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ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS

ANONYMOUS AUTHOR(S)

Architecture specifications notionally define the fundamental interface between hardware and software:

the envelope of allowed behaviour for processor implementations, and the basic assumptions for software

development and verification. But in practice, they are typically prose and pseudocode documents, not rigorous

or executable artifacts, leaving software and verification on shaky ground.

In this paper, we present rigorous semantic models for the sequential behaviour of large parts of the

mainstream ARMv8-A, RISC-V, and MIPS architectures, and the research CHERI-MIPS architecture, that are

complete enough to boot operating systems, variously Linux, FreeBSD, or seL4. Our ARMv8-A models are

automatically translated from authoritative ARM-internal definitions, and (in one variant) tested against the

ARM Architecture Validation Suite.

We do this using a custom language for ISA semantics, Sail, with a lightweight dependent type system, that

supports automatic generation of emulator code in C and OCaml, and automatic generation of proof-assistant

definitions for Isabelle, HOL4, and (currently only for MIPS) Coq. We use the former for validation, and to

assess specification coverage. To demonstrate the usability of the latter, we prove (in Isabelle) correctness

of a purely functional characterisation of ARMv8-A address translation. We moreover integrate the RISC-V

model into the RMEM tool for (user-mode) relaxed-memory concurrency exploration. We prove (on paper)

the soundness of the core Sail type system.

We thereby take a big step towards making the architectural abstraction actually well-defined, establishing

foundations for verification and reasoning.

1 INTRODUCTION
The architectural abstraction is a fundamental interface in computing: the architecture specification

for each family of processors, ARMv8-A, AMD64, IBM POWER, Intel 64, MIPS, RISC-V, SPARC, etc.,

notionally defines the envelope of allowed behaviour for all hardware processor implementations

of that family, providing the basic assumptions for portable software development. This decouples

hardware and software implementation, as architectures are relatively stable over time, while

processor implementations evolve rapidly.

In practice, industry architecture specifications have traditionally been prose documents, with

decoding tables and (at best) pseudocode descriptions of instruction behaviour, while vendors have

maintained internal “golden” reference models, often as large and highly confidential C++ codebases.

The mainstream architectures have accumulated enormous complexity: 6300 and 4700 pages for

recent ARMv8-A and Intel 64/IA-32 specification documents [ARM 2017; Intel Corporation 2017].

They comprise two main parts: the Instruction Set Architecture (ISA), describing the behaviour of

each instruction in isolation, and cross-cutting aspects such as the concurrency model and interrupt

behaviour. Understanding all these details is essential for achieving correct and robust behaviour of

computer systems, but prose and pseudocode are simply not up to the task of precisely specifying

them. These specification documents are moreover not executable as test oracles —they do not allow

one to compute the set of all architecturally allowed behaviour of hardware tests, or to test software

above the entire architectural envelope rather than just some specific implementation— and they

do not support automatic test generation or test-suite specification coverage measurement.

Meanwhile, academic researchers in programming languages, semantics, analysis, and verifica-

tion have increasingly aimed at mechanised reasoning about correctness down to the machine level,

e.g. in the CakeML [Fox et al. 2017; Kumar et al. 2014; Tan et al. 2016], CerCo [Amadio et al. 2013],

CompCert [Leroy 2009; Leroy et al. 2017], and CompCertTSO [Ševčík et al. 2013] verified compilers;

the seL4 [Fox and Myreen 2010; Klein et al. 2014] and Hyper-V [Leinenbach and Santen 2009]

verified hypervisors; the Verified Software Toolchain [Appel et al. 2017]; CertiKOS verified OS [Gu
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et al. 2016]; Verasco verified static analysis [Jourdan et al. 2015]; RockSalt software fault isolation

system [Morrisett et al. 2012]; Bedrock [Chlipala 2013]; PROSPER [Baumann et al. 2016; Guanciale

et al. 2016]; machine-code program logics [Jensen et al. 2013; Kennedy et al. 2013; Myreen 2009];

and relaxed-memory semantics [Alglave et al. 2010, 2014; Flur et al. 2017; Gray et al. 2015; Pulte

et al. 2018; Sarkar et al. 2011; Sewell et al. 2010]. Binary analysis tools such as Angr [Shoshitaishvili

et al. 2016], BAP [Brumley et al. 2011], TSL [Lim and Reps 2013], and Valgrind [Nethercote and

Seward 2007] also need architectural models, although typically less formally expressed.

On what semantics should such work be based? Recoiling, reasonably enough, from the scale of

the full 6000+ page vendor architecture documents, and from the poorly specified complexities of

the concurrency models and privileged “system-mode” aspects of the architectures (virtual memory,

exceptions, interrupts, security domain transitions, etc.), many groups have hand-written formal

models of modest ISA fragments. These typically cover just enough of the instruction set, and in

just enough detail, for their purpose: usually only some aspects of the sequential behaviour of parts

of the non-privileged “user-mode” ISA, and just for one proof assistant (Coq, HOL4, or Isabelle).

Some are validated against actual hardware behaviour, to varying degrees, but none are tied to a

vendor reference model. The multiplicity of models, each produced by a different group for their

specific purpose, is inefficient and makes it hard to amortise any validation investment. A few go

beyond user-mode fragments, including seL4, PROSPER, and the ACL2 X86isa model [Goel et al.

2017]; we return to these, and other related work, in §9. Emulators such as QEMU [qem 2017] and

gem5 [gem 2017] effectively also develop models, often rather complete, but these are optimised

for performance and hard to use for other purposes.

In this paper, we present rigorous semantic models for the sequential behaviour of large parts

of the mainstream ARMv8-A, RISC-V, and MIPS architectures, and the research CHERI-MIPS

architecture, that are complete enough to boot various operating systems: Linux above the ARMv8-

A model, FreeBSD above MIPS and CHERI-MIPS, and seL4 and Linux above RISC-V. These are

rather large semantics by usual academic standards: approximately 23 000 lines for ARMv8-A, and

a few thousand for each of the others.

ARMv8-A is the ARM application-processor architecture, specifying the processors, designed

by ARM and by their architecture partners, and produced by many vendors, that are ubiquitous

in mobile devices. We build on a shift within ARM over recent years to specify ISA behaviour in

an ARM-internal machine-processed language, ASL. We work with two versions: a recent public

release of large parts of this for ARMv8.3 [Reid 2016, 2017; Reid et al. 2016], and a currently non-

public more complete version thereof; our ARM models are automatically translated from these.

We moreover validate the second by testing against the ARM-internal Architecture Validation

Suite. These are thus substantially more complete, authoritative, and well-validated than previous

models. For RISC-V and CHERI-MIPS, the situation is rather different: these are much simpler

architectures, and they are in flux, currently being designed. Our models for these (and our MIPS

model underlying CHERI-MIPS) are handwritten, feeding back into the architecture design process,

and validated in part by comparison with previous simulator and formal models.

To be generally useful, our models should simultaneously:

(1) be accessible to practising engineers who use existing vendor pseudocode descriptions;

(2) be automatically translatable into executable sequential emulator code, with reasonable

performance, to support validation of the models and software development above them;

(3) be automatically translatable into idiomatic theorem prover definitions, to support formal

mechanised reasoning about the architectures and about code above them — ideally for all

the major provers, to enable use by each prover community;

(4) provide bidirectional mappings between assembly syntax and binary opcodes;
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Fig. 1. Sail ISA semantics and (in yellow) the generated prover and emulator versions. The grey parts are
previous concurrency and ISA models, user-mode only and not yet fully integrated into current Sail

(5) provide the fine-grained execution information needed to integrate ISA semantics with the

(user-mode) architectural relaxed-memory concurrency semantics previously developed;

(6) be well-validated, to give confidence that they do capture the architectural intent and soundly

describe hardware behaviour; and

(7) be expressed in a well-engineered and robust infrastructure.

We achieve all this by designing a custom language for ISA semantics, Sail (§3), together with

automatic translations as shown in Fig. 1: from the ARM-internal ASL language into Sail, from Sail

to C and OCaml emulator code (§5), from Sail to Isabelle/HOL, HOL4, and Coq theorem-prover

definitions (§4), and (currently only for RISC-V) from Sail to a representation used by the RMEM

concurrency exploration tool [Pulte et al. 2018]. A common infrastructure for all our architecture

models saves much duplication of effort.

Reconciling the above disparate goals is a delicate language-design problem. Sail has to be

expressive enough to support each model idiomatically, especially the most-demanding ARMv8-A

case, where the ASL source has accumulated features over time, including exceptions and complex

(but not fully checked) dependent types for bitvector lengths. But to make Sail translatable into all

the provers, especially the non-dependently-typed Isabelle/HOL and HOL4, and to fast C and OCaml

code for emulation, it should be as inexpressive as possible, as we have to translate away any features
that are not in the target language. We resolve this with a carefully designed lightweight dependent

type system for checking vector bounds and integer ranges, inspired by Liquid types [Rondon

et al. 2008], but which can be formalised in a simple, syntax-directed and single-pass style using a

bidirectional approach [Dunfield and Krishnaswami 2013]. All constraints can be shown to exist

within a decidable fragment, and are resolved using the Z3 SMT solver [De Moura and Bjørner 2008].

Our translations to Isabelle/HOL, HOL4, C, and OCaml rely on monomorphising these dependent

types where they are not target-expressible, allowing us to use the existing well-developed machine

word libraries for the first two, and efficient representations for the last two.

Otherwise, Sail is essentially a first-order functional/imperative language with a simple effect

system, but with abstract register and memory accesses, for sequential and concurrent interpre-

tations. Higher-order functions are unnecessary for our ISA models and would complicate the



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

translations to efficient C emulator code. Sail builds on earlier work [Flur et al. 2016; Gray et al.

2015] but has been substantially redesigned, especially the type system; the earlier work handled

only modest user-mode ISA fragments for concurrency models, without the translation from ASL,

prover definitions, fast emulation, or rather complete models we report on. We increase confidence

in the Sail type system with a (paper) formalisation and soundness proof of a core MiniSail (§6).

We validate our models with the OS boots and ARM Architectural Validation Suite mentioned

above, and with other test suites, using the executable OCaml and C versions produced by Sail (§7).

This also lets us assess the specification coverage of such OS boot executions and test suites. We

also validate the RISC-V model behaviour on concurrency litmus tests using RMEM.

