contributions Our contributions are as follows:

1. We give a new implementation strategy, described using oper-
ational semantics, for higher-order reactive programming. Our
semantics rules out space and time leaks by construction, mak-
ing it impossible to write programs which accidentally retain
temporal values over long periods of time.
To accomplish this, we describe the semantics of reactive pro-
grams with two operational semantics. The first semantics ex-
plains how to evaluate program terms in the current clock tick,
and the second is a “tick relation” for advancing the clock.
Expressions in a reactive language can be divided into two
classes, those which must be evaluated now, and those which
must be evaluated later, on future clock ticks. We evaluate current
expressions using a call-by-value strategy, and we suspend future
expressions by placing them in mutable thunks on the heap, in a
style reminiscent of call-by-need. Evaluating current expressions
in a call-by-value style prevents time leaks, by making streams
head-strict [42].
Future expressions can only be evaluated in the future, and the
tick relation describes how to advance the clock into the future.
This semantics works by going through the heap of thunks,
and forcing each expression scheduled for execution on the
current time step. Furthermore, we achieve our goal of blocking
space leaks through the simple but drastic measure of deleting
all old values, thereby making it operationally impossible to
accidentally retain a reference to a value past its lifetime.

2. We give a simple type theory for a higher-order reactive pro-
gramming language.
Our type system generalizes earlier work on using temporal
logic [19, 22, 27] to type reactive programs. Instead of using
formulas of temporal logic as types, we take a standard simply-
typed lambda calculus, and introduce a delay modality •A of
terms of type A that can be evaluated “on the next tick of the
clock”, and add to that the new notion of a temporal recursive
type µ̂α. A, which allows defining types which are recursive
through time.
This recursive type construct allows encoding all of the standard
temporal operators as derived constructions within our calculus –
streams, events, and even resumptions are all definable within
our system, as are higher-order functions to construct and
manipulate elements of these types.
To retain control over space leaks, we simplify the work of
Krishnaswami et al. [28] on using linear types to prevent space
leaks in reactive systems. We introduce a new kind of type-based
capability which grants the right to allocate memory, without
having to enumerate the exact amount of memory used. As a
result, we do not need the complexities of a substructural type

system, and moreover we no longer reflect exact memory usage
in types, which improves the modularity of reactive programs.

3. We show that our type discipline is sound by means of a novel
step-indexed Kripke logical relation.
Deleting old values naturally raises the question of what happens
if we accidentally reference a deleted value. Our logical relation
lets us prove that no well-typed program will ever dereference
a deallocated location, and that expressions whose types say
they do not allocate memory, do not actually allocate memory.
Furthermore, the logical relation shows that the expression
relation is total for well-typed terms, despite the presence of
a term-level fixed point. This demonstrates that we can only
define well-founded and causal loop structures.

Supplementary Material Full proofs of the main results in this
paper, and statements and proofs of all the supporting lemmas, can
be found in the accompanying technical report.

2. Programming Language
We begin with a description of our language design. We give
the syntax of types, terms, and values in Figure 1, the syntax of
contexts in Figure 2, and the typing rules in Figures 3, 4, and 5.
The operational semantics of expressions is in Figure 6, and the
semantics of advancing the clock is in Figure 7.

Overview In a reactive language, an explicit notion of time is
exposed to the programmer, and so we will need to extend the
operational semantics to account for time, and then give a modified
type system which properly reflects the semantics.

Our operational semantics consists of two relations. The ex-
pression relation 〈σ; e〉 ⇓ 〈σ ′; v〉 describes how to evaluate an
expression within a single timestep. This relation, given in Figure 6,
is a standard big-step, call-by-value operational semantics for a
functional language with a store. As we will see, the use of a call-
by-value semantics rules out time leaks, since they are inherently an
artifact of lazy evaluation.

However, the stores are not unrestricted heaps in the style
of ML. Since reactive languages allow programmers to schedule
when different expressions should be executed, there are program
expressions which should not be executed right away. We put these
expressions into a store, with the idea that the code stored in the heap
will be evaluated later. In terms of reactive programming idioms, the
store represents the dataflow graph of the program, which contains
the nodes that will supply values on later ticks of the clock. In
terms of functional programming idioms, the store implements lazy
evaluation, in a variant of call-by-need where thunks are explicitly
scheduled for later execution.

To actually advance the clock, we give the tick relation σ =⇒ σ ′,
which describes (Figure 7) how the store σ is transformed into a
store σ ′ when the clock ticks. As expected, our relation evaluates all
of the computations scheduled for evaluation on the next tick. The
tick semantics also makes space leaks impossible, by construction:
brutally but expediently it deletes all values that are more than one
tick old.

It is now trivially the case that it is impossible to inadvertently
store a history too long – but, at what price? Surprisingly, we can
show that the price is low. We give a type discipline, which not only
ensures that all well-typed programs are safe (in that they never
try to access a deleted value), but which is also expressive, in that
natural reactive programs (higher-order or not) are still well-typed.

Since the passage of time is a central feature of our operational
semantics, we introduce three temporal qualifiers, now, later, and
stable, to explain when some expression is well-typed, and when
a variable may be used. The now qualifier means “in the present

time step”, the later qualifier means “on the next time step”, and the
stable qualifier means “at any time step, present or future”.

As a result, our typing judgment takes the form Γ ` e : A q,
where q is a qualifier. So the informal reading of the typing judgment
is “under hypotheses Γ , the expression e has type A at time q.” Just
as expressions have temporal qualifiers, so too do the hypotheses
in the context. The context Γ (with a grammar given in Figure 2)
consists of a list of hypotheses of the form x : A q, which gives
not just a type A for each variable x, but also gives a qualifier q
controlling when we may use the variable x.

Types, Terms, and Expression Evaluation The core of our pro-
gramming language is essentially the simply-typed lambda calculus.
The basic types include product types A× B with pairs (e, e ′) and
projections fst e and snd e, disjoint unions A + B with injections
inl e and inr e and a case statement case(e, inl x→ e ′, inr y→ e ′′),
and function typesA→ Bwith lambda-abstractions λx. e and appli-
cations e e ′, as well as a variety of primitive types (such as numbers
N and booleans bool). The typing rules for these constructs are all
given in Figure 3, and are all standard. Similarly, the reduction rules
for these terms are given in the first half of Figure 6, and are also
standard.

To this, we add a number of features to deal with time.
First, we have the next-step operator •A. The intuitive reading

of this type is that an inhabitant of •A is a term that, when evaluated
on the next time step, will yield a value of type A – the type of “A’s
tomorrow”. The introduction form is the delay term δe ′(e), which
says that e is a term to evaluate on the next time step. Consequently,
its typing rule •I requires e to be typechecked later. The elimination
form is a binding-style elimination form, let δ(x) = e in e ′. The
typing rule •E asserts that e is of type •A, and the variable x is of
type A, but with the later qualifier. This ensures that the body e ′

does not use e’s value before it is available.
Operationally, we do not evaluate the body e of a delayed

expression δe ′(e) right away. Instead, we extend the store with
a pointer l : e later to a thunk e, which will be evaluated on the
next time step. These pointers implement a form of call-by-need,
ensuring that even if we use a delayed variable multiple times, the
delayed expression will itself only be evaluated once. This can be
seen in the reduction rule for let δ(x) = e in e ′. Here, if e evaluates
to the pointer l, the reduction rule substitutes !l, a dereferencing of
the pointer, for x in e ′.

The allocation of a thunk extends the reactive program’s dataflow
graph, and the growth of the dataflow graph is something we must
control. To achieve this, we use the subscripted argument e ′ in
the delay introduction form δe ′(e). This argument must be of the
allocation type alloc, and indicates a permission to allocate heap
storage. Since the type alloc represents a pure capability [32], we
have no introduction or elimination forms for it; a token (denoted
by � in our syntax) representing this capability must be passed in
to a closed program by the runtime system of the language. Thus,
programmers may control whether or not a function allocates by
controlling whether or not they pass it an allocation capability.

