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Abstract

In this paper, we give a sequent calculus for separation logic. Unlike the logic of bunched implications,
this calculus does not have a tree-shaped context – instead, we use labelled deduction to control when
hypotheses can and cannot be used. We prove that cut-elimination holds for this calculus, and show that
it is sound with respect to the provability semantics of separation logic.
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1 Introduction

Separation logic [11] is an extension of Hoare logic, designed to make it easier to
reason about the behavior of programs making use of aliased mutable state.

In ordinary Hoare logic, a predicate describes a set of program states (in our
case, heaps), and a conjunction like A∧B holds of a state when that state holds of
A and also holds of B. Unfortunately, aliasing is quite difficult to treat – if x and
y are pointer variables, we need to explicitly state whether they alias or not. So
as the number of variables in a program grows, the number of aliasing conditions
grows quadratically. Worse still, this defeats modular proof, since as soon as we
put a subprogram into a larger one, we need to add aliasing assertions describing
possible interference between the subprogram and the larger program.

The key innovation in separation logic is to extend the logic of pre- and post-
conditions with the spatial connectives A ∗B and A−∗B. Intuitively, we take A ∗B
to hold of a program state when the state can be divided into two disjoint parts,
one of which holds of A and the other of which holds of B. Since the meaning
of the connective enforces disjointness, we do not need to write aliasing conditions
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Propositions A ::= > | A ∧B | A→ B | ⊥ | A ∨B

| I | A ∗B | A−∗B | P

Worlds ω ::= α | ε | ω · ω

World Contexts Ω ::= · | Ω, α

Equality Contexts Ξ ::= · | Ξ, ω = ω′

Hypothetical Contexts Γ ::= · | Γ, A[ω]

Fig. 1. Syntax

explicitly. As in ordinary Hoare logic, separation logic has a rule of consequence:

P ` P ′ {P ′}c{Q′} Q ` Q′

{P}c{Q}

However, the fact that we have a novel logic means that the entailment relation
P ` P ′ is also novel – so we need rules to reason about the entailment relation. This
is most commonly done in a Hilbert-style deduction system, where axiom schemata
are given that allow direct reasoning about entailment, without context-changing
operations. However, such schemes are somewhat cumbersome to work with in
practice, and it is desirable to have a sequent calculus or natural deduction system.

Our contributions in this paper are:

• First, we present a sequent calculus for separation logic that does not use bunched
contexts. Instead, we interpret separation logic as a modal logic, and give a
labelled deduction system that uses hybrids/labels to control when hypotheses
can be used.

• Second, we prove that cut is an admissible rule for this calculus.
• Third, we show that this calculus is sound with respect to the semantics of sepa-

ration logic – that is, any tautology provable in this calculus is true in the model.

2 The Sequent Calculus

Our logic is the propositional fragment of separation logic. We have > as truth,
A∧B as conjunction, A→ B as implication, ⊥ as falsehood, A∨B as disjunction,
A ∗ B as separating conjunction, I as the unit to the separating conjunction, and
A −∗B as the magic wand (i.e., adjoint to separating conjunction). We do not
include the points-to connective e 7→ e′, but we do add atomic formulas P . The
grammar of propositions is given in Figure 1.

The main idea in this calculus is to move from a judgement of truth to a judge-
ment that determines truth at a particular world. So our judgement does not
provide a proof that A is true, but rather a proof that A[ω], which shows that A
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World Well-formedness Ω ` ω : world

Equality Context Well-formedness Ω ` Ξ ok

Context Well-formedness Ω ` Γ ok

World Equality Ω; Ξ ` ω ≡ ω′

Proposition Provability Ω; Ξ; Γ ` A[ω]

Fig. 2. Catalog of Judgements

ω ≡ ω′ ∈ Ξ Ω ` Ξ ok

Ω; Ξ ` ω ≡ ω′
EHyp

Ω; Ξ ` ω ≡ ω′

Ω; Ξ ` ω′ ≡ ω
ESym

Ω ` ω : world Ω ` Ξ ok

Ω; Ξ ` ω ≡ ω
ERefl

Ω; Ξ ` ω ≡ ω′ Ω; Ξ ` ω′ ≡ ω′′

Ω; Ξ ` ω ≡ ω′′
ETrans

Ω; Ξ ` ω1 ≡ ω2 Ω; Ξ ` ω′1 ≡ ω′2
Ω; Ξ ` ω1 · ω2 ≡ ω′1 · ω′2

ECat
Ω ` Ξ ok Ω ` ω : world

Ω; Ξ ` ω · ε ≡ ω
EUnit

Ω ` Ξ ok Ω ` ω : world Ω ` ω′ : world

Ω; Ξ ` ω · ω′ ≡ ω′ · ω
EComm

Ω ` Ξ ok Ω ` ω : world Ω ` ω′ : world Ω ` ω′′ : world

Ω; Ξ ` ω · (ω′ · ω′′) ≡ (ω · ω′) · ω
EAssoc

Fig. 3. World Equality

holds at a world ω. Likewise, we change the context from a multiset A1, . . . , An to
a multiset of located hypotheses Γ = A1[ω1], . . . , An[ωn].

