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Abstract
Functional reactive programming (FRP) is an elegant and success-
ful approach to programming reactive systems declaratively. The
high levels of abstraction and expressivity that make FRP attrac-
tive as a programming model do, however, often lead to programs
whose resource usage is excessive and hard to predict.

In this paper, we address the problem of space leaks in discrete-
time functional reactive programs. We present a functional reac-
tive programming language that statically bounds the size of the
dataflow graph a reactive program creates, while still permitting use
of higher-order functions and higher-type streams such as streams
of streams. We achieve this with a novel linear type theory that
both controls allocation and ensures that all recursive definitions
are well-founded.

We also give a denotational semantics for our language by
combining recent work on metric spaces for the interpretation of
higher-order causal functions with length-space models of space-
bounded computation. The resulting category is doubly closed and
hence forms a model of the logic of bunched implications.

Categories and Subject Descriptors D.3.2 [Dataflow Languages]

General Terms languages, design, theory

Keywords functional reactive programming, dataflow, space-
bounded computation, linear logic, bunched implications

1. Introduction
Reactive systems engage in an ongoing interaction with their en-
vironment, consuming input events and producing corresponding
output events. Examples of such systems range from embedded
controllers and sensor networks up to complex graphical user
interfaces, web applications, games and simulations. Program-
ming reactive systems in a general-purpose imperative language
can be unpleasant, as different parts of the program interact not
by structured control flow, but by dynamically registering state-
manipulating callback functions with one another. The complexity
of writing and reasoning about programs written in such a higher-
order imperative style, as well as the critical nature and resource
requirements of many reactive systems, has inspired extensive re-
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search into domain-specific languages (DSL), libraries and analysis
techniques for reactive programming.

Synchronous dataflow languages, such as Esterel [3], Lustre [4],
and Lucid Synchrone [21], implement a domain-specific compu-
tational model deriving from Kahn networks. A program corre-
sponds to a fixed network of stream-processing nodes that commu-
nicate with one another, each consuming and producing a statically-
known number of primitive values at every clock tick. Synchronous
languages have precise, analysable semantics, provide strong guar-
antees about bounded usage of space and time, and are widely used
in applications such as hardware synthesis and embedded control
software.

Functional reactive programming (FRP), as introduced by El-
liott and Hudak [8], also works with time-varying values (rather
than mutable state) as a primitive abstraction, but provides a much
richer model than the synchronous languages: signals (behaviours)
can vary continuously as well as discretely, values can be higher-
order (including both first-class functions and signal-valued sig-
nals), and the overall structure of the system can change dynami-
cally. FRP has been applied in problem domains including robotics,
animation, games, web applications and GUIs. However, the ex-
pressivity and apparently simple semantics of the classic FRP
model come at a price. Firstly, the intuitively appealing idea of
modelling A-valued signals as elements of the stream type Aω

(or, in the continuous case, AR) and reactive systems as stream
functions Inputω → Outputω does not rule out systems that violate
causality (the output today can depend upon the input tomorrow) or
reactivity (ill-founded feedback can lead to undefined behaviour).
Secondly, as the model is highly expressive and abstracts entirely
from resource usage, the time and space behaviour of FRP pro-
grams is hard to predict and, even with sophisticated implementa-
tion techniques, can often be poor. It is all too easy to write FRP
programs with significant space leaks, caused by, for example, in-
advertently accumulating the entire history of a signal.1

Subsequent research has attempted to reduce ‘junk’ and allevi-
ate performance problems by imposing restrictions on the classic
FRP model. The Yale Haskell Group’s Yampa [11, 19], for exam-
ple, is an embedded DSL for FRP that constructs signal process-
ing networks using Hughes’s arrow abstraction [12]. Signals are
no longer first-class, and signal-processing functions must be built
from well-behaved casual primitives by causality-preserving com-
binators. Arrowized FRP allows signals to carry complex values but
is essentially first-order (there is no exponential at the level of sig-
nal functions), though certain forms of dynamism are allowed via
built in ‘switching’ combinators. Yampa does not enforce reactiv-

1 Closely related are ‘time leaks’, which occur when sampling a time-
dependent value can invoke an arbitrarily lengthy computation to ‘catch
up’ with the current time.



ity or provide resource guarantees but, empirically at least, makes
certain kinds of leaks less likely.

Krishnaswami and Benton [13] recently described a semantic
model for higher-order, discrete-time functional reactive programs
based on ultrametric spaces, identifying causal functions with non-
expansive maps and interpreting well-founded feedback via Ba-
nach’s fixpoint theorem. They gave an associated language, fea-
turing a Nakano-style [18] temporal modality for well-founded re-
cursion, and showed the correctness of an implementation using an
imperatively-updated dataflow graph. This implementation is much
more efficient than directly running the functional semantics, but
nothing prevents the dataflow graph from growing unboundedly as
a program executes, leading to undesirable space leaks. In this pa-
per, we solve the problem of such leaks by extending the ultramet-
ric approach to FRP with linearly-typed resources that represent
the permission to perform heap-allocation, following the pattern of
Hofmann’s work [9, 10] on non-size-increasing computation.

We give a denotational model for bounded higher-order reac-
tive programming in terms of ‘complete ultrametric length spaces’,
which carry both an ultrametric distance measure and a size func-
tion. Maps between such spaces must be non-expansive and non-
size-increasing. Intuitively, the metric is used to enforce good tem-
poral behaviour (causality and productivity of recursive defini-
tions), whilst the size measure enforces good spatial behaviour,
bounding the number of cells in the dataflow graph. The category
of complete ultrametric length spaces is doubly-closed, forming a
model of the logic of bunched implications [20] and exposing a
(perhaps) surprising connection between the type theory of stream
programming and separation logic.

We define a term language, with a rather novel type theory, that
corresponds to our model and allows us to write bounded reactive
programs. Judgements are all time-indexed, with the successor
operation on times internalized in a modality •A. Terms are typed
in three contexts, one carrying linear (actually affine) resources of
type ♦, giving permission to allocate; one binding pure, resource-
free variables; and one binding potentially resourceful variables.
Resource-freedom is internalized via a !A modality, in the style of
linear logic. We give the language an interesting staged operational
semantics, which separates the normalizing reduction that takes
place within each time step from the transitions that take place
when the clock advances, and show that this is soundly modelled in
the denotational semantics. The operational semantics uses terms
of the language itself to encode the heap context within which
evaluation takes place.

We also give a number of examples in our language that illus-
trate properties of the model and the applicability of our approach,
showing that one can work with recursively-defined higher-order
functions and streams in a natural way while still ensuring causal-
ity, productivity and bounded space usage.

To improve readability, we invert the ‘logical’ order of presen-
tation: Section 2 gives an informal account of the language that
suffices for presenting some of the motivating examples. Section 3
formally defines the language and the type system. We then, in Sec-
tion 4, define the operational semantics and, in Section 5 and 6,
present the details of the denotational model. Finally, in Section 7,
we discuss our work and relate it to existing research.

2. Programming Language
The language is essentially a simply-typed λ-calculus with a type
constructor S(−) for infinite streams, extended with three non-
standard notions: delay types, resource types, and pure types. We
treat streams as much as possible as mathematical sequences, but
want to ensure that we can also interpret them as the successive
values of signals generated by implementable clocked systems.
Thus a definition (in a generic functional syntax for now)
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Figure 1. Memory Usage of Streams

nats : N→ S(N)
nats n = cons(n, nats (n+1))

denotes a parameterised infinite stream but can also be understood
as a stateful process ticking out successive natural numbers as time
advances. It is necessary to restrict recursive definitions to ensure
that signals are well-defined at all times. The recursion above is
clearly guarded: the recursive call to nats only occurs underneath
a cons constructor, so successively unfolding the stream at each
clock tick is productive. That is, we always discover at least one
new cons constructor which we can examine to find the head and
the tail of the stream at the current time.