Pointer expressions l, dereference expressions !l, and resource
tokens � are all internal forms of our language, and cannot be written
by a programmer. (As a result, there are no typing rules for them.)

Values of •A type are time-dependent, in the sense that their
representation changes over time: when the clock ticks, the dataflow
graph/store is evaluated, and pointers are updated. This means that
they should only be used on particular time steps. Other types,
such as natural numbers or booleans, consist of values whose
representation does not change over time. These stable values may
safely be used at many different times. Values of other types, such
as functions A→ B, are either time-dependent or stable, depending
on whether or not they capture any time-dependent values in their
environment.

So we also introduce a modal type �A, which contains only
those values of type A which are stable. The introduction form
stable(e) ensures that e has the type A under the stable qualifier,
and the elimination form let stable(x) = e in e ′ takes a term e of
type �A, and binds x to a stable variable. Since values of certain
types (base types, and products and sums of same) are always stable,
we also introduce a term promote(e), which takes a term of an
inherently stable type A (as judged by the judgment A stable,
defined in Figure 5) and returns a value of type �A.

In order to get interesting temporal data structures, we introduce
a temporal recursive type, µ̂α. A. This type has the expected
introduction into e and elimination out e forms, but their types are
slightly nonstandard. When constructing a term into e of recursive
type µ̂α. A, we require e to have the type [•(µ̂α. A)/α]A. That is,
every occurrence of α in A is substituted with •(µ̂α. A), which is
the recursive type on the next time step. This lets us use the next-step
modality to define data whose structure repeats over time, rather
than proceeding only a constant number of steps into the future.

In addition to type-level recursion, we also have a term-level
recursion operator fix x. e. There are no restrictions on the types we
may take fixed points at; we only require that if fix x. e is of type A,
then we assume x is a later variable. This ensures that we can never
construct an unguarded loop.

We also include a stream type SA, with an introduction form
cons(e, e ′) and an elimination form let cons(x, xs) = e in e ′.
The stream type can be encoded using the other constructs of the
language (see Section 3.2), but we include it in order to give a more
readable syntax to our examples. However, the cons(e, e ′) form
does help illustrate why we chose a call-by-value evaluation strategy.
Under call-by-value, the head of the stream e is always evaluated
to a value. As a result, “time leaks” are impossible, since the head
gets reduced to a value on every tick, and so it doesn’t matter how
frequently a stream is sampled.

Finally, the variable rule HYP says that we can only use a variable
now, if it is either stable, or if it is available now. Then, there are the
TSTABLE and TLATER rules, which show how to derive terms with
the stable and later qualifiers, in terms of the now qualifier. The
key to this are the context-clearing operations defined in Figure 2.
The Γ� context operation deletes every now and later hypothesis,
ensuring that stable terms may only depend on stable variables. The
Γ• operation takes a context, and deletes every hypothesis marked
now, and changes every later hypothesis to now, ensuring that terms
which are typechecked later (1) view the later variables as if they
were available in the present, and (2) do not access any variables
containing possibly out-of-date values.

Dataflow Graphs The store σ is used to represent the dataflow
graph of the program, and contains a collection of pointers, which
can be viewed as the nodes in a dataflow graph. Each node is either
a suspended expression l : e later to be evaluated on the next tick
of the clock, or points to a presently available value l : v now, or is
undefined l : null and points to nothing.

Advancing Time We give the tick relation σ =⇒ σ ′ in Figure 7,
which explains how to advance time for a dataflow graph.

If the dataflow graph σ is empty, then of course the updated store
is also empty. In order to evaluate a store σ, l : e later, we first
update the rest of the dataflow graph σ to σ ′, and then evaluate e
in the result store σ ′ to a value v, updating the pointer to l : v now.
However, when we see a store σ, l : v now containing a value,
we evaluate the store, but null out the pointer, setting it to l : null.
Finally, once nulled out, null pointers stay nulled out.

This feature of the operational semantics suffices to ensure that
FRP-specific space leaks are impossible – because our dataflow
graph never stores values for more than a single tick, it follows that
values can never accumulate and build up into a memory leak. As a

result, values in dataflow nodes can never persist in memory unless
the programmer explicitly writes code to retain them. (Of course,
all the memory leaks traditional to functional programming are still
possible – we have simply ensured that reactivity has not added any
new sources of leaks.)

It is worth reiterating that it is the operational semantics, and not
the type system, which ensures the absence of space leaks: because
we delete everything old, it is simply impossible to remember the
past unless the programmer explicitly writes the code to do so. The
type system merely acts as a set of guard rails, ensuring that we do
not accidentally follow any invalid pointers.

Making dataflow nodes transient is a significant departure from
existing imperative implementation strategies for FRP libraries, such
as Scala.React [31] or Racket’s FrTime [9, 10]. In these libraries,
dataflow nodes are persistent, and last across many time steps, and
clever heuristics are used to order updates.

Abandoning this strategy pays many dividends. We have already
observed that accidental space leaks are no longer possible, but there
are also further practical benefits. A real implementation needs to
garbage collect null nodes. Fortunately, the structure of our typing
rules ensures that well-typed program terms never contain locations
that outlive their tick, and as a result, the usual reachability heuristic
of standard garbage collectors will work unchanged.

In contrast, persistent dataflow nodes need to manage dependen-
cies explicitly, and as a result, each dataflow cell knows both which
cells it reads, and which cells read it. This bidirectional linkage
means that if one cell is reachable, all cells are reachable, defeating
garbage collection unless special (and often expensive) measures
such as weak references are used.

Complete Programs Finally, we need to say a word about what
complete programs in our language are. Since we use an object-
capability style to control the growth of the dataflow graph, a user
program must be a function type, so that it can receive a capability
as an argument. Furthermore, since alloc is not a stable type, we
will need to supply a fresh capability on each tick.

For this reason, we take user programs to be closed terms of type
S alloc→ A. If e is such a term, then we will begin evaluation of
the program with the call e (fix xs. cons(�, δ�(xs))). The term
fix xs. cons(�, δ�(xs)) computes into a term which produces a
stream yielding an allocation token � at each tick, but this term
cannot itself be typed under our type system, Modeling the fact that
the runtime system of the language possesses certain capabilities
that user programs do not.

As a result, our metatheory needs to be done in a “semantic” style,
using a step-indexed Kripke logical relation, rather than showing
soundness through the usual syntactic progress and preservation
lemmas.