The world annotations themselves are not structureless. They are expressions
formed from world variables α, concatenation ω ·ω′, and unit ε. We give an equality
judgement for worlds Ω; Ξ ` ω ≡ ω′ in Figure 3. This axiomatizes an equivalence
relation (i.e., reflexive, transitive, symmetric) which makes the concatenation ω ·ω′
into an associative and commutative operation that has ε as a unit. The free world
variables are in Ω, and a novelty of this equality judgement is that it allows the use
of the hypothetical equalities found in the context Ξ. Ω is a set of variables, and Ξ
is a multiset of equality hypotheses.

Finally, we come to the primary judgement of this calculus, the provability
judgement Ω; Ξ; Γ ` A[ω]. This can be read as, “in a world variable context Ω, when
the equations in Ξ hold, then A is provable at a world ω, under the hypotheses in
Γ.”

We catalog all the judgements of the system in Figure 2, and give the auxilliary
well-formedness judgments in Figure 4.

Below, we give the inference rules for our separation logic calculus. The hypoth-
esis rule Hyp allows us to conclude that an atomic proposition P holds at ω when
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P can be found at ω′ in the context, and the two worlds are equal.
The intuitionistic rules for >, A∧B, A→ B, ⊥, and A∨B all exactly follow the

structure of the usual rules of the intuitionistic sequent calculus – the only difference
is that we push around an extra world annotation ω. This corresponds to the fact
that in the Kripke semantics of separation logic (given at the start of section 4),
we never look at the exact shapes of a heap, except in the semantics of the spatial
connectives.

The world annotations start to come into play with the spatial connectives. For
example, in the EmpR rule, we are allowed to introduce I at ω, whenever we can
show that ω equals the empty world ε. Likewise, reading the left rule from bottom
to top, the hypothesis that I[ω] holds lets us add the assumption that ω ≡ ε.

Ω; Ξ ` ω ≡ ω′ Ω ` Ξ ok Ω ` Γ ok

Ω; Ξ; Γ, P [ω] ` P [ω′]
Hyp

Ω ` ω : world Ω ` Ξ ok Ω ` Γ ok

Ω; Ξ; Γ ` >[ω]
TrueR

(No TrueL)

Ω; Ξ; Γ ` A1[ω] Ω; Ξ; Γ ` A2[ω]

Ω; Ξ; Γ ` A1 ∧A2[ω]
AndR

Ω; Ξ; Γ, A[ω], B[ω] ` C[ω′]

Ω; Ξ; Γ, A ∧B[ω] ` C[ω′]
AndL

Ω; Ξ; Γ, A[ω] ` B[ω]

Ω; Ξ; Γ ` A→ B[ω]
ImpR

Ω; Ξ; Γ, A→ B[ω] ` A[ω] Ω; Ξ; Γ, A→ B[ω], B[ω] ` C[ω′]

Ω; Ξ; Γ, A→ B[ω] ` C[ω′]
ImpL

(No FalseR)

Ω ` Ξ ok Ω ` Γ,⊥[ω] ok Ω ` ω′ : world

Ω; Ξ; Γ,⊥[ω] ` C[ω′]
FalseL

Ω; Ξ; Γ ` A[ω]

Ω; Ξ; Γ ` A ∨B[ω]
OrR1

Ω; Ξ; Γ ` B[ω]

Ω; Ξ; Γ ` A ∨B[ω]
OrR2

Ω; Ξ; Γ, A[ω] ` C[ω′] Ω; Ξ; Γ, B[ω] ` C[ω′]

Ω; Ξ; Γ, A ∨B[ω] ` C[ω′]
OrL

Ω ` Ξ ok Ω ` Γ ok Ω; Ξ ` ε ≡ ω
Ω; Ξ; Γ ` I[ω]

EmpR
Ω; Ξ, ε ≡ ω; Γ, I[ω] ` C[ω′]