We evaluate the usability of our generated theorem prover definitions by conducting an example

proof in Isabelle/HOL about one of the most complex parts of the ARMv8-A specification, the

translation from virtual to physical memory addresses. We prove correctness of a simple purely

functional characterisation of address translation, under suitable preconditions (§8).

Considered as a specification or programming language, Sail is unusual in that it aims to support

just a handful of specific programs — these and other architecture definitions of mainstream and

research architectures — but the importance of those makes it necessary to do so well, and the

specification scale and multiple demands listed above make that challenging.

Sail, alongwith our public ARMv8-A, RISC-V,MIPS, and CHERI-MIPSmodels, is publicly available

under an open-source licence (the non-anonymous supplementary material has a github link), and

with an OPAM package for Sail. The version of our ARMv8-A model derived from a non-public

ARM source is currently not available, but we hope that will be possible in due course, and some

of the legal infrastructure needed is in place. The anonymous supplementary material contains

anonymised versions of the public models, the generated theorem-prover versions of them, our

Isabelle proof scripts for §8, and our MiniSail definitions and paper proofs for §6.

Caveats and limitations. Our models cover considerably more than most formal ISA semantics of

previous work, but they are still far from complete definitions of these architectures. For ARMv8-A,

we translate only the AArch64 64-bit part of the architecture, not the AArch32 32-bit instructions.

Including these should need only modest additional work. Our Coq generation has so far only been

exercised for MIPS. Our assembly syntax support has only been exercised for RISC-V; for ARM it

should be possible to generate this from ARM-supplied metadata, but that has not yet been done.

More substantially, we focus here on sequential behaviour. For RISC-V, our ISAmodel is integrated

with the corresponding user-mode relaxed memory model, but we have not yet done that for ARM,

and the relaxed-memory semantics of systems features (virtual memory, interrupts, etc.) is an open

problem. Previous versions of Sail included models for modest fragments of the user-mode ISAs of

IBM POWER [Gray et al. 2015], ARMv8 [Flur et al. 2016], and RISC-V and x86 (both previously

unpublished); sufficient only for litmus tests and some user-mode concurrent algorithms. Those

IBM POWER and x86 models have not yet been ported to the revised Sail of this paper, and that

ARM model will be superseded by the one we present here when the above integration is done.

2 MODELS
The current status of our models and the generated definitions is summarised below.

Architecture Source Size (LOS) Boots Generates

ARMv8.3-A (public) ARM ASL 23 000 C, OCaml Isabelle, HOL4

ARMv8.3-A (private) ARM ASL 30 000 Linux C, OCaml

RISC-V hand-written 5 000 seL4, Linux OCaml Isabelle, HOL4 RMEM

MIPS hand-written 2 000 FreeBSD C, OCaml Isabelle, HOL4, Coq

CHERI-MIPS hand-written 4 000 FreeBSD C, OCaml Isabelle, HOL4
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union clause ast = LOAD : (bits(12), regbits, regbits)

mapping clause encdec = LOAD(imm, rs1, rd, is_unsigned, size, false, false)

<-> imm @ rs1 @ bool_bits(is_unsigned) @ size_bits(size) @ rd @ 0b0000011

function clause execute(LOAD(imm, rs1, rd, is_unsigned, width, aq, rl)) =

let vaddr : xlenbits = X(rs1) + EXTS(imm) in

if check_misaligned(vaddr, width)

then { handle_mem_exception(vaddr, E_Load_Addr_Align); false }

else match translateAddr(vaddr, Read, Data) {

TR_Failure(e) => { handle_mem_exception(vaddr, e); false },

TR_Address(addr) =>

match width {

BYTE => process_load(rd, vaddr, mem_read(addr, 1, aq, rl, false), is_unsigned),

HALF => process_load(rd, vaddr, mem_read(addr, 2, aq, rl, false), is_unsigned),

WORD => process_load(rd, vaddr, mem_read(addr, 4, aq, rl, false), is_unsigned),

DOUBLE => process_load(rd, vaddr, mem_read(addr, 8, aq, rl, false), is_unsigned)

}

}

Fig. 2. RISC-V load instruction in Sail

2.1 RISC-V
Most ISAs have been proprietary. In contrast, RISC-V is an open ISA, currently under development by

a broad industrial and academic community, coordinated by the RISC-V Foundation. It is subdivided

into a core and many separable features. We have handwritten a RISC-V ISA model based on recent

versions of the prose RISC-V specifications [RIS 2017]. Our current model implements the 64-bit

(RV64) version of the ISA: the rv64imac dialect (integer, multiply-divide, atomic, and compressed

instructions), with user, machine, and supervisor modes, and the Sv39 address translation mode

(3-level page tables covering 512GiB of virtual address space).

The model is partitioned into separate files for user-space definitions, machine- and supervisor-

mode parts, the physical memory interface, virtual memory and address translation, instruction

definitions, and the fetch-execute-interrupt loop. The main omissions are floating-point, PMP

(Physical Memory Protection), modularisation for the “unified” 32-bit/64-bit model, and factoring

to build machine/user and machine-only variants.

For example, Fig. 2 shows the Sail code defining the RISC-V LOAD instructions: a constructor of

the ast Sail type, a clause of the encdec function (mapping between a 32-bit instruction word and

the corresponding ast value containing the opcode fields), and a clause of the execute function

expressing its dynamic semantics. The body of that is imperative code: X(...) refers to the RISC-V

general-purpose registers, mem_read is a function that performs a read of physical memory, and

process_load handles potential access exceptions. The boolean return value of the execute clause

indicates whether the instruction retired successfully, and is used to update the minstret CSR

register. The aq and rl flags are used to indicate the ordering constraints of the load to the memory

model. Modulo minor syntactic variations, this should be readable by anyone familiar with typical

industry ISA pseudocode descriptions.

To get a sense of what is required to make an ISA semantics complete enough to boot an OS,

rather than a user-mode fragment, we describe some of what we have had to do. This model is

parameterisable over various platform implementation choices that the ISA allows. In particular, it

supports (i) trapping as well as non-trapping modes of accesses to misaligned data addresses, and
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function clause execute (CIncOffsetImmediate(cd, cb, imm)) = {

checkCP2usable();

let cb_val = readCapReg(cb);

let imm64 : bits(64) = sign_extend(imm);

if register_inaccessible(cd) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, cd)

else if register_inaccessible(cb) then

raise_c2_exception(CapEx_AccessSystemRegsViolation, cb)

else if (cb_val.tag) & (cb_val.sealed) then

raise_c2_exception(CapEx_SealViolation, cb)

else

let (success, newCap) = incCapOffset(cb_val, imm64) in

if success then

writeCapReg(cd, newCap)

else

writeCapReg(cd, int_to_cap(to_bits(64, getCapBase(cb_val)) + imm64))

}

Fig. 3. CHERI-MIPS capability increment-offset instruction in Sail

(ii) write updates as well as traps when a dirty-bit needs to be updated in a page-table entry during

address translation. RISC-V also specifies various control and status registers (CSRs) as having

bitfields with platform-defined behaviour on reads and writes, which allows a platform to choose

legal values of a CSR bitfield, and how it handles writes to those fields. Our model supports these

choices through user-specifiable legaliser functions that intercept read and write accesses to those

CSRs that require such behaviour.

We have also endeavoured to keep other platform aspects explicitly separate from the Sail model.

For example, the reservation state for Load-Reserved/Store-Conditional instructions is kept as part

of the platform state, since the reservation state and progress guarantees provided are inherently

platform-specific. This separation also simplifies reasoning about the RISC-V memory model.

The physical memorymap for a platform is specified using the extern facility of the Sail language,

which enables the ISA model itself to remain agnostic of the actual map, but allows the contexts

of the various backend renderings of the model to provide these definitions. For example, the

generated OCaml executable model is linked against modules that define the locations of valid

physical memory regions, valid memory-mapped I/O regions, and the location of the timer and

terminal devices. These modules also place the corresponding Device-Tree information generated

from these values at the expected location in physical memory when the OCaml ISA emulator is

initialised. The ISA model itself checks any physical address used for a data or instruction access

against these before allowing the access or generating the appropriate memory fault exception.

Although not strictly part of the ISA specification, we have also implemented some aspects of

simple memory-mapped devices in Sail (timer, terminal, device interrupt routing) as an exploration

of the use of the Sail language to describe other components of a complete platform model.

Our development of the Sail model has led us to contribute improvements in the RISC-V prose

specifications, e.g. in the description of page-faults expected during page-table walks, and fixes to

bugs in the corresponding address translation code of the widely-used Spike reference simulator. It

has also pointed out ambiguities in the specification of interrupt delegation, and cases of missing

reservation yields in Spike.
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2.2 MIPS and CHERI-MIPS
CHERI-MIPS [Watson et al. 2017, 2015; Woodruff et al. 2014] is an experimental research archi-

tecture that extends 64-bit MIPS with support for fine-grained memory protection and secure

compartmentalisation. It provides hardware capabilities, compressed 128-bit values including a

base virtual address, an offset, a bound, and permissions; and object capabilities that link code and

data pointers. Additional tag memory, cleared by any non-capability writes, records whether each

capability-sized and aligned unit of memory holds a valid capability. This and other features makes

them unforgeable by software: each capability must be derived from a more-permissive one. One

can either use capabilities in place of all pointers (“pure capability” code) or selectively (“hybrid”).

CHERI has used executable formal models of the architecture as a central design tool since 2014,

largely in L3 [Fox and Myreen 2010], coupled with traditional prose and non-formal pseudocode

in the ISA specification document. Executability of the formal model (at some 100s of KIPS) has

been vital, both to provide a reference to test hardware implementations against, and as a platform

for software development that is automatically in step with the frequent architecture changes.

Isabelle definitions generated from L3 have been used for proofs about compressed capabilities and

of security properties of the architecture as a whole. This has all provided invaluable experience

for the design of Sail, and our Sail CHERI-MIPS model is now mature enough to replace both the

earlier L3 model and the non-formal pseudocode; the latter using Sail-generated LaTeX.

Our MIPS Sail model is just over 2000 non-blank, non-comment lines of Sail code, including

sufficient privileged architecture features to boot FreeBSD, but excluding floating point and other

optional extensions. The CHERI-MIPS model extends the MIPS model with approximately 2000

more lines and includes support for either the original 256-bit capabilities or a compressed 128-bit

format, with the instructions themselves being expressed in a manner that is agnostic to the exact

capability format. This is important because CHERI is under continuous development and the

capability format has changed many times. For example, Fig. 3 shows the Sail semantics for the

CHERI CIncOffsetImmediate instruction, to increment the offset of a capability; it makes the various

security checks (and the priority among them) explicit.