3. Examples
3.1 Stream Functions
Basic Examples We begin with the constant function on streams.
It takes a natural number as an input, and returns a constant stream
of that number.

const : S alloc→ N→ SN 1
const us n = 2

let cons(u, δ(us ′)) = us in 3
let stable(x) = promote(n) in 4
cons(x, δu(const us ′ x)) 5

In this example, we have a function const which receives a
stream of permissions us to allocate, and a number n on line 2.
On line 3, we take the head and tail of the permission stream, with
a pattern-matching-style nested delay elimination to bind us ′ to

Types A ::= b | A× B | A + B | A→ B
| •A | �A | µ̂α. A | SA | alloc

Terms e ::= fst e | snd e | (e, e ′)
| inl e | inr e | case(e, inl x→ e ′, inr y→ e ′′)
| λx. e | e e ′

| δe ′(e) | let δ(x) = e in e ′

| stable(e) | let stable(x) = e in e ′

| into e | out e
| cons(e, e ′) | let cons(x, xs) = e in e ′

| fix x. e | x | promote(e)
| l | !l | �

Values v ::= (v, v ′) | inl v | inr v ′ | λx. e
| l | � | stable(v) | into v | cons(v, v ′)

Stores σ ::= · | σ, l : v now | σ, l : e later | σ, l : null

Figure 1. Syntax

Qualifiers q ::= now | stable | later
Contexts Γ ::= · | Γ, x : A q

(·)• = ·
(Γ, x : A later)• = Γ•, x : A now
(Γ, x : A stable)• = Γ•, x : A stable
(Γ, x : A now)• = Γ•

(·)� = ·
(Γ, x : A stable)� = Γ�, x : A stable

(Γ, x : A later)� = Γ�

(Γ, x : A now)� = Γ�

Figure 2. Hypotheses, Contexts and Operations on Them

Γ ` e : A q

Γ ` e : A now Γ ` e ′ : B now

Γ ` (e, e ′) : A× B now
×I

Γ ` e : A× B now

Γ ` fst e : A now
×LE

Γ ` e : A× B now

Γ ` snd e : B now
×RE

Γ ` e : A now

Γ ` inl e : A + B now
+LI

Γ ` e : B now

Γ ` inr e : A + B now
+RI

Γ ` e : A + B now
Γ, x : A now ` e ′ : C now Γ, y : B now ` e ′′ : C now

Γ ` case(e, inl x→ e ′, inr y→ e ′′) : C now
+E

Γ, x : A now ` e : B now

Γ ` λx. e : A→ B now
→I

Γ ` e : A→ B now Γ ` e ′ : A now

Γ ` e e ′ : B now
→E

Figure 3. Standard Typing Rules

Γ ` e : A q continued

Γ ` e : A later Γ ` e ′ : alloc now

Γ ` δe ′(e) : •A now
•I

Γ ` e : •A now Γ, x : A later ` e ′ : C now

Γ ` let δ(x) = e in e ′ : C now
•E

Γ ` e : [•(µ̂α. A)/α]A now

Γ ` into e : µ̂α. A now
µI

Γ ` e : µ̂α. A now

Γ ` out e : [•(µ̂α. A)/α]A now
µE

Γ ` e : A stable

Γ ` stable(e) : �A now
�I

Γ ` e : �A now Γ, x : A stable ` e ′ : C now

Γ ` let stable(x) = e in e ′ : C now
�E

Γ ` e : A now A stable

Γ ` promote(e) : �A now
PROMOTE

Γ ` e : A now Γ ` e ′ : •(SA) now

Γ ` cons(e, e ′) : SA now
SI

Γ ` e : SA now
Γ, x : A now, xs : •(SA) now ` e ′ : C now

Γ ` let cons(x, xs) = e in e ′ : C now
SE

Γ�, x : A later ` e : A now

Γ ` fix x. e : A now
FIX

x : A q q ∈ {now, stable}

Γ ` x : A now
HYP

Γ� ` e : A now

Γ ` e : A stable
TSTABLE

Γ• ` e : A now

Γ ` e : A later
TLATER

Figure 4. Typing

A stable

A stable B stable

A× B stable

A stable B stable

A + B stable

b stable �A stable

Figure 5. Stability of Types

〈σ; e〉 ⇓ 〈
σ ′; v

〉
〈σ; v〉 ⇓ 〈σ; v〉

〈σ; e1〉 ⇓ 〈
σ ′; v1

〉 〈
σ ′; e2

〉 ⇓ 〈
σ ′′; v2

〉
〈σ; (e1, e2)〉 ⇓ 〈

σ ′′; (v1, v2)
〉

〈σ; e〉 ⇓ 〈
σ ′; (v1, v2)

〉
〈σ; fst e〉 ⇓ 〈

σ ′; v1
〉 〈σ; e〉 ⇓ 〈

σ ′; (v1, v2)
〉

〈σ; snd e〉 ⇓ 〈
σ ′; v2

〉
〈σ; e〉 ⇓ 〈

σ ′; v
〉

〈σ; inl e〉 ⇓ 〈
σ ′; inl v

〉 〈σ; e〉 ⇓ 〈
σ ′; v

〉
〈σ; inr e〉 ⇓ 〈

σ ′; inr v
〉

〈σ; e〉 ⇓ 〈
σ ′; inl v

〉 〈
σ ′; [v/x]e ′

〉 ⇓ 〈
σ ′′; v ′′

〉〈
σ; case(e, inl x→ e ′, inr y→ e ′′)

〉 ⇓ 〈
σ ′′; v ′′

〉
〈σ; e〉 ⇓ 〈

σ ′; inr v
〉 〈

σ ′; [v/y]e ′′
〉 ⇓ 〈

σ ′′; v ′′
〉〈

σ; case(e, inl x→ e ′, inr y→ e ′′)
〉 ⇓ 〈

σ ′′; v ′′
〉

〈σ; e1〉 ⇓ 〈
σ ′; λx. e ′1

〉〈
σ ′; e2

〉 ⇓ 〈
σ ′′; v2

〉 〈
σ ′′; [v2/x]e

′
1

〉 ⇓ 〈
σ ′′′; v

〉
〈σ; e1 e2〉 ⇓ 〈

σ ′′′; v
〉

〈
σ; e ′

〉 ⇓ 〈
σ ′; �

〉
l 6∈ dom(σ ′)

〈σ; δe ′(e)〉 ⇓ 〈
(σ ′, l : e later); l

〉
〈σ; e〉 ⇓ 〈

σ ′; l
〉 〈

σ ′; [!l/x]e ′
〉 ⇓ 〈

σ ′′; v
〉〈

σ; let δ(x) = e in e ′
〉 ⇓ 〈

σ ′′; v
〉 l : v now ∈ σ

〈σ; !l〉 ⇓ 〈σ; v〉
〈σ; e〉 ⇓ 〈

σ ′; v
〉

〈σ; into e〉 ⇓ 〈
σ ′; into v

〉 〈σ; e〉 ⇓ 〈
σ ′; into v

〉
〈σ; out e〉 ⇓ 〈

σ ′; v
〉

〈σ; e〉 ⇓ 〈
σ ′; v

〉
〈σ; stable(e)〉 ⇓ 〈

σ ′; stable(v)
〉

〈σ; e〉 ⇓ 〈
σ ′; v

〉
〈σ; promote(e)〉 ⇓ 〈

σ ′; stable(v)
〉

〈σ; e〉 ⇓ 〈
σ ′; stable(v)

〉 〈
σ ′; [v/x]e ′

〉 ⇓ 〈
σ ′′; v ′′

〉〈
σ; let stable(x) = e in e ′

〉 ⇓ 〈
σ ′′; v ′′

〉
〈σ; e〉 ⇓ 〈

σ ′; v
〉 〈

σ ′; e ′
〉 ⇓ 〈

σ ′′; v ′
〉〈

σ; cons(e, e ′)
〉 ⇓ 〈

σ ′′; cons(v, v ′)
〉

〈σ; e〉 ⇓ 〈
σ ′; cons(v, l)

〉 〈
σ ′; [v/x, l/xs]e ′

〉 ⇓ 〈
σ ′′; v ′′

〉〈
σ; let cons(x, xs) = e in e ′

〉 ⇓ 〈
σ ′′; v ′′

〉
〈σ; [fix x. e/x]e〉 ⇓ 〈

σ ′; v
〉

〈σ; fix x. e〉 ⇓ 〈
σ ′; v

〉
Figure 6. Expression Semantics

σ =⇒ σ ′

· =⇒ · σ =⇒ σ ′
〈
σ ′; e

〉 ⇓ 〈
σ ′′; v

〉
l 6∈ dom(σ ′′)

σ, l : e later =⇒ σ ′′, l : v now

σ =⇒ σ ′ l 6∈ dom(σ ′)

σ, l : v now =⇒ σ ′, l : null

σ =⇒ σ ′ l 6∈ dom(σ ′)

σ, l : null =⇒ σ ′, l : null

Figure 7. Tick Semantics

a later variable. On line 4, we make use of the fact that natural
numbers are stable in order to rebind n to the stable variable x. This
lets us refer to x in both the head and tail of the cons-cell on line
5. The head of the cons cell is just x itself, and the tail is a delayed
stream, which we may allocate since we have a permission u.

