
22

Seminaïve Evaluation for a Higher-Order Functional
Language

MICHAEL ARNTZENIUS, University of Birmingham, United Kingdom

NEEL KRISHNASWAMI, University of Cambridge, United Kingdom

One of the workhorse techniques for implementing bottom-up Datalog engines is seminaïve evaluation [Ban-

cilhon 1986]. This optimization improves the performance of Datalog’s most distinctive feature: recursively

defined predicates. These are computed iteratively, and under a naïve evaluation strategy, each iteration

recomputes all previous values. Seminaïve evaluation computes a safe approximation of the difference between
iterations. This can asymptotically improve the performance of Datalog queries.

Seminaïve evaluation is defined partly as a program transformation and partly as a modified iteration

strategy, and takes advantage of the first-order nature of Datalog code. This paper extends the seminaïve

transformation to higher-order programs written in the Datafun language, which extends Datalog with

features like first-class relations, higher-order functions, and datatypes like sum types.

CCS Concepts: • Theory of computation → Database query languages (principles); Constraint and
logic programming; Database query processing and optimization (theory); Modal and temporal logics; Logic

and databases; • Software and its engineering→ Functional languages; Constraint and logic languages;
Multiparadigm languages; Data types and structures; Recursion.

Additional Key Words and Phrases: Datafun, Datalog, functional languages, relational languages, seminaïve

evaluation, incremental computation

ACM Reference Format:
Michael Arntzenius and Neel Krishnaswami. 2020. Seminaïve Evaluation for a Higher-Order Functional

Language. Proc. ACM Program. Lang. 4, POPL, Article 22 (January 2020), 28 pages. https://doi.org/10.1145/

3371090

1 INTRODUCTION
Datalog [Ceri et al. 1989], along with the π-calculus and λ-calculus, is one of the jewel languages

of theoretical computer science, connecting programming language theory, database theory, and

complexity theory. In terms of programming languages, Datalog can be understood as a fully

declarative subset of Prolog which is guaranteed to terminate and so can be evaluated in both

top-down and bottom-up fashion. In terms of database theory, it is equivalent to the extension of

relational algebra with a fixed point operator. In terms of complexity theory, stratified Datalog over

ordered databases characterizes polytime computation [Dantsin et al. 2001].

In addition to its theoretical elegance, over the past twenty years Datalog has seen a surpris-

ingly wide array of uses across a variety of practical domains, both in research and in industry.

Whaley and Lam [Whaley 2007; Whaley and Lam 2004] implemented pointer analysis algorithms

in Datalog, and found that they could reduce their analyses from thousands of lines of C code to

Authors’ addresses: Michael Arntzenius, School of Computer Science, University of Birmingham, Birmingham, B15 2TT,

United Kingdom, daekharel@gmail.com; Neel Krishnaswami, Department of Computer Science and Technology, University

of Cambridge, Cambridge, CB2 1TN, United Kingdom, nk480@cl.cam.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART22

https://doi.org/10.1145/3371090

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.

https://doi.org/10.1145/3371090
https://doi.org/10.1145/3371090
https://doi.org/10.1145/3371090


22:2 Michael Arntzenius and Neel Krishnaswami

tens of lines of Datalog code, while retaining competitive performance. The DOOP pointer analysis

framework [Smaragdakis and Balatsouras 2015], built using the Soufflé Datalog engine [Jordan

et al. 2016], shows that this approach can handle almost all of industrial languages like Java, even

analysing features like reflection [Fourtounis and Smaragdakis 2019]. Semmle has developed the

Datalog-based .QL language [de Moor et al. 2007; Schäfer and de Moor 2010] for analysing source

code (which was used to analyze the code for NASA’s Curiosity Mars rover), and LogicBlox has

developed the LogiQL [Aref et al. 2015] language for business analytics and retail prediction. The

Boom project at Berkeley has developed the Bloom language for distributed programming [Al-

varo et al. 2011], and the Datomic cloud database [Hickey et al. 2012] uses Datalog (embedded in

Clojure) as its query language. Microsoft’s SecPAL language [Becker et al. 2010] uses Datalog as

the foundation of its decentralised authorization specification language. In each case, when the

problem formulated in Datalog, the specification became directly implementable, while remaining

dramatically shorter and clearer than alternatives implemented in more conventional languages.

However, even though each of these applications is supported by the skeleton of Datalog, they all

had to extend it significantly beyond the theoretical core calculus. For example, core Datalog does

not even support arithmetic, since its semantics only speaks of finite sets supporting equality of

their elements. Moreover, arithmetic is not a trivial extension, since it can greatly complicates the

semantics (for example, proving that termination continues to hold). So despite the fact that kernel

Datalog has a very clean semantics, its metatheory seemingly needs to be laboriously re-established

once again for each extension.

A natural approach to solving this problem is to find a language in which to write the extensions,

which preserves the semantic guarantees that Datalog offers. Two such proposals are Flix [Madsen

et al. 2016] and Datafun [Arntzenius and Krishnaswami 2016]. Conveniently for our exposition,

these two languages embody two alternative design strategies.

Flix extends a Datalog-like relational language, generalized to handle arbitrary semilattices

instead of only finite sets, with a functional sublanguage, roughly comparable to ML or Haskell. The

functional side can be used to implement custom semilattices and data structures which can then

be used from the Datalog side. Flix is aimed at static analysis, where working in a semilattice other

than Datalog’s native finite powersets can be highly useful. To this end, Flix integrates with SMT

solvers for lightweight verification of properties such as monotonicity, soundness, and completeness.

However, this SMT-based approach works best for first-order code, and Flix maintains a pretty

clear (if permeable) separation between its relational and functional sublanguages.

Datafun, by contrast, is a functional language capable of expressing relational idioms directly.

Datafun’s type system tracks monotonicity of functions, including higher-order functions. Datalog-

style recursively defined relations are given via an explicit fixed point operator; monotonicity

ensures uniqueness of this fixed point, playing a role similar to stratification in Datalog. Tracking

monotonicity permits a tighter integration between the functional and relational styles, but it

comes at a cost: many of Datalog’s standard implementation techniques, developed in the context

of a first-order logic language, are not obviously applicable in a higher-order functional setting.

Indeed, making Datalog perform well enough to use in practice calls for very sophisticated

program analysis and compiler engineering. (This is a familiar experience from the database

community, where query planners must encode a startling amount of knowledge to optimize

relatively simple SQL queries.) A wide variety of techniques for optimizing Datalog programs have

been studied in the literature, such as using binary decision diagrams to represent relations [Whaley

2007], exploiting the structure of well-behaved subsets (e.g., CFL-reachability problems correspond

to the “chain program” fragment of Datalog [Afrati and Papadimitriou 1993]), and combining

top-down and bottom-up evaluation via the “magic sets” algorithm [Bancilhon et al. 1986].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:3

Today, one of the workhorse techniques for implementing bottom-up Datalog engines is semi-
naïve evaluation [Bancilhon 1986]. This optimization improves the performance of Datalog’s most

distinctive feature: recursively defined predicates. These can be understood as the fixed point of a

set-valued function f. The naïve way to compute this is to iterate the sequence ∅, f(∅), f2(∅), . . . until
fi(∅) = fi+1(∅). However, each iteration will recompute all previous values. Seminaïve evaluation

instead computes a safe approximation of the difference between iterations. This optimization is

critical, as it can asymptotically improve the performance of Datalog queries.

Contributions. The seminaïve evaluation algorithm is defined partly as a program transformation

on sets of Datalog rules, and partly as a modification of the fixed point computation algorithm.

The central contribution of this paper is to give an extended version of this transformation which

works on higher-order programs written in the Datafun language.

• We reformulate Datafun in terms of a kernel calculus based on the modal logic S4. Instead of

giving a calculus with distinct monotonic and discrete function types, as in the original Data-

fun paper, we make discreteness into a comonad. In addition to regularizing the calculus and

slightly improving its expressiveness, the explicit comonadic structure lets us impose a modal

constraint on recursion reminiscent of Hoffman’s work on safe recursion [Hofmann 1997].

This brings the semantics of Datafun more closely in line with Datalog’s, and substantially

simplifies the program transformations we present.

• We define two type-and-syntax-directed program transformations on Datafun: one to imple-

ment seminaïve evaluation, and an auxilliary translation that incrementalizes programs with

respect to increasing changes. We build on the change structure approach to static program

incrementalization introduced by Cai et al. [2014], extending it to support sum types, set

types, a comonad, and (well-founded) fixed points.

• We establish the correctness of these transformations using a novel logical relation which

captures the relation between the source program, its incrementalization, and its seminaïve

translation. The fundamental lemma shows that our transformation is semantics-preserving:

any closed program of first-order type has the same meaning after optimization.

• We discuss our implementation of a compiler from Datafun to Haskell, in both naïve and

seminaïve form. This lets us empirically demonstrate the asymptotic speedups predicted by

the theory. We additionally discuss the (surprisingly modest) set of auxilliary optimizations

we found helpful for putting seminaïve evaluation into practice.

2 DATALOG AND DATAFUN, INFORMALLY
2.1 Datalog
Datalog’s syntax is a subset of Prolog’s. Programs are collections of predicate declarations:

parent(aerys, rhaegar)
parent(rhaegar, jon)
parent(lyanna, jon)

ancestor(X,Z)← parent(X,Z)
ancestor(X,Z)← parent(X, Y) ∧ ancestor(Y,Z)

This defines two binary relations, parent and ancestor. Lowercase sans-serif words like aerys and
rhaegar are symbols à la Lisp, and uppercase characters like X, Y,Z are variables. The parent relation
is defined as a set of ground facts: we assert that aerys is rhaegar’s parent, that rhaegar is jon’s

parent, and so on. The ancestor relation is defined by a pair of rules: first, that X is Z’s ancestor if X

is Z’s parent; second, that X is Z’s ancestor if X has a child Y who is an ancestor of Z.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:4 Michael Arntzenius and Neel Krishnaswami

types A,B ::= 1 | A× B | A+ B | A→ B | □A | {
eq

A}

eqtypes
eq

A,
eq

B ::= {
eq

A} | 1 |
eq

A×
eq

B |
eq

A+
eq

B

semilattices L,M ::= {
eq

A} | 1 | L×M

finite eqtypes
2

fin

A,
fin

B ::= {
fin

A} | 1 |
fin

A×
fin

B |
fin

A+
fin

B

fixtypes
fix

L ,
fix

M ::= {
fin

A} | 1 |
fix

L×
fix

M

terms e, f,g ::= x | x | λx. e | e f | () | (e, f) | πi e

ini e | case e of (ini xi � fi)i∈{1,2}

[e] | let [x] = e in f | e = f | empty? e | split e
⊥ | e ∨ f | {ei}i | for (x ∈ e) f | fix e

Fig. 1. Datafun syntax

Semantically, a predicate denotes the set of tuples that satisfy it. Compared to Prolog, one of the

key restrictions Datalog imposes is that these sets are always finite. This helps keep proof search

decidable, allowing for a variety of implementation strategies. In practice, most Datalog engines

use bottom-up evaluation instead of Prolog’s top-down backtracking search.

Recursive definitions like ancestor give rise to the set of facts deducible from the rules defining

them. More formally, we can view these rules as defining a relation transformer and producing its

least fixed point. For this to make sense, these rules must be stratified: a recursive definition cannot

refer to itself beneath a negation. For example, the liar paradox is prohibited:

liar()← ¬liar() ✗ not valid datalog

Stratification ensures the transformer the rules define is monotone, guaranteeing a unique least

fixed point.

2.2 Datafun
The idea behind Datafun is to capture the essence of Datalog in a typed, higher-order, functional

setting. Since the key restriction that makes Datalog tractable – stratification – requires tracking

monotonicity, we locate Datafun’s semantics in the category Poset of partial orders and monotone

maps. Since Poset is bicartesian closed, it can interpret the simply typed λ-calculus, giving us a

notation for writing monotone and higher-order functions. This lets us abstract over Datalog rules,

something not possible in Datalog itself! In the remainder of this section we reconstruct Datafun

hewing closely to this semantic intuition.