2.3 ARMv8-A
This is our most substantial example by far: ARMv8-A is a modern industry architecture, underlying

almost all mobile devices. It was announced in 2011 and has been enhanced through to ARMv8.2-A

(2016), ARMv8.3-A (2016), and ARMv8.4-A (2018). It includes both 64-bit (AArch64) and 32-bit

(AArch32) instruction sets. ARM also define related microcontroller (-M) and real-time (-R) variants.

The ARM architecture specifications have long used a custom pseudocode metalanguage, ASL, to

express instruction behaviour. ASL has evolved over time. It was initially purely a paper language,

an important part of the manuals but not mechanically parsed, let alone type-checked or executed.

Reid led an effort within ARM to improve this, so that “machine-readable, executable specifications

can be automatically generated from the same materials used to generate ARM’s conventional

architecture documentation” [Reid 2016, 2017; Reid et al. 2016]. This executable version of ASL is

now used within ARM in documentation, hardware validation, and architecture design, alongside

other modelling approaches.

In 2017 ARM released a machine-readable version of large parts of the ARMv8.2-A ASL, later

updated to 8.3 and 8.4. This describes almost all of the sequential aspects of the architecture:

instructions, floating point, page table walks, taking interrupts, taking synchronous exceptions

such as page faults, taking asynchronous exceptions such as bus faults, user mode, system mode,

hypervisor mode, secure mode, and debug mode. This provides a remarkable opportunity to rebase

research on formal verification, analysis, and testing for ARM above largely complete (for sequential
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code) models based on an authoritative vendor-supplied semantics. However, that public release

does not include tools for executing or reasoning about the ASL code, and it is not in a form usable

for mechanised proof or integration with relaxed-memory concurrency semantics.

Accordingly, we have co-designed Sail and an asl_to_sail translation tool that can translate

these ASL specifications into Sail (itself open-source), and thence into multiple theorem-prover and

emulator-code targets. We have done this both for that public 8.3 release and for an ARM-internal

version of 8.3 that additionally includes semantics of the many hundreds of system registers, some

of which are needed during an OS boot; we are exploring the possibilities for also releasing this.

The total size of the public v8.3 specification when translated into Sail is about 23 000 lines,

including 1479 functions, and 245 registers. This includes all 64-bit instructions, which are expressed

as 344 function clauses in Sail, each of which may correspond to multiple assembly mnemonics. So

far we have focused on the AArch64 64-bit part of the architecture, and have not translated the

(optional) AArch32 32-bit mode. For the non-public v8.3 specification, which additionally includes

a full description of all the system registers, we opted to not translate the vector instructions (they

add considerably to the size of the specification), as we were primarily interested in the system-level

parts of that specification. However, even without vector instructions it contains approximately

30 000 lines of specification with 1279 functions and 501 registers, implementing a total of 390

instructions. In contrast to the simple RISC-V instruction shown in Fig. 2, a single ARM instruction

may involve hundreds of auxiliary functions, e.g. for checks of the current exception level and

suchlike. While booting Linux, we found that each instruction calls on average around 800 other

auxiliary functions, and around 500 primitive operations.

In addition to translating the base specification, we have also added additional hand-written

specification for timers, memory-mapped I/O (e.g. for a UART), and interrupt handling based on

ARM’s generic interrupt controller (GIC), which is sufficient to boot Linux using the model.

Our asl_to_sail tool is capable of translating the majority of ASL functions directly into Sail.

Both Sail and ASL are first-order imperative languages, and most constructs can be translated in a

straightforward manner. The main difficulty come from translating between the two type systems.

Sail and ASL both have dependent types, but constructing well-typed Sail from ASL is sometimes

non-trivial due to how the type systems differ. Sail’s dependent type system and how it is translated

from ASL is described more fully in §3. Roughly speaking our tool uses a mix of Sail’s own type

inference rules and some syntax-based heuristics to synthesise Sail types from ASL types. Some

manual patching is needed, so asl_to_sail allows for interactive patching during translation.

These patches are remembered and can be applied again automatically when the tool is re-run; We

had to significantly re-engineer parts of the Sail language to support the kind of incremental parsing

and type-checking required by asl_to_sail. Translating the non-public spec required 525 lines

out of approximately 30 000 to be changed in some way, which represents patches to 143 top-level

definitions out of 2158 that were translated. Most of these only require small tweaks and additional

type annotations, with the median number of changed lines per patched top-level definition being

3. For the public specification, we also had to manually remove the mutual recursion from the

translation table walk, as the ASL code is several hundred lines long and Isabelle has performance

issues with such large mutually recursive functions. Fortunately, the maximum recursion depth in

this case is only two.

Fig. 4 shows a sample instruction family automatically translated from ASL into Sail, the ADD /

SUB (immediate) instructions. This illustrates several of the difficulties of working with the vendor

definition: computed bitvector sizes and the use of imperatively updated local variables, initially

undefined. AddWithCarry is an auxiliary pure function, defined in the ASL and also translated to sail,

that does the required arithmetic over the mathematical integers and also computes the resulting

flag values. Register accesses are indirected via other auxiliary functions, e.g. aset_X, which do
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val aarch64_integer_arithmetic_addsub_immediate : forall ('datasize : Int).

(int, atom('datasize), bits('datasize), int, bool, bool) -> unit

effect {escape, rreg, undef, wreg}

function aarch64_integer_arithmetic_addsub_immediate ('d,datasize,imm,'n,setflags,sub_op)

= { assert(constraint('datasize in {8, 16, 32, 64, 128}), "datasize constraint");

result : bits('datasize) = undefined;

operand1 : bits('datasize) = if n == 31 then aget_SP() else aget_X(n);

operand2 : bits('datasize) = imm;

nzcv : bits(4) = undefined;

carry_in : bits(1) = undefined;

if sub_op then {

operand2 = ~(operand2);

carry_in = 0b1

} else carry_in = 0b0;

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then (PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv else ();

if d == 31 & ~(setflags) then aset_SP(result) else aset_X(d, result)

}

Fig. 4. ARMv8-A ADD / SUB (immediate) Instruction in Sail, as translated from ASL

zero-extension if needed, select the appropriate register for the current exception level, check

permissions, etc.

3 THE SAIL LANGUAGE
Sail as a language has to be sufficiently expressive to idiomatically express real ISAs, but no more

expressive than necessary, otherwise translations to idiomatic prover definitions and fast emulator

code would be more challenging, and readability by practising engineers would suffer.

The language is statically checked, with type inference and checking both to detect specification

errors and to aid the generation of target code. We also have an interactive Sail interpreter, which

can be used for debugging via breakpoints and interactively stepping through the evaluation of

functions, and also provides a useful reference semantics for the language.

Following existing industry ISA pseudocode (both paper languages and ASL), Sail is essentially a

first-order imperative language. Avoiding higher-order functions simplifies translation into C for

efficient emulator code, simplifies proof about the ISA definitions, and avoids readability difficulties

for the many engineers who are not familiar with functional languages. Instruction semantics are

intrinsically effectful: instructions read and write registers and memory. In the sequential world,

one might imagine that each instruction atomically updates a global machine state. In a realistic

relaxed-memory concurrent setting, that is no longer the case, as one has to deal with finer-grain

interactions between instructions. Perhaps surprisingly, though, at least for user-mode code it

has so far been possible to treat the intra-instruction semantics sequentially, albeit with care to

sequence specific register and memory operations correctly (and excluding ARM load-pair) [Flur

et al. 2017; Gray et al. 2015; Pulte et al. 2018; Sarkar et al. 2011]. Whether this will remain true for

systems-mode concurrency is unknown, but for the moment Sail does not require or support any

intra-instruction concurrency.

Instructions refer to a global collection of the architected registers. Some ISA specifications,

including ARMv8-A, also rely on imperatively updatable local variables, but general references are

not used. Sail supports passing references to registers, which is occasionally useful when trying
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to stick closely to the appearance of some industry ISAs, but we usually find it preferable to pass

numeric (integer-range) register indices instead.

Most computation is over bitvectors, integer ranges, or integers, but user-defined enumerations

are also needed, as are labelled records and (non-recursive) sums. Sail includes a built-in polymorphic

list type. We also support user-defined type-polymorphic functions, and sum types can also be type-

polymorphic, so one can implement a standard ‘option’ datatype as in most functional languages,

but there is relatively little use of type polymorphism in our ISA models. However, we do need

dependent types for bitvector lengths, integer range sizes, and operations on these, as such types

can have arbitrary numeric constraints attached to them. This is the most technically challenging

aspect of the language design, discussed in the next subsection. Operations on subvectors, and

registers and record types with named sub-vector-bitfields, are also needed, including complex

l-values for updates to specific parts of complex register state.

Architecture specifications commonly leave some bits loosely specified in specific contexts, or

have broader loosely specified behaviour. Sail supports the former (undefined), with our backends

providing various semantics as needed for different purposes. ARM also contains unpredictable

behaviour, but this is modelled directly in the specification using ordinary functions that specify

how the unpredictable behaviour should be handled.

The language includes both loops and recursion, as these are needed in the examples, e.g. in

the ARMv8-A address translation code and the BigEndianReverse function, that reverses the bytes

of a 16/32/64/128-bit bitvector. The Sail for each instruction should be terminating, but Sail itself

does not check that; instead it is left to the theorem-prover targets. The termination arguments are

usually very simple, e.g. the address translation table walk has at most 4 iterations, and manual

termination proofs are rarely needed because most loops are inherently terminating foreach loops.

Translating ASL into Sail led us to make changes to the language, to better express the ARMv8-A

ASL code. For example, we originally did not plan to include exceptions in Sail, but ASL includes

exceptions and exception handling, and uses them to implement some key aspects of the architecture,

so we needed to add these to Sail to generate clean definitions (we translate these away in the

various targets, as appropriate). We also had to add support for arbitrary-precision rational numbers,

as ASL specifies several floating point operations by converting the binary floating point values to

rationals, performing arbitrary-precision rational arithmetic, and then rounding back to floating

point values with the appropriate precision. ASL also assumes that various components in the

model are configurable at run-time, so we had to add support for special ‘configuration registers’

to be set by command line flags when the model is used. Such command line flags had to be made

compatible with ARM’s tools, so we could run our model with the ARM-internal AVS test-suite.

The language includes pattern matching, used especially for bitvector-concatenation pattern

matching in decode functions, and for tuples.