Below, we give a summation function, which takes a stream of
numbers and returns a stream containing the cumulative sum of
the stream. To implement this, we introduce an auxiliary function
sum acc which stores the sum in an accumulator variable, and then
call it with an initial sum of 0.

sum acc : S alloc→ SN→ N→ SN 1
sum acc us ns acc = 2

let cons(u, δ(us ′)) = us in 3
let cons(n, δ(ns ′)) = ns in 4
let stable(x) = promote(n + acc) in 5
cons(x, δu(sum acc us ′ ns ′ x)) 6

sum : S alloc→ SN→ SN 7
sum us ns = sum acc us ns 0 8

Higher-Order Stream Operations Our language permits the free
use of streams of streams, as well as higher-order functions on
streams. We illustrate this with a simple function which takes a
stream, and returns the stream of successive tails of that stream.

tails : S alloc→ SA→ S (SA) 1
tails us xs = 2

let cons(u, δ(us ′)) = us in 3
let cons(x, δ(xs ′)) = xs in 4
cons(xs, δu(tails us ′ xs ′)) 5

The higher-order map functional is definable as follows:

map : S alloc→ �(A→ B)→ SA→ SB 1
map us h xs = 2

let cons(u, δ(us ′)) = us in 3
let cons(x, δ(xs ′)) = xs in 4
let stable(f) = h in 5
cons(f x, δu(map us ′ stable(f) xs ′)) 6

Note that the map functional calls its argument function on every
element of the input stream. As a result, we need to use the function
at many different time steps, and so we need to give the functional
argument the stable type �(A→ B) to ensure that we can safely
use it both now and later.

The fact that all computable streams are definable in our language
is witnessed by giving the unfold operation, which shows that the
universal property of streams is definable within the language.

unfold : S alloc→ �(X→ A× •X)→ X→ SA 1
unfold us h x = 2

let cons(u, δ(us ′)) = us in 3
let stable(f) = h in 4
let (a, δ(x ′)) = f x in 5
cons(a, δu(unfold us ′ stable(f) x ′)) 6

Dynamic Changes of Streams Switching behavior is directly
programmable in our language. The swap function below takes
a number n, and two streams xs and ys. It yields the same values
as xs on the first n time steps, and afterward the same values as ys.

swap : S alloc→ N→ SA→ SA→ SA 1
swap us n xs ys = 2

if n = 0 then 3
ys 4

else 5
let cons(u, δ(us ′)) = us in 6
let cons(x, δ(xs ′)) = xs in 7
let cons(y, δ(ys ′)) = ys in 8
let stable(m) = promote(n) in 9
cons(x, δu(swap us ′ (m − 1) xs ′ ys ′)) 10

What is interesting about this example is that there is nothing
surprising about it: it is basically an ordinary functional program.
Unlike many other approaches to reactive programming, we program
conditional behavior with ordinary conditional control flow.

3.2 Type Encodings
Streams In order to make the examples more readable, we in-
cluded streams as a primitive type in our language, but that is actu-
ally unnecessary, since they are encodable using recursive types:

SA , µ̂α. A× α
This encoding looks completely conventional, but because unfolding
a recursive type requires guarding the recursive type with a delay
modality before substituting, this type is isomorphic to:

SA ' A× •(A× •(A× . . .))
From a logical perspective, the stream type SA corresponds to

the “always” operator of temporal logic, which asserts that at every
time step, we always have a witness to the proposition A.

Events In reactive programs, there are often operations which take
a length of time observable to the user. For example, downloading
a file is an operation which can take many ticks to happen, and the
file value is not available for use until the operation is complete.

Such operations, which we call “events”, are surprisingly difficult
to model in a stream-based paradigm, since nothing happens until
the completion of the process, and once the final event happens, no
more events occur. Stream-based languages have used a number of
tricks to encode behaviours like this, but when we have a temporal
recursive type, it is straightforward to define a type of events:

EA , µ̂α. A + α

Here, we simply replace the product with a sum, which means that an
element of typeA is either immediately available, or we have to wait
until the next tick to try again. (That is, EA ' A+ •(EA).)Events
make implementing dynamic switching behavior very natural.

switch : S alloc→ SA→ E (SA)→ SA 1
switch us xs e = 2

let cons(u, δ(us ′)) = us in 3
let cons(x, δ(xs ′)) = xs in 4
case(out e, 5

inlys→ ys, 6
inr t→ let δ(e ′) = t in 7

cons(x, δu(switch us ′ xs ′e ′))) 8

In this example, the call switch us xs e behaves like xs until the
event e returns a stream ys, and then it behaves like ys.

Events correspond to the “eventually” operator of temporal logic.
Since the eventually operator forms a closure operator on the Kripke
structure of times, the event type constructor correspondingly forms
a monad, whose monadic operations may be defined as follows:

return : A→ EA 1
return x = into (inl x) 2

bind : S alloc→ �(A→ EB)→ EA→ EB 3
bind us h e = 4

let cons(u, δ(us ′)) = us in 5
let stable(f) = h in 6
case(out e, 7

inla→ f a, 8
inr t→ let δ(e ′) = t in 9

into (inr (δu(bind us ′ stable(f) e ′)))) 10

Here, we perform sequencing by taking a function that maps
elements of A to B events, and waiting until an A-event yields
an A to apply the function. Because we do not know when we will
need to invoke the function, bind requires it to be stable.

Events are closely related to promises and futures [4, 16], in that
they are proxies for computations which have not yet completed
constructing a value. However, unlike most implementations of
futures, our type EA permits clients to test whether or not the
computation has finished. Because we embed our events into a
synchronous programming language, this choice does not introduce
nondeterminism into our programming language.

Until Just as the always and eventually operators in temporal logic
can be merged into the “until” operator, we can also give a combined
operation for processes that produce values of type A until they
terminate, producing a value of type B.

AU B , µ̂α. B + (A× α)
Note that streams correspond to producing elements of A until the
empty type, SA ' AU 0, and events correspond to yielding units
until B, EB ' 1U B.

Resumptions The fact that we have function spaces and arbitrary
recursive types enables us to go well beyond the expressive power
of temporal logic. In this example, we will illustrate this by showing
how resumptions [37], a simple interleaving model of concurrency,
may be encoded in our type system.

RI,OA , µ̂α. α× (A + (I→ O× α))
Elements of the type RI,OA can be thought of as representations
of thread values, in an interleaving model of concurrency. The left-
hand-side of the pair α× (A+(I→ O×α)) can be seen as what to
do when the thread is not executed on this tick, and the right-hand-
side says that either the thread finishes execution with a value of A,
or it takes an input message of type I and yields an output message
of type O, and continues computing.

Given two threads, we can implement a scheduler which takes
two threads and interleaves their execution until one of them finishes.

par : S alloc→ RI,OA× RI,OA→ RI,OA 1
par us (p1, p2) = 2

let cons(u, δ(us ′)) = us in 3
case((snd (outp1), 4

inla→ p1, 5
inr f→ let δ(p ′1) = fst (outp1) in 6

let δ(p ′2) = fst (outp2) in 7
let p ′ = δu(par us ′ p ′1 p

′
2) in 8

let f ′ = λi. let (o, δ(p ′′1)) = f i in 9
into (o, δu(par us ′ p ′2 p

′′
1)) in 10

into (p ′, inr f ′)) 11

One line 5, we see that if the first process p1 completes on this
tick, then the parallel composition completes on this tick. If p1 does
not complete, then we need to return (1) how to defer the parallel
composition, and (2) the I/O behavior of the parallel composition.
We construct the deferred computation for the parallel composition

by taking (on lines 6-8) the deferred computations for each process
individually, and then resuming their parallel composition on the
next tick. On line 9-10, we define the function f ′, which produces
the same I/O as p1 on this tick, defers p2 to the next tick, and then
on the next tick schedules p2 for execution and defers p1’s next
action.