However, simple syntactic guardedness checks (used by lan-
guages as varied as Lucid Synchrone, Agda and Coq) do not inte-
grate well with higher-order. For example, one might want a stream
functional that abstracts over the constructor:

higher order f v = f(v , higher order f (v + 1))

The guardedness of higher order now depends on the definition
of f , which is an unknown parameter. As in our earlier work [13],
we instead use a next-step modality •A to track the times at which
values are available in their types.

A value of type •A is a computation that will yield a value of
type A when executed on the next clock tick. The tail function has
type tail : S(A) → •S(A), expressing that the tail of a stream
only becomes available in the future. Similarly the type of cons is
refined to cons : A × •S(A) → S(A), capturing that streams
are constructed from a value today and a stream tomorrow. By
giving the fixed point combinator the type fix : (•A → A) → A,
we ensure that all recursive definitions are well-founded without
restricting their syntactic form.

If we care about space usage, however, this use of types to track
guardedness still admits too many programs. The problem is to
limit the amount of data that must be buffered to carry it from one
time tick to the next. In the case of nats above, it is clear that the
current state of the counting process can always be held in a single
natural number. But consider a similar definition at a higher type:

constantly leak : S(A) → S(S(A))
constantly leak xs = cons(xs, constantly leak xs)

The call constantly leak xs yields a stream of streams which is
constantly xs. This is a perfectly well-founded functional definition
but, as a stateful process, requires the whole accumulated history
of xs to be buffered so it can be pushed forward on each time step.

Figure 1 shows the evolution of a stream as time passes. The
gray nodes denote the nodes already produced, the doubly-circled
nodes show the current value of the head of the stream, and the
white nodes mark the elements yet to be produced. At each time
step, one node moves into the past (becomes gray), and the current
head advances one step farther into the stream.



As constantly leak xs retains a reference to its argument, it
needs to buffer all of the gray nodes to correctly enumerate
the elements of the streams to be produced in future. Running
constantly leak xs for n time steps thus requiresO(n) space, which

is unreasonable. To see this more clearly, consider the following
function:

f : S(A) → S(S(A)) → N→ N→ S(A)
f xs yss n m =
let (x , xs ’) = (head xs, tail xs) in
let (ys , yss ’) = (head yss , tail yss ) in
if n = 0 then cons(x , f (head yss ’) yss ’ m (m+1))

else cons(x , f xs’ yss ’ (n−1) m)

diag : S(A) → S(A)
diag xs = f xs ( constantly leak xs) 0 1

Now, diag (nats 0) yields (0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .), enumer-
ating the prefixes of nats 0. As each prefix appears infinitely of-
ten, the whole history of the initial stream must be saved as the
program executes. There are definitions with the same type as
constantly leak that can be implemented in constant space:

tails :: S(A) → S(S(A))
tails xs = cons(xs, tails ( tail xs ))

Since tails returns the successive tails of its stream argument, we
do not need to remember gray nodes (see Figure 1), and hence can
implement the function without any buffering. Substituting tails
for constantly leak turns diag into the (space-efficient) identity.

To account for the memory usage associated with creating and
buffering stream data, we adapt a variant of the linear (affine)
resource types of Hofmann’s LFPL [9, 10]. The type ♦ represents a
permission to create one new stream; the tensor product R ⊗ S
is the permission to do both R and S; and the linear function
space R ( A builds an A, consuming the resources in R. We
further refine the construction of streams of type S(A) to take three
arguments using the syntactic form cons(u, e, u′. e′). The term
u : ♦ is a permission to allocate a cons cell and the term e : A is
the head of the stream. The tail, e′ : •S(A), is defined in scope of
the variable u′, which re-binds the allocation permission that will
be freed up on the next time step.

We still permit sharing of stream values without restriction since
dataflow programs gain efficiency precisely from the ability to
share. Therefore, we also support a context of unrestricted variables
and an intuitionistic2 function space A → B. (Hofmann’s original
language featured a strictly linear type discipline.) Function clo-
sures can also need buffering if they capture streams in their envi-
ronment, so it is useful to introduce the type constructor !A, which
classifies those A-values that need no buffering and may be freely
carried forward in time.

2.1 Examples
Our language makes the intuition of bounded resource consump-
tion explicit, while remaining close to standard functional program-
ming style. We begin with the definition of two classic stream func-
tions, nats and fib, in our language:

nats : !N→ ♦( S(!N)
nats = fix loop : !N→ ♦( S(!N)

λ x u . let !n = x in cons(u, !n , u ’. loop !(n+1) u’)

fibs : !N→ !N→ ♦( S(!N)
fibs = fix loop : !N→ !N→ ♦( S(!N).

λ x y u.
let !n = x in
let !m = y in
cons(u, !n, u ’. loop !m !(n+m) u’)

2 We do not decompose the intuitionistic function space as !A( B.

The function nats differs from the standard definition in two ways.
First, we include an extra resource argument of type ♦, which con-
tains a permission used as the extra argument to the cons operator.
Furthermore, we require the argument of the function to be of the
modal type !N. Since the variable n is used in both the head and
the tail of the cons-expression, we need to know that n can be used
at different times without requiring additional space usage. This is
exactly what the type !A allows: an expression let !a =a’ in . . .
binds the modal value a′ to a variable a which can be used at any
current or future time. The introduction form !e for !A constructs a
value of type A, which may only mention resource-free variables.
The definition of the function fibs is similar.

Similarly, we give the definition of the constant function, which
returns a constant stream of values.

constant : !A→ ♦( S(!A)
constant = fix loop : !A→ ♦( S(!A).

λ a’ u . let !a = a’ in cons(u, a ’, v . loop !a v)

The modal type !A in the typing of constant prevents one defining
constantly leak in terms of constant , since stream values are never

resource-free (as cons-expressions include a resource argument).
However, we can still define functions constructing higher-order

streams, so long as space usage is bounded. In this, we improve
upon much previous work on efficient implementations of FRP.
An example is the tails function that we described earlier; in our
language, this is programmed as follows:

tails : S(A) → ♦( S(S(A))
tails =

fix tails : S(A) → ♦( S(S(A )).
λ xs u .

let xs’ = tail (xs) in
cons(u, xs , u ’. tails xs’ u’)

Higher type streams also let us define many of the switching combi-
nators of FRP libraries, without having to build them in as primitive
operations. For example:

switch : S(bool) → S(S(A)) → ♦( S(A)
switch =

let loop =
fix loop : S(bool) → S(S(A)) → S(A) → ♦( S(A).
λ bs xss current u .

let yss = tail (xss ) in
let bs’ = tail (bs) in
if head(bs) then

let zs = tail (head xss) in
cons(u, head(head xss ), u ’. loop bs’ yss zs u’)

else
let zs = tail ( current ) in
cons(u, head(current ), u ’. loop bs’ yss zs u’)

in λ bs xss u . loop bs xss (head xss) u

The function switch takes a stream of boolean events and a stream
of streams. It then yields the elements of the head of the stream of
streams until the boolean stream yields true, at which point it starts
generating the elements of the current stream from the stream of
streams. In this way, it is easy to go beyond simple static dataflow
programs, without having to contort programs to fit a fixed set of
combinators.