Datafun begins as the simply-typed λ-calculus with functions (λx. e and e f), sums (ini e and

case e of . . .), and products ((e, f) and πi e). To represent relations, we add a type of finite sets

{
eq

A},1 introduced with set literals {e0, . . . en}, and eliminated using Moggi’s monadic bind syntax,

for (x ∈ e1) e2, signifying the union over all x ∈ e1 of e2. Since we are working in Poset, each type

comes with a partial order on it; sets are ordered by inclusion, x ⩽ y : {
eq

A} ⇐⇒ x ⊆ y.

As long as all primitives are monotone, every definable function is also monotone. This is

necessary for defining fixed points, but may seem too restrictive. There are many useful non-

monotone operations, such as equality tests e = f. For example, {} = {} is true, but if the first

argument increases to {1} it becomes false, a decrease (as we’ll see later, in Datafun, false < true).

1
To implement set types, their elements must support decidable equality. In our core calculus, we use a subgrammar of

“eqtypes”, and in our implementation (which compiles to Haskell) we use typeclass constraints to pick out such types.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:5

bool rewrite−−−−→ {1}

false rewrite−−−−→ {}

true rewrite−−−−→ {()}

fix x is e rewrite−−−−→ fix [λx. e]

{e | ε}
rewrite−−−−→ {e}

{e | p ∈ f, . . . }
rewrite−−−−→ for (p ∈ f) {e | . . . }

{e | f, . . . }
rewrite−−−−→ when (f) {e | . . . }

when (e) f
rewrite−−−−→ for (() ∈ e) f

Fig. 2. Syntactic sugar

How can we express non-monotone operations if all functions are monotone? We square this

circle by introducing the discreteness type constructor, □A. The elements of □A are the same as

those of A, but the partial order on □A is discrete, x ⩽ y : □A ⇐⇒ x = y. Monotonicity of a

function □A → B is vacuous: x = y implies f(x) ⩽ f(y) by reflexivity! In this way we represent

ordinary, possibly non-monotone, functions A→ B as monotone functions □A→ B.

Semantically, □ is a monoidal comonad or necessity modality, and so we base our syntax on

Pfenning and Davies [2001]’s syntax for the necessity fragment of constructive S4 modal logic. This

involves distinguishing two kinds of variable: discrete variables x are in red italics, while monotone

variables x are in upright black script. Discrete variables may be used wherever they’re in scope,

but crucially, monotone variables are hidden within non-monotone expressions. For example, in

an equality test e = f, the terms e and f cannot refer to monotone variables bound outside the

equality expression. We highlight such expressions with a yellow background. Putting this all

together, we construct the type □A with the non-monotone introduction form [e] and eliminate it

by pattern-matching, let [x] = e in f, giving access to a discrete variable x.
Finally, Datafun includes fixed points, fix f. The fix combinator takes a function □(

fix

L→
fix

L) and

returns its least fixed point. Besides monotonicity of the function, we impose two restrictions on

the fixed point operator to ensure well-definedness and termination. First, we require that recursion

occur at semilattice types with no infinite ascending chains,
fix

L . A join-semilattice is a partial order

with a least element ⊥ and a least upper bound operation ∨ (“join”). Finite sets (with the empty set

as least element, and union as join) are an example, as are tuples of semilattices. As long as the

semilattice has no infinite ascending chains x0 < x1 < x2 < · · · , iteration from the bottom element

is guaranteed to find the least fixed point.
2

Second, we require that the recursive function be boxed, □(
fix

L→
fix

L). Since boxed expressions can

only refer to discrete values, and fixed point functions themselves must be monotone, this has the

effect of preventing semantically nested fixed points. We discuss this in more detail in §10. Note

that this does not prevent mutual recursion, which can be expressed by taking a fixed point at

product type, nor stratified fixed points à la Datalog.

3 DATAFUN BY EXAMPLE
For brevity and clarity, the examples that follow make use of some syntax sugar:

(1) We mentioned earlier that Datafun’s boolean type bool is ordered false < true. This is because
we encode booleans as sets of empty tuples, {1}, with false being the empty set {} and true
being the singleton {()}. At semilattice type we also permit a “one-sided” conditional test,

when (b) e, which yields e if b is true and ⊥ otherwise. Encoding booleans as sets has the

advantage that when (b) e is monotone in the condition b.

2
As a technical detail, the finite set type {

eq

A} will possess infinite ascending chains if
eq

A has infinitely many inhabitants.

Thus we need to distinguish a class of finite eqtypes
fin

A. Although their grammars in figure 1 are identical, their intent is

different. For example, if we extended Datafun with integers, they would form an eqtype, but not a finite one.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:6 Michael Arntzenius and Neel Krishnaswami

(2) We make use of set comprehensions, which can be desugared into the monadic operators for
and when in the usual way [Wadler 1992].

(3) It is convenient to treat fix as a binding form, fix x is e, rather than explicitly supplying a

boxed function, fix [λx. e].

(4) Finally, we make free use of curried functions and pattern matching. Desugaring these is

relatively standard, and so we will say little about it, with one exception: the box-elimination

form let [x] = e in e ′ is a pattern matching form, and so we allow it to occur inside of

patterns. The effect of a box pattern [p] is to ensure that all of the variables bound in the

pattern p are treated as discrete variables.

We summarize (except for pattern matching) the desugaring rules we use in figure 2.

3.1 Set Operations
Even before higher-order functions, one of the main benefits of Datafun over Datalog is that it

permits manipulating relations as first class values. In this subsection we will show how a variety

of standard operations on sets can be represented in Datafun. The first operation we consider is

testing membership:

member : □
eq

A→ {
eq

A}→ bool
member [x] s = for (y ∈ s) x = y

This checks if x is equal to any element y ∈ s. The argument x is discrete because increasing x
might send it from being in the set to being outside the set (e.g. 1 ∈ {1} but 2 /∈ {1}). Notice that

here we’re taking advantage of encoding booleans as sets of empty tuples – unioning these sets

implements logical or.
Usingmember we can define set intersection by taking the union of every singleton set {x}where

x is an element of both s and t:

∩ : {
eq

A}→ {
eq

A}→ {
eq

A}

s ∩ t = for (x ∈ s) when (member [x] t) {x}

Using comprehensions, this could alternately be written as:

s ∩ t = {x | x ∈ s,member [x] s}

From now on, we’ll use comprehensions whenever possible. For example, we can also define the

composition of two relations in Datafun:

• : {
eq

A×
eq

B}→ {
eq

B×
eq

C}→ {
eq

A×
eq

C}

s • t = {(a, c) | (a, b1) ∈ s, (b2, c) ∈ t, b1 = b2}

This is basically a transcription of the mathematical definition, where we build those pairs which

agree on their B-typed components.

We can also define set difference, although we must first detour into boolean negation:

¬ : □bool → bool
¬[t] = case empty? t of in1 () � true ; in2 () � false

\ : {
eq

A}→ □{
eq

A}→ {
eq

A}

s \ [t] = {x | ¬[member [x] t]}

To implement boolean negation, we need the primitive operator empty? e, which produces a tag

indicating whether its argument e (a set of empty tuples, i.e. a boolean) is the empty set. This in

turn lets us define set difference, the analogue in Datafun of negation in Datalog. Note that in both

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:7

boolean negation and set difference the “negated” argument t is boxed, because the operation is

not monotone in t. This enforces stratification.
Finally, generalizing the ancestor relation from the Datalog program in §2.1, we can define the

transitive closure of a relation:

trans : □{
eq

A×
eq

A}→ {
eq

A×
eq

A}

trans [edge] = fix s is edge ∨ (edge • s)

This definition uses a least fixed point, just like the mathematical definition – a transitive closure

is the least relation R containing the original relation edge and the composition of edge with R.

However, one feature of this definition peculiar to Datafun is that the argument type is □{
eq

A×
eq

A};

the transitive closure takes a discrete relation. This is because we must use the relation within the

fixed point, and so its parameter needs to be discrete to occur within. This restriction is artificial –

transitive closure is semantically a monotone operation – but we’ll see why it’s useful in §6.

3.2 Regular Expression Combinators
Datafun permits tightly integrating the higher-order functional and bottom-up logic programming

styles. In this section, we illustrate the benefits of doing so by showing how to implement a regular

expression matching library in combinator style. Like combinator parsers in functional languages,

the code is very concise. However, support for the relational style ensures we can write naïve code

without the exponential backtracking cliffs typical of parser combinators in functional languages.

For these examples we’ll assume the existence of eqtypes string, char, and int, an addition operator
+, and functions length and chars satisfying:

length : □string → int
length [s] = the length of s

chars : □string → {int × char}
chars [s] = {(i, c) | the ith character of s is c}

Note that by always boxing string arguments, we avoid committing ourselves to any particular

partial ordering on string.
These assumed, we define the type of regular expression matchers:

type re = □string → {int × int}

A regular expression takes a discrete string [s] and returns the set of all pairs (i, j) such that the

substring si, . . . , sj−1 matches the regular expression. For example, to find all matches for a single

character c, we return the range (i, i+ 1) whenever (i, c) ∈ chars [s]:

sym : □char → re
sym [c] [s] = {(i, i + 1) | (i, c ′) ∈ chars [s], c = c ′}

To find all matches for the empty regex, i.e. all empty substrings, including the one “beyond the

last character”:

nil : re
nil [s] = {i | (i, ) ∈ chars [s]} ∨ {length [s]}

Appending regexes r1, r2 amounts to relation composition, since we wish to find all substrings

consisting of adjacent substrings si . . . sj−1 and sj . . . sk−1 matching r1 and r2 respectively:

seq : re → re → re
seq r1 r2 s = r1 s • r2 s

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:8 Michael Arntzenius and Neel Krishnaswami

Similarly, regex alternation r1|r2 is accomplished by unioning all matches of each:

alt : re → re → re
alt r1 r2 s = r1 s ∨ r2 s

The most interesting regular expression combinator is Kleene star. Thinking relationally, if we

consider the set of pairs (i, j)matching some regex r, then r*matches its reflexive, transitive closure.
This can be accomplished by combining nil and trans.

star : □re → re
star [r] [s] = nil [s] ∨ trans [r [s]]

Note that the argument r must be discrete because trans uses it to compute a fixed point.
3

3.3 Regular Expression Combinators, Take 2
The combinators in the previous section found all matches within a given substring, but often we

are not interested in all matches: we only want to know if a string can match starting at a particular

location. We can easily refactor the combinators above to work in this style, which illustrates

the benefits of tightly integrating functional and relational styles of programming – we can use

functions to manage strict input/output divisions, and relations to manage nondeterminism and

search.

type re = □(string × int)→ {int}

Our new type of combinators takes a string and a starting position, and returns a set of ending

positions. For example, sym [c] checks if c occurs at the start position i, yielding {i + 1} if it does

and the empty set otherwise, while nil simply returns the start position i.

sym : □char → re
sym [c] [(s, i)] = {i + 1 | ( j, d) ∈ chars [s], i = j, c = d }

nil : re → re
nil [(s, i)] = {i}

Appending regexes seq r1 r2 simply applies r2 starting from every ending position that r1 can find:

seq : re → re → re
seq r1 r2 [(s, i)] = for ( j ∈ r1 [(s, i)]) r2 [(s, j)]

Regex alternation alt is effectively unchanged:

alt : re → re → re
alt r1 r2 x = r1 x ∨ r2 x

Finally, Kleene star is implemented by recursively appending r to a set x of matches found so far:

star : □re → re
star [r] [(s, i)] = fix x is

(
{i} ∨ for ( j ∈ x) r [(s, j)]

)
It’s worth noting that this definition is effectively left-recursive – it takes the endpoints from the

fixed point x, and then continues matching using the argument r . This should make clear that

this is not just plain old functional programming – we are genuinely relying upon the fixed point

semantics of Datafun.