Definability of Fixed Points Our calculus has a term-level fixed
point operator fix x. e. However, fixed points are definable, illus-
trating the high expressiveness that guarded recursive types per-
mit. We will show the inhabitation of the type �(•A→ A) →
SAlloc → A, in three steps. First, we define the recursive type
X , µ̂α. �(S alloc→ α→ A). We use this type to define the op-
eration selfapp, which takes an element of type X and applies it to
itself, wrapped around a call to a function f : •A→ A:

selfapp : (•A→ A)→ S alloc→ X→ A 1
selfapp f us v = 2

let cons(u, δ(us ′)) = us in 3
let stable(w) = out v in 4
f (δu(w us

′ (into (stable w)))) 5

Next, we can use this self-application function to implement a fixed-
point combinator.

fixedpoint : �(•A→ A)→ S alloc→ A 1
fixedpoint h us = 2

let stable(f) = h in 3
selfapp f us (into (stable(selfapp f))) 4

This fixed point operator is essentially a variant of Curry’s fixed
point combinator [11] Y , λf. (λx. f (x x)) (λx. f (x x)), with
extra noise to deal with the modal operators and iso-recursive types.
The most significant difference is that we need to additionally pass
in a stream of allocation tokens to ensure that we can construct the
necessary delay thunks.

3.3 Blocking Space Leaks Without Ruling Out Buffering
Our operational semantics makes it impossible to implicitly retain
values across multiple time ticks, and our type systems statically
rejects programs which try. For example, if we try to program a
function which takes a stream and returns that stream constantly,
then it fails to typecheck, as we desire:

scary const : S alloc→ SN→ S (SN) 1
scary const us ns = 2

let cons(u, δ(us ′)) = us in 3
let stable(xs) = promote(ns) in — TYPE ERROR 4
cons(xs, δu(scary const us ′ xs)) 5

The reason for this error is that we need to use the argument stream
at multiple times, and since streams are not a stable type, we cannot
promote them into a stable variable, which we need in order to use
the stream value at multiple times. So we get a compile-time error.

We blocked this function definition because implementing it
would require potentially unbounded buffering, and we do not want
to do that implicitly, since that would mean that variable references
could create unexpected memory leaks.

However, there are many legitimate programs which need to
retain data across multiple time steps: for example, we may wish
to retain data to compute a moving average. Our language does
not prohibit these kinds of programs; instead, it demands that
programmers explicitly write all the buffering code.

As an extreme (and somewhat ridiculous) example, we will write
the function scary const, which takes a stream argument and repeats
it constantly.

buffer : S alloc→ N→ SN→ SN 1
buffer us n xs = 2

let cons(u, δ(us ′)) = us in 3
let cons(x, δ(xs ′)) = xs in 4
let stable(x ′) = promote(x) in 5
cons(n, δu(buffer us ′ x ′ xs ′)) 6

forward : S alloc→ SN→ •(SN) 7
forward us xs = 8

let cons(u, δ(us ′)) = us in 9
let cons(x, δ(xs ′)) = xs in 10
let stable(x ′) = promote(x) in 11
δu(buffer us ′ x ′ xs ′) 12

scary const : S alloc→ SN→ S (SN) 13
scary const us xs = 14

let cons(u, δ(us ′)) = us in 15
let δ(xs ′) = forward us xs in 16
cons(xs, δu(scary const us ′ xs ′)) 17

In this example, we use a function buffer, which appends a natural
number to the head of a stream, and then use buffer to define a
function forward, which pushes its argument one tick into the future,
and then define scary const, which repeatedly calls forward to keep
moving the argument one tick into the future.

This definition makes the memory leak explicit in the source
code: our program repeatedly calls forward on the argument stream
to scary const, using more memory each time.

In general, it is possible to define buffering for a recursive type
µ̂α. A, if the expression A is constructed from the variable α, sums
of bufferable types A + B, products of bufferable types A× B, any
stable type �A, or delays of bufferable types •A. It is not possible
to buffer arbitrary members of function types A→ B, because the
environment of a function closure cannot be examined.

4. Metatheory
Overview Kripke logical relations have a long history in giving
semantics to higher-order stateful languages [2, 13, 36]. Since our
dynamic dataflow graph can be viewed as a store, they are a natural
tool for showing the soundness of our type system.

The basic idea behind the technique of logical relations is to give
a family of sets of closed terms JAK by induction on the structure
of the type A, each of which possesses the soundness property we
desire. Then, we prove a theorem (the fundamental property) that
shows that every well-typed term e : A lies within the set JAK, and
from that we can conclude that the language is sound.

In a Kripke logical relation, in addition to the type, the relations
are also indexed by some contextual information, the world, which is
used to relativize the interpretation of each type. In our setting, this
contextual information will include the store terms are to evaluate
under, as well as the permission information telling us whether the
term may extend the dataflow graph.

Recursive types make defining relations by induction on the
syntax of a type difficult, since semantically we expect a recursive
type to be defined in terms of its unfolding, and unfolding a recursive
type can make it larger. To resolve this issue, we make use of the idea
of step-indexing, originally introduced by Appel and McAllester [3],
in which we extend the world with a natural number n, and interpret
a recursive type only at strictly smaller numbers.

In this section, we give a high-level overview of our definitions,
and a brief tour of the soundness proof. We give the full proof in the
technical report [25] provided in the supplementary material.

Supportedness and Location Permutations Before we can de-
scribe the structure of our logical relation, there is one technical
issue we need to discuss. The allocation rule in the expression se-
mantics is non-deterministic – it chooses a location that is not in the
current heap. However, the tick semantics σ =⇒ σ ′, when given

e v σ

e v σ , free locations of e ⊆ dom(σ)

σ supported

· supported

σ supported v v σ
σ, l : v now supported

σ supported e v σ
σ, l : e later supported

σ supported

σ, l : null supported

Figure 8. Definition of Supportedness

a nonempty store, removes the most recently-allocated location l
from the store, updates the older heap, and then updates the removed
location. The technical question is: what happens if the update of
the older heap allocates l itself?

Intuitively, this is not a serious problem, since our allocator
could always have chosen a different location to have allocated. To
formalize this intuition, we introduce the idea of supportedness,
described in Figure 8. We write e v σ if all of the free locations in
e are in the domain of σ. We write σ supported, when every pointer
containing an expression or value is supported by the heap cells
allocated earlier (that is, to the left in the list). Then, we can prove
the following three lemmas.

Lemma 1 (Permutability). We have that:

1. If π ∈ Perm and 〈σ; e〉 ⇓ 〈σ ′; v〉 then 〈π(σ);π(e)〉 ⇓
〈π(σ ′);π(v)〉.

2. If π ∈ Perm and σ =⇒ σ ′ then π(σ) =⇒ π(σ ′).

Lemma 2 (Supportedness). We have that:

1. If σ supported and e v σ and 〈σ; e〉 ⇓ 〈σ ′; v〉 then v v σ ′ and
σ ′ supported.

2. If σ supported and σ =⇒ σ ′ then σ ′ supported.

Lemma 3 (Quasi-determinacy). We have that:

1. If 〈σ; e〉 ⇓ 〈σ ′; v ′〉 and 〈σ; e〉 ⇓ 〈σ ′′; v ′′〉 and σ supported and
e v σ, then there is a π ∈ Perm such that π(σ ′) = σ ′′ and
π(σ) = σ.