However, with the full resources of a higher-order programming
language available, it is often convenient to define programs in
terms of familiar stream functionals such as map.

map : !(A→ B) → S(A) → ♦( S(B)
map h =

let ! f = h in
fix loop : S(A) → ♦( S(B).
λ xs u.

let ys = tail xs in
cons(u, f (head xs ), u ’. loop ys u’)



This function illustrates a common pattern of higher-order pro-
gramming in our language. We often wish to use functional argu-
ments at many different times: in this case, we want to apply the
argument to each element of the input stream. Therefore, the func-
tional arguments in higher-order functions often need to be under
the time-independence modality !(A→ B).

The unfold function provides another nice example of higher-
order programming:

unfold : !(X→ A × •X) → X→ ♦( S(A) =
unfold h =

let ! f = h in
fix loop : X→ ♦( S(A).
λ x u .

let (a , d) = f(x) in
let •x’ = d in
cons(u, a, v . loop x’ v)

Using unfold , one can directly translate deterministic state ma-
chines into stream programs, passing in the state transformer func-
tion and the initial state as the arguments. This function is also the
first example with the delay modality — our state transformer takes
a state, and returns a value and the state to use on the next timestep.
The elimination form let •y =e in . . . takes an expression of type
•A and binds it to a variable y of type A, one tick in the future.
This lets us use it in the third argument to cons, since the tail of a
stream is also an expression one tick in the future.

Next, we illustrate the importance of being able to use streams
intuitionistically, even as we track resources linearly.

zip : S(A) × S(B) → ♦( S(A × B)
zip =

fix zip : S(A) × S(B) → ♦( S(A × B).
λ (xs , ys) u .

let xs’ = tail (xs) in
let ys’ = tail (ys) in
cons(u, (head xs , head ys ), v . zip (xs ’, ys ’) v)

sum : S(N) × S(N)→ (♦ ⊗ ♦) ( S(N) =
λ (xs , ys) (u , v ). map !+ ( zip (xs , ys) u) v

double : S(N)→ (♦ ⊗ ♦) ( S(N)
double ns (u , v) = sum(ns, ns) (u , v)

We first define the function zip, which takes two streams and
returns a stream of pairs, and the function sum , which takes two
streams of natural numbers and pointwise sums their elements.
These two functions are then used to define double , which takes
a stream of numbers and returns a new stream of elements each
of which is twice the size of the input. Note that double works
by passing the sum function the same stream in both arguments,
decisively violating linearity.

The map and zip functions (together with unzip, which we do
not define here) witness that S(·) is a Cartesian functor. We can
also define maps illustrating other semantic properties of streams.

cokleisli : !(S(A) → B) → S(A) → ♦( S(B)
cokleisli g =

let ! f = g in
fix loop : S(A) → ♦( S(B).
λ xs u.

let ys = tail (xs) in cons(u, f xs , u ’. loop ys u’)

flip : S(•A)→ •(♦( S(A))
flip =

fix flip : S(•A)→ •(♦( S(A))
λ xs .

let •x’ = head(xs) in
let xs’ = tail (xs) in
•( let •f = flip xs’ in
λ u . cons(u, x ’, u ’. f u ’))

unflip : •S(A)→ ♦( S(•A)
unflip =

fix unflip : •S(A)→ ♦( S(•A).
λ xs’ u .

let •ys = xs’ in
cons(u, •(head(ys )), u ’.

let ys’ = tail (ys) in
unflip (• ys ’) u’)

The cokleisli function lifts a function from streams S(A) to a
type B to a function from streams of A to streams of B, giving
a comonad structure [24] to the S(·) functor. The flip and unflip
functions define an isomorphism between streams of delayed val-
ues and delayed streams of values. These operations make use of
the ability to explicitly delay expressions e until the next tick with
the •e introduction form for •A.

In our earlier work, we had general delay operators δA : A →
•A, which shifted values of any type forward one tick into the fu-
ture. However, a given piece of data may represent different val-
ues as time passes, and so we do not want delay maps of type
δA : S(A) → •S(A), since this type does not capture the addi-
tional storage needed to move the argument forward one step in the
future. However, it is possible in our system to define delay oper-
ators with types such as S(!N) → ♦ ( •S(!N), which explicitly
represent the buffering in the type:

buffer : !N→ S(!N)→ ♦( S(!N)
buffer b xs u =

let !y = head(xs) in // let head of y be usable later
let ys = tail (xs) in // ys at time 1
cons(u, b , v . buffer !y ys v) // now call buffer at time 1

The buffer function prepends a number to the front of a stream and
can be used to construct a delay operator:

delaynats : S(!N)→ ♦( •S(!N)
delaynats xs u =

let !y = head(xs) in // let head of y be usable later
let ys = tail (xs) in // tail ys is at time 1
•( buffer !y ys u) // now call buffer at time 1 with y , ys

This gives a delay operator for streams, but additionally asks for
a resource with which to construct the delayed stream. The def-
inition illustrates our design philosophy that expensive crosstime
operations should be programmed explicitly.

We conclude with a traditional example of stream program-
ming, the sieve of Eratosthenes:

sieve : !(N→ bool) → S(!N)→ ♦( S (!(option N))
sieve p xs u =

let !n = head xs in
let ns = tail (xs) in
let !pred = p in
if pred n then

let q = !(λ j . pred j ∧ j mod n 6=0) in
cons(u, !(Some n), v . sieve q ns v)

else
cons(u, !None, v. sieve p ns v)

primes : ♦ ⊗ ♦( S(N)
primes (u ,v) = sieve !( is odd ) ( nats 2 u) v

The sieve function incrementally constructs a filter predicate that
tests each element of the stream for divisibility by all the primes
seen so far. Since the number of primes is infinite, the size of
the sieve predicate’s lambda-term grows without bound, but is
nevertheless accepted by our language’s type system. By design, we
allow all ordinary call-by-value functional programs (which have
reasonable compositional cost semantics [23]), and only use typing
to track the unusual memory leaks of FRP. Hence our types only
track the size of the dataflow graph (i.e., the number of live cons
cells).



3. Syntax and Typing
We give the types and syntax of the programming language in
Figure 2. The types include base types P , stream types S(A), the
next-step modality •A, ordinary functions A → B, the purity
modality !A, and the linear function space R ( A. Resources R
include the allocation permission ♦, and the tensor product R⊗ S.
For space reasons, we do not include products A × B or sums
A + B here. (Since we require coproducts to define switching
combinators, we emphasise that this is purely for space reasons:
there are no technical complications associated with sum types.)

The typing rules are defined in Figure 3. The two type judge-
ments of our type theory are Θ ` t :i R and Θ; Π; Γ ` e :i A.
Both judgements are time-indexed, in the sense that the type sys-
tem judges a term to have a type at a particular time i. Furthermore,
each hypothesis in each context is indexed by the time at which
they can be used. (As usual, we take contexts to be unordered, and
implicitly assume alpha-renaming to ensure that all variables are
distinct.)

The judgement Θ ` t :i R states that in the context of affine
resource variables Θ, the term t has resource type R, at time i. The
resource terms are built from affine pairs of the ground type ♦ and
are permissions to allocate one or more cons cells.

The judgement Θ; Π; Γ ` e :i A has three contexts: the affine
resource context Θ contains again permissions to allocate cons
cells; the intuitionistic context Π contains pure hypotheses (i.e.,
variables in Π bind non-state-dependent values); and the intuition-
istic context Γ binds arbitrary value types, and permits unrestricted
sharing and reuse of variables. Under these three contexts, we judge
a term e to be an expression of type A at time i.

There are only two rules for the affine resource term calculus
in Figure 3. The RHYP rule allows a resource to be used at any
time after the context says it is available. The tensor rule R⊗I
lets one form an affine pair 〈t, t′〉, dividing the resources in the
context between the two components. Observe that these rules
allow weakening but not contraction.