3
Technically the inclusion order on sets of integer pairs does not satisfy the ascending chain condition, so this use of trans is
not well-typed. However, since the positions in a particular string form a finite set, semantically there is no issue. Arntzenius

and Krishnaswami [2016] shows how to define bounded fixed points to handle cases like this, so we will not be scrupulous.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:9

4 FROM SEMINAÏVE EVALUATION TO THE INCREMENTAL λ-CALCULUS
Let’s return to our example Datalog program, modified to consider graphs rather than ancestry:

path(X,Z)← edge(X,Z)

path(X,Z)← edge(X, Y) ∧ path(Y,Z)

Suppose edge denotes a linear graph, {(1, 2), (2, 3), . . . , (n− 1,n)}. Then path should denote its

reachability relation, {(i, j) | 1 ⩽ i < j ⩽ n}. How can we compute this? The simplest approach

is to begin with nothing in the path relation and repeatedly apply its rules until nothing more is

deducible. We can make this strategy explicit by time-indexing the path relation:

pathi+1
(X,Z)← edge(X,Z)

pathi+1
(X,Z)← edge(X, Y) ∧ pathi(Y,Z)

By omission path
0
= ∅. From this inductively pathi ⊆ pathi+1

, because at step i+ 1 we re-deduce

every fact known at step i. For example, suppose pathi(j,k) holds. Then at step i+ 1 the second

rule deduces pathi+1
(j− 1,k) from edge(j− 1, j) ∧ pathi(j,k). But since pathi+1

(j,k) holds, we

perform the same deduction at time i+ 2, and again at i+ 3, i+ 4, etc.

Because we append edges one at a time, pathi contains all paths of i or fewer edges. Therefore it
takes n steps until we reach our fixed point pathn−1

= pathn. Since step i involves |pathi| ∈ Θ(i2)

deductions, we make Θ(n3) deductions in total. There being only Θ(n2) paths in the final result,

this is terribly wasteful; hence we term this naïve evaluation.
Seminaïve evaluation avoids waste by transforming the rules for path to find the newly deducible

paths, dpathi, at iteration i, and accumulating these changes to produce a final result:

dpath
0
(X, Y)← edge(X, Y)

dpathi+1
(X,Z)← edge(X, Y) ∧ dpathi(Y,Z)

pathi+1
(X, Y)← pathi(X, Y) ∨ dpathi(X, Y)

It’s easy to show inductively that dpathi contains only paths exactly i+ 1 edges long. Consequently

|dpathi| ∈ Θ(n− i) and we make Θ(n2) deductions overall.4

4.1 Seminaïve Evaluation as Incremental Computation
Now let’s move from Datalog to Datafun.

5
The transitive closure of edge is the fixed point of the

monotone function step defined by:

step path = edge ∪ {(x, z) | (x,y) ∈ edge, (y, z) ∈ path}

The naïve way to compute step’s fixed point is to iterate it: start from path
0
= ∅ and compute

pathi+1
= step pathi for increasing i until pathi = pathi+1

. But as before, pathi ⊆ step pathi; each
iteration re-computes the paths found by its predecessor. Following Datalog, we’d prefer to compute

only the change between iterations. So consider step ′ defined by:

step ′ dpath = {(x, z) | (x,y) ∈ edge, (y, z) ∈ dpath}

4
Here we must assume the accumulation rule pathi+1

(X,Y) ← pathi(X,Y) ∨ dpathi(X,Y) is implemented using an

union operator that is efficient when the sets being unioned are of greatly differing sizes.

5
In this section we do not bother marking discrete variables x or expressions e, as it muddies our examples to no benefit.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:10 Michael Arntzenius and Neel Krishnaswami

Observe that

step (path ∪ dpath)

= edge ∪ {(x, z) | (x,y) ∈ edge, (y, z) ∈ path ∪ dpath}

= edge ∪ {(x, z) | (x,y) ∈ edge, (y, z) ∈ path} ∪ {(x, z) | (x,y) ∈ edge, (y, z) ∈ dpath}

= step path ∪ step ′ dpath

In other words, step ′ tells us how step changes as its input grows. This lets us directly compute the

changes dpathi between our iterations pathi:

dpath
0
= step ∅ = edge

dpathi+1
= step ′ dpathi = {(x, z) | (x,y) ∈ edge, (y, z) ∈ dpathi}

pathi+1
= pathi ∪ dpathi

These exactly mirror the derivative and accumulator rules for pathi and dpathi we gave earlier.
The problem of seminaïve evaluation for Datafun, then, reduces to the problem of finding

functions, like step ′, which compute the change in a function’s output given a change to its input.

This is a problem of incremental computation, and since Datafun is a functional language, we turn

to the incremental λ-calculus [Cai et al. 2014; Giarrusso et al. 2019].

4.2 Change Structures
To make precise the notion of change, an incremental λ-calculus associates every type A with a

change structure, consisting of:6

(1) A type ∆A of possible changes to values of type A.

(2) A relation dx ::A x⇝ y for dx : ∆A and x,y : A, read as “dx changes x into y”.

Since the iterations of a fixed point grow monotonically, in Datafun we only need increasing
changes. For example, sets change by gaining new elements:

∆{
eq

A} = {
eq

A} dx ::{
eq

A} x⇝ x ∪ dx

Set changes may be the most significant for fixed point purposes, but to handle all of Datafun we

need a change structure for every type. For products and sums, for example, the change structure

is pointwise:

∆1 = 1 ∆(A× B) = ∆A× ∆B ∆(A+ B) = ∆A+ ∆B

() ::1 ()⇝ ()
da ::A a⇝ a ′ db ::B b⇝ b ′

(da,db) ::A×B (a,b)⇝ (a ′,b ′)

dx ::Ai
x⇝ y

ini dx ::A1+A2
ini x⇝ ini y

Since we only consider increasing changes, and □A is ordered discretely, the only “change”

permitted is to stay the same. Consequently, no information is necessary to indicate what changed:

∆(□A) = 1 () ::□A x⇝ x

Finally we come to the most interesting case: functions.

∆(A→ B) = □A→ ∆A→ ∆B

fn change

(∀dx ::A x⇝ y) df x dx ::B f x⇝ g y

df ::A→B f⇝ g

6
Our notion of change structure differs significantly from that of Cai et al. [2014], although it is similar to the logical relation

given in Giarrusso et al. [2019]; we discuss this in §10. Although we do not use change structures per se in the proof of

correctness sketched in §7, they are an important source of intuition.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:11

Observe that a function change df takes two arguments: a base point x : □A and a change dx : ∆A.

To understand why we need both, consider incrementalizing function application: we wish to know

how f x changes as both f and x change. Supposing df :: f⇝ g and dx :: x⇝ y, how do we find a

change f x⇝ g y that updates both function and argument?

If changes were given pointwise, taking only a base point, we’d stipulate that df :: f ⇝ g iff

(∀x) df x :: f x⇝ g x. But this only gets us to g x, not g y: we’ve accounted for the change in the

function, but not the argument. We can account for both by giving df an additional parameter:

not just the base point x, but also the change dx to it. Then by inverting fn change we have

df x dx :: f x⇝ g y as desired.

Note also the mixture of monotonicity and non-monotonicity in the type □A → ∆A → ∆B.

Since our functions are monotone (increasing inputs yield increasing outputs), function changes are

monotone with respect to input changes ∆A: a larger increase in the input yields a larger increase

in the output. However, there’s no reason to expect the change in the output to grow as the base

point increases – hence the use of □.

4.3 Zero Changes, Derivatives, and Faster Fixed Points
If dx ::A x⇝ x, we call dx a zero change to x. Usually zero changes are boring – for example, a zero

change to a set x : {
eq

A} is any dx ⊆ x, and so ∅ is always a zero change. However, there is one very

interesting exception: function zero changes. Suppose df ::A→B f⇝ f. Then inverting fn change

implies that

dx ::A x⇝ y =⇒ df x dx ::B f x⇝ f y

In other words, df yields the change in the output of f given a change to its input. This is exactly

the property of step ′ that made it useful for seminaïve evaluation – indeed, step ′ is a zero change

to step, modulo not taking the base point x as an argument:

dx ::{
eq

A} x⇝ y =⇒ step ′ dx ::{
eq

A} step x⇝ step y

i.e.

x ∪ dx = y =⇒ step x ∪ step ′ dx = step y

Function zero changes are so important we give them a special name: derivatives. We now have

enough machinery to prove correct a general seminaïve fixed point strategy. First, observe that:

Lemma 4.1. At every semilattice type L, we have ∆L = L and dx ::L x⇝ y ⇐⇒ (x∨ dx) = y.

This holds by a simple induction on semilattice types L. Now, given a monotone map f : L→ L and

its derivative f ′ : □L→ L→ L, we can find f’s fixed-point as the limit of the sequence xi defined:

x0 = ⊥ xi+1 = xi ∨ dxi

dx0 = f ⊥ dxi+1 = f ′ xi dxi

Let semifix (f, f ′) =
∨

i xi. By induction and the derivative property, we have dxi :: xi ⇝ f xi and

so xi = fi x, and therefore semifix (f, f ′) = fix f. Moreover, if L has no infinite ascending chains,

we will reach our fixed point xi = xi+1 in a finite number of iterations.

This leads directly to our strategy for seminaïve Datafun. Cai et al. [2014] defines a static

transformation Derive e which computes the change in e given the change in its free variables; it

incrementalizes e. Our goal is not to incrementalize Datafun per se, but to find fixed points faster.

Consequently, we define two mutually recursive transformations: ϕe, which computes e faster by

replacing fixed points with calls to semifix; and δe, which incrementalizes ϕe just enough that we

can compute the derivative of fixed point functions. In order to define ϕ and δ and show them

correct, however, we first need a fuller account of Datafun’s type system and semantics.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:12 Michael Arntzenius and Neel Krishnaswami

contexts Γ ::= ε | Γ ,H

hypotheses H ::= x : A | x :: A

⌈ε⌉ = ε

⌈Γ , x : A⌉ = ⌈Γ⌉
⌈Γ , x :: A⌉ = ⌈Γ⌉, x :: A

var

x : A ∈ Γ

Γ ⊢ x : A

dvar

x :: A ∈ Γ

Γ ⊢ x : A

lam

Γ , x : A ⊢ e : B

Γ ⊢ λx. e : A→ B

app

Γ ⊢ e : A→ B Γ ⊢ f : A

Γ ⊢ e f : B

unit

Γ ⊢ () : 1

pair

(Γ ⊢ ei : Ai)i

Γ ⊢ (e1, e2) : A1 ×A2

prj

Γ ⊢ e : A1 ×A2

Γ ⊢ πi e : Ai

inj

Γ ⊢ e : Ai

Γ ⊢ ini e : A1 +A2

case

Γ ⊢ e : A1 +A2 (Γ , xi : Ai ⊢ fi : B)i

Γ ⊢ case e of (ini xi � fi)i : B

box

⌈Γ⌉ ⊢ e : A

Γ ⊢ [e] : □A

letbox

Γ ⊢ e : □A Γ , x :: A ⊢ f : B

Γ ⊢ let [x] = e in f : B

bot

Γ ⊢ ⊥ :
eq

L

join

(Γ ⊢ ei :
eq

L)i

Γ ⊢ e1 ∨ e2 :
eq

L

set

(⌈Γ⌉ ⊢ ei :
eq

A)i

Γ ⊢ {ei}i : {
eq

A}

for

Γ ⊢ e : {A} Γ , x :: A ⊢ f :
eq

L

Γ ⊢ for (x ∈ e) f :
eq

L

eq

(⌈Γ⌉ ⊢ ei :
eq

A)i

Γ ⊢ e1 = e2 : bool

empty?