Ω; Ξ; Γ, I[ω] ` C[ω′]
EmpL

Ω; Ξ; Γ ` A[ω1] Ω; Ξ; Γ ` B[ω2] Ω; Ξ ` ω ≡ ω1 · ω2

Ω; Ξ; Γ ` A ∗B[ω]
StarR

Ω, α, β; Ξ, ω = α · β; Γ, A ∗B[ω], A[α], B[β] ` C[ω′]

Ω; Ξ; Γ, A ∗B[ω] ` C[ω′]
StarL
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Ω, α; Ξ; Γ, A[α] ` B[ω′] Ω, α; Ξ ` ω · α ≡ ω′

Ω; Ξ; Γ ` A−∗B[ω]
WandR

Ω; Ξ; Γ, A−∗B[ω] ` A[ω′′]
Ω; Ξ ` ω · ω′′ ≡ ω1 Ω; Ξ; Γ, A−∗B[ω], B[ω1] ` C[ω′]

Ω; Ξ; Γ, A−∗B[ω] ` C[ω′]
WandL

The rules for A ∗ B are similar, but a little more complicated. In the StarR

rule, we can show that A ∗ B holds at ω whenver we can find a world ω1 that A
holds in, and a world ω2 that B holds in, such that ω equals their concatenation –
exactly in analogy to the Kripke semantics for the separating conjunction.

The left rule for separating conjunction is the most complex rule in this calculus.
If we have A ∗B as a hypothesis at ω in the conclusion, then in the premise we can
extend the context with two new worlds α and β, such that A holds at α, B holds
at β, and that α ·β ≡ ω. The analogy to the Kripke semantics is interesting. In the
Kripke semantics, if a heap h satisfies A∗B, then there is a splitting of h into h1 and
h2 such that h1 satisfies A and h2 satisfies B. Note that h1 and h2 are existentially
quantified in the Kripke semantics. Because we have a separating conjunction as a
hypothesis, we have this existential on the left-hand side of an implication. So we
can essentially treat the existential as a universal, via the equivalence (∃x.P (x)) ⊃
Q ≡ ∀x. P (x) ⊃ Q.

Finally we come to the right and left rules for the magic wand A−∗B. The right
rule WandR tells us that we can prove that A −∗B holds at ω, whenever we can
show that if A holds at a new world α, then B holds at a world equivalent to ω ·α.
This is in exact analogy to the Kripke semantics. The left rule tells us that if have
a wand hypothesis A −∗B at ω, and can find a proof that A holds at ω′, then we
can also assume that B holds at a world equivalent to ω · ω′ while proving C.

α ∈ Ω

Ω ` α : world
WHyp

Ω ` ε : world
WEps

Ω ` ω : world Ω ` ω′ : world

Ω ` ω · ω′ : world
WCat

Ω ` · ok
EqOkNil

Ω ` Ξ ok Ω ` ω : world Ω ` ω′ : world

Ω ` Xi, ω ≡ ω′ ok
EqOkCons

Ω ` · ok
CtxOkNil

Ω ` Γ ok Ω ` ω : world

Ω ` Γ, A[ω] ok
CtxOkCons

Fig. 4. Auxilliary Judgements

3 Proof Theory

Since we only allow the hypothesis rule at atomic propositions, we need to prove
that the identity principle holds for this calculus.

Theorem 3.1 (Identity) If Ω ` Ξ ok, Ω ` Γ ok, and Ω; Ξ ` ω ≡ ω′, then
Ω; Ξ; Γ, A[ω] ` A[ω′].
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The proof is a straightforward induction on the proposition A.
Next, we can show that weakening holds for this calculus. Equivalent weaken-

ing rules hold (when they make sense) for all of the other judgements. However,
for concision we will only state the theorems for the case of the main provability
judgement.

Theorem 3.2 (Weakening) We have that:

(i) If Ω; Ξ; Γ ` A[ω′′], then Ω, α; Ξ; Γ ` A[ω′′].

(ii) If Ω; Ξ; Γ ` A[ω′′] and Ω ` ω : world, and Ω ` ω′ : world then we have that
Ω; Ξ, ω ≡ ω′; Γ ` A[ω′′].

(iii) If Ω; Ξ; Γ ` A[ω′′] and Ω ` ω : world, then Ω; Ξ; Γ, B[ω′] ` A[ω′′].

Next, we give a contraction principle for this calculus. As before, a similar
contraction principle holds for the other judgements.