The rule PHYP lets us use a pure hypothesis at any time after
the time index in the variable context. In contrast, the rule EHYP
only permits using a variable x at exactly its time index in Γ. This
difference is one of the keys to accurately tracking space usage:
we may substitute values which require buffering for variables in
Γ, and by disallowing implicit transport of values across time,
we ensure that the programmer uses explicit buffering whenever
needed.

The rules →I and →E introduce and eliminate intuitionistic
functions. The introduction rule does not permit the body to use any
resources, since we can call functions multiple times. (The presence
of Θ in the conclusion of →I and the other value forms builds in
weakening, so that we do not have to give a separate structural rule.)
The elimination rule does allow expressions to use resources, since
we will use a call-by-value evaluation strategy that will evaluate the
two terms (using up their resource permissions) before substituting
a value into a lambda-term.

The rules(I and(E introduce and eliminate linear functions.
The introduction rule only permits the body to use the resources it
receives in the argument, since we need to ensure that the function
can be safely called multiple times. As a result, our typing rules do
not permit currying of linear functions (R( S ( A 6' R⊗S (
A), even though our underlying semantic model does permit it.
If our type theory had the tree-structured contexts of the logic of
bunched implications [20], then currying linear functions would
be syntactically expressible. However, type checking for bunched
calculi is still a difficult problem, and so in this work we restrict our
attention to a linear fragment.

The rules SI, SE-HEAD and SE-TAIL are the introduction and
elimination rules for streams. The syntactic form cons(t, e, u. e′)

takes three arguments: the expression t is a permission to create a
cons cell, the expression e is the head of the stream, and e′ is the
tail of the stream. The tail subterm e′ occurs underneath a binder
for the resource variable u′. The intuition is that each stream takes
up one unit of space at each successive time step, and u′ names
the permission t, after one time step has elapsed. This lets us pass
the permission to use t to functions on subsequent time steps in the
body of e′.

The rule SE-HEAD is straightforward: given a stream of type
S(A), we get a value of typeA, at the same time. The rule SE-TAIL
uses the form let x = tail(e) in e′ to bind the tail of e to the
variable x in e′. The tail of a stream at time i lives at time i+ 1 and
we choose a binding elimination form to maintain the invariant that
no term of time i contains any subterms at any earlier time.

The rules •I and •E introduce and eliminate delay terms. The
rule •I says that if e is a term of type A at time i + 1, then •e is a
term of type •A at time i. Like the other value introduction forms,
it prevents e from using any resources, so that e can be substituted
freely. The rule •E gives a binding elimination let •x = e in e′ for
the next-step modality. We use a binding elimination for the same
reason as in the rule SE-TAIL — we do not want terms of time i to
contain subterms of time < i.

The rule !I introduces a term of pure type !A. It does so by
typing the body of a term !A at type A with an empty resource and
shared context. Since e can only refer to hypotheses in Π, which
are pure, it follows that e itself must be pure. The rule !E types the
elimination form let !x = e in e′, which binds the value e to the
variable x in the pure context Π.

The rule⊗E is the elimination form for the tensor. Given a term
t of type R ⊗ S, the expression let 〈u, v〉 = t in e binds the
components to the variables u and v for the scope of e.

The rule LET introduces local let-bindings. The introduced
binding x = e must be at the same time i as the overall expression.

The rule FIX types fixed points fix x : A. e. The body e is typed
at time i with the recursive hypothesis x :i+1 A one tick later. The
one-step delay ensures the guardedness of recursive definitions.
Furthermore, the typing of the expression e is derived under an
empty resource context and with an empty shared context. Since
e may unfold multiple times, giving e resources would violate
linearity. Furthermore, the unrollings can happen at different times,
which means that using any variables in the shared context might
require buffering.

We now state the structural and substitution principles.

Lemma 1. (Admissibility of Weakening and Contraction)

1. If Θ ` t :i R then Θ,Θ′ ` t :i R .
2. If Θ; Π; Γ ` e :i A then Θ,Θ′; Π,Π′; Γ,Γ′ ` e :i A .
3. If Θ; Π; Γ, x :i A, y :i A ` e :i B then

Θ; Π; Γ, x :i A ` [x/y]e :i A .
4. If Θ; Π, x :i A, y :j A; Γ ` e :i B and i ≤ j then

Θ; Π; Γ, x :i A ` [x/y]e :i A .

Theorem 1. (Substitution) We have that:

1. If Θ ` t :i R and Θ′, u :i R ` t′ :j R
′, then Θ,Θ′ ` [t/u]t′ :j

R′ .
2. If Θ ` t :i R and Θ, u :i R; Π; Γ ` e :j A, then Θ,Θ′; Π; Γ `

[t/u]e :j A.
3. If ·; Π; · ` e :i A and Θ; Π, x :j A; Γ ` e′ :k B and i ≤ j,

then Θ; Π; Γ ` [e/x]e′ :k B .
4. If ·; Π; Γ ` e :i A and Θ; Π; Γ, x :i A ` e′ :j B , then

Θ; Π; Γ ` [e/x]e′ :j B .

Lemma 1 and Theorem 1 can be proved by structural inductions on
the type derivations in the respective premises.



Types
General A ::= P | A→ A | S(A) | • A

| !A | R( A
Resource R ::= ♦ | R⊗R

Terms
General e ::= x | λx : A. e | e e′ | λu : R. e | e t

| cons(t, e, u. e′) | head(e)
| let x = tail(e) in e′

| •e | let •x = e in e′

| !e | let !x = e in e′

| let 〈u, v〉 = t in e | fix x : A. e
| let x = e in e′

Resource t ::= u | 〈t, t′〉
Values v ::= λx : A. e | λu : R. e | !v | • e | x

Contexts
General Γ ::= · | Γ, x :i A
Pure Π ::= · | Π, x :i A
Resource Θ ::= · | Θ, u :i R

Evaluation Contexts C ::= � | let x = tail(y) in C
| let x = cons(u, v, u′. e) in C

Figure 2. Syntax

4. Operational Semantics
Theorem 1 formulates the substitution principles so that a general
expression e that replaces a variables has to be typed without
resource variables. That is, the substitution [e/x]e′ is only sound if
the substituted term e uses no resource variables. On the other hand,
the typing rule for cons cells demands the use of a resource, raising
the question: what is the operational semantics of cons cells?

A purely substitution-based operational semantics cannot be
correct, because it does not account for the sharing of cons cells.
Consider the following expression that is well-typed in our system.

let xs = cons(u, . . . ) in // u is the linear allocation permission
sum (xs , xs) v

Here, we construct xs once, but use it twice in the call to sum .
We cannot simply substitute the cons into the body of the let in our
system, as that would duplicate the linear variable u.