⌈Γ⌉ ⊢ e : {1}

Γ ⊢ empty? e : 1+ 1

split

Γ ⊢ e : □(A+ B)

Γ ⊢ split e : □A+□B

fix

Γ ⊢ e : □(
fix

L→
fix

L)

Γ ⊢ fix e :
fix

L

Fig. 3. Datafun typing rules

5 TYPES AND SEMANTICS
The syntax of core Datafun is given in figure 1 and its typing rules in figure 3. Contexts are lists of

hypotheses H; a hypothesis gives the type of either a monotone variable x : A or a discrete variable

x :: A. The stripping operation ⌈Γ⌉ drops all monotone hypotheses from the context Γ , leaving only

the discrete ones. The typing judgement Γ ⊢ e : A may be read as “under hypotheses Γ , the term e

has type A”.

The var and dvar rules say that both monotone hypotheses x : A and discrete hypotheses

x :: A justify ascribing the variable x the type A. The lam rule is the familiar rule for λ-abstraction.

However, note that we introduce the argument variable x : A as a monotone hypothesis, not a
discrete one. (This is the “right” choice because in Poset the exponential object is the poset of
monotone functions.) The application rule app is standard, as are the rules unit, pair, prj, inj,

and case. As with lam, the variables xi : Ai bound in the case branches fi are monotone.

box says that [e] has type □A when e has type A in the stripped context ⌈Γ⌉. This restricts e to
refer only to discrete variables, ensuring we don’t smuggle any information we must treat mono-

tonically into a discretely-ordered □ expression. The elimination rule letbox for (let [x] = e in f)

allows us to “cash in” a boxed expression e : □A by binding its result to a discrete variable x :: A in

the body f.

At this point, our typing rules correspond to standard constructive S4 modal logic [Pfenning

and Davies 2001]. We get to Datafun by adding a handful of domain-specific types and operations.

First, split provides an operator split : □(A + B) → □A + □B to distribute box across sum

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:13

types.
7
The other direction, □A + □B → □(A + B), is already derivable, as is the isomorphism

□A × □B ∼= □(A × B). This is used implicitly by box pattern-matching – e.g., in the pattern

[(in1 x, in2 y)], the variables x and y are both discrete, which is information we propagate via these

conversions. Semantically, all of these operations are the identity, as we shall see shortly.

This leaves only the rules for manipulating sets and other semilattices. bot and join tell us

that ⊥ and ∨ are valid at any semilattice type L, that is, at sets and products of semilattice types.

The rule for set-elimination, for, is almost monadic bind. However, we generalize it by allowing

for (x ∈ e) f to eliminate into any semilattice type, not just sets, denoting a “big semilattice join”

rather than a “big union”. Finally, the introduction rule set is says that {ei}i∈I has type {
eq

A} when

each of the ei has type
eq

A. Just as in box, each ei has to typecheck in a stripped context; constructing

a set is a discrete operation, since 1 ⩽ 2 but {1} ̸⊆ {2}.

Likewise discrete is equality comparison e1 = e2, whose rule eq is otherwise straightforward;

and empty?, which requires more explanation. The idea is that empty? e determines whether e : {1}

is empty, returning in1 () if it is, and in2 () if it isn’t. This lets us turn “booleans” (sets of units) into

values we can case-analyse. This is, however, not monotone, because while booleans are ordered

false < true, sum types are ordered disjointly; in1 () and in2 () are simply incomparable.

Finally, the rule fix for fixed points fix e takes a function e : □(
fix

L→
fix

L) and yields an expression

of type
fix

L . The restriction to “fixtypes” ensures
fix

L has no infinite ascending chains, guaranteeing the

recursion will terminate.

5.1 Semantics
The syntax of core Datafun can be interpreted in Poset, the category of partially ordered sets and

monotone maps. That is, an object of Poset is a pair (A,⩽A) consisting of a set A and a reflexive,

transitive, antisymmetric relation ⩽A⊆ A×A, while a morphism f : A→ B is a function such that

x ⩽A y =⇒ f(a) ⩽B f(b).

5.1.1 Bicartesian Structure. The bicartesian closed structure of Poset is largely the same as in Set.
The product and sum sets are constructed the same way, and ordered pointwise:

(a,b) ⩽A×B (a ′,b ′) ⇐⇒ a ⩽A a ∧ b ⩽B b ′

ini x ⩽A1+A2
inj y ⇐⇒ i = j ∧ x ⩽Ai

y

Projections πi, injections ini, tupling ⟨f,g⟩ and case-analysis [f,g] are all the same as in Set, pausing
only to note that all these operations preserve monotonicity, as we need.

The exponential A⇒ B consists of only the monotone maps f : A→ B, again ordered pointwise:

f ⩽A⇒B g ⇐⇒ (∀x ⩽A y) f x ⩽B g y

Currying λ and evaluation are the same as in Set. Supposing f : A× B→ C, then:

λ(f) : A→ (B⇒ C) evalA,B : (A⇒ B)×A→ B

λ(f) = x 7→ y 7→ f(x,y) evalA,B = (g, x) 7→ g(x)

Monotonicity here follows from the monotonicity of f and g and the pointwise ordering of A⇒ B.

5.1.2 The Discreteness Comonad. Given a poset (A,⩽A) we define the discreteness comonad

□(A,⩽A) as (A,⩽□A), where a ⩽□A a ′ ⇐⇒ a = a ′. That is, the discrete order preserves the

underlying elements, but reduces the partial order to mere equality. This forms a rather boring

7
An alternative syntax, pursued in Arntzenius and Krishnaswami [2016], would be to give two rules for case, depending on
whether or not the scrutinee could be typechecked in a stripped context.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:14 Michael Arntzenius and Neel Krishnaswami

comonad whose functorial action □(f), extraction εA : □A→ A, and duplication δA : □A→ □□A
are all identities on the underlying sets:

□(f) = f εA = a 7→ a δA = a 7→ a

This makes the functor and comonad laws trivial. Monotonicity holds in each case because all
functions are monotone with respect to⩽□A. It is also immediate that□ is monoidal with respect to

both products and coproducts. That is,□(A×B) ∼= □A×□B and□(A+B) ∼= □A+□B. In both cases
the isomorphism is witnessed by identity on the underlying elements. These lift to n-ary products

and sums as well, which we write as dist×□ :
∏

i□Ai → □
∏

i Ai and dist□+ : □
∑

i Ai →
∑

i□Ai.

5.1.3 Sets and Semilattices. Given a poset (A,⩽A) we define the finite powerset poset P(A,⩽A) as

(Pfin A,⊆), with finite subsets of A as elements, ordered by subset inclusion. Note that the subset

ordering completely ignores the element ordering ⩽A. Finite sets admit a pair of useful morphisms:

singleton : □A→ PA isEmpty : □PA→ 1+ 1

singleton = a 7→ {a} isEmpty = X 7→

{
in1 () when X = ∅
in2 () otherwise

The singleton function takes a value and makes a singleton set out of it. The domain must be discrete,

as otherwise the map will not be monotone (sets are ordered by inclusion, and set membership

relies on equality, not the partial order). Similarly, the emptiness test isEmpty also takes a discrete

set-valued argument, because otherwise the boolean test would not be monotone.

Sets also form a semilattice, with the least element given by the empty set, and join given by

union. For this and other semilattices L ∈ Poset, in particular products of semilattices, we will write

joinLn : Ln → L to denote the n-ary semilattice join (least upper bound). Also, if f : A×□B→ L,

we can define a morphism collect(f) : A× PB→ L as follows:

collect(f) = (a,X) 7→
∨
b∈X

f(a,b)

We will use this to interpret for-loops. However, it is worth noting that the discreteness restrictions

on singleton mean that finite sets do not quite form a monad in Poset.

5.1.4 Equality. Every object A ∈ Poset admits an equality-test morphism eq:

eq : □A×□A→ P1

eq = (x,y) 7→

{
{()} if x = y

∅ otherwise

The domain must be discrete, since x = y and y ⩽ z certainly doesn’t imply x = z.

5.1.5 Fixed Points. Given a semilattice L ∈ Poset without infinite ascending chains, we can define

a fixed point operation fix : (L→ L)→ L as follows:

fix = f 7→
∨
n∈N

fn(⊥)

A routine inductive argument shows this must yield a least fixed point.

5.1.6 Interpretation. The semantic interpetation (defined over typing derivations) is given in fig-

ure 4. The interpretation itself mostly follows the usual interpretation for constructive S4 [Alechina

et al. 2001], with what novelty there is occuring in the interpretation of sets and fixed points. Even

there, the semantics is straightforward, making fairly direct use of the combinators defined above.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:15

type and context denotations

J1K = 1 JA→ BK = JAK⇒ JBK
J{

eq

A}K = PJ
eq

AK JA× BK = JAK× JBK
J□AK = □JAK JA+ BK = JAK+ JBK

JΓK =
∏
H∈Γ

JHK Jx : AK = JAK Jx :: AK = □JAK JΓ ⊢ AK = Poset(JΓK, JAK)

term denotations

JΓ ⊢ x : AK = πx · ε (for x :: A ∈ Γ )

JΓ ⊢ x : AK = πx (for x : A ∈ Γ )

JΓ ⊢ λx. e : A→ BK = λJΓ , x : A ⊢ e : BK
JΓ ⊢ f e : BK = ⟨JΓ ⊢ f : A→ BK, JΓ ⊢ e : AK⟩ · eval
JΓ ⊢ (e1, e2) : A1 ×A2K = ⟨JΓ ⊢ e1 : A1K, JΓ ⊢ e2 : A2K⟩
JΓ ⊢ πi e : AiK = JΓ ⊢ e : A1 ×A2K · πi

JΓ ⊢ [e] : □AK = boxΓ (J⌈Γ⌉ ⊢ e : AK)
JΓ ⊢ let [x] = e in f : BK = ⟨idJΓK, JΓ ⊢ e : □AK⟩ · JΓ , x :: A ⊢ f : BK
JΓ ⊢ ⊥ : LK = ⟨⟩ · joinL

0

JΓ ⊢ e ∨ f : LK = ⟨JΓ ⊢ e : LK, JΓ ⊢ f : LK⟩ · joinL
2

JΓ ⊢ empty? e : 1+ 1K = boxΓ (J⌈Γ⌉ ⊢ e : {1}K) · isEmpty
JΓ ⊢ split e : □A+□BK = JΓ ⊢ e : □(A+ B)K · dist□+
JΓ ⊢ e1 = e2 : boolK = ⟨boxΓ (J⌈Γ⌉ ⊢ e1 :

eq

AK), boxΓ (J⌈Γ⌉ ⊢ e2 :
eq

AK)⟩ · eq
JΓ ⊢ fix e :

fix

LK = JΓ ⊢ e : □(
fix

L→
fix

L)K · ε · fix
JΓ ⊢ {ei}i : {

eq

A}K = ⟨boxΓ (J⌈Γ⌉ ⊢ ei :
eq

AK) · singleton⟩i · joinL

JΓ ⊢ for (x ∈ e) f : LK = ⟨idJΓK, JΓ ⊢ e : {
eq

A}K⟩ · collect(JΓ , x ::
eq

A ⊢ f : LK)
JΓ ⊢ ini e : A1 +A2K = JΓ ⊢ e : AiK · ini

JΓ ⊢ case e of (ini xi � fi)i : BK = ⟨idJΓK, JΓ ⊢ e : A1 +A2K⟩ · dist×+ ·
[
JΓ , xi : Ai ⊢ fi : BK

]
i

auxilliary operations

dist×+ : A× (B1 + B2)→ (A× B1) + (A× B2) boxΓ : J⌈Γ⌉ ⊢ AK→ JΓ ⊢ □AK

dist×+ = ⟨π2 · [λ(⟨π2,π1⟩ · ini)]i,π1⟩ · eval boxΓ (f) = ⟨πx · δ⟩x::A∈Γ · dist×□ ·□(f)

Fig. 4. Semantics of Datafun

We give the interpretation in combinatory style, and to increase readability, we freely use n-ary

products to elide the book-keeping associated with reassociating binary products.