2. If σ =⇒ σ ′ and σ =⇒ σ ′′ and σ supported, then there is a
π ∈ Perm such that π(σ ′) = σ ′′ and π(σ) = σ.

Here, Perm is the set of finite permutations on locations, and
π(e) and π(σ) lift it to expressions and stores in the obvious way.
Together, these lemmas imply that we can rename locations however
we like, and that the nondeterminism of the allocator can only affect
how locations are named.

Kripke Worlds We now describe the structure of the worlds we
use in our logical relation, which we lay out in Figure 9.

A worldw is a triple (n, σ, a). Here, n is a step index, indicating
that an element of this relation must be good for at least n ticks
into the future. The term a is a capability. The capability > means
that we do not have the permission to extend the dataflow graph,
and ⊥ means that we do have the permission to extend the graph.
Finally, the store σ must be an element of Heapn, which is the set
of supported heaps for which the tick relation is defined for at least
n steps. That is, if σ ∈ Heapn, then there are σ1, . . . , σn such that
σ =⇒ σ1 =⇒ · · · =⇒ σn. As a notational shorthand, we
write w.n for the step index of w, w.σ for the store component of

w, andw.a for the capability ofw. We also write π(w) to mean the
world (w.n, π(w.σ), w.a).

In most applications, step-indexing has been used purely as a
technical device to force the inductive definition of types to be well-
founded. In our setting, in contrast, steps have a concrete operational
reading, corresponding directly to the passage of time: a step index
of n tells us that the tick relation can definitely tick at least n times.

Each of these components has an associated preorder ≤. A step
index n ′ is below an index n, if n ′ is less than or equal to n. A heap
σ ′ is below a heap σ, σ ′ ≤ σ, if σ ′ is an extension of σ – that is,
if σ ′ has a larger domain than σ, and agrees with it on the overlap.
Finally, a capability a ′ is below a, if either they are the same, or a ′

is ⊥ and a is >.
The intuition behind the order on worlds is that w ′ ≤ w when

w ′ is a possible future state of w. In the future of w, we may
have extended the dataflow graph, or we can potentially receive a
capability to allocate from our environment.

The Logical Relations In Figure 10, we define three logical
relations.

The set V JAK ρ w defines the value relation, the set of closed
values semantically inhabiting the type A at the world w, with
the parameter ρ giving the type interpretation of each of the free
variables in A. The set E JAK ρ w gives the expression relation, the
set of expressions semantically inhabiting the type A (that is, they
will evaluate to a value of type A if they are run on the current tick).
Similarly, we also define L JAK ρ w, the later expression relation.
These are the expressions that will evaluate to a value of type A if
they are run on the next time step.

Both the expression relation E JAK ρ w and the later relation
L JAK ρ w are defined in terms of the value relation. The expression
relation consists of closed, supported expressions, which evaluate to
values in the value relation. Furthermore, the expression evaluation
may extend the heap only if the world contains the capability to
allocate. If it does not, then the store will be untouched.

The later relation L JAK ρ w is defined by cases. If the world’s
step index is 0, then we place no constraints on it – it is simply the
set of closed, supported expressions. If the world’s step index is
n+1 and the tick relation sends the current world’s store to σ ′, then
terms are in L JAK ρ w if they are in the expression relation of A,
at step n and store σ ′. That is, it consists of those expressions that
will be in the expression relation on the next tick.

The value relation is defined by induction on the syntax of the
type A. Matters first become interesting in the function case. First,
we require that a lambda term λx. e inhabiting V JA→ BK ρ w
be supported with respect to the heap component of the world. As
is usual, we quantify over all future worlds w ′ ≤ w, but we also
quantify over location permutations π ∈ Perm.

Then, we consider all arguments e ′ coming from the A expres-
sion relation at the permuted world π(w ′), and assert that applying
the term to the renamed function should also be in the B expression
relation at π(w ′). The extra renaming requirement semantically
formalizes the idea that we need to ignore the exact choice of names
(and indeed is very similar to the definition of the function space in
nominal set theory [17]).

The later type •A is interpreted as the set of pointers l, which
point to an expression l : e later where e is in the later relation of A.
As with functions, we quantify over future worlds and renamings.
The interpretation of the stability modality V J�AK ρ w contains
values stable(v), where v ∈ V JAK ρ (w.n, ·,>). That is, these
values v are not allowed to depend upon the store, or to assume that
they have the capability to extend the heap.

Recursive types µ̂α. A are interpreted by the interpretation of A,
where the environment is extended by the interpretation of •(µ̂α. A).
Superficially, this looks like a circular definition, except that the
next-step modality is defined in terms of the later relation for µ̂α. A,

Heap0 = {σ ∈ Store | σ supported}

Heapn+1 =

{
σ ∈ Store

∣∣∣∣ σ supported ∧
∃σ ′. σ =⇒ σ ′ ∧ σ ′ ∈ Heapn

}
Cap = {>,⊥}
World = {(n, σ, a) | n ∈ N∧ σ ∈ Heapn ∧ a ∈ Cap}

σ ′ ≤ σ ⇐⇒ ∃σ0. σ · σ0 = σ ′

a ′ ≤ a ⇐⇒ a = a ′ ∨ (a ′ = ⊥∧ a = >)

(n ′, σ ′, a ′) ≤ (n, σ, a) ⇐⇒ n ′ ≤ n∧ σ ′ ≤ σ∧ a ′ ≤ a

Figure 9. Worlds

which lowers the step index, making the definition well-founded.
Finally, the semantic interpretation of alloc is the token �, if the
world has the capability, and is the empty set otherwise.

Soundness The key property we prove is the following:

Theorem 1 (Fundamental Property). The following properties hold:

1. If · ` e : A later, then e ∈ L JAK · w.
2. If · ` e : A stable, then e ∈ E JAK · (w.n, ·,>).
3. If · ` e : A now, then e ∈ E JAK · w.

The proof of this theorem follows the usual pattern for sound-
ness proofs by logical relations. We extend the definition of the
expression relation to define environments binding expressions to
variables, and then prove by induction on the syntax of the typing
derivation that all substitutions of well-typed terms by well-formed
environments are in the logical relation. As usual, a fair number of
auxiliary lemmas must be proved (such as the monotonicity of the
value relation, and the stability of all relations under renaming of lo-
cations), and we refer interested readers to the companion technical
report [25] for details. Once we have the fundamental property, we
get a soundness property as an almost immediate corollary.

Corollary 1. (Soundness) If · ` e : A , then 〈·; e〉 ⇓ 〈σ; v〉.
Furthermore, for all n, v ∈ V JAK ρ (n, σ,⊥).

Note that expression evaluation always terminates. This shows
that our type discipline enforces well-founded use of fixed points
fix x. e. Also, note that σ ∈ Heapn for any n, and so we can tick
the clock as often as we like. Thus, if we compute a stream value,
then each time we tick the clock, the tail pointer will point to a new
cons cell, whose head contains the next value of the stream, and
whose tail is the pointer to chase on the next tick.

5. Implementation
While the work described here is largely theoretical, that theory
arises from an attempt to understand the correctness of a new
language, AdjS (the implementation can be downloaded from the
author’s website), whose type system closely tracks the type system
of this paper. (The major extensions are polymorphism and linear
types, and a system to infer uses of the promote(e) operation.) The
attempt to prove the soundness of the type system was fortuitous: in
the course of the formalization we discovered two soundness bugs
in our implementation!

The first soundness bug was that the AdjS compiler has both
delay types •A and SA as primitive, but only required an allocation
token to construct a stream. The second soundness bug was that
we had originally treated the allocation type alloc as a promotable
stable type. Each of these bugs made it possible to build a value of
type �(•A), and use it to access a thunk after its lifetime has ended.