Theorem 3.3 (Contraction) We have that:

(i) If Ω; Ξ, ω ≡ ω′, ω ≡ ω′; Γ ` C[ω′′], then Ω; Ξ, ω ≡ ω′; Γ ` C[ω′′].

(ii) If Ω; Ξ; Γ, A[ω], A[ω′] ` C[ω′′] and Ω; Ξ ` ω ≡ ω′, then Ω, α; Ξ; Γ, A[ω] ` C[ω′′].

We do not give explicit theorems for Exchange, because we have been treating
the contexts as multisets.

Finally, we can show that the cut rule is admissible in this calculus. We have
two substitution principles for the world variable and world equation contexts, and
a true cut principle for the provability judgement. (And once again, we elide the
substitution principles for the other judgements in this calculus.)

Theorem 3.4 (Admissibility of Cut) We have that:

(i) If Ω ` ω : world and Ω, α; Ξ; Γ ` C[ω′′], then Ω; Ξ[ω/α]; Γ[ω/α] ` C[ω′′[ω/α]].

(ii) If Ω; Ξ ` ω ≡ ω′ and Ω; Ξ, ω ≡ ω′; Γ ` C[ω′′], then Ω; Ξ; Γ ` C[ω′′].

(iii) If Ω; Ξ; Γ ` A[ω], and Ω; Ξ; Γ, A[ω′] ` C[ω′′], and Ω; Ξ ` ω ≡ ω′, then Ω; Ξ; Γ `
C[ω′′]

The first two cases are just structural inductions over the derivation. The in-
teresting case is the third case, which we prove with a structural cut admissibility
argument in the style of Pfenning [8]. We do a induction on the size of the type A,
lexicographically prior to a simultaneous induction on the sizes of the two provability
derivations.

4 Soundness of the Calculus

In this section, we show that our sequent calculus is sound with respect to the
Kripke semantics of separation logic, in the sense that the provable tautologies of
our calculus are all equal to true in the semantics.

First, recall the Kripke semantics of separation logic. We write h for a heap (a
finite function from locations to values; the whole set of heaps is written H) 2 ; the

2 In fact, the following section does not depend specifically on heaps. The algebraic structure we need is a
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predicate h#h′ holds when the domains of h and h′ are disjoint; e is the empty heap;
and h ·h′ is the union of two heaps, which is defined when the domains are disjoint.
Since we include atoms in our propositional language, this satisfaction relation is
also indexed by a function γ ∈ Atom→ P(H) to interpret the atoms.

h |=γ > iff always

h |=γ A ∧B iff h |=γ A and h |=γ B

h |=γ A→ B iff if h |=γ A then h |=γ B

h |=γ ⊥ iff never

h |=γ A ∨B iff h |=γ A or h |=γ B

h |=γ I iff h = e

h |=γ A ∗B iff ∃h1, h2.h = h1 · h2 and h1 |=γ A and h2 |=γ B

h |=γ A−∗B iff ∀h′. if h′ |=γ A and h#h′ then h · h′ |=γ B

h |=γ P iff h ∈ γ(P )

Now, we can give interpretation functions for the world expressions and the
propositions. We will take a world expression as denoting a particular heap, and
since world expressions may have free variables the interpretation will be a mapping
from the free world variables to a heap. This can just follow the structure of the
world expression – note that since heap concatenation is partial, the interpretation
function for worlds is also necessarily partial. We will write ω ↓ η to mean that the
interpretation of ω is defined under the substitution η.

[[ε]]η = e

[[α]]η = η(α)

[[ω · ω′]]η = [[ω]]η · [[ω′]]η

We will also need an interpretation of propositions, which we will take to be the
set of heaps satisfying the proposition.

[[A]]γ = {h | h |=γ A}

To show soundness, we first show that the equality judgement is sound.

Lemma 4.1 (Soundness of Equality) If we have that:

• Ω; Ξ ` ω ≡ ω′,
• ωi ↓ η, and ω′i ↓ η, and [[ωi]]η = [[ω′i]]η for every ωi ≡ ω′i in Ξ, and
• ω ↓ η or ω′ ↓ η

then we know that ω ↓ η and ω′ ↓ η and [[ω]]η = [[ω′]]η

The proof is a routine induction on the equality judgement. Armed with this
lemma, we can give a soundness theorem for the sequent calculus:

separation algebra [3], which is just a partial commutative monoid.
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Theorem 4.2 (Soundness of the Sequent Calculus) If we have that:

• Ω; Ξ; Γ ` A[ω],
• η ∈ Ω→ H,
• γ ∈ Atom→ P(H)
• ωi ↓ η, and ω′i ↓ η, and [[ωi]]η = [[ω′i]]η for every ωi ≡ ω′i in Ξ, and
• ωj ↓ η and [[ωj ]]η ∈ [[Aj ]]γ for every Aj [ωj ] in Γ,

then we can conclude that if ω ↓ η, then [[ω]]η ∈ [[A]]γ holds.