We support various convenience features tuned for ISA specification. They are typically large

and flat, so Sail supports splitting functions and type definitions into multiple clauses which can be

scattered throughout the file, interleaved with other definitions Fig. 2 shows those clauses for a

load instruction from RISC-V formalised in Sail, grouped together in the way they would be in an

ISA manual; they could be followed by the clauses for another instruction, perhaps in a different

file. Some ISAs, including ARMv8-A, rely on syntactic sugar to define pseudoregisters, that can be

used either within lvalues or expressions, with semantics defined by user-defined functions; we

support this with an overloading mechanism, much as ASL and L3 do. We include mechanisms for

specifying bi-directional mappings between binary opcodes and assembly syntax, discussed below.

Good concrete syntax design is important for accessibility. Initially we aimed to exactly match

the various industry ISA pseudocode languages, idiosyncratic as they are, and to use a C-like syntax

for types and type annotations (e.g. int x = ...). Experience showed that neither were sustainable,
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and so we redesigned the Sail syntax more cleanly, but in a way that should still be readable by a

broad community of hardware, software, and tool developers, who may be unfamiliar with modern

functional languages.

Targeting multiple provers —currently Isabelle/HOL, HOL4, and Coq— forces us to be careful that

all language features can be translated into usable theorem prover definitions for each, taking their

different logical foundations into account. In general, we want to make use of our type system to

generate nicer prover definitions where possible. As detailed in §4, we are currently able to generate

Coq that preserves most of the liquid types from the Sail specification, whereas for Isabelle and

HOL4 we perform a specialised partial monomorphisation that retains useful typing information

where possible and tries to avoid duplicating code (as a naive full-monomorphisation pass would

do).

Any proof based upon an ISA specification is dependent on the specification being correct, but

an executable ISA specification is a large and complex program in its own right, as is Sail itself.

We prioritise clarity over emulation performance when expressing the specifications, and we have

devoted considerable effort to testing Sail, e.g. to ensure that the libraries of bitvector operations do

the same in all targets. We only provide arbitrary precision integers, integer ranges, and rationals

in Sail—this costs us some performance but guarantees that the specification cannot contain the

kind of integer overflow and underflow issues that commonly affect programs written in languages

like C. We have implemented Sail so that every intermediate rewriting step from the original Sail

source to our theorem prover definitions can be type-checked.

3.1 Dependent types for bitvector lengths and integer ranges
Bitvector indexing andmanipulation is ubiquitous throughout ISA specifications, including bitvector

concatenation and taking sub-bitvector slices, as is indexing into arrays, e.g. indexing from a 5-bit

opcode field into an array of 32 general-purpose registers. In a simple idealised ISA the sizes of

these bitvectors might all be constants, but in more realistic cases, especially in ARMv8-A, they are

very often parameterised or computed. For example, ‘size’ arguments in functions are often small

powers of two, like 16, 32, or 64, and instructions often come in variants for multiple sizes. It is also

extremely common for such arguments to be linked to others and the return type in dependent

ways, such as one argument giving the length of another argument in bytes. Expressions used for

indexing often involve nontrivial integer ranges. Sometimes the context determines a bitvector

size, e.g. for the result type of a zero- or sign-extend operation.

ASL necessarily supports all this, but it does not statically check bitvector accesses. In contrast,

Sail is designed to statically check these things wherever we can, without needing the specification

to fall back onto bit-list representations. We do so for many reasons: to statically catch many

specification errors; to enable specifications to more directly express their intent; to make it

possible to generate theorem prover definitions in which the correctness of bitvector accesses and

suchlike are guaranteed by the prover type system, rather than needing additional proof; and to

simplify the generation of fast emulator code, using fixed-width bitvectors instead of bit-lists.

Accordingly, Sail supports a form of lightweight dependent types for statically checking vector

bounds and integer ranges. To ensure our type system remains as lightweight and engineer-friendly

as possible, we use a system inspired by Rondon et al’s liquid types [Rondon et al. 2008], which

uses the Z3 SMT solver to automatically solve vector bounds and integer range constraints. In our

experience, liquid types are ideal for an ISA description language, as they easily express the often

relatively simple numeric constraints that occur when bounds-checking vector accesses or the

use of integer ranges, without imposing much burden on the user. Often we only need types with

appropriate constraints to be declared as a top-level type signatures, and all the types within the



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

function can be automatically inferred, and all types and constraints in the function body can be

automatically inferred and discharged.

As mentioned, it is extremely common to want to represent an integer value that is either 16, 32,

or 64. This would be represented in Rondon et al’s notation as: {i : int |i = 16 ∨ i = 32 ∨ i = 64}

Our syntax differs slightly from this for historical reasons (previous versions of Sail had a type-

system more similar to dependent ML [Xi 2007]), and in Sail such a type would be specified as

{'i. 'i in {16, 32 64}, int('i)}. This allows us to write commonly used types succinctly, e.g.

bits(8 * 'n) for a bitvector of n bytes, but such types can be converted into liquid types notation

such as {m : bits |lenдth(m) = 8 ∗ n} in this case, as described in §6.

Rondon et al’s inference algorithm operates in steps: First they perform Hindley-Milner type

inference, before using syntax directed liquid typing rules to generate liquid constraints, which are

solved in a final third step. In Sail we use a syntax-directed bidirectional type-system (along the

lines of [Dunfield and Krishnaswami 2013]), so we can generate and solve the constraints as part of

the ordinary typing-rules in a single type checking pass. While this means we do not have full type

inference, in practice we mostly require top-level type declarations, with types within function

bodies being automatically inferred.

val LSL_C : forall ('N : Int), 'N >= 1.

(bits('N), int) -> (bits('N), bits(1)) effect {escape}

function LSL_C (x, shift) = {

assert(shift > 0);

let shift as 'S : range(1, 'N) = if shift > 'N then 'N else shift;

let extended_x : bits('S + 'N) = x @ Zeros(shift);

let result : bits('N) = slice(extended_x, 0, 'N);

let carry_out : bits(1) = [extended_x['N]];

return (result, carry_out)

}

Fig. 5. Fully annotated left shift with carry function

Fig. 5 shows an example of how dependent types for bitvectors are often used in Sail. The assert

guarantees that the shift variable is greater than zero, and the next let statement forces shift to be

in the (inclusive) range 1 to 'N, which the type checker will prove based on the assert and the type

constraint 'N >= 1. In order to refer to the value of shift in type signatures later in this function,

we give it a name as a type variable 'S. The next line extends the input bitvector x with a number

of zeros equal to shift, resulting in a bitvector of length 'S + 'N. Then we take a slice from index 0

of length 'N. Here the type system will prove that 'N <= 'S + 'N to show that the slice does not

violate the bounds of extended_x. The next line accesses the carry bit. Here the type system relies

on the fact that 'S must be greater than 0 to establish that 'N is a valid index into extended_x. In

practice most of the manual type signatures in Fig. 5 are not required, and the body of the function

can be written as below.

let shift : range(1, 'N) = if shift > 'N then 'N else shift;

let extended_x = x @ Zeros(shift);

let result = slice(extended_x, 0, 'N);

let carry_out = [extended_x['N]];

Translating from ASL to Sail: Dependent Types As mentioned in §2.3 there are differences

in the type systems between ASL and Sail that make generating type-correct Sail a significantly
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bits(N) FPThree(bit sign)

assert N IN {16,32,64};

constant integer E =

(if N == 16 then 5

elsif N == 32 then 8

else 11);

constant integer F = N - (E + 1);

exp = '1':Zeros(E-1);

frac = '1':Zeros(F-1);

return sign : exp : frac;

Fig. 6. Original FPThree ASL

val FPThree : forall 'N. bits(1) -> bits('N)

effect {escape}

function FPThree sign = {

assert('N == 16 | 'N == 32 | 'N == 64);

let E : {|5, 8, 11|} =

if 'N == 16 then 5

else if 'N == 32 then 8

else 11;

let F = 'N - (E + 1);

let exp = 0b1 @ Zeros(E - 1);

let frac = 0b1 @ Zeros(F - 1);

sign @ exp @ frac }

Fig. 7. FPThree function translated into Sail

harder task than just generating syntactically-correct Sail. ASL’s typesystem is a compromise

between expressivity and the ability to detect errors: like Sail, it provides dependent types for

bitvector sizes and statically checks every function call but, unlike Sail, uses of bitvector indexing

are not statically checked. During the conversion of ARM’s pseudocode to ASL, ARM’s architects

requested a more flexible type system, and some form of flow-sensitive typing was considered but

then rejected because it was not clear how to get good error messages, how to explain to users

what could and could not be typechecked and how to avoid path explosion. Automatic translation

of ASL to Sail is therefore not just practically useful to Sail users but also useful to ARM, since it

demonstrates that ASL could also adopt flow-typing and gain the benefits of more expressive types

and stronger checking. ARM’s internal ASL steering committee is currently exploring this option.

To illustrate the translation of these dependent types, consider the Sail function FPThree in Fig. 7

translated from the ASL in Fig. 6. It constructs the floating point value 3.0, as either a 16, 32, or 64-bit

vector. As can be seen, the length of both the exponent (E) and mantissa (F), are calculated based on

the length of the returned bitvector, given by the type variable 'N. Sail will check that the length

of sign @ exp @ frac is equivalent to 'N. In Fig. 7, the length of the exponent E has the integer set

type {|5,8,11|}. Currently only this type signature must be present for this function to type check,

while the other type signatures can be inferred automatically (in practice our translation tool will

add type signatures wherever it can, but we have omitted them here for brevity).

Unlike ASL, Sail has flow-sensitive typing, so the assert statement will guarantee to the type

checker that 'N is either 16, 32 or 64 in the body of the function. Typically in our hand-written Sail

models, one would put such a constraint on 'N in the type signature, as val FPThree : forall 'N in

{|16,32,64|}. bits(1)-> bits('N), rather than an assert statement, but in ASL such information

is often encoded in runtime assertions. Rather than trying to lift this information into the type

signatures, we have generally found that sticking closely with idioms found in ASL, and ensuring

that such idioms also work well in Sail (e.g. by adjusting our rules for flow-sensitive typing) has

been the best way to easily translate large amounts of ASL into Sail without a large amount of

manual effort. Despite this we do make some stylistic improvements when translating ASL code

where possible, such as turning some mutable variables in ASL into immutable let-bindings, e.g. exp

and frac in Fig. 6. We also have to add an escape effect to the function in Sail, as the assert could

fail and exit the function. Sail has a basic effect system that keeps track of whether functions

read and write registers, and how they interact with memory, as well as other effects such as the

aforementioned escape for non-local control flow.