One approach for managing permissions is to introduce a heap
for cons cells, and refer to streams indirectly by reference. How-
ever, adding a heap moves us away from our functional intuitions
and makes it more difficult to connect to our denotational model.
Instead, we retain the idea of referring to streams by reference, but
use variables for the indirect reference, by defining evaluation to
put terms into let-normal form, such as:

let xs = cons(u1, e1 , v1 . e1 ’) in
let ys = cons(u2, e2 , v2 . e2 ’) in
let xs’ = tail (xs) in
. . .
let zs = cons(u3, e3 , v2 . e3 ’) in
let ys’ = tail (ys) in
v

Now, the nested let-bindings act as our heap. The value v may
contain many references to individual streams (such as xs), but
since each stream is bound only once, we can respect the linearity
constraint on the allocation permissions ui. (Taking the tail of
streams, as in the definition xs′ and ys′, also needs to be in let-
normal form, since we cannot cut out the tail of a cons cell until

Θ ` t :i R Θ; Π; Γ ` e :i A

u :i R ∈ Θ i ≤ j
Θ ` u :j R

RHYP

Θ ` t :i R Θ′ ` t′ :i R
′

Θ,Θ′ `
〈
t, t′
〉

:i R⊗R′
R⊗I

x :i A ∈ Π i ≤ j
Θ; Π; Γ ` x :j A

PHYP
x :i A ∈ Γ

Θ; Π; Γ ` x :i A
EHYP

·; Π; Γ, x :i A ` e :i B

Θ; Π; Γ ` λx : A. e :i A→ B
→I

Θ; Π; Γ ` e :i A→ B Θ′; Π; Γ ` e′ :i A

Θ,Θ′; Π; Γ ` e e′ :i B
→E

u :i R; Π; Γ ` e :i A

Θ; Π; Γ ` λu : R. e :i R( A
(I

Θ; Π; Γ ` e :i R( A Θ′ ` t :i R

Θ,Θ′; Π; Γ ` e t :i A
(E

Θ ` t :i ♦
Θ′; Π; Γ ` e :i A Θ′′, u :i+1 ♦; Π; Γ ` e′ :i+1 S(A)

Θ,Θ′,Θ′′; Π; Γ ` cons(t, e, u. e′) :i S(A)
SI

Θ; Π; Γ ` e :i S(A)

Θ; Π; Γ ` head(e) :i A
SE-HEAD

Θ; Π; Γ ` e :i S(A)
Θ′; Π; Γ, y :i+1 S(A) ` e′ :i B

Θ,Θ′; Π; Γ ` let y = tail(e) in e′ :i B
SE-TAIL

·; Π; Γ ` e :i+1 A

Θ; Π; Γ ` •e :i •A
•I

Θ; Π; Γ ` e :i •A Θ′; Π; Γ, x :i+1 A ` e′ :i B

Θ,Θ′; Π; Γ ` let •x = e in e′ :i B
•E

·; Π; · ` e :i A

Θ; Π; Γ ` !e :i !A
!I

Θ; Π; Γ ` e :i !A Θ′; Π, x :i A; Γ ` e′ :i B

Θ,Θ′; Π; Γ ` let !x = e in e′ :i B
!E

Θ ` t :i R⊗ S Θ′, u :i R, v :i S; Π; Γ ` e :i C

Θ,Θ′ ` let 〈u, v〉 = t in e :i C
⊗E

·; Π, x :i+1 A; · ` e :i A

Θ; Π; Γ ` fix x : A. e :i A
FIX

Θ; Π; Γ ` e :i A Θ′; Π; Γ, x :i A ` e′ :i B

Θ,Θ′; Π; Γ ` let x = e in e′ :i B
LET

Figure 3. Typing Rules



the next tick.) Using bindings to represent sharing will make it
easier to continue using our denotational model to interpret the
resulting terms. The scoping rules for let-binding also restrict us to
a DAG dependency structure, an invariant that imperative reactive
programming implementations based on dependency graphs must
go to some lengths to implement and maintain.

Let-normalizing cons cells has a second benefit: we can advance
the global clock by taking the tails of each cons cell in the context.

let xs = [u1/v1]e1’ in
let ys = [u2/v2]e2’ in
let xs’ = xs in
. . .
let zs = [u3/v3]e3’ in
let ys’ = ys in
v

Since we know where all of the cons cells are, we can rewrite them
to model the passage of time. Advancing the clock for tail expres-
sions simply drops the tail. Intuitively, yesterday they promised a
tail stream today, and after the step the binding they refer to con-
tains that tail stream.

Our operational semantics has two phases: the within-step oper-
ational semantics, which puts an expression into let-normal form,
and the step semantics, which advances the clock by one tick by
rewriting the cons cells to be their tails.

4.1 Within-Step Operational Semantics
The syntax of values and evaluation contexts is given in Figure 2
and the typing and auxilliary operations are given in Figure 5. We
define the reduction relation in Figure 6, in big-step style. We write
Σ Bi Ωi ` C a Ω′i for the evaluation-context typing judgement.
The context Σ is a resource context Θ that consists only of ♦
hypotheses. Similar, the contexts Ωi are restricted forms of general
contexts Γ consisting only of stream variables at time i or i + 1.
Both are defined in Figure 4. The judgement Σ Bi Ωi ` C a Ω′i
reads as “the evaluation context C creates the bindings in Ω′i, uses
the resources in Σ to do so, and may refer to the bindings in Ωi”.

The context-concatenation operation C ◦ C′ appends two eval-
uation contexts C and C′. It is defined in Figure 5 and satisfies the
following properties.

Lemma 2. (Context Concatenation) We have that:

• ◦ is associative with unit � .
• If Σ Bi Ωi ` C a Ω′i and Σ′ Bi Ωi,Ω

′
i ` C′ a Ω′′i , then

Σ,Σ′ Bi Ω ` C ◦ C′ a Ω′i,Ω
′′
i .

• If ΣBiΩi ` C1 ◦ C2 a Ω′i, then there exist Σ1,Σ2 and Ω1
i ,Ω

2
i

such that Σ = Σ1,Σ2 and Ω′i = Ω1
i ,Ω

2
i and Σ1 Bi Ωi ` C1 a

Ω1
i and Σ2 Bi Ωi,Ω

1
i ` C2 a Ω2

i .

These properties all follow from routine inductions.
In Figure 6, we give the context semantics, evaluating an expres-

sion in a context into a value in a larger context. Note that the value
forms for streams are variables, since we need to preserve shar-
ing for them, and we can use variable names as pointers into the
evaluation context. For most expression forms, the context seman-
tics works as expected; it evaluates each subexpression in context,
building a value in a larger context.

The rule CONSE is one of the two rules that extend the context.
It evaluates a cons cell, creates a binding to a fresh variable, and
returns the fresh variable as the value for that stream. The other rule
that extends the context is TAILE. It adds a binding to the context
naming the tail it constructs. The rule HEADE, on the other hand,
uses the C@x ⇒ v relation that is defined in Figure 5 to find the
head of the cons cell bound to the variable x.

The rule FIXE looks entirely conventional. We simply unfold
the fixed point and continue. We are nevertheless able to prove a

normalization result for the within-step operational semantics since
the fixed point substitutes for a variable at a future time.

We begin the metatheory with a type preservation proof.

Theorem 2. (Type Preservation) If we have that

ΣBi · ` C a Ωi, Σ′; ·; Ωi ` e :i A, and C[e] ⇓ C′′[v],

then there is an Ω′i and C′ such that

C′′ = C ◦ C′, Σ′ Bi Ωi ` C′ a Ω′i, and ·; ·; Ωi,Ω
′
i ` v :i A.

This theorem follows from a routine structural induction.
To show soundness, we will prove termination via a Kripke

logical relations argument. Since we evaluate terms e in contexts
C, and return a value v in some larger context C′, we take our
Kripke worlds to be the closed contexts. That is, worlds are those
C such that Σ Bi · ` C a Ωi. We define the ordering C′ v C on
worlds so that there should be some C1 such that C′ ≡ C ◦ C1.
Thus, a future world is one in which more bindings are available.

In Figure 4, we define the logical relation by induction on types.
There is one clause VA(C) for each type A, defining a subset of
the well-typed expressions of type A, closed save for the variables
bound by C. The expression relation EA(Σ;C) consists of the
expressions that use resources in Σ and evaluate to a value in
VA(C) in the context C.