The proof follows from an induction on the structure of the derivation. As an
immediate corollary, it follows that if we can derive α; ·; · ` A[α], then A is a true
proposition of separation logic.

4.1 (In)Completeness

While our calculus is sound, it is not even remotely complete with respect to the
semantics. First, the set of heaps forms a boolean algebra, which means that the
semantics validates the law of the excluded middle. Since we have an intuitionistic
calculus, we cannot prove this. This problem might be rectified by extending the
sequent calculus with multiple conclusions, to support classical reasoning.

However, this is not sufficient. Our equality judgement only allows us to make
positive judgements about equality – and for completeness, we will need some way
to reason from inequality. Concretely, suppose we add the points-to assertion e 7→ v,
which asserts that we have a one-element heap with location e pointing to value v.
Now, consider the separation logic assertion (x 7→ −)∗ (x 7→ −). This formula must
entail false, because we know that the same pointer cannot be in two disjoint heaps
and hence the formula is unsatisfiable. Such a deduction is not possible unless we
have a way of deducing inequalities from world expressions.

5 Future and Related Work

5.1 Future Work

There are a number of directions to proceed from here. First, it would be interest-
ing to add support for the points-to predicate, perhaps by extending the language
of worlds to refer more explicitly to the contents of a heap. This is an interest-
ing question even though it is known [4] that the points-to predicate and equality
are sufficient to make judging validity undecidable – there might still be proof-
theoretically well-behaved systems (in the sense of admitting cut-elimination) that
contain points-to.

Adding first-order quantifiers would also be of interest beyond the practical
utility, because in conjunction with the simplest formulation of points-to, it would
introduce an interaction between the quantified variables and the hybrid labels.
For example, consider the formula ∃x. x 7→ 5 – here, the location of the pointer is
existentially hidden!

Finally, in program proofs using separation logic, it is typical to identify and
make use of special classes of formulas (such as the pure propositions, whose truth
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does not depend on the heap; or the precise propositions, which unambiguously
identify a piece of state) which satisfy additional axioms. It would be interesting to
see if we can extend this calculus with modalities corresponding to those classes.

5.2 Related Work

Pym’s original work on bunched implications [9,7] includes a natural deduction and
sequent calculus for BI with a branching, tree-structured context. Even though
the metatheory is very elegant, actually writing proofs in this calculus is quite
complicated, which motivated us to seek an alternative proof theory.

This is also a problem Bean [1] sought to address, by giving a Fitch-style pre-
sentation of natural deduction for BI, called the ribbon calculus. This calculus
extends the scoping rules of the regular Fitch style into the second dimension, with
a (literally!) spatial scoping principle for the ∗ and −∗ connectives.

Agostino and Gabbay [5] proposed labelled deduction as a general methodology
for extending the methods for classical theorem proving to cope with intuitionistic
and substructural logics. In his doctoral thesis, Simpson [12] shows how to use
a labelled calculus to give a proof theory for modal logic, in which the labels are
drawn from the Kripke semantics of modal logic.

Galmiche and Mery [6] describe a tableaux method for theorem proving in propo-
sitional BI. This work contains the key idea of using monoidal labels to control where
BI formulas can and cannot be used. However, they must enrich this structure with
an extra preorder structure in order to prevent the provability of formulas like
(A ∧ I) → (A ∗ A), which is not a valid formula of BI. However, we observed that
all such anamolies are true theorems of separation logic, which permits us to leave
out this preorder structure and simplify our calculus.

Braüner and de Paiva [2] present a natural deduction system for a hybrid propo-
sitional logic with a satisfaction operator a : A, which is a proposition that asserts
that A holds at the world a. Reed [10] integrates a hybrid logic with monoidal la-
bels into the dependent type theory LF. His system can express many substructural
types, including a substantial fragment of bunched logic, including the magic wand
but not the separating conjunction. This is because his system does not include
explicit equality hypotheses in order to simplify type checking. (In our system, only
the StarL rule introduces new hypothetical equalities.)

References

[1] Julian Michael Lewis Bean. Ribbon Proofs – A Proof System for the Logic of Bunched Implications.
PhD thesis, Queen Mary University of London, January 2006.
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