Currently we have slightly relaxed Sail’s strict bounds checking behaviour for the translated ASL.

Sail is able to fully check 2695 bounds checking problems encountered in the ARM specification,
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enum rop = { RISCV_ADD, RISCV_SUB, ... }

union clause ast = RTYPE : (regbits, regbits, regbits, rop)

mapping rtype_mnem : rop <-> string = { RISCV_ADD <-> "add", RISCV_SUB <-> "sub", ... }

mapping clause assembly =

RTYPE(rs2, rs1, rd, op) <->

rtype_mnem(op) ^ spc() ^ reg_name(rd) ^ sep() ^ reg_name(rs1) ^ sep() ^ reg_name(rs2)

Fig. 8. Parts of the Sail assembly syntax for RISC-V RTYPE binary operation instructions.

with 48 that are currently not automatically solvable. While we could resolve this by simply

adding assertions in the specification where these problems occur using asl_to_sail’s patching

mechanism, we instead plan to improve asl_to_sail’s ability to infer tight ranges on integer

variables, which should help in these cases and also improve code generation.

3.2 Mappings and string pattern-matching
So far we have described the aspects of Sail needed to specify the decoding of binary instructions

and their dynamic semantics. When working with an ISA specification, one often also needs the

ability to define the assembly language syntax, and the pretty printing and parsing (disassembly

and encoding/assembly) functions between it and binary instructions.

Sail mappings allow the definition of both sides of a bidirectional function at once, for exam-

ple a parser and pretty-printer. This is similar to existing work on bidirectional programming,

e.g. Boomerang [Bohannon et al. 2008], but much more lightweight. Mappings can be simply

defined as a set of pattern-matching clauses, where the right-hand-side of the pattern-match is

in itself a pattern, or as pairs of functions, allowing for more complex behaviour such as string

conversion to and from integers. The type system allows mappings to be called as if they were

functions, with the inferred result type determining in which direction the mapping runs. (This

gives rise to the restriction that the types on either side of a mapping must be different.) In the

implementation, mappings are expanded into two conventional pattern-matches. Mappings interact

usefully with string pattern-matching. We allow string concatenation to be used as an operator

in pattern-matches, and attempt a simple left-to-right exact matching (compiled into successively

nested guarded pattern-matches). To date, we have handwritten mappings for RISC-V, as in Fig. 8;

it should also be possible to generate mappings for ARMv8-A from ARM-supplied metadata.

4 GENERATION OF THEOREM PROVER DEFINITIONS
One of our main goals is to provide theorem prover models upon which verification projects that

need detailed ISA specifications can build. For this purpose, we implement automatic translations

from Sail code to definitions for different popular theorem provers; we target Isabelle/HOL, HOL4,

and Coq (we currently have complete Coq translation only for MIPS). Most of the translation

pipeline from Sail to those targets is shared, transforming features such as pattern guards and

scattered definitions into forms supported by the targets. Some parts of this pipeline are also shared

with generation of emulator code, in §5.

For Isabelle/HOL and HOL4, we first translate to Lem as an intermediate language, using Lem to

generate the prover definitions [Mulligan et al. 2014]. Since the RMEM concurrency models are

specified in Lem, this translation is also used for the integration of Sail ISAmodels into RMEM [Pulte

et al. 2018]. For Coq, we generate Coq definitions directly from Sail to make better use of Coq’s type

system, in particular to preserve dependent types for bitvector lengths, which are not supported by

Lem or the other provers. We describe how we deal with those dependent types for Isabelle/HOL

and HOL4 in §4.1. We explain further details of the translation, in particular the monadic treatment
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of effects, in §4.2. Our translations are generally intended to handle all of Sail, but there are areas

where we currently require additional restrictions, which are all compatible with our models. For

example, in monomorphisation we currently only support case splits on the types used in practice.

4.1 Bitvector Length Monomorphisation
As described above, Sail’s type system can track the sizes of bitvectors with a reasonably rich

suite of type-level arithmetic operations, backed by constraint solving. This is convenient for

expressing data-dependent bitvector sizes, such as the data size used in the instruction shown in

Fig. 4. However, Isabelle/HOL and HOL4 only permit very simple expressions at the type level;

essentially just constants and variables. To translate into these, we have added a bitvector library

to the intermediate Lem language, and perform a partial monomorphisation of models to fit them

into these less expressive type systems.

The approach is similar to one previously used by ARM during translation to Verilog for model

checking [Reid et al. 2016, §4], where additional case splits are added to ensure that all bitvector

sizes will be constant, and constant propagation reveals exactly what those sizes are. Our goals

are slightly different, however. We want to retain the original model structure as far as possible,

in particular avoiding the duplication of functions due to specialisation. Fortunately, Isabelle and

HOL4 support non-dependent size parametricity, representing sizes as type variables. For example,

in the ARMv8-A model a case split for the data size can sometimes be introduced in the decoder,

and the more complex execution function left parametric in the size.

The location of the case splits to be introduced is determined by an automated interprocedural

dependency analysis. Case splits on bitvector and enumeration variables are simple to introduce,

but for integer variables we consult the Sail typing to find the set of possible values. The constant

propagation is also mildly interprocedural so that trivial helper functions can be eliminated. When

a case split refines the type of an argument or a result, e.g., from bits('n) to bits(8), etc. by a case

split on 'n, we introduce a cast using a primitive zero-extension operation, which will change the

type but not the value.

To reduce the amount of code duplication we perform a transformation on type signatures before

monomorphisation. This lifts complex sizes out of types in function signatures, allowing them to

be treated as type parameters. For example, a simple memory loading function might have the

signature

val load : forall 'n, 'n >= 0. (bits(64), bits(8 * 'n)) -> bits(64)

suggesting that 8 * 'nmust be monomorphised in the body of load because it cannot be represented

in Lem’s type system. Instead, we rewrite it to the equivalent signature

val load : forall 'n 'm, 'n >= 0 & 'm = 8 * 'n. (bits(64), bits('m)) -> bits(64)

making the size a proper type parameter, which can be expressed in Lem.

For some combinations of variable-size bitvector operations it is preferable to rewrite them in

terms of shifting and masking on a suitably large fixed-size bitvector. For example, comparing two

slices of bitvectors v[x .. y] == w[x .. y] can be replaced by masking v and w and comparing,

without needing to monomorphise y-x. We have a small library of combined operations like this,

and a set of rewrites to use them.

4.2 Monadic Translation of Effects
The translation of imperative, effectful Sail code into monadic code for the generation of prover

definitions is largely standard, rewriting into a sequence of monadic and let-bindings similar to

A-normal form [Flanagan et al. 1993], but where the criterion is that arguments to functions must

be pure. For example, the effectful first operand of add_vec in Fig. 9 has been pulled out into a
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fun execute_LOAD :: "12 word=>5 word=>5 word=>bool=>word_width=>bool=>bool=>bool M" where

"execute_LOAD imm rs1 rd is_unsigned width aq rl = (

rX (regbits_to_regno rs1) >>= (λ w__0.

let (vaddr :: xlenbits) = add_vec w__0 ((EXTS 64 imm)) in

if check_misaligned vaddr width then

handle_mem_exception vaddr E_Load_Addr_Align >> return False

else

translateAddr vaddr Read Data >>= (λ w__1 :: TR_Result.

(case w__1 of

TR_Failure (e) => handle_mem_exception vaddr e >> return False

| TR_Address (addr) =>

(case width of

BYTE => mem_read addr 1 aq rl False >>= (λ w__2 :: 8 word MemoryOpResult.

process_load rd vaddr w__2 is_unsigned)

| HALF => mem_read addr 2 aq rl False >>= (λ w__4 :: 16 word MemoryOpResult.

process_load rd vaddr w__4 is_unsigned)

| WORD => ...

| DOUBLE => ...))))"

Fig. 9. RISC-V load instruction translated into Isabelle

monadic bind. Local mutable variable updates are translated to pure let-bindings, where local

blocks that update variables, e.g. loop bodies and the branches of if-expressions, are rewritten

to return the updated values so that they can be picked up by the surrounding context, while

respecting their scoping. This avoids generating and handling per-function local state spaces, and

the need for a polymorphic state that is difficult to support in the non-dependently typed backends.

Early return statements in functions are translated in terms of the Sail exception mechanism,

by throwing the return value and wrapping the function body in a try-catch-block, where early

returns and proper exceptions are distinguished using a sum type. The translation assumes a left-

to-right evaluation order of effectful function arguments. Boolean conjunction and disjunction are

special-cased, however, to give them a short-circuiting semantics. This is required for the ARMv8-A

specification, which includes expressions such as UsingAArch32()&& AArch32.ExecutingLSMInstr(),

where an assertion fails in the right-hand function if the left-hand function does not return true.

Our translation targets two monads with different purposes. The first is a state monad with

nondeterminism and exceptions. It is suitable for reasoning in a sequential setting, assuming that

effectful expressions are executed without interruptions and with exclusive access to the state.

Nondeterminism is needed for aspects that the architecture loosely specifies, and for features such

as load reserve/store conditional instructions that can succeed or fail. The second is a monad for a

concurrent semantics, where a standard state monad interpretation of the Sail code is insufficient.