The definition of the logical relation for streams states that a
variable x is in VS(A)(C) if x binds a cons cell with v in its head,
and v is in the A-relation. As expected, the relation for functions
consists of lambdas such that in any future world, applying a value
in theA-relation should result in a term in the expression relation at
type B. In the case of the delay modality we allow any well-typed
value, since the within-step evaluation relation does not evaluate
any terms at time i, and the body of a delay is at time i+ 1. The !A
relation consists of values !v such that v is in the A-relation in the
empty world �, since we want values of type !A to not depend on
the stream values C binds. Last, the relation at R( A consists of
those lambda-terms λu : R. e such that for any resource t of type
R in context Σ, the expression [t/u]e is in the expression relation
for A with resources Σ.

To prove the fundamental property, we define some auxilliary
predicates in Figure 4. The predicate Good(Ωi) picks out those
contexts in which all of the bindings in Ωi at time i contain true
streams, according to the stream relation. The V(Γ≥i;C) and
V!(Π≥i) sets extend the value relation to substitutions rather than
single values, and Σ ` ϑ : Θ defines linear substitutions. The no-
tations Π≥i and Γ≥i mean contexts where every variable is at time
i or later. In these substitutions, we only require substitutands for
variables at time i to lie in the logical relation, and require only
well-typededness for other variables, since within-step evaluation
only affects the current tick.

Theorem 3. (Fundamental Property of Logical Relations) Suppose
Θ; Π≥i; Ωi,Γ≥i ` e :i A. Furthermore, suppose that C ∈
Good(Ω) and Σ ` ϑ : Θ and π ∈ V!(Π≥i) and γ ∈ V(Γ≥i;C).
Then (ϑ ◦ π ◦ γ)(e) ∈ EA(Σ;C).

As is usual for logical relations, this theorem follows from a struc-
tural induction on the derivation of e : A.

The fundamental property suffices to prove normalization, once
we observe that typing derivations satisfy the following history
independence property:

Lemma 3. (History Independence)

• If Θ; Π; Γ, x :i A ` e :j B and i < j, then Θ; Π; Γ ` e :j B.
• If Θ; Π, x :i A; Γ ` e :j B and i < j, then Θ; Π, x :j A; Γ `
e :j B.
• If Θ, u :i R; Π; Γ ` e :j B and i < j, then Θ, u :j R; Π; Γ `
e :j B.



Parameter of the logical relation: i

Base Contexts Σ ::= · | Σ, u :0 ♦
Ωi ::= · | Ωi, x :i S(A) | Ωi, x :i+1 S(A)

VA(ΣBi · ` C a Ωi) ⊆ {v | ·; ·; Ωi ` v :i A}

EA(Σ; Σ′ Bi · ` C a Ωi) ⊆ {e | Σ; ·; Ωi ` e :i A}

VS(A)(C) = {x | ∃v. C@x⇒ v ∧ v ∈ VA(C)}
VA→B(C) =
{λx : A. e | ∀C′, v ∈ VA(C ◦ C′). [v/x]e ∈ EB(·;C ◦ C′)}
V•A(ΣBi · ` C a Ωi) =
{•e | ·; ·; Ωi ` •e :i •A}

V!A(C) =
{!v | v ∈ VA(�)}

VR(A(C) =
{λu :R. e | ∀C′,Σ, t. Σ ` t :i R⇒ [t/u]e ∈ EA(Σ;C ◦ C′)}

EA(Σ;C) =
{e : A | ∃C′, v. C[e] ⇓ (C ◦ C′)[v] ∧ v ∈ VA(C ◦ C′)}

Good(Ωi) =
{
C
∣∣ ∀x :i S(A) ∈ Ωi. x ∈ VS(A)(C)

}
V(·;C) = {·}
V(Γ, x :i A;C) =
{(γ, [v/x]) | γ ∈ V(Γ;C) ∧ v ∈ VA(C)}

V(Γ, x :j>i A; ΣBi · ` C a Ωi) =
{(γ, [e/x]) | γ ∈ V(Γ;C) ∧ ·; ·; Ωi ` e :j A}

V!(·) = {·}
V!(Π, x :i A) = {(γ, [v/x]) | γ ∈ V!(Γ) ∧ v ∈ VA(�)}
V!(Π, x :j>i A) = {(γ, [e/x]) | γ ∈ V!(Γ) ∧ ·; ·; · ` e :j A}

Σ ` ϑ : Θ

· ` · : ·
Σ ` t :i R Σ′ ` ϑ : Θ

Σ,Σ′ ` (ϑ, [t/u]) : (Θ, u :i R)

Figure 4. Logical Relation for Termination

These properties are all proved by structural induction.
The syntax ensures expressions at time j > i do not depend on

a variable of time i. As a result, we only need to consider contexts
in which Π and Γ contain variables no younger than the current
time. Normalization immediately follows:

Corollary 1. (Normalization) Suppose Σ; ·; · ` e :i A. Then
�[e] ⇓ C[v].

Finally note that we are considering normalization of open terms,
since we have no constants of type ♦. The non-existence of such
constants is, of course, what ensures that the language respects
space bounds.

Theorem 4. (Space Bounded Evaluation) Suppose Σ; ·; · ` e :i A
and �[e] ⇓ C[v]. Then the size of C — the number of cons cells it
binds — is bounded by the size of Σ.

Given type preservation, this theorem is straightforward. Each cons
cell in the context needs a distinct resource variable, so the number
of cons cells in C is clearly bounded by the size of Σ.

4.2 Next-Step Operational Semantics
Recall that when we advance time, we want to replace the tails
of stream variables with just the variable. We define the necessary
operations in Figure 7. To tick the clock, we define the relation
C[x]  e, which takes a stream in context C[x] and constructs
a new expression e by cutting the tails of the streams in C, and
sending each tail expressions tail(y) in C to y. This models the
effect of advancing time by one tick, so that all the streams in the
expression context become their tails, and all references to tails
become references to the updated stream variable.

To show the type-correctness of this operation, we introduce the
Step(Ωi) operation, which tells us how the typing changes: it sends
all streams at time i to time i+ 1 (and leaves streams at time i+ 1
alone). Now, we can prove the following type soundness theorem.

Theorem 5. (Ticking the Clock) If Σ; ·; Ωi ` C[x] :i S(A) and
C[x] e, then Σ; ·; Step(Ωi) ` e :i+1 S(A).

This theorem follows from a routine structural induction, and
establishes that our semantics is space-bounded. Since Σ is the
same before and after the tick fromC[x] e, it follows that evalu-
ating e will never construct more streams than Σ permits. Together
with the within-step type preservation property, our clock-ticking
theorem gives a (purely syntactic) proof of the space-boundedness
of our language.

However, while our definition of advancing the clock is intu-
itively plausible, and even makes proving memory safety easy, it
is still unclear in what sense it is correct. To illustrate the issues
involved, observe that our language contains lambda-expressions
(which may contain free variable references), and that the tick op-
erator essentially imperatively updates stream values. It is impor-
tant to prove that ticking the clock cannot change the meaning of a
lambda-term in a way which violates the purely functional charac-
ter of functional reactive programming.

To show this, we will first give a denotational semantics of
stream programs. Then we will show that if C[x]  e, then the
meaning of e does in fact equal the tail of the denotational meaning
of C[x], showing that ticking the clock really does advance the
clock in the way we expect. This is morally a standard adequacy
proof, applied to an unusual operational semantics.

5. Semantic Intuitions
5.1 Causality and Ultrametric Spaces
The intuition underpinning reactive programming is the stream
transformer, a function which takes a stream of inputs and gen-
erates a stream of outputs. But not all functions on streams are im-
plementable reactive programs — in order to be implementable at
all, reactive programs must respect the causality condition. That is,
the first n outputs of a stream function may depend on at most its
first n inputs. Writing bxscn for the n-element prefix of the stream
xs, we formalize causality as follows:

Definition 1. (Causality) A stream function f : Aω → Bω is
causal, when for all n and all streams as and as′, we have that if
bascn = bas′cn then bf ascn = bf as′cn.