There remain a few features of the implementation which we
have not completely formalized. First, the operational semantics
in this paper forces every thunk when time elapses. Our actual
implementation is lazier about this, only forcing thunks when they
are read. It should still be the case that no thunk is forced, except
on its scheduled tick, but it is additionally possible for thunks to go
unforced. This is not difficult to model, but it seemed to complicate
the definition of Kripke extension without sufficient expository
advantages to compensate.

More seriously, we have not given a correctness proof of our
implementation of linear types. While we do have both denotational
and type-theoretic models of linear guarded types [26], we do not yet
have a soundness proof of our implementation strategy for it, in the
same way that this paper shows the soundness of our implementation
strategy of the functional part of the language. This is because the
linear types are used to model GUI widgets, and we need a plausible,
yet tractable, operational semantics for the GUI widgets. This does
not seem impossibly out of reach, though: recently Lerner et al. [29]
have given a formal model of the HTML DOM, and we are currently
investigating using a simplified version of their event model to build
the operational semantics we need.

In order to make the synchrony hypothesis (namely, that all
computations finish quickly relative to the size of a tick), our
implementation runs at a fixed clock speed of 60 Hz. This does mean
that the runtime wakes even when nothing is happening. However,
we do not foresee many issues in increasing the clock speed, since
Haskell implementations demonstrate that it is possible to sustain
very high rates of thunk allocation. In contrast, Elliott [14] gives an
implementation of streams using futures. In our terms, his stream
type SA is µα. A× Eα, where the recursive type is guarded by an
event constructor instead of a unit delay. This means that each stream
can run at a different rate, permitting the system to quiesce until
events become available, at the cost of complicating the merging of
streams.

6. Related Work
Implementing Reactive Programming DSLs for reactive pro-
gramming languages tend to fall into one of two camps. The “purist”
camp, such as Yampa [35], typically features fairly simple imple-
mentation strategies and limited dynamic behaviour, which fairly
closely track the semantic model of stream programming. The “prag-
matist” camp, such the Froc library for Ocaml [12], FrTime [10], and
Scala.React [31], feature more sophisticated implementations based
on dataflow engines and change propagation, and better support for
dynamic behavior.

Now, it has long been recognized that there are connections be-
tween lazy evaluation and the synchronous dataflow paradigm [6],
but the precise relationship between the two semantics has been
unclear to date. Our semantics clarifies this connection, by decom-
posing streams into a recursive type over the next-step modality
of temporal logic. We then show that thunking and lazy evaluation
can be used to give realizers for the next-step modality, and that
the synchrony assumption (that is, a global notion of time) enables
scheduling when these thunks are forced. In other words, we show
that two standard functional programming evaluation strategies –
call-by-value and call-by-need – jointly supply all the computational
primitives well-behaved reactive programs need.

We can also clarify what parts of the sophisticated implemen-
tations used by the pragmatist languages are necessary, and which
parts are optimizations. These languages typically work by building
a graph of dataflow nodes (which might be thought of as a kind
of generalized spreadsheet), and incrementally recomputing values
when node values change. The recomputations are guided by the
dependency structure of the dataflow graph, often using quite so-

V JαK ρ w = ρ(α) w

V JA + BK ρ w = {inl v | v ∈ V JAK ρ w} ∪ {inr v | v ∈ V JBK ρ w}
V JA× BK ρ w = {(v1, v2) | v1 ∈ V JAK ρ w∧ v2 ∈ V JBK ρ w}

V JA→ BK ρ w =

{
λx. e

∣∣∣∣ λx. e v w.σ ∧
∀π ∈ Perm, w ′ ≤ w, e ′ ∈ E JAK ρ π(w ′). [e ′/x]π(e) ∈ E JBK ρ π(w ′)

}
V J•AK ρ w = {l | w.σ = (σ0, l : e later, σ1)∧ ∀π ∈ Perm, w ′ ≤ (w.n, σ0, w.a). π(e) ∈ L JAK ρ π(w ′)}
V J�AK ρ w = {stable(v) | v ∈ V JAK ρ (w.n, ·,>)}
V Jµ̂α. AK ρ w = {into v | v ∈ V JAK (ρ,V J•(µ̂α. A)K ρ w/α) w}
V JSAK ρ w = {cons(v, v ′) | v ∈ V JAK ρ w∧ v ′ ∈ V J•SAK ρ w}
V JallocK ρ w = {� | w.a = ⊥}

E JAK ρ (n, σ, a) =

e
∣∣∣∣∣∣
e v σ ∧
∀σ ′ ≤ σ. ∃σ ′′ ≤ σ ′, v ∈ V JAK ρ (n, σ ′′, a).
〈σ ′; e〉 ⇓ 〈σ ′′; v〉∧ (a = > =⇒ σ ′′ = σ ′)

L JAK ρ (0, σ, a) = {e ∈ Expr | e v σ}
L JAK ρ (n + 1, σ, a) = {e ∈ Expr | e v σ∧ σ =⇒ σ ′ ∧ ∀w ′ ≤ (n, σ ′, a). e ∈ E JAK ρ w ′}

Figure 10. The Logical Relation

phisticated techniques: for example, Froc is explicitly based on the
implementation strategies in self-adjusting computation [1].

Our decomposition also clarifies the semantics of imperative
implementation techniques of FRP, by showing how imperative
state supports a purely functional surface language. Again, the
decomposition of streams via recursive types and the later modality
is crucial. Imperative state is essential, since it lets us implement
the later modality with memoization, and thereby avoid redundant
multiple recomputations when we reference a later variable multiple
times. However, persistent state with identity is not necessary to
implement higher-order FRP, and abandoning it enables significant
simplifications over the dataflow graph strategy. In a traditional
dataflow graph, streams are primitives, and represented by dataflow
nodes with persistent identity. This greatly complicates correctness
proofs: in [27], we gave such a representation Modeling pure streams
with dataflow nodes, and were forced to give a vastly more complex
logical relation to account for the persistence of dataflow nodes.

Logics of Time and Space To our knowledge, Sculthorpe and
Nilsson [41] first suggested using temporal logic to verify FRP
programs. There, they gave a standard (albeit dependently-typed)
arrowized FRP system, and temporal logic was used to describe the
behavior of these programs. Jeffrey [19] and Jeltsch [22] were the
first to suggest using LTL directly as a type system for FRP.

Jeltsch [21] proposes a design for a Haskell FRP library with
some similarities with our approach. As in our approach, streams
are viewed as a kind of generator which incrementally produce
values. However, instead of using temporal modalities to control
when streams are used, the types of streams are indexed with
polymorphic type parameters (“era parameters”) in the style of
Haskell’s runST operation. Though no correctness proof is given,
the use of polymorphism suggests that the techniques of Jeffrey [20]
may be applicable.

The Modal µ-calculus Our use of recursive types to model tem-
poral operations naturally invites comparisons to the modal µ-
calculus [24]. The µ-calculus takes the propositional calculus, adds
a next-step modality, and adds constructors for inductive and coin-
ductive formulas.

The biggest difference is that the µ-calculus restricts recursive
variables to occur in strictly positive position, but places no guarded-
ness condition on those variables. In contrast, our notion of recursive

type is drawn from Nakano [34], who uses a guardedness condi-
tion instead of a positivity condition, allowing variables to occur
negatively as long as they occur underneath a delay operator.

Permitting negative occurrences is extremely powerful: as we
have seen, term-level fixed points can be defined using recursive
types with negative occurrences. The definability of fixed points
in turn means that guarded recursive types enjoy a form of limit-
colimit coincidence similar to the same property in domain theory.
In type-theoretic terms, inductive and coinductive interpretations of
a guarded recursive type coincide. This means that it is not possible
to distinguish may (coinductive) and must (inductive) properties: for
example, our event type constructor says that an event may occur,
but does not say it will necessarily occur. (Recently, Jeltsch [23]
has investigated potential applications of must-operators to reactive
programming.)