In particular, in the relaxed memory models of ARMv8 and RISC-V, instructions observably execute

out-of-order, speculatively, and non-atomically, and so the semantics needs to expose the instruc-

tions’ effects at a finer granularity. For example, a store instruction waits until all program-order

preceding memory accesses have resolved their address before it can propagate, and so it can

observe intermediate states in the execution of those preceding instructions. To support integrating

Sail with these concurrency models, we use a free monad of an effect datatype. It is implemented

in terms of a monad type as below, parameterised by the return value type 'a, the register value

type 'r, and the exception type 'e (such a monad is often implemented using a generic functor

Free, e.g. in Haskell, but since this is not supported by the type system of Isabelle, we merged it

with the concrete effects into a single type).
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type monad 'r 'a 'e =

| Done of 'a

| Read_mem of read_kind * address * nat * (list mem_byte -> monad 'r 'a 'e)

| Write_ea of write_kind * address * nat * monad 'r 'a 'e

| Write_memv of list mem_byte * (bool -> monad 'r 'a 'e)

...

| Barrier of barrier_kind * monad 'r 'a 'e

| Read_reg of register_name * ('r -> monad 'r 'a 'e)

| Write_reg of register_name * 'r * monad 'r 'a 'e

| Undefined of (bool -> monad 'r 'a 'e)

| Fail of string (* Assertion failure with error message *)

| Exception of 'e (* Exception thrown *)

A value of this type is either Done a, representing a finished computation with a pure value

of type 'a, or an effect request: each of the other constructors represents an effect, typically to-

gether with some parameters specifying the particular request, and a continuation. For example,

Read_reg "PC" k is a request to the execution context to read the PC register and pass its value

into the continuation k. Another example is Undefined k, which requests a Boolean value from

the execution context, e.g. to make a nondeterministic choice or to resolve an undefined bit to

a concrete value. The definition of the monad leaves the meaning of these instruction effects

open —the monad’s bind operator simply “nests” the requests— and the monad instead delegates

handling the effects to an effect interpreter outside the instruction semantics definition. To support

the integration with a concurrency model that executes these instruction definitions out-of-order,

the monad type has effects for all concurrency-relevant events of the instruction’s execution: for

example, the Barrier effect announces memory barriers, register reads and writes are explicit

requests (Read_reg and Write_reg) to enable handling the fine-grained memory ordering resulting

from dataflow dependencies, and the writing of memory is split into the announcement of the

write address, Write_ea, and the writing of the value, Write_memv, so program-order succeeding

instructions can be informed about the address as early as it is known.

4.3 Target-specific Differences in the Translation
Most of the translation pipeline is shared between the different provers, e.g. the rewriting of

bitvector patterns to guarded patterns, and then the rewriting of those to a combination of if-

expressions and unguarded pattern matches using an algorithm similar to that of [Spector-Zabusky

et al. 2018, §3.4].
1
There are some differences, however, mainly due to the differences in the type

systems of the provers.

Isabelle The prover definitions generated from a Sail model should ideally be parametric in

the monad, but this is not supported by Isabelle’s type system. Hence, when generating Isabelle

definitions, we use the prompt monad, and provide a lifting to the state monad that enables

reasoning in terms of the latter, if desired (cf. §8).

HOL4 When generating HOL4 definitions, we use only the state monad, since HOL4’s datatype

package does not currently support the prompt monad’s type (it has a recursion on the right of a

function arrow).

Coq The dependent type system in Coq enables us to give a much more direct translation of Sail’s

rich type information than would be possible with Lem’s rudimentary Coq output support. The

1
The main differences are that we use a different grouping strategy for clauses (overlapping instead of mutually exclusive

groups, since bitvector pattern rewriting can lead to many consecutive, overlapping patterns), and that we keep fall-through

branches in place instead of pulling them out into let-bindings, since that could interfere with both effects and flow-typing.
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Definition FPThree (N__tv : Z) (sign : mword 1) : M (mword N__tv) :=

assert_exp' ((Z.eqb N__tv 16) \/ (Z.eqb N__tv 32) \/ (Z.eqb N__tv 64)) "" >>= fun _ =>

let '(existT _ E _) :=

(if sumbool_of_bool ((Z.eqb N__tv 16)) then build_ex 5

else if sumbool_of_bool ((Z.eqb N__tv 32)) then build_ex 8

else build_ex 11)

: {n : Z & ArithFact (In n [5; 8; 11])} in

let F := Z.sub N__tv (Z.add E 1) in

let exp := concat_vec (vec_of_bits [B1] : mword 1) (Zeros__0 (Z.sub E 1)) in

let frac := concat_vec (vec_of_bits [B1] : mword 1) (Zeros__0 (Z.sub F 1)) in

returnm ((autocast (concat_vec sign (concat_vec exp frac))) : mword N__tv).

Fig. 10. FPThree function translated into Coq

main difference in our Coq translation compared to our other backends is that the type-level sizes

and constraints are fully retained in the generated Coq definitions. In particular, Sail’s existential

types are translated to dependent pairs in Coq. This can be seen in Fig. 10, the translation of Fig. 7,

where a dependent pair is built for E to show that it is in the set {5, 8, 11}. However, it would be

extremely challenging to reuse proofs about the constraints from the SMT solver used during Sail

type checking, so instead we use a Coq typeclass wrapper to trigger a constraint solving tactic. In

Fig. 10 this is done by the build_ex function. The core of the tactic is Coq’s implementation of the

Omega Presburger arithmetic decision procedure [Pugh 1991], with additional preprocessing to

transform information from the context into a useful form and to evaluate constant powers of 2.

The solver can also be extended by adding facts to a Coq hints database.

There is an important difference between the type checking in Sail and Coq: Sail uses the SMT

solver to assist with type equivalence and subtyping checks automatically, whereas Coq only uses

its built-in notion of reduction. This is often inadequate; for example, even 1 * z does not reduce

to z for Coq’s integer type, Z, whereas Sail considers the types bits(1 * z) and bits(z) to be

interchangeable. Our Coq backend detects differences like this and inserts a cast function. The

cast function has a constraint that the two integer expressions are equal (which is automatically

inferred from the context by Coq), and triggers the constraint solving tactic during type checking.

For example, in the last line of FPThree the cast uses a proof of 1 + (1 + (E - 1) + (1 + (F -

1))) = N__tv.

The Coq backend is still under development. For example, it is still restricted to fairly simple

uses of Sail’s existential types. Nonetheless, it is already sufficient to produce a full Coq translation

of our MIPS model.

5 GENERATION OF EMULATORS
It is also important to support emulation, with enough performance for validation purposes. We

implement a simple direct mapping from Sail into OCaml, as well as more involved optimised

compilation path to C. The simple OCaml translation is primarily used as a validation tool for the

more involved C translation, and for prototyping.

Our C generation involves several steps. First we use the same type-preserving rewrites we use

when generating theorem prover code, to eliminate some features and syntactic sugar found in

the full Sail language, then we map into an A-normal form representation which is very similar

to the MiniSail language described in §6. This is then translated to a lower-level intermediate

representation, before we generate C code. Our intermediate representation is not particularly tied

to C, so we could easily switch to e.g. LLVM IR if desired at some point in the future. There are
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three main optimisations that we perform during this compilation process that greatly speed up

the resulting code.

First, bitvectors that are statically known to be 64-bits in length or less are mapped to 64-bit

unsigned integers in C, whereas variable length bitvectors or those that are larger than 64 bits are

mapped onto arbitrary length bitvectors implemented using GMP integers. Furthermore, some

bitvector types larger than 64-bits are mapped onto multiple 64-bit integers if necessary—this was

key to get good performance for MIPS address translation, which features 117-bit wide bitfields for

TLB entries.

Secondly, we use our liquid types and constraints to detect integer types that are bounded to

fit within an 64-bit signed integer type. For example, the int_of_accessLevel function below is

returning an integer constrained to be either 0, 1, or 2. As such rather than using an arbitrary

precision GMP integer, we return a fixed-width integer type. In general we can optimise any such

integer types, provided Z3 can prove they fit within the bounds of a 64-bit signed integer.

function int_of_AccessLevel(level : AccessLevel) -> {|0,1,2|} =

match level { User => 0, Supervisor => 1, Kernel => 2 }

This optimisation turns out to be important, because small often-used functions like the above

can be quite costly if they are forced to use arbitrary-precision integers. The int_of_accesslevel

function accounted for nearly 5% of the time taken booting FreeBSD on our MIPS model before we

implemented this optimisation.

Thirdly, we note that the vast majority of functions in ISA specifications are non-recursive, with

the ARM specification containing only a single recursive function (for endianness reversal) and

one small group of mutually recursive functions (for nested page table walks). For all non-recursive

functions we are able to statically preallocate any space they need on the heap for arbitrary-precision

bitvectors and integers to avoid calling malloc and free.

In total these optimisations gave us around a 13x performance increase in the performance of the

generated emulator code. For ARM, we went from approximately 4000 instructions per second (IPS)

to around 53 000 IPS. For MIPS, which is significantly simpler, we were able to achieve performance

of between 500 000 and 1.5 million IPS (this difference being caused by the number of memory

accesses), with an average of about 850 000 IPS. By contrast, when compiling Sail into OCaml we

can execute instructions at around 1800 IPS for ARM, and when using our interactive interpreter

we can execute ARM instructions at about 30 IPS.

6 FORMAL TYPE SYSTEM
ISA specifications are long-lived, and any formal work above them will involve substantial invest-

ment, so we want Sail to be robust and stable. Unfortunately, the initial version of Sail (like most

architecture description languages) was implementation-defined: Sail was whatever the implemen-

tation would accept. This made evolving the system —even bug-fixing— a fraught process, and

the fact that Sail’s type inference relied on a complex custom constraint solver meant that were

many bugs to fix. Solving this problem required a degree of care, since we wanted to improve the

language design “in place”. To guide the evolution of Sail, we introduced a kernel calculus, MiniSail.

The two key properties we prove of MiniSail are (a) type safety, and (b) decidability of type

checking. As a first-order language, the dynamic semantics of Sail are largely straightforward, but

type safety is not entirely obvious, because Sail’s support for type-dependency means that safety

can rely upon control- and data-dependent properties. For software engineering reasons, we wanted

to move away from a hand-rolled constraint solver to using an off-the-shelf SMT solver such as Z3.

This both simplifies our implementation, and increases its reliability, as a widely-used solver like

Z3 will be tested much more thoroughly than a hand-rolled solver. However, a danger is that we
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would merely replace one ad-hoc set of heuristics (embodied in our solver) with Z3’s – a different

set not even under own control. Luckily, SMT solvers come with a very clear guarantee: any query

in the quantifier-free fragment is decidable, and in practice those we generate are efficient. So our

decidability proof fundamentally exists to ensure that Sail’s type system only generates pure SMT

queries, ensuring that the specification of Sail is independent of the details of the solver.

Fig. 11 presents a subset of MiniSail’s grammar and a table of judgements, and Fig. 12 presents

a selection of the typing rules. The grammar in Fig. 11 defines a language in a slight variant of

A-normal form. Programs are defined from expressions (which include arithmetic, variables, and

function applications), and statements (which include let-binding, conditionals, and the assignment

and declaration of mutable variables). Note that we distinguish bindings of immutable variables

let x = e in s from the declaration of mutable variables var u : τ = v in s . Types τ are set-

comprehension-style: they are the elements of a first-order base type, together with a boolean

constraint restricting which elements of the base type are in τ .
As described in §3, MiniSail is a bidirectional type system, with a type synthesis mode Π; Γ;∆ ⊢

e ⇒ τ for expressions, and a type checking mode Π; Γ;∆ ⊢ s ⇐ τ for statements. The presence

of three contexts arises from the fact that MiniSail is a first-order, imperative language. Function

definitions are separated into a context Π, and Γ and ∆ control the scoping of immutable bindings

and mutable variables, respectively.