Regarding notation, we write composition in diagrammatic or “pipeline” order with a simple

centered dot, letting f · g : A → C mean f : A → B followed by g : B → C. If fi : A → Bi then

we write ⟨fi⟩i : A →
∏

i Bi for the “tupling map” such that ⟨fi⟩i · πj = fj. In particular, ⟨⟩ is the
map into the terminal object. Dually, if gi : Ai → B then we write [gi]i :

∑
i Ai → B for the

“case-analysis map” such that inj · [gi]i = gj.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:16 Michael Arntzenius and Neel Krishnaswami

empty

ε ⊑ ε

cons

Γ ⊑ ∆

Γ ,H ⊑ ∆,H

drop

Γ ⊑ ∆

Γ ⊑ ∆,H

disc

Γ ⊑ ∆

Γ , x : A ⊑ ∆, x :: A

Fig. 5. Weakening relation

5.2 Metatheory
If we were presenting core Datafun in isolation, the usual thing to do would be to prove the

soundness of syntactic substitution, show that syntactic and semantic substitution agree, and then

establish the equational theory. However, that is not our goal in this paper. We want to prove the

correctness of the seminaïve translation, which we will do with a logical relations argument. Since

we can harvest almost all the properties we need from the logical relation, only a small residue

of metatheory needs to be established manually – indeed, the only thing we need to prove at this

stage is the type-correctness of weakening, which we will need to show the type-correctness of the

seminaïve transformation.

We define the weakening relation Γ ⊑ ∆ in figure 5. This says that ∆ is a weakening of Γ , either

because it has extra hypotheses (drop), or because a hypothesis in Γ becomes discrete in ∆ (disc).

The idea is that making a hypothesis discrete only increases the number of places it can be used.

Lemma 5.1. If Γ ⊢ e : A and Γ ⊑ ∆ then ∆ ⊢ e : A.

This follows by the usual induction on typing derivations.

6 THE ϕ AND δ TRANSFORMATIONS
We use two static transformations, ϕ and δ, defined in figures 7 and 8 respectively. Rather than

dive into the gory details immediately, we first build some intuition.

The speed-up transformϕe computes fixed points seminaïvely by replacing fix f by semifix (f, f ′).

But to find the derivative f ′ of f we’ll need a second transform, called δe. Since a derivative is a

zero change, can δe simply find a zero change to e? Unfortunately, this is not strong enough. For

example, the derivative of λx. e depends on how e changes as its free variable x changes – which is

not necessarily a zero change. To compute derivatives, we need to solve the general problem of

computing changes. So, modelled on the incremental λ-calculus’ Derive [Cai et al. 2014], δe will

compute how ϕe changes as its free variables change.

However, to speed up fix fwe don’t want the change to f; we want its derivative. Since derivatives

are zero changes, function changes and derivatives coincide if the function cannot change. This is
why the typing rule for fix f requires that f : □(

fix

L→
fix

L): the use of □ prevents f from changing!

So the key strategy of our speed-up transformation is to decorate expressions of type □A
with their zero changes. This makes derivatives available exactly where we need them: at fix
expressions.

6.1 Typing ϕ and δ

In order to decorate expressions with extra information, ϕ also needs to decorate their types. In

figure 6 we give a type translation ΦA capturing this. In particular, if e : □A then ϕe will have

type Φ(□A) = □(ΦA× ∆ΦA). The idea is that evaluating ϕe will produce a pair [(x,dx)] where

x : ΦA is the sped-up result and dx : ∆ΦA is a zero change to x. Thus, if e : □(
fix

L →
fix

L), then ϕe

will compute [(f, f ′)], where f ′ is the derivative of f.

On types other than □A, there is no information we need to add, so Φ simply distributes. In

particular, source programs and sped-up programs agree on the shape of first-order data:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:17

Φ1 = 1 ∆1 = 1

Φ{
eq

A} = {Φ
eq

A} (see lemma 6.1) ∆{
eq

A} = {
eq

A}

Φ(□A) = □(ΦA× ∆ΦA) ∆(□A) = 1

Φ(A× B) = ΦA×ΦB ∆(A× B) = ∆A× ∆B

Φ(A+ B) = ΦA+ΦB ∆(A+ B) = ∆A+ ∆B

Φ(A→ B) = ΦA→ ΦB ∆(A→ B) = □A→ ∆A→ ∆B

Fig. 6. ∆ and Φ type transformations

ϕx = x ϕx = x

ϕ(λx. e) = λx. ϕe ϕ(e f) = ϕe ϕf

ϕ(ei)i = (ϕei)i ϕ(πi e) = πi ϕe

ϕ(ini e) = ini ϕe ϕ(case e of (ini x � fi)i) = case ϕe of (ini x � ϕfi)i

ϕ⊥ = ⊥ ϕ(e ∨ f) = ϕe ∨ ϕf

ϕ({ei}i) = {ϕei}i ϕ(for (x ∈ e) f) = for (x ∈ ϕe) let [dx] = [0 x] in ϕf

ϕ[e] = [(ϕe, δe)] ϕ(let [x] = e in f) = let [(x, dx)] = ϕe in ϕf

ϕ(e = f) = (ϕe = ϕf) ϕ(empty? e) = empty? ϕe

ϕ(fix e) = semifix ϕe ϕ(split e) = case ϕe of
([(ini x, ini dx)] � ini [(x, dx)])i
([(ini x, inj )] � ini [(x, dummy x)])i ̸=j

Fig. 7. Seminaïve speed-up translation, ϕ

δ⊥ = δ{ei}i = δ(e = f) = δ(fix e) = ⊥

δx = dx δx = dx

δ(λx. e) = λ[x]. λdx. δe δ(e f) = δe [ϕe] δf

δ(ei)i = (δei)i δ(πi e) = πi δe

δ(ini e) = ini δe δ(e ∨ f) = δe ∨ δf

δ[e] = () δ(let [x] = e in f) = let [(x, dx)] = ϕe in δf

δ(empty? e) = empty? ϕe δ(split e) = case ϕe of ([(ini , )] � ini ())i

δ(case e of (ini x � fi)i) = case split [ϕe], δe of
(ini [x], ini dx � δfi)i

(ini [x], inj � let dx = dummy x in δfi)i ̸=j

δ(for (x ∈ e) f) = (for (x ∈ δe) let [dx] = 0 x in ϕf)

∨ (for (x ∈ ϕe ∨ δe) let [dx] = 0 x in δf)

Fig. 8. Seminaïve derivative translation, δ

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:18 Michael Arntzenius and Neel Krishnaswami

Lemma 6.1. Φ
eq

A =
eq

A.

This is easily seen by induction on
eq

A.

As we’ll see in §6.3 and 6.4, ϕ and δ are mutually recursive. To make this work, δe must find

the change to ϕe rather than e. So if e : A then ϕe : ΦA and δe : ∆ΦA. However, so far we have

neglected to say what ϕ and δ do to typing contexts. To understand this, it’s helpful to look at

what Φ and ∆Φ do to functions and to □. This is because expressions denote functions of their
free variables. Moreover, in Datafun free variables come in two flavors, monotone and discrete, and

discrete variables are semantically □-ed.
Viewed as functions of their free variables, δe denotes the derivative of ϕe. And just as the

derivative of a unary function f x has two arguments, df x dx, the derivative of an expression

e with n variables x1, . . . , xn will have 2n variables: the original x1, . . . , xn and their changes

dx1, . . . ,dxn.
8
However, this says nothing yet about monotonicity or discreteness. To make this

precise, we’ll use three context transformations, named according to the analogous type operators

□, Φ, and ∆:

□(x : A) = x :: A □(x :: A) = x :: A

Φ(x : A) = x : ΦA Φ(x :: A) = x :: ΦA, dx :: ∆ΦA

∆(x : A) = dx : ∆A ∆(x :: A) = ε (the empty context)

Otherwise all three operators distribute; e.g. □ε = ε and □(Γ1, Γ2) = □Γ1,□Γ2. Intuitively, □Γ , ΦΓ ,

and ∆Γ mirror the effect of □, Φ, and ∆ on the semantics of Γ :

J□ΓK ∼= □JΓK
JΦ(x : A)K ∼= JΦAK
JΦ(x :: A)K ∼= JΦ□AK

J∆(x : A)K ∼= J∆AK
J∆(x :: A)K ∼= J∆□AK

These defined, we can state the types of ϕe and δe:

Theorem 6.2 (well-typedness). If Γ ⊢ e : A, then ϕe and δe have the following types:

ΦΓ ⊢ ϕe : ΦA

□ΦΓ ,∆ΦΓ ⊢ δe : ∆ΦA

As expected, if we view expressions as functions of their free variables, and pretend Γ is a type,

these correspond to Φ(Γ → A) and ∆Φ(Γ → A) respectively:

Φ(Γ → A) = ΦΓ → ΦA ∆Φ(Γ → A) = □ΦΓ → ∆ΦΓ → ∆ΦA

To get the hang of these context and type transformations, suppose x :: A,y : B ⊢ e : C. Then

theorem 6.2 tells us:

x :: ΦA, dx :: ∆ΦA, y : ΦB ⊢ ϕe : ΦC

x :: ΦA, dx :: ∆ΦA, y :: ΦB,dy : ∆ΦB ⊢ δe : ∆ΦC

Along with the original program’s variables, ϕe requires zero change variables dx for every discrete

source variable x. Meanwhile, δe requires changes for every source program variable (for discrete

variables these will be zero changes), and moreover is discrete with respect to the source program

variables (the “base points”).

We now have enough information to tackle the definitions of ϕ and δ given in figures 7 and 8.

In the remainder of this section, we’ll examine the most interesting and important parts of these

definitions in detail.

8
For notational convenience we assume that source programs contain no variables starting with the letter d.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:19

6.2 Fixed Points
The whole purpose of ϕ and δ is to speed up fixed points, so let’s start there. In a fixed point

expression fix e, we know e : □(
fix

L→
fix

L). Consequently the type of ϕe is

Φ(□(
fix

L→
fix

L)) = □(Φ(
fix

L→
fix

L)× ∆Φ(
fix

L→
fix

L))

= □((Φ
fix

L→ Φ
fix

L)× (□Φ
fix

L→ ∆Φ
fix

L→ ∆Φ
fix

L))

= □((
fix

L→
fix

L)× (□
fix

L→ ∆
fix

L→ ∆
fix

L) by lemma 6.1, Φ
fix

L =
fix

L

= □((
fix

L→
fix

L)× (□
fix

L→
fix

L→
fix

L) by lemma 4.1, ∆
fix

L =
fix

L

The behavior of ϕe is to compute a boxed pair [(f, f ′)], where f :
fix

L →
fix

L is a sped-up function

and f ′ : □
fix

L →
fix

L →
fix

L is its derivative. This is exactly what we need to call semifix. Therefore
ϕ(fix e) = semifix ϕe. However, if we’re going to use semifix in the output of ϕ, we ought to give

it a typing rule and semantics:

Γ ⊢ e : □((
fix

L→
fix

L)× (□
fix

L→
fix

L→
fix

L)

Γ ⊢ semifix e :
fix

L

Jsemifix eK γ = semifix (f, f ′)

where (f, f ′) = JeK γ

As for δ(fix e), since e can’t change (having □ type), neither can fix e (or semifix ϕe). All we

need is a zero change at type
fix

L ; by lemma 4.1, ⊥ suffices.

6.3 Variables, λ, and Application
At the core of a functional language are variables, λ, and application. The ϕ translation leaves these

alone, simply distributing over subexpressions. On variables, δ yields the corresponding change

variables. On functions and application, δ is more interesting:

∆Φ(A→ B) = □ΦA→ ∆ΦA→ ∆ΦB δ(λx. e) = λ[x]. λdx. δe δ(e f) = δe [ϕf] δf

The intuition behind δ(λx. e) = λ[x]. λdx. δe is that a function change takes two arguments, a

base point x and a change dx, and yields the change in the result of the function, δe. However,

we are given an argument of type □ΦA, but consulting theorem 6.2 for the type of δe, we need a

discrete variable x :: ΦA, so we use pattern-matching to unbox our argument.