Our choice to use guarded recursive types was guided by the
nature of interactive programs: if we begin to download a file, there
is no way to be sure that the download necessarily completes (such
as the wifi may go down). As a result, placing must-properties in
types is perhaps philosophically arguable. (On a pragmatic note,
expressing fixed points with guarded recursion leads to very natural
and idiomatic code.)

Our stable type �A is not found in the modal µ-calculus, but
may be understood as a constructivization of the always modality.
When passing from a model-theoretic semantics to a proof theory,
it is often the case that a single model-theoretic concept bifurcates
into two or more proof-theoretic concepts. The always modality
exemplifies this: under a computational interpretation,“always A”
can either be interpreted as a single value of type A which is always
available (that is, stability�A), or as a differentA on each tick (that
is, streams SA).

Very recently, Cave et al. [8] proposed a type-theoretic construc-
tivization of the modal µ-calculus (without the �A modality). In
particular, they use inductive and coinductive types instead of a
Nakano-style recursive type, and use it to express fairness properties
(for example, of schedulers) with types. While it is too early to make
a detailed comparison (larger examples are needed), having calculi
with both kinds of type recursion available seems like a valuable
tool for understanding the design space.

Stability and Permissions Our stability judgment and promotion
rule are inspired by the mobility judgment in the distributed language

ML5 [33]. We wanted to identify values we could use at multiple
times, and they wanted to identity values they could use at multiple
locations. Promotion is actually definable in our calculus, as a kind
of eta-expansion. However, operationally these coercions traverse
the entire data structure, and so for efficiency’s sake we added it as
a primitive. Allocation permissions were introduced by Hofmann
[18], to control memory allocation in a linearly-typed language. Our
observation that in an intuitionistic setting, these tokens correspond
to an object capability style [32] seems to be new, and potentially
has applications beyond reactive programming. However, we do not
yet have a full Curry-Howard explanation of allocation permissions.

Acknowledgments
I would like to thank Derek Dreyer, Bob Harper, and the anonymous
referees for helpful discussions and suggestions.

References
[1] U. A. Acar. Self-Adjusting Computation. PhD thesis, Carnegie Mellon

University, 2005.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation
independence. In Principles of Programming Languages (POPL),
pages 340–353, 2009.

[3] A. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(5):657–683, 2001.

[4] H. Baker and C. Hewitt. The incremental garbage collection of
processes. In Symposium on Artificial Intelligence Programming
Languages, August 1977.

[5] G. Berry and L. Cosserat. The ESTEREL synchronous programming
language and its mathematical semantics. In Seminar on Concurrency,
pages 389–448. Springer, 1985.

[6] P. Caspi and M. Pouzet. Synchronous Kahn networks. In Proceedings
of the first ACM SIGPLAN international conference on Functional
programming, ICFP ’96, pages 226–238, New York, NY, USA, 1996.
ACM. ISBN 0-89791-770-7. .

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A
declarative language for real-time programming. In Principles of
Programming Languages (POPL), 1987.

[8] A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. Fair reactive
programming. Technical report, McGill University, 2013.

[9] G. H. Cooper. Integrating Dataflow Evaluation into a Practical Higher-
Order Call-by-Value Language. PhD thesis, Brown University, 2008.

[10] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in
a call-by-value language. In European Symposium on Programming
(ESOP), pages 294–308, 2006.

[11] H. B. Curry. The Paradox of Kleene and Rosser. Transactions of the
American Mathematical Society, 50(3):454–516, Nov. 1941.

[12] J. Donham. Froc: a library for functional reactive programming in
OCaml. http://jaked.github.com/froc/, 2010.

[13] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In International
Conference on Functional Programming (ICFP), pages 143–156, 2010.

[14] C. Elliott. Push-pull functional reactive programming. In Haskell Sym-
posium, 2009. URL http://conal.net/papers/push-pull-frp.

[15] C. Elliott and P. Hudak. Functional reactive animation. In International
Conference on Functional Programming (ICFP), 1997.

[16] D. Friedman and D. Wise. The impact of applicative programming on
multiprocessing. In International Conference on Parallel Processing,
pages 263–272, 1976.

[17] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2001.

[18] M. Hofmann. Linear types and non-size-increasing polynomial time
computation. In Logic in Computer Science (LICS), 1999.

[19] A. Jeffrey. LTL types FRP: linear-time temporal logic propositions
as types, proofs as functional reactive programs. In Programming
Languages Meets Program Verification (PLPV), pages 49–60, 2012.

[20] A. Jeffrey. Causality for free!: parametricity implies causality for
functional reactive programs. In Programming Languages Meets
Program Verification (PLPV), pages 57–68, 2013.

[21] W. Jeltsch. Signals, not generators! Trends in Functional Programming,
10:145–160, 2009.

[22] W. Jeltsch. Towards a common categorical semantics for linear-time
temporal logic and functional reactive programming. Electronic Notes
in Theoretical Computer Science, 286:229–242, Sept. 2012.

[23] W. Jeltsch. Temporal logic with ”until”, functional reactive program-
ming with processes, and concrete process categories. In Programming
Languages Meets Program Verification (PLPV), pages 69–78, 2013.

[24] D. Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27(3):333 – 354, 1983.

[25] N. R. Krishnaswami. Proofs for higher-order reactive programming
without spacetime leaks (supplementary material). Technical report,
Max Planck Institute for Software Systems (MPI-SWS), 2013.

[26] N. R. Krishnaswami and N. Benton. A semantic model for graphical
user interfaces. In International Conference on Functional program-
ming (ICFP), pages 45–57, 2011.

[27] N. R. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. In Logic in Computer Science (LICS), pages 257–266, 2011.

[28] N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-order
functional reactive programming in bounded space. In Principles
of Programming Languages (POPL), pages 45–58, 2012.

[29] B. S. Lerner, M. J. Carroll, D. P. Kimmel, H. Q.-D. La Vallee, and
S. Krishnamurthi. Modeling and reasoning about DOM events. In
Conference on Web Application Development (WebApps), 2012.

[30] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows and their
optimization. In International Conference on Functional Programming
(ICFP), 2009.

[31] I. Maier and M. Odersky. Deprecating the Observer Pattern with
Scala.React. Technical report, EPFL, 2012.

[32] M. Miller. Robust composition: Towards a unified approach to access
control and concurrency control. PhD thesis, Johns Hopkins University,
2006.

[33] T. Murphy VII., K. Crary, and R. Harper. Type-safe distributed
programming with ML5. In Conference on Trustworthy Global
Computing (TGC), pages 108–123, 2008.

[34] H. Nakano. A modality for recursion. In Logic in Computer Science
(LICS), pages 255–266, 2000.

[35] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In ACM Haskell Workshop, page 64, 2002.

[36] A. Pitts and I. Stark. Operational reasoning for functions with local
state. Higher Order Operational Techniques in Semantics, 1998.

[37] G. D. Plotkin. A powerdomain construction. SIAM Journal of
Computation, 5(3):452–487, 1976.

[38] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS), pages 46 –57, 1977.

[39] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, 2006.

[40] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In International Conference on Functional
Programming (ICFP), 2009.

[41] N. Sculthorpe and H. Nilsson. Keeping calm in the face of change.
Higher Order Symbolic Computation, 23(2):227–271, June 2010.

[42] P. Wadler, W. Taha, and D. MacQueen. How to add laziness to a strict
language, without even being odd. In Workshop on Standard ML, 1998.

[43] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In Practical
Applications of Declarative Languages (PADL), pages 155–172, 2002.