Value v ::= x | n | T | F Expression e ::= v | v ⊕ v | f v | u
Statement s ::= v | let x = e in s | var u : τ = v in s | u := v | if v then s1 else s2
Constraint ϕ ::= ⊤ | e1 = e2 | e1 ≤ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |¬ϕ
Base Type b ::= int | bool | unit Type τ ::= {z : b |ϕ}

Π Function definition context Γ Immutable variable context ∆ Mutable variable context

Π; Γ ⊢ v ⇒ τ Type synthesis values Π; Γ ⊢ v ⇐ τ Type checking values

Π; Γ;∆ ⊢ e ⇒ τ Type synthesis expressions Π; Γ;∆ ⊢ s ⇐ τ Type checking statements

Π; Γ ⊢ τ1 ≲ τ2 Subtyping Π; Γ |= ϕ Validity

Fig. 11. MiniSail Grammar Fragment and Judgements

Π; Γ ⊢ n ⇒ {z : int|z = n}
1

Π; Γ ⊢ T⇒ {z : bool|z = T}
2

Π; Γ ⊢ F⇒ {z : bool|z = F}
3

x : b[ϕ] ∈ Γ
Π; Γ ⊢ x ⇒ {z : b|z = x}

4

Π; Γ ⊢ v1 ⇒ {z1 : int|ϕ1}

Π; Γ ⊢ v2 ⇒ {z2 : int|ϕ2}

Π; Γ;∆ ⊢ v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}
5

val f : (x : b[ϕ]) → τ ∈ Π
Π; Γ ⊢ v ⇐ {z : b|ϕ}
Π; Γ;∆ ⊢ f v ⇒ τ [v/x]

6

u : τ ∈ ∆

Π; Γ;∆ ⊢ u ⇒ τ
7

Π; Γ ⊢ v ⇐ τ

Π; Γ;∆ ⊢ v ⇐ τ
8

Π; Γ;∆ ⊢ e ⇒ {z : b|ϕ} Π; Γ, x : b[ϕ[x/z]];∆ ⊢ s ⇐ τ

Π; Γ;∆ ⊢ let x = e in s ⇐ τ
9

Π; Γ ⊢ v ⇐ τ
Π; Γ;∆, u : τ ⊢ s ⇐ τ2

Π; Γ;∆ ⊢ var u : τ := v in s ⇐ τ2
10

Π; Γ ⊢ v ⇒ {x : bool|ϕ1}

Π; Γ;∆ ⊢ s1 ⇐ {z1 : b|(v = T ∧ (ϕ1[v/x])) =⇒ (ϕ[z1/z])}
Π; Γ;∆ ⊢ s2 ⇐ {z2 : b|(v = F ∧ (ϕ1[v/x])) =⇒ (ϕ[z2/z])}

Π; Γ;∆ ⊢ if v then s1 else s2 ⇐ {z : b|ϕ}
11

u : τ ∈ ∆
Π; Γ ⊢ v ⇐ τ

Π; Γ;∆ ⊢ u := v ⇐ {z : unit|⊤}
12

Π; Γ ⊢ v ⇒ {z2 : b|ϕ2}

Π; Γ ⊢ {z2 : b|ϕ2} ≲ {z1 : b|ϕ1}

Π; Γ ⊢ v ⇐ {z1 : b|ϕ1}
13

Π; Γ, z1 : b[ϕ1] |= ϕ2[z1/z1]
Π; Γ ⊢ {z1 : b|ϕ1} ≲ {z2 : b|ϕ2}

14

Fig. 12. Selected MiniSail Typing Rules
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The key technical idea ensuring decidability is as follows: whenever we have an expression in the

SMT fragment, we record an exact constraint. Otherwise, we merely propagate any SMT constraints

by attaching them to variables, using A-normal form to ensure that there is always a name to attach

a constraint to. Rules 1-5 in Fig. 12 give typing rules for expressions. Since each of these terms

is in the SMT fragment, we can generate an exact equality constraint for them. However, rules

6 and 7 (for function applications and mutable variables) are for terms not in the SMT fragment,

and so we use the type as an approximation, with mutable variables just looking up the type in

the environment ∆ and function applications returning the result type with the argument value

substituted in. Rules 8-12 play the same game with statements. The rules for variables (9 and 10)

state no equalities between expressions and variables, since the expressions include forms (e.g.,

function calls) outside of the SMT fragment. On the other hand, rule 11 for if’s scrutinises a value

and can flow the value into the branches.

Finally, the constraint discipline pays off in rules 13 and 14, where the subtyping relation is used.

One type is a subtype of another just when they have a common base type and the first type’s

constraint implies the second, under the assumption of all the constraints in the context. Since no

rule ever introduces a quantifier, we only generate entailments strictly in the SMT fragment.

MiniSail’s design is heavily inspired by the observation in Liquid Types [Rondon et al. 2008]

that if logical constraints are determined by the actual arguments to a function, there is no need to

introduce existential constraint variables. However, we do not need a prepass deriving a simply-

typed skeleton. Our bidirectional [Dunfield and Krishnaswami 2013] algorithm is completely

syntax-directed, with subtyping checks (the only source of SMT queries) occurring at (syntactically

evident) checking/synthesis boundaries.

The original Sail implementation had a Hindley-Milner-style typechecker, mated to a custom

arithmetic constraint solver. This codebase was complicated and could not handle many of the

constraints generated from the the ARM specification. Sail is now bidirectional, mostly replacing

unification with constraint solving. The transition is ongoing: unification still plays a role in the

implementation of function calls, and we still allow the declaration of non-argument-constrained

quantifiers. Still, performance has dramatically improved: checking a fragment of the ARM spec

has gone from 10-15 minutes to under 3 seconds.

The operational semantics of the full language (including tuples and sums) is standard, and can

be found in the supplementary material. The full type safety proof is also in the appendix: the proof

is long (due to the presence of dependency) but not fundamentally difficult.

7 VALIDATION
We validate our models by using the generated emulators to run test suites and boot various

operating systems. This also serves to validate the translation from Sail to the various backends.

Ideally, one might want to have mechanised proofs about the correctness of the translation w.r.t.

a deep embedding of Sail in each of the provers. However, the effort for this would have been

prohibitive, especially while the Sail language itself was still evolving. Instead, we follow a testing

approach here too. We have used Isabelle’s code generation feature to extract an OCaml emulator

from the Isabelle model of CHERI-MIPS, which successfully executes the CHERI test suite, albeit

slowly. This gives us end-to-end validation for the nontrivial translation pipeline from Sail via Lem

to Isabelle, including bitvector length monomorphisation and translation of effects (§4).

ARM We validated our ARM models first by booting Linux on the non-public v8.3 version with

system register support (used for the timer, handling interrupts, and controlling the availability of

architectural features). This does not directly validate the public version of our ARM model, but

as the two are generated in much the same way from the same ultimate sources, it does provide
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significant confidence. We were able to boot older versions of the Linux kernel, in particular Linux

4.4 (2016). For more recent versions of the kernel, we observed issues with context switching

when run above our model. Linux has changed how context switching is handled to unmap kernel

memory, and it seems that a page fault that is supposed to happen at a certain point does not occur.

This could be due to a bug in the address translation code of our model, in a systems feature, or in

our tooling. However, the problem seems to be subtle enough to only be triggered in some versions

of Linux, and we have not yet fully diagnosed it.

ARM’s Architecture Validation Suite (AVS) is an extensive set of architectural compliance tests

that are used as part of the signoff criteria for ARM-compatible processors. These tests are usually

run on systems composed of processors, RAM and a verification device that can be used to monitor

the processor’s behaviour (e.g. memory accesses and their attributes) and to generate stimulus

(e.g. patterns of interrupts). ARM currently runs these tests on an extension of the public ASL

specification that adds a particular set of configuration choices for the implementation-defined

behaviour, and an ASL specification of the verification device [Reid 2016]. ARM does not currently

publicly release the tests, or the configuration or specification of the test device, but we were able

to use them to test and debug our translation of the ASL specification.

The tests cover many aspects of the AArch64 architecture including all usermode behaviour

(i.e., integer, float and SIMD instructions), and system behaviour (i.e., bigendian support, switching

between 32-bit mode and 64-bit mode, memory protection, exceptions/interrupts, privilege levels,

security and virtualisation). The tests for usermode behaviour make up 31% of the tests (this is

roughly proportional to the fraction of ARM’s specification documents and their ASL specification

that describes usermode behaviour). Many of the tests for system behaviour explore obscure corners

of the architecture, such as whether a memory access should be cacheable or non-cacheable if an

operating system marks the page as cacheable but a hypervisor (in which the operating system is

running) marks the same page as non-cacheable, or what exception should be signalled if a bus

fault occurs during a page table walk. (These are just two of thousands of scenarios that are tested.)

The tests consist of over 30 000 test programs and the tests run for billions of instructions.

Our current translation to Sail and our C model generation do not handle certain features of

ARM’s specification including the AArch32 instruction set, SIMD instructions, multiprocessor

support and a small number of instructions added in the v8.3 model, and so we restricted our

attention to 15 400 tests that do not rely on these features. Of those 15 400 tests, currently 24 (0.15%)

pass on the ASL model but not on the Sail model. 12 of those are floating point failures, due to

the square root primitive operation returning a rational number; 8 are exception handling failures

due to a particular unallocated exception being misthrown; and the remaining 4 are memory

management failures involving marking page table entries dirty. We are working on fixing these

issues.

RISC-V We validated the RISC-V model with the seL4 and Linux boots and against the Spike

reference simulator (the current platform model of our RISC-V OCaml emulator matches that

of Spike). The OCaml emulator is run regularly against the tests in the riscv-tests test-suite

repository, and passes all tests for integer and compressed instructions for the user, supervisor

and machine modes (currently amounting to 181 tests). An official compliance test-suite is under

construction by the RISC-V Compliance Working Group, but it has yet to create tests for the 64-bit

architecture. We also compare the trace outputs of the Sail model and a version of Spike modified

to provide additional execution traces, and to have a more regular I/O and timer interrupt dispatch

schedule. Our comparison tool checks that the two simulators execute matching instructions,

integer register writes, CSR reads and writes, LR/SC reservation state modifications, and outputs to

certain device ports. We have ensured that these traces match on all but one of the above tests. The
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sole exception is the test for the breakpoint instruction, where the Sail model passes the test but

the execution trace differs due to the absence of a debug module.