The intuition behind δ(e f) = δe [ϕf] δf is much the same: δe needs two arguments, the original

input ϕf and its change δf, to return the change in the function’s output. Moreover, it’s discrete in

its first argument, so we need to box it, [ϕf].

One might wonder why this type-checks, since ϕe and δe don’t use the same typing context.

We’re even boxing ϕf, hiding all monotone variables; consequently, it gets the context ⌈□ΦΓ ,∆ΦΓ⌉.
However, □ makes every variable discrete, and ⌈−⌉ leaves discrete variables alone, so this includes

at least □ΦΓ . The context ϕf needs is ΦΓ . Since □ only makes a context stronger (recalling our

definition of weakening from §5.2), we’re safe. The same argument applies (all the more easily)

when ϕe is used in a monotone rather than a discrete position.

6.4 The Discreteness Comonad, □
Our strategy hinges on decorating expressions of type □A with their zero changes, so the trans-

lations of [e] and (let [x] = e in f) are of particular interest. The most trivial of these is δ[e] = ();

this follows from ∆Φ□A = 1, since boxed values cannot change.

Next, consider ϕ[e] = [(ϕe, δe)]. The intuition here is straightforward: ϕ needs to decorate ewith

its zero change; since e is discrete and cannot change, we use δe. However! In general, one cannot

use δ inside the ϕ translation and expect the result to be well-typed; ϕ and δ require different

typing contexts. To see this, let’s apply theorem 6.2 to singleton contexts:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:20 Michael Arntzenius and Neel Krishnaswami

dummy{
eq

A} = ⊥ dummyA×B (x,y) = (dummy x, dummy y)

dummy
1
() = () dummyA+B (ini x) = ini (dummy x)

dummy□A [x] = [dummy x] dummyA→B f = λx. dummy (f x)

Fig. 9. The function dummyA : A→ ∆A

Γ (context of e) ΦΓ (context of ϕe) □ΦΓ ,∆ΦΓ (context of δe)

x : A x : ΦA x :: ΦA,dx : ∆ΦA

x :: A x :: ΦA, dx :: ∆ΦA x :: ΦA, dx :: ∆ΦA

Luckily, althoughΦΓ and□ΦΓ ,∆ΦΓ differ on monotone variables, they agree on discrete ones. And

since e is discrete, it has no free monotone variables, justifying the use of δe in ϕ[e] = [(ϕe, δe)].

Next we come to (let [x] = e in f), whose ϕ and δ translations are very similar:

ϕ(let [x] = e in f) = let [(x, dx)] = ϕe in ϕf

δ(let [x] = e in f) = let [(x, dx)] = ϕe in δf

Since x is a discrete variable, both ϕf and δf need access to its zero change dx. Luckily, ϕe :

□(ΦA× ∆ΦA) provides it, so we simply unpack it. We don’t use δe in δf, but this is unsurprising

when you consider that its type is ∆Φ□A = 1.

6.5 Case Analysis, split, and dummy
The derivative of case-analysis, δ(case e of (ini xi � fi)i), is complex. Suppose ϕe evaluates to

ini x and its change δe evaluates to inj dx. Since δe is a change to ϕe, the change structure on sums

tells us that i = j! (This is because sums are ordered disjointly; the value x can increase, but the

tag ini must remain the same.) So the desired change δ(case e of . . .) is given by δfi in a context

supplying a discrete base point x (the value x) and the change dx. To bind x discretely, we need to

use [ϕe] : □(ΦA+ΦB); to pattern-match on this, we need split to distribute the □.
This handles the first two cases, (ini [x], ini dx � δfi)i. Since we know the tags on ϕe and δe

agree, these are the only possible cases. However, to appease our type-checker we must handle the

impossible case that i ̸= j. This case is dead code: it needs to typecheck, but is otherwise irrelevant.

It suffices to generate a dummy change dx : ∆ΦAi from our base point x :: ΦAi. We do this using

a simple function dummyA : A→ ∆A (figure 9).

We also need dummy in the definition of ϕ(split e). In effect split : □(A + B) → □A + □B.
Observe that

Φ(□(A+ B)) = □((ΦA+ΦB)× (∆ΦA+ ∆ΦB))

Φ(□A+□B) = □(ΦA× ∆ΦA) +□(ΦB× ∆ΦB)

So while ϕe yields a boxed pair of tagged values, [(ini x, inj dx)], we need ϕ(split e) to yield a

tagged boxed pair, ini [(x,dx)]. Again we use dummy to handle the impossible case i ̸= j.

Finally, observe that δ(split e) has type ∆Φ(□A+□B) = ∆Φ□A+ ∆Φ□B = 1+ 1. All it must

do is return (ini ()) with a tag that matches ϕ(split e) and ϕe; case-analysing ϕe suffices.

6.6 Semilattices and Comprehensions
The translation ϕ(e ∨ f) = ϕe ∨ ϕf is as simple as it seems. However, δ(e ∨ f) = δe ∨ δf is mildly

clever. Restricting to sets, suppose that dx changes x into x ′ and dy changes y to y ′. In particular,

suppose these changes are precise: that dx = x ′ \ x and dy = y ′ \ y. Then the precise change from

x ∪ y into x ′ ∪ y ′ is:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:21

(x ′ ∪ y ′) \ (x ∪ y) = (x ′ \ x \ y) ∪ (y ′ \ y \ x) = (dx \ y) ∪ (dy \ x)

This suggests letting δ(e ∪ f) = (δe \ ϕf) ∪ (δf \ ϕe). This is a valid derivative, but it involves

recomputing ϕe and ϕf, and our goal is to avoid recomputation. So instead, we overapproximate
the derivative: δe ∪ δf might contain some unnecessary elements, but we expect it to be cheaper

to include these than to recompute ϕe and ϕf. This overapproximation agrees with seminaïve

evaluation in Datalog: Datalog implicitly unions the results of different rules for the same predicate

(e.g. those for path in §4), and the seminaïve translations of these rules do not include negated

premises to compute a more precise difference.

Now let’s consider for (x ∈ e) f. Its ϕ-translation is straightforward, with one hitch: because

x ::
eq

A is a discrete variable, the inner loop ϕf needs access to its zero change dx :: ∆
eq

A. Conveniently,

at eqtypes (although not in general), the dummy function computes zero changes:

Lemma 6.3. If x :
eq

A then dummy x ::
eq

A x⇝ x.

For clarity, we write 0 rather than dummy when we use it to produce zero changes; we only call it

dummy in dead code.

Finally, we come to δ(for (x ∈ e) f), the computational heart of the seminaïve transformation,

as for is what enables embedding relational algebra (the right-hand-sides of Datalog clauses) into

Datafun. Here there are two things to consider, corresponding to the two for-clauses generated
by δ(for (x ∈ e) f). First, if the set ϕe we’re looping over gains new elements x ∈ δe, we need

to compute ϕf over these new elements. Second, if the inner loop ϕf changes, we need to add

in its changes δf for every element, new or old, in the looped-over set, ϕe ∨ δe. Just as in the

ϕ-translation, we use 0/dummy to calculate zero changes to set elements.

6.7 Leftovers
The ϕ rules we haven’t yet discussed simply distribute ϕ over subexpressions. The remaining

δ rules mostly do the same, with a few exceptions. In the case of δ({ei}i) = δ(e = f) = ⊥, the
sub-expressions are discrete and cannot change, so we produce a zero change ⊥. This is also the

case for δ(empty? e) = empty? ϕe, but as with δ(split e), the zero change here is at type 1+ 1, so

to get the tag right we use ϕe.

7 PROVING THE SEMINAÏVE TRANSFORMATION CORRECT
We have given two program transformations: ϕe, which optimizes e by computing fixed points

seminaïvely; and δe, which finds the change in ϕe under a change in its free variables. To state the

correctness of ϕ and δ, we need to show that ϕe preserves the meaning of e and that δe correctly

updates ϕe with respect to changes in its variable bindings. Since our transformations modify the

types of higher-order expressions to include the extra information needed for seminaïve evaluation,

we cannot directly prove that the semantics is preserved. Instead, we formalize the relationship

between e, ϕe, and δe using a logical relation, and use this relation to prove an adequacy theorem
saying that the semantics is preserved for closed, first-order programs.

So, inductively on types A, letting a,b ∈ JAK, x,y ∈ JΦAK, and dx ∈ J∆ΦAK, we define a five
place relation dx ::A x a � y b, meaning roughly “x,y speed up a,b respectively, and dx changes

x into y”. The full definition is in figure 10.

At product, sum, and function types this is essentially a more elaborate version of the change

structures given in §4.2. At set types, changes are still a set of values added to the initial value,

but we additionally insist that the “slow” a,b and “speedy” x,y are equal. This is because we have

engineered the definitions of Φ and ϕ to preserve behavior on equality types. Finally, since □A
represents values which cannot change, dx is an uninformative empty tuple and the original and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:22 Michael Arntzenius and Neel Krishnaswami

() ::1 ()  () � ()  () ⇐⇒ ⊤

d⃗x ::A1×A2
x⃗  a⃗ � y⃗  b⃗ ⇐⇒ (∀i) dxi ::Ai

xi  ai � yi  bi

ini dx ::A1+A2
inj x  ink a � inl y  inm b ⇐⇒ i = j = k = l = m ∧ dx ::Ai

x  a � y  b

df ::A→B fϕ  f � gϕ  g ⇐⇒ (∀dx ::A x  a � y  b)

df x dx ::B fϕ x  f a � gϕ y  gϕ b

dx ::{
eq

A} x  a � y  b ⇐⇒ (x,y, x ∪ dx) = (a,b,y)

() ::□A (x,dx)  a � (y,dy)  b ⇐⇒ (a, x,dx) = (b,y,dy) ∧ dx ::A x  a � y  b

Fig. 10. Definition of the logical relation

updated values are identical. However, the “speedy” values are now pairs of a value and its zero

change. This ensures that at a boxed function type, we will always have a derivative (a zero change)

available.

The logical relation is defined on simple values, and so before we can state the fundamental

theorem, we have to extend it to contexts Γ and substitutions, letting ρ, ρ ′ ∈ JΓK, γ,γ ′ ∈ JΦΓK, and
dγ ∈ J∆ΦΓK:

dγ ::Γ γ  ρ � γ ′  ρ ′ ⇐⇒ (∀x : A ∈ Γ) dγdx ::A γx  ρx � γ ′x  ρ ′x

∧ (∀x :: A ∈ Γ) () ::□A (γdx ,γx)  ρx � (γ ′dx ,γ
′
x)  ρ ′x

With that in place, we can state the fundamental theorem, showing thatϕ and δ generate expressions

which satisfy this logical relation:

Theorem 7.1 (fundamental property). If Γ ⊢ e : A and dγ ::Γ γ  ρ � γ ′  ρ ′ then

JδeK (γ,dγ) ::A JϕeK γ  JeK ρ � JϕeK γ ′  JeK ρ ′

This theorem follows by a structural induction on typing derivations as usual, but a number of

lemmas need to be proved in order to establish the fundamental theorem.

By and large, these lemmas generalize or build on results stated earlier in this paper regarding the

simpler change structures from §4.2. For example, we build on lemmas 6.1 and 6.3 to characterize

the logical relation at equality types
eq

A and the behavior of dummy:

Lemma 7.2 (equality changes). If dx ::
eq

A x  a � y  b then x = a and y = b.

Lemma 7.3 (dummy is zero at eqtypes). If x ∈ J
eq

AK then dummy x ::
eq

A x  x � x  x.