Furthermore, reactive programs often define streams by feed-
back. If a stream transformer can produce the first value of its out-
put without looking at its input, then we can constructing a fixed
point via feedback, taking the n-th output and supplying it as the
input at time n+ 1. So as long as we can generate more than n out-
puts from the first n inputs, we can find a fixed point. Formalizing
this gives us a definition of guardedness for defining fixed points:

Definition 2. (Guardedness) A function f : Aω → Bω is guarded,
when there exists k > 0 such that for all n and all streams as and
as′, if bascn = bas′cn then bf ascn+k = bf as′cn+k.



ΣBi Ωi ` C a Ω′i

ΣBi Ωi ` � a Ωi
EXTNIL

·; ·; Ωi ` v :i A Σ′, u′ :i+1 ♦; ·; Ωi ` e :i+1 S(A)
ΣBi Ωi, x :i S(A) ` C a Ω′i

Σ, u :i ♦,Σ
′ Bi Ωi `

let x = cons(u, v, u′. e) in C a Ω′i, x :i S(A)

EXTCONS

y :i S(A) ∈ Ωi ΣBi Ωi, x :i+1 S(A) ` C a Ω′i

ΣBi Ωi ` let x = tail(y) in C a Ω′i, x :i+1 S(A)
EXTTAIL

C ◦ C′

� ◦ C′ , C′
(let x = tail(y) in C) ◦ C′ , let x = tail(y) in (C ◦ C′)
(let x = cons(u, v, u′. e) in C) ◦ C′

, let x = cons(u, v, u′. e) in (C ◦ C′)

C@x⇒ v

C ≡ C′ ◦ let y = tail(z) in � C′@x⇒ v

C@x⇒ v
LOOKUPTAIL

C ≡ C′ ◦ let y = cons(u, v′, u′. e) in �
C′@x⇒ v

C@x⇒ v
LOOKUPNEXT

C ≡ C′ ◦ let x = cons(u, v, u′. e) in �

C@x⇒ v
LOOKUPCURR

Figure 5. Context Typing and Operations

However, these definitions apply only to stream functions, and
real programs need more types than just the stream type. So we
need generalisations of causality which work at other types such as
streams of streams and higher-order functions. To generalize these
definitions, we follow our earlier work [13] by moving to a category
of metric spaces. A complete 1-bounded bisected ultrametric space
A (which we will simply call “ultrametric space”) is a pair (|A|, d),
where |A| is a set and d ∈ |A|× |A| → [0, 1] is a distance function
satisfying the following properties:

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ max(d(x, y), d(y, z))

4. d(x, y) = 0 or 2−n for some n

5. All Cauchy sequences have limits

We take the morphisms between ultrametric spaces to be the non-
expansive maps f : A → B. These are the set-theoretic functions
f ∈ |A| → |B| such that:

For all a, a′ ∈ |A|, we have dB(f a, f a′) ≤ dA(a, a′)

That is, a morphism between A and B is a function f such that it
takes any two points in A to two points in B that are at least as
close — it is a non-distance-increasing function.

C[e] ⇓ C′[v]

C[v] ⇓ C[v]
VALE

C[e] ⇓ C′[λx : A. e′′]
C′[e′] ⇓ C′′[v] C′′[[v/x]e′′] ⇓ C′′′[v′]

C[e e′] ⇓ C′′′[v′]
APPE

C[e] ⇓ C′[λu : R. e′] C′[[t/u]e′] ⇓ C′′[v]

C[e t] ⇓ C′′[v]
LAPPE

C[e] ⇓ C′[v]
x fresh C′′ = C′ ◦ let x = cons(t, v, u. e′) in �

C[cons(t, e, u. e′)] ⇓ C′′[x]
CONSE

C[e] ⇓ C′[x] C′@x⇒ cons(t, v, u. e)

C[head(e)] ⇓ C′[v]
HEADE

C[e] ⇓ C′[y] (C′ ◦ let x = tail(y) in �)[e′] ⇓ C′′[v]

C[let x = tail(e) in e′] ⇓ C′′[v]
TAILE

C[e] ⇓ C′[•e1] C′[[e1/x]e′] ⇓ C′′[v′′]
C[let •x = e in e′] ⇓ C′′[v′′]

•E

C[[fix x : A. e/x]e] ⇓ C′[v]

C[fix x : A. e] ⇓ C′[v]
FIXE

C[e] ⇓ C′[v] C′[[v/x]e′] ⇓ C′′[v′′]
C[let x = e in e′] ⇓ C′′[v′′]

LETE

C[[t1/u, t2/v]e′] ⇓ C′[v′]
C[let 〈u, v〉 = 〈t1, t2〉 in e′] ⇓ C′[v′]

⊗E
C[e] ⇓ C′[v]

C[!e] ⇓ C′[!v]
!I

C[e] ⇓ C′[!v] C′[[v/x]e′] ⇓ C′′[v′′]
C[let !x = e in e′] ⇓ C′′[v′′]

!E

Figure 6. Within-Step Operational Semantics

The category of ultrametric spaces is useful for two reasons.
First, the causal stream functions are exactly the nonexpansive
maps between spaces of streams with the Cantor metric (i.e., the
distance between two streams is 2−n, where n is the first position
at which they disagree). Since the category of 1-bounded complete
ultrametric spaces is Cartesian closed, we have our higher-type
generalisation of causality — one which would be very difficult
to find from purely operational considerations. Second, nonempty
metric spaces satisfy Banach’s theorem, which lets us define fixed
points at arbitrary types:

Proposition 1. (Banach’s Contraction Map Theorem) If A is a
nonempty complete metric space, and f : A → A is a strictly
contractive function, then f has a unique fixed point.

5.2 Modeling Space Bounds with Length Spaces
As noted earlier, simple casuality still allows undesirable functions.
Requiring a stream function to depend only on its history does not
prevent it from depending on its whole history.



C[z] e

�[z] x

C[z] e

let x = tail(y) in C[z] let x = y in e

C[z] e

let x = cons(u, v, u′. e′) in C[z] let x = [u/u′]e′ in e

Step(Ωi)

Step(·) = ·
Step(Ωi, x :i S(A)) = Step(Ωi), x :i+1 S(A)
Step(Ωi, x :i+1 S(A)) = Step(Ωi), x :i+1 S(A)

StepΩi
(ω) ∈ [[Ωi]]i → [[Step(Ωi)]]i

Step·(〈〉) = 〈〉
StepΩi,x:iS(A)(ω, vs) = (StepΩi

(ω), tail(vs))
StepΩi,x:i+1S(A)(ω, vs) = (StepΩi

(ω), vs)

Figure 7. The Next Step Operator

To deal with this issue, we adapt the length spaces of Hofmann
[10], which give a model of space-bounded computation. The idea
behind this model is to start with a partially ordered resource
monoid R representing space resources (N in the original work).
One then constructs the category of length spaces as follows.

A length space A is a pair (|A|, σA : |A| → R), consisting of
a set of elements |A| and a size function σ which assigns a size
σA(a) to each element a ∈ |A|. A morphism of length spaces
f : A → B is a non-size-increasing function. That is, it is a set-
theoretic function f ∈ |A| → |B| with the property that:

∀a ∈ |A|. σB(f a) ≤ σA(a)

The programming language intuition is that a morphism A→ B is
a term of typeB with a free variable inA, and so a term cannot use
more memory than it receives from its environment.