MIPS and CHERI-MIPS To validate these models we ran the CHERI test suite (which also tests

MIPS ISA features) and booted FreeBSD-MIPS with a minimal system model consisting of just a

write-only UART for console output. Using Sail’s C backend and gcc 5.4 on an Intel Core i7-4770K

desktop CPU clocked at 3.50GHz the boot reached a shell prompt after about 90 million instructions

in less than 2 minutes, averaging about 850 000 instructions per second

Coverage An executable-as-test-oracle architectural model makes it possible to assess the

specification coverage of tests. We did this for the MIPS and CHERI-MIPS models, simply using

the gcov coverage tool on the compiled C. Booting FreeBSD on the MIPS model touched 84.8% of

the lines of generated C. Most unexecuted lines were due to instructions that were not used (e.g.

debugging, cache management, fused multiply&add) and exception cases that were not hit, such as

reserved instructions. The MIPS-only subset of the CHERI test suite covered 97.8% of the MIPS

model, with the uncovered code due to missing tests for MIPS features such as unusual TLB page

sizes and supervisor mode that are not used by FreeBSD. Coverage for the CHERI model was 94.8%.
This found a recently introduced instruction that had no tests and highlighted many exception

paths that need more testing.

RMEM concurrency integration We integrated our RISC-V ISAmodel with the RMEM concur-

rency exploration tool [Pulte et al. 2018], allowing exploration of its relaxed-memory multi-threaded

behaviour. For validation, we compared its behaviour on the library of 7251 litmus tests used to

develop the RISC-V memory model [RIS 2017, App. A]. They concur on all except 4, due to a

discrepancy between the RISC-V memory model and the Spike single-threaded reference simulator:

the former allows store-conditionals to fail early before reading any registers, while the latter does

not. We currently forbid this, to match traces with Spike. In addition, for emulator performance

reasons, the sequential ISA model uses a definition of the JALR instruction that does not allow the

write-before-read behaviour of the concurrent specification.

8 MECHANISED PROOF
To evaluate the usability of the generated theorem prover definitions, we proved a nontrivial

property of the ARMv8-A specification in Isabelle/HOL. We focus on address translation from

virtual to physical memory addresses. This is a critical part of the architecture specification; playing

an important role in separating user-space processes from each other and from the operating

system. ARMv8-A address translation is also an informative benchmark of the usability of our

theorem prover definitions, as it is one of the most complex parts of the most detailed specification

we have. The translation table walk function alone consists of over 500 lines of Sail code, not

counting various helper functions. It includes a loop for the table walk, does the construction of

the physical address from variable-length bitvector slices, reads and writes memory, and exhibits

nondeterminism. The latter arises from underspecification that can be refined by implementations.

For example, there is a validity check of page table entries that an implementation may choose to

perform (potentially faulting) or to ignore. This is “implementation defined” behaviour in the ASL

and translated to a nondeterministic choice in our model. Another source of nondeterminism is

undefined values. Address translation returns a record containing the output address and other

fields such as permission bits. If one of those fields does not make sense in a given situation, such

as the device type field for non-device memory, the ASL code sets it to an “unknown” value or

leaves it uninitialised. Again, this is translated to a nondeterministic choice of a value in Sail.
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Details like these are typically abstracted away in verification projects involving an ISA semantics.

This may be essential for reasoning about the ISA semantics in a scalable way, but the underlying

assumptions should be made explicit. Proving soundness of an abstraction against our model allows

—and requires— us to do this, in terms of the model. As our example, we therefore defined a purely

functional characterisation of ARMv8-A address translation in a user-mode setting. Our function

read_tables extracts from memory a snapshot of the translation tables (up to four hierarchical

levels deep) starting at a given base address, while walk_tables is a partial function that takes a

table snapshot and an input address and looks up the corresponding descriptor. The partial function

translate_address calls those two, checks the permission bits, and, if all checks succeed, constructs

a result record containing an address descriptor with the output address and its attributes, and

potentially a descriptor update, if hardware updating of access and dirty bits is enabled. The function

update_descriptor writes back the updated descriptor, if necessary.

This characterisation of address translation is quite detailed, but we do make some simplifying

assumptions. We assume a setting in 64-bit user mode and not in a “secure” state, which is an

isolation feature of the ARM architecture. We also assume that no virtualisation is active, so only

one and not two stages of address translation. Moreover, we assume that hardware updating of

descriptor flags is enabled (the Linux kernel uses this in its default configuration). Without it,

translating an address within a page or block without the access flag set results in a translation

fault. Finally, we assume that the MMU is enabled and debug events are disabled. We formalise

these assumptions as state predicates. For example, the predicate HwUpdatesFlags(s ) requires that
bits 39 and 40 of the TCR_EL1 system register are set. We omit the definitions of these predicates

and functions here and refer to the supplementary material.

We have proved the following soundness result about our characterisation w.r.t. the original

function AArch64_TranslateAddress defined in the model, where ⟦·⟧ denotes the lifting from free

to state monad mentioned in §4.2, the relation ≈det denotes equivalence of the deterministic parts

of address descriptors, ignoring undefined parts, and Value indicates a successful outcome of an

expression in the state monad, as opposed to an exception denoted using Ex (where in this case,

the preconditions guarantee that there is no exception).

Theorem 8.1. If
• InUserMode(s ) ∧ NonSecure(s ) ∧ MMUEnabled_EL01(s ) ∧ VirtDisabled(s ) ∧
HwUpdatesFlags(s ) ∧ UsingAArch64(s ) ∧ DebugDisabled(s ) and
• translate_address(vaddr, acctype, iswrite, aligned, size, s ) = r

then

∀(Value(r ′), s ′) ∈ ⟦AArch64_TranslateAddress(vaddr, acctype, iswrite, aligned, size)⟧(s ).

r ′ ≈det addrdesc(r ) ∧ s ′ = update_descriptor(r , acctype, iswrite, s )

The assumption that the partial function translate_address successfully returns a value implies

that all checks have passed and all table entries related to the input address are valid. If one of

those checks fails, then the original address translation function returns a record detailing which

kind of fault occurred; we do not currently model faulting behaviour in our characterisation.

This means that Theorem 8.1 may not shed light on any potential address translation bug related

to the Linux booting issue of §7, as that would involve a page fault. However, our proof did uncover

a missing endianness reversal and several potential uses of uninitialised variables in the original

ASL code, which have been reported to and confirmed by ARM.

Our Isabelle proof is with respect to the sequential Sail model in the state-nondeterminism-

exception monad. We manually stated and proved a loop invariant for the translation table walk,

and Hoare triples about various helper functions. This helps reduce the complexity of the main
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proof, which uses an automatic proof method that iteratively applies the basic proof rules of the

Hoare logic and the helper lemmas to derive a precondition for a given postcondition. The Isabelle

proof scripts can be found in the supplementary material.

9 RELATEDWORK
There is extensive work on low-level verification using ISA specifications, as well as language design

for ISA description languages, e.g. [Dias and Ramsey 2010; Misra and Dutt 2008]. As mentioned

in the introduction, there exist many smaller partial formal ISA models, usually created for very

specific purposes. Here we mostly focus on work that involves larger specifications including some

system-level features.

The ACL2 X86isa model [Goel et al. 2017], is a hand-written specification of the (64-bit) IA-32e

mode of the x86 architecture. It contains a very comprehensive specification of user-mode parts of

the architecture, as well as system-level features including paging, segmentation, and a system call

interface. Their model has been extensively validated via co-simulation with actual x86 processors.

This work represents the most complete public x86 specification to date. Our work differs mainly

in targeting different architectures, providing for multiple LCF-family theorem provers (Isabelle,

HOL4, and Coq) rather than ACL2, using a dependently typed metalanguage and (validated but not

proved) translations from it rather than working entirely within ACL2, and in translating from the

vendor-supplied ARMv8-A specification. Our models have sufficient system-feature coverage to

boot operating systems, though that is particularly challenging for x86.

L3 [Fox 2012, 2015; Fox et al. 2017] is a well-developed ISA specification language, which like Sail,

supports multiple prover targets (HOL4 and Isabelle/HOL), and has existing models for numerous

architectures. L3 was a key inspiration in the design of Sail, which differs principally in its more

sophisticated type-system (better able to express and check the dependent features found in ASL),

its integration with concurrency models, and features to better support direct translation of ASL

pseudocode, such as exception handling.

seL4 [Klein et al. 2014] uses a specification of the ARMv7 architecture [Fox and Myreen 2010] to

verify binary correctness of all seL4 functions. However, this binary verification is not done for

certain machine-interface functions that interact with system-level parts of the architecture, which

were originally assumed correct as part of the main seL4 proof. The CertiKOS project [Gu et al.

2016] presents another verified operating system, which defines a machine-model for x86 [Gu et al.

2015] in Coq extended with support for devices and interrupts [Chen et al. 2016]. This machine

model is based on the 32-bit x86 subset specified in CompCert [Leroy et al. 2017].

Syeda and Klein [Syeda and Klein 2018] formalise an ARMv7 style memory management unit

(MMU) in Isabelle/HOL, with a translation lookaside buffer and multiple levels of page tables.

They are able to reason about system-level code in the presence of a TLB, including operating

system context-switching. Joloboff et al [Joloboff et al. 2015; Shi 2013] develop a verified instruction

set simulator using Coq for the ARMv6 architecture. They compile C code implementing each

instruction using CompCert, before proving equivalence between the CompCert instruction set

semantics and a model of ARMv6 extracted to Coq from the ARM architecture reference manual

PDF. With ARM’s release of a machine readable specification [Reid 2017], which we have used,

such an extraction process is no longer necessary.

The PROSPER project [Baumann et al. 2016; Guanciale et al. 2016] has extended L3 models of

ARMv8 [Fox 2015] with system features sufficient to verify a virtualisation platform including

secure boot and a hypervisor. This specification is based on hand-translating the required parts

from the ARM architecture reference manuals. In contrast, by basing our ARMv8 model on ASL,

we are able to more easily keep track of the constant revisions to the architecture, as well as cover

more obscure corner cases in the architecture with improved confidence.
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