Lemma 7.2 tells us that at equality types, the sped-up version of a value is the value itself. This

is used later to prove our adequacy theorem. Lemma 7.3 is an analogue of lemma 6.3, showing

that dummy function computes zero changes at equality types. This is used in the proof of the

fundamental theorem for for-loops, in whose ϕ and δ translations 0 is implemented by dummy.
Next, we generalize lemma 4.1 to characterize changes at semilattice type:

Lemma 7.4 (semilattice changes). At any semilattice type L, we have ∆L = L, and moreover
dx ::L x  a � y  b iff x = a and y = b = x ∨L dx

This follows by induction on semilattice types L, and from lemma 7.2 (noting that every semilattice

type is an equality type). We require this lemma in the proofs of the fundamental theorem in all

the cases involving semilattice types – namely ⊥, ∨, for-loops, and fix.
Since typing rules that involve discreteness (such as the□ rules) manipulate the context, we need

some lemmas regarding these manipulations. First, we show that all valid changes for a context

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:23

with only discrete variables send substitutions to themselves, recalling that ⌈Γ⌉ contains only the

discrete variables from Γ .

Lemma 7.5 (discrete contexts don’t change). If () ::⌈Γ⌉ γ  ρ � γ ′  ρ ′ then γ = γ ′ and
ρ = ρ ′.

We use this lemma in combination with the next, which says that any valid context change gives

rise to a valid change on a stripped context:

Lemma 7.6 (context stripping). If dγ ::Γ γ  ρ � γ ′  ρ ′ then

() ::⌈Γ⌉ stripΦΓ (γ)  stripΓ (ρ) � stripΦΓ (γ
′)  stripΓ (ρ

′)

where stripΓ = ⟨πx⟩x::A∈Γ keeps only the discrete variables from a substitution.

Jointly, these two lemmas ensure that a valid change to any context is an identity on the discrete

part. We use these in all the cases of the fundamental theorem involving discrete expressions –

equality e1 = e2, set literals {ei}i, emptiness tests empty? e, and box introduction [e].

Once the fundamental theorem has been established, we can specialize it to closed terms and

equality types, Then, the equality changes lemma implies adequacy – that first-order closed

programs compute the same result when ϕ-translated:

Theorem 7.7 (adequacy). If ε ⊢ e :
eq

A then JeK = JϕeK.

8 APPLYING THE SEMINAÏVE TRANSFORMATION TO TRANSITIVE CLOSURE
Let’s try applying the seminaïve transform to a simple Datafun program: the transitive closure

function trans from §3.1:

trans [e] = fix p is e ∪ (e • p)
s • t = for ((x, y1) ∈ s) for ((y2, z) ∈ t) when (y1 = y2) {(x, z)}

In the process we’ll discover that besides ϕ itself we need a few simple optimisations to actually

speed up our program: most importantly, we need to propagate ⊥ expressions.

In our experience, performing ϕ and δ by hand is easiest when you work inside-out. At the core

of transitive closure is a relation composition, (e • p), and at the core of relation composition is a

when-expression. Let’s take a look at its ϕ and δ translations:

ϕ(when (y1 = y2) {(x, z)}) = ϕ(for (() ∈ y1 = y2) {(x, z)}) desugar when
= for (() ∈ y1 = y2) ϕ{(x, z)} apply ϕ, omitting an unused let
= when (y1 = y2) {(x, z)} resugar

Frequently, as in this case, ϕ does nothing interesting. For brevity we’ll skip such no-op translations.

δ(when (y1 = y2) {(x, z)})

= δ(for (() ∈ y1 = y2) {(x, z)}) desugar when
= for (() ∈ δ(y1 = y2)) ϕ{(x, z)}

apply ϕ, omitting unused lets
∪ for (() ∈ ϕ(y1 = y2) ∪ δ(y1 = y2)) δ{(x, z)}

= for (() ∈ ⊥) {(x, z)} ∪ for (() ∈ ϕ(y1 = y2) ∪ ⊥) ⊥ apply ϕ(y1 = y2) and δ{(x, z)}
= ⊥ propagate ⊥

The core insight here is that neither y1 = y2 nor {(x, z)} can change. Propagating this information

– for example, rewriting (for (...) ⊥) to ⊥ – can simplify derivatives and eliminate expensive

for-loops.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:24 Michael Arntzenius and Neel Krishnaswami

Now let’s pull out and examine for ((y2, z) ∈ t) when (y1 = y2) {(x, z)}. The ϕ translation is

again a no-op.

δ(for ((y2, z) ∈ t) when (y1 = y2) {(x, z)})

= for ((y2, z) ∈ dt) ϕ(when (y1 = y2) {(x, z)}) apply δ, omitting some unused lets
∪ for ((y2, z) ∈ t ∪ dt) δ(when (y1 = y2) {(x, z)})

= for ((y2, z) ∈ dt) when (y1 = y2) {(x, z)} applying prior work, propagating ⊥

Tackling the outermost for loop:

δ(for ((x, y1) ∈ s) for ((y2, z) ∈ t) when (y1 = y2) {(x, z)})

= for ((x, y1) ∈ ds) ϕ(for ((y2, z) ∈ t) when (y1 = y2) {(x, z)}) definition of δ(for . . . )
∪ for ((x, y1) ∈ s ∪ ds) δ(for ((y2, z) ∈ t) when (y1 = y2) {(x, z)})

= for ((x, y1) ∈ ds) for ((y2, z) ∈ t) when (y1 = y2) {(x, z)} applying prior work

∪ for ((x, y1) ∈ s ∪ ds) for ((y2, z) ∈ dt) when (y1 = y2) {(x, z)}

= (ds • t) ∪ ((s ∪ ds) • dt) rewriting in terms of •

This, then, is the derivative δ(s • t) of relation composition.With a bit of rewriting, this is equivalent

to (ds • t) ∪ (s • dt) ∪ (ds • dt), which is perhaps the derivative a human would give.

Let’s use this to figure out ϕ(trans [e]). Working inside out, we start with the derivative of the

loop body, δ(e ∪ (e • p)):

δ(e ∪ (e • p)) = δe ∪ δ(e • p)
= δe ∪ (δe • p) ∪ ((e ∪ δe) • dp)
= ⊥ ∪ (⊥ • p) ∪ ((e ∪ ⊥) • dp) δe is a zero change; insert ⊥
= e • dp propagate ⊥

The penultimate step requires a new optimization. By definition δe = de, but since e is discrete we
know de is a zero change, so we may safely replace it by ⊥.

Putting everything together, we have:

ϕ(fix p is e ∪ (e • p) = ϕ(fix [λp. e ∪ (e • p)]) desugaring

= semifix ϕ[λp. e ∪ (e • p)]

= semifix
[
(ϕ(λp. e ∪ (e • p)), δ(λp. e ∪ (e • p)))

]
= semifix

[
((λp. e ∪ (e • p)), (λ[p]. λdp. e • dp))

]
previous work

Examining the recurrence produced by this use of semifix, we recover the seminaïve transitive

closure algorithm from §4.1:

x0 = ⊥ xi+1 = xi ∪ dxi

dx0 = (λp. e ∪ (e • p)) ⊥ = e dxi+1 = (λ[p]. λdx. e • dp) [xi] dxi = e • dxi

9 IMPLEMENTATION AND OPTIMIZATION
We have implemented a compiler from a fragment of Datafun (omitting sum types) to Haskell,

available at https://github.com/rntz/datafun/tree/popl20/v4-fastfix. We use Haskell’s Data.Set to

represent Datafun sets, and typeclasses to implement Datafun’s notions of equality and semilattice

types. We do no query planning and implement no join algorithms; relational joins, written in

Datafun as nested for-loops, are compiled into nested loops. Consequently our performance is

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.

https://github.com/rntz/datafun/tree/popl20/v4-fastfix


Seminaïve Evaluation for a Higher-Order Functional Language 22:25

120 160 200 240 280 320

0

60

120

Number of nodes

T
i
m
e
(
s
e
c
o
n
d
s
)

transitive closure on a linear graph

naïve

seminaïve raw

seminaïve optimized

120 160 200 240 280 320

0

60

120

Number of characters

matching /a*/ against an

naïve

seminaïve raw

seminaïve optimized

graph size / string length

120 140 160 180 200 220 240 260 280 300 320

regex search, naïve 1.683 2.786 4.549 7.324 11.357 17.304 25.788 45.634 65.174 90.934 123.023

transitive closure, naïve 1.446 2.599 4.356 6.933 10.840 16.803 27.159 44.136 64.953 88.154 119.604

regex search, seminaïve raw 1.687 2.454 4.134 6.573 9.854 14.611 21.661 39.171 56.345 79.687 108.236

transitive closure, seminaïve raw 1.187 2.163 4.154 5.835 8.982 13.350 21.069 36.512 53.197 75.209 101.933

regex search, seminaïve optimized 0.028 0.037 0.054 0.075 0.102 0.133 0.171 0.220 0.269 0.331 0.401

transitive closure, seminaïve optimized 0.026 0.037 0.056 0.072 0.099 0.130 0.170 0.204 0.259 0.312 0.377

Fig. 11. Naïve vs seminaïve evaluation of transitive closure and regex matching in Datafun

worse than any real Datalog engine. However, we do implement the ϕ translation, along with the

following optimizations:

(1) Propagating ⊥; for example, rewriting (e ∨ ⊥)⇝ e and (for (x ∈ e) ⊥)⇝ ⊥.
(2) Inserting ⊥ in place of semilattice-valued zero changes (for example, changes to discrete

variables δx). This makes ⊥-propagation more effective.

(3) Recognising complex zero change expressions; for example, δe [ϕf] δf is a zero change if δe

and δf are. This allows more zero changes to be replaced by ⊥, especially in higher-order

code such as our regular expression example.

To test whether the ϕ translation can produce the asymptotic performance gains we claim, we

benchmark two example Datafun programs:

(1) Finding the transitive closure of a linear graph using the trans function from §3.1. We chose

this example because, as discussed in §4, it has a well understood asymptotic speed-up under

seminaïve evaluation. This means that if we’ve failed to capture the essence of seminaïve

evaluation, it should be highly visible.

(2) Finding all matches of the regular expression /a*/ in the string an, using the regex combina-

tors from §3.2. Finding all matches for /a*/ amounts to finding the reflexive, transitive closure

of the matches of /a/, and on an these form a linear graph. Thus it is a close computational

analogue of our first example, written in a higher-order style. We chose this example to

test whether our extension of seminaïve evaluation properly handles Datafun’s distinctive

feature: higher-order programming.

We compiled each program in three distinct ways: naïve, without the ϕ transform (but with ⊥-
propagation); seminaïve raw, with the ϕ transform but without further optimization; and seminaïve
optimized, with the ϕ transform followed by all three optimizations listed previously. The results

are shown in figure 11. The measured times are substantially similar for transitive closure and

regex search across all three optimization levels, suggesting that higher-order code does not pose

a particular problem for our optimizations. However, compared to naïve, the ϕ transform alone

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



22:26 Michael Arntzenius and Neel Krishnaswami

(seminaïve raw) provides only a small speed-up, roughly 10–20%. Only when followed by other

optimizations (seminaïve optimized ) does it provide the expected asymptotic speedup.
9

We believe this is because both ϕ(for (x ∈ e) ...) and δ(for (x ∈ e) ...) produce loops that iterate

over at least every x ∈ ϕe. Consulting our logical relation at set type, we see that in this case e

and ϕe will be identical, and so the number of iterations never shrinks. However, as demonstrated

in §8, if the body can be simplified to ⊥, then we can eliminate the loop entirely by rewriting

(for (x ∈ e) ⊥) to ⊥, which allows for asymptotic improvement.

As in Datalog, we do not expect seminaïve evaluation to be useful on all recursive programs.

Under naïve evaluation, each iteration towards a fixed point is more expensive than the last, so as

a rule of thumb, seminaïve evaluation is more valuable the more iterations required.

10 DISCUSSION AND RELATED WORK
Nested fixed points. The typing rule for fix e requires e : □(

fix

L →
fix

L). The ϕ translation takes

advantage of this □, decorating expressions of type □A with their zero changes. However, it also

prevents an otherwise valid idiom: in a nested fixed-point expression fix x is . . . (fix y is e) . . ., the
inner fixed point body e cannot use the monotone variable x! This restriction is not present in

Arntzenius and Krishnaswami [2016]; its addition brings Datafun closer to Datalog, whose syntax

cannot express this sort of nested fixed point.

We suspect it is possible to lift this restriction without losing seminaïve evaluation, by deco-

rating all expressions and variables (not just discrete ones) with zero changes. However, this also

invalidates δ(fix f) = ⊥: now that f can change, so can fix f. Luckily, there is a simple and correct

solution: δ(fix f) = fix [δf [fix f]] [Arntzenius 2017]. However, to compute this new fixed point

seminaïvely, we need a second derivative: the zero change to δf [fix f]. Indeed, for a program with

fixed points nested n deep, we need nth
derivatives. We leave this to future work.

Self-maintainability. In the incremental λ-calculus, a function f is self-maintainable if its derivative
f ′ depends only upon the change dx to the argument and not upon the base point x. This is

a crucial property, because it lets us compute the change in the function’s result without re-

computing the original input, which might be expensive. So it’s reasonable to ask whether lack of

self-maintainability is ever an issue in Datafun. We suspect (without proof) that due to the limited

way seminaïve evaluation uses incremental computation, it usually isn’t. For example, consider a

variant definition of transitive closure as the fixed point of f = λpath. edge ∪ (path • path). This is
not self-maintainable; its derivative is:

f ′ path dpath = (path • dpath) ∨ (dpath • path) ∨ (dpath • dpath)

However, this is not a problem when computing its fixed point seminaïvely, because both path and

dpath are available from the previous iteration. Thus non-self-maintainable fixed points do not

appear to be forced into doing extensive recomputation.

Related work. The incremental lambda calculus was introduced by Cai et al. [2014], as a static

program transformation which associated a type of changes to each base type, along with operations
to update a value based on a change. Then, a program transformation on the simply-typed lambda

9
We also tried following the ϕ transform with only⊥-propagation, dropping the other two optimisations. This produced

essentially the same results as seminaïve optimized, so we have omitted it from figure 11. It is unclear whether inserting⊥
or recognizing complex zero changes are ever necessary to achieve an asymptotic speed-up.

It’s also worth addressing the asymptotic performance of seminaïve optimized. On regex search, for example, doubling

the string length from 160 to 320 produces a slowdown factor of
.401

.054
≈ 7.42! However, since there are quadratically many

matches and we find all of them, the best possible runtime isO(n2). Moreover, our nested-loop joins are roughly a factor of

n slower than optimal, so we expect O(n3) behavior or worse. This back-of-the-envelope estimation predicts a slowdown

of 2
3 = 8, reasonably close to 7.42. Phew!

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.



Seminaïve Evaluation for a Higher-Order Functional Language 22:27

calculus with base types and functions was defined, which rewrote lambda terms into incremental

functions which propagated changes as needed to reduce recomputation. The fundamental idea of

the incremental function type taking two arguments (a base point and a change) is one we have

built on, though we have extended the transformation to support many more types like sums, sets,

modalities, and fixed points. Subsequently, Giarrusso et al. [2019] extended this work to support

the untyped lambda calculus, additionally also extending the incremental transform to support

additional caching. In this work, the overall correctness of change propagation was proven using a

step-indexed logical relation, which defined which changes were valid in a fashion very similar to

our own.

The motivating example of this line of work was to optimize bulk collection operations. However,

all of the intuitions were phrased in terms of calculus – a change structure can be thought of

as a space paired with its tangent space, a zero change on functions is a derivative, and so on.

However, the idea of a derivative as a linear approximation is taken most seriously in the work

on the differential lambda calculus [Ehrhard and Regnier 2003]. These calculi have the beautiful

property that the syntactic linearity in the lambda calculus corresponds to the semantic notion of

linear transformation.

Unfortunately, the intuition of a derivative has its limits. A function’s derivative is unique, a prop-
erty which models of differential lambda calculi have gone to considerable length to enforce [Blute

et al. 2006]. This is problematic from the point of view of seminaïve evaluation, since we make use

of the freedom to overapproximate. In §6.6, we followed common practice from Datalog and took

the derivative δ(e ∨ f) to be δ(e) ∨ δ(f), which may overapproximate the change to e ∨ f. This

spares us from having to do certain recomputations to construct set differences; it is not clear to

what extent seminaïve evaluation’s practical utility depends on this approximation.

Alvarez-Picallo et al. [2019] offer an alternative formulation of change structures, by requiring

changes to form a monoid, and representing the change itself with a monoid action. They use

change actions to prove the correctness of seminaïve evaluation for Datalog, and express the hope

that it could apply to Datafun. Unfortunately, it does not seem to – the natural notion of function

change in their setting is pointwise, which does not seem to lead to the derivatives we want in the

examples we considered.

Overall, there seems to be a lot of freedom in the design space for incremental calculi, and the

tradeoffs different choices are making remain unclear. Much further investigation is warranted!

REFERENCES
Foto Afrati and Christos H. Papadimitriou. 1993. The Parallel Complexity of Simple Logic Programs. J. ACM 40, 4 (Sep

1993), 891–916. https://doi.org/10.1145/153724.153752

Natasha Alechina, MichaelMendler, Valeria de Paiva, and Eike Ritter. 2001. Categorical and Kripke Semantics for Constructive

S4 Modal Logic. In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL,
Paris, France, September 10-13, 2001, Proceedings (Lecture Notes in Computer Science), Laurent Fribourg (Ed.), Vol. 2142.
Springer, 292–307. https://doi.org/10.1007/3-540-44802-0_21

Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and C.-H. Luke Ong. 2019. Fixing Incremental Computation

- Derivatives of Fixpoints, and the Recursive Semantics of Datalog. In Programming Languages and Systems - 28th European
Symposium on Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture Notes in Computer Science), Luís Caires (Ed.),
Vol. 11423. Springer, 525–552. https://doi.org/10.1007/978-3-030-17184-1_19

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency Analysis in Bloom: a CALM

and Collected Approach. In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings. 249–260.

Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and

Geoffrey Washburn. 2015. Design and Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 1371–1382.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.

https://doi.org/10.1145/153724.153752
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/978-3-030-17184-1_19


22:28 Michael Arntzenius and Neel Krishnaswami

Michael Arntzenius. 2017. Static differentiation ofmonotone fixed points. http://www.rntz.net/files/fixderiv.pdf. Unpublished

note.

Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Functional Datalog. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming (ICFP 2016). ACM, New York, NY, USA, 214–227.

https://doi.org/10.1145/2951913.2951948

François Bancilhon. 1986. Naive Evaluation of Recursively Defined Relations. In On Knowledge Base Management Systems:
Integrating Artificial Intelligence and Database Technologies, Michael L Brodie and John Mylopoulos (Eds.). Springer-Verlag

New York, Inc., New York, NY, USA, 165–178. http://dl.acm.org/citation.cfm?id=8789.8804

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1986. Magic Sets and Other Strange Ways to

Implement Logic Programs (Extended Abstract). In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems (PODS ’86). ACM, New York, NY, USA, 1–15. https://doi.org/10.1145/6012.15399

Moritz Y. Becker, Cédric Fournet, andAndrewD. Gordon. 2010. SecPAL: Design and semantics of a decentralized authorization

language. Journal of Computer Security 18, 4 (2010), 619–665.

R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. 2006. Differential categories. Mathematical Structures in Computer Science 16,
6 (2006), 1049–1083. https://doi.org/10.1017/S0960129506005676

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. 2014. A Theory of Changes for Higher-order

Languages: Incrementalizing λ-calculi by Static Differentiation. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA, 145–155. https://doi.org/10.

1145/2594291.2594304

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted to Know About Datalog (And Never Dared

to Ask). IEEE Trans. Knowl. Data Eng. 1, 1 (1989), 146–166.
Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and Expressive Power of Logic

Programming. Comput. Surveys 33, 3 (Sep 2001), 374–425. https://doi.org/10.1145/502807.502810

Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjörn Ekman, Neil Ongkingco, and

Julian Tibble. 2007. .QL: Object-Oriented Queries Made Easy. In Generative and Transformational Techniques in Software
Engineering II, International Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers. 78–133.

Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-calculus. Theoretical Computer Science 309, 1 (2003), 1 –
41. https://doi.org/10.1016/S0304-3975(03)00392-X

George Fourtounis and Yannis Smaragdakis. 2019. Deep Static Modeling of invokedynamic. In ECOOP (LIPIcs), Vol. 109.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Paolo G. Giarrusso, Yann Régis-Gianas, and Philipp Schuster. 2019. Incremental \lambda -Calculus in Cache-Transfer Style

- Static Memoization by Program Transformation. In ESOP (Lecture Notes in Computer Science), Vol. 11423. Springer,
553–580.

Rich Hickey, Stuart Halloway, and Justin Gehtland. 2012. Datomic: The fully transactional, cloud-ready, distributed database.

http://www.datomic.com. Accessed: 5 July 2019.

Martin Hofmann. 1997. A Mixed Modal/Linear Lambda Calculus with Applications to Bellantoni-Cook Safe Recursion. In

CSL (Lecture Notes in Computer Science), Vol. 1414. Springer, 275–294.
Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis of Program Analyzers. In CAV (2) (Lecture

Notes in Computer Science), Vol. 9780. Springer, 422–430.
Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to Flix: A Declarative Language for Fixed Points

on Lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 194–208. https:

//doi.org/10.1145/2908080.2908096

Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science 11, 4 (2001), 511–540. https://doi.org/10.1017/S0960129501003322

Max Schäfer and Oege de Moor. 2010. Type inference for datalog with complex type hierarchies. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010. 145–156.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Now Foundations and Trends. https://ieeexplore.ieee.

org/document/8186778

Philip Wadler. 1992. Comprehending Monads. Mathematical Structures in Computer Science 2, 4 (1992), 461–493.
John Whaley. 2007. Context-Sensitive Pointer Analysis using Binary Decision Diagrams. Ph.D. Dissertation. Stanford

University.

John Whaley and Monica S. Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision

diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
2004, Washington, DC, USA, June 9-11, 2004, William Pugh and Craig Chambers (Eds.). ACM, 131–144. https://doi.org/10.

1145/996841.996859

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 22. Publication date: January 2020.

http://www.rntz.net/files/fixderiv.pdf
https://doi.org/10.1145/2951913.2951948
http://dl.acm.org/citation.cfm?id=8789.8804
https://doi.org/10.1145/6012.15399
https://doi.org/10.1017/S0960129506005676
https://doi.org/10.1145/2594291.2594304
https://doi.org/10.1145/2594291.2594304
https://doi.org/10.1145/502807.502810
https://doi.org/10.1016/S0304-3975(03)00392-X
http://www.datomic.com
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1017/S0960129501003322
https://ieeexplore.ieee.org/document/8186778
https://ieeexplore.ieee.org/document/8186778
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/996841.996859

	Abstract
	1 Introduction
	2 Datalog and Datafun, Informally
	2.1 Datalog
	2.2 Datafun

	3 Datafun by Example
	3.1 Set Operations
	3.2 Regular Expression Combinators
	3.3 Regular Expression Combinators, Take 2

	4 From Seminaïve Evaluation to the Incremental λ-Calculus
	4.1 Seminaïve Evaluation as Incremental Computation
	4.2 Change Structures
	4.3 Zero Changes, Derivatives, and Faster Fixed Points

	5 Types and Semantics
	5.1 Semantics
	5.2 Metatheory

	6 The φ and δ Transformations
	6.1 Typing φ and δ
	6.2 Fixed Points
	6.3 Variables, λ, and Application
	6.4 The Discreteness Comonad, box
	6.5 Case Analysis, split, and dummy
	6.6 Semilattices and Comprehensions
	6.7 Leftovers

	7 Proving the Seminaïve Transformation Correct
	8 Applying the Seminaïve Transformation to Transitive Closure
	9 Implementation and Optimization
	10 Discussion and Related Work
	References