To model the permission to allocate, we can define a length
space of type ♦ , (1, λ〈〉. 1). The space ♦ is uninteresting
computationally (its set only has the unit in it), but it brings a
permission to allocate with it. So we can model computations
which do allocation by giving them permission elements, thereby
controlling the allocation performed.

6. The Denotational Semantics
6.1 The Resource Model
In the synchronous dataflow model, there is a global, ambient
notion of time. Furthermore, higher-order reactive programs can
create a dataflow graph dynamically, by waiting for an event before
choosing to build cons cells to do some computation. So we need a
resource structure capable of modelling space usage over time.

Therefore we take resources to be the monoidal lattice R =
(Time → Space,⊥,max,>,min, 0,⊕,≤), where Time = N,
and Space = N]{∞} (the vertical natural numbers with a topmost
element). Intuitively, time is discrete, and measured in ticks. Space
counts the number of cons cells used in the program, and may

be infinite (obviously, we cannot implement such programs). We
define the lattice operations as follows:

1. ⊥ = λk. 0

2. > = λk.∞
3. 0 = λk. 0

4. max(c, d) = λk. max(ck, dk)

5. min(c, d) = λk. min(ck, dk)

6. c⊕ d = λk. ck + dk

7. c ≤ d iff ∀k ∈ Time, we have ck ≤ dk
Essentially, we lift the lattice structure of the vertical natural num-
bers pointwise across time (with (0,+) as the monoidal structure),
so that a resource c ∈ R describes the number of cons cells that are
used at each time step.

We then turn R into an ultrametric space by equipping it with
the Cantor metric:

dR(c, d) = 2−n where n = min {k ∈ Time | ck 6= dk }

6.2 The Category of Complete Ultrametric Length Spaces
A complete 1-bounded bisected ultrametric length space A (which
we will gloss as “metric length space”) is a tuple (|A|, d, σ), where
(|A|, d) is a complete 1-bounded bisected ultrametric space, and
σA : |A| → R is a size function giving each element of |A| a size
drawn from R.

Furthermore, the size function σ : |A| → R must be a nonex-
pansive map between (|A|, d) and (R, dR). Nonexpansiveness en-
sures that we cannot tell if the memory usage requirements of two
elements of |A| differs until we know that the elements themselves
differ. In addition to being intuitively reasonable, this requirement
ensures that limits of Cauchy sequences will be well-behaved with
respect to size, which we need to ensure the completeness of the
size-0 subspace of A that we use to interpret !A.

The morphisms of this category are the nonexpansive size-
preserving maps f : A→ B, which are the set-theoretic functions
f ∈ |A| → |B| such that:

• For all a, a′ ∈ |A|, we have dB(f a, f a′) ≤ dA(a, a′)

• For all a ∈ |A|, we have σB(f a) ≤ σA(a)

That is, the morphisms we consider are the functions which are
both causal and space-bounded.

6.3 Categorical Structure
Metric length spaces and nonexpansive size-preserving maps form
a category that we use to interpret our programming language. First,
it forms an intuitionistic bicartesian BI category, which is a doubly-
closed category with both cartesian and monoidal closed structure,
as well as supporting coproduct structure. Second, this category
also models the resource types ♦ of Hofmann [10], as well as a
resource-freedom modality !A, which is comonadic in the usual
fashion of linear logic. Third, it supports a version of the delay
modality of our earlier work [13], which lets us interpret guarded
recursion via Banach’s fixed point theorem.

We give the definitions of all of these objects below. In Figure 9,
we define the distance and size functions, and in Figure 8, we give
the natural transformations associated with the objects.

• 1 = ({∗}, d1, σ1)

• A+B = (|A|+ |B|, dA+B , σA+B)

• A×B = (|A| × |B|, dA×B , σA×B)

• A⇒ B = (|A| → |B|, dA→B , σA→B)

• A+B = (|A|+ |B|, dA+B , σA+B



• A ? B = (|A| × |B|, dA?B , σA?B)

• A−?B = (|A| → |B|, dA−?B , σA−?B)

• •A = (|A|, d•A, σ•A)

• S(A) = (|A|ω, dS(A), σS(A))

• !A = ({a ∈ A | σA(a) = 0} , σ!A)

• ♦ = ({∗}, d1, σ♦)

• � = ({∗}, d1, σ�)

The construction of Cartesian and monoidal products closely fol-
lows that of Hofmann [10]. The Cartesian product is a “sharing
product”, in which the associated resources are available to both
components (this explains the use of max), and the monoidal prod-
uct is a “disjoint product”, in which the resources are divided be-
tween the two components (explaining the use of⊕ in the size func-
tion). The best intuition for the closed structure comes from imple-
menting first-class functions as closures: the monoidal exponential
A −?B takes an argument which does not share with the captured
environment, and the Cartesian exponential A⇒ B which does.

A difference between our work and earlier work on length
spaces is our heavy use of the category’s Cartesian closed structure.
Indeed, dal Lago and Hofmann [15] use a realizability model to re-
move the Cartesian closed structure from their semantics — they
wished to prevent duplicated variables in lambda-terms from en-
abling large increases in the size of a lambda-term under reduction,
since this makes establishing strict resource bounds more difficult.
As we only want to track the allocation of cells, but wish to allow
free sharing otherwise, the CCC structure takes on a central role in
our model.

Our next-step modality’s metric d•A is the same as in Krish-
naswami and Benton [13], but the size function σ•A (which shifts
all sizes 1 timestep into the future relative to σA), means that
•(A→ B) 6' •A → •B. This breaks with Krishnaswami and
Benton [13] and Nakano [18], significantly changing the elimina-
tion rules.

As mentioned earlier, this limitation is intentional: we do not
want delay operators at types for which delay would be expen-
sive. Our semantics rules out such maps with the size function
for streams plus the requirement that morphisms are non-size-
increasing. The size function for streams gives a size for the stream
as 1 to account for the size of the stream itself, plus the maxi-
mum space usage of all the values the stream takes on. Intuitively, a
stream can seen as taking the space for an infinitary Cartesian prod-
uct A× •A× •2A× . . ., plus a constant for the stream cell itself.
This is the only place where we increment the size of a value rel-
ative to its components, which justifies the idea that sizes measure
the number of cons cells. Since delaying a stream shifts its time us-
age by one step, we have no a priori reason to expect that a delay
map will exist at all types.

However, for types such as N, !A, and ♦, there do exist maps
A→ •A, which is why time subsumption is justified for the linear
and pure contexts. Furthermore, all types whose values are all of
size zero have maps A →!A. As a result, we can introduce con-
stants corresponding to such maps for these types, allowing types
such as numbers and booleans be promoted to the pure fragment.
(In fact, our implementation applies these coercions implicitly, pro-
viding a slightly friendlier syntax than presented here.)

Our semantic model contains a space ♦ to interpret the resource
type ♦, which gives 1 unit of space at every time tick. Our model
uses the additional metric length space �, which gives 1 unit of
space at time 0, and no units of space at any other time. This lets
us give a nice type to cons : � ? (A× •S(A))→ S(A). Note that
the type A×•S(A) lacks the space to form a stream — we need 1
unit of space at time 0, which neither theA nor the •S(A) provide.

1 : A→ I = λa. ∗
π1 : A×B → A = λ(a, b). a
π2 : A×B → B = λ(a, b). b
〈f, g〉 : A→ B × C = λa. (f a, g a)

where f : A→ B, g : A→ C
λ 〈f〉 : A→ B ⇒ C = λa. λb. f(a, b)

where f : A×B → C
eval : (A⇒ B)×A→ B = λ(f, a). f a
f ? g : A ? B → C ? D = λ(a, b). (f a, g b)

where f : A→ C, g : B → D
α : (A ? B) ? C → A ? (B ? C) = λ((a, b), c).(a, (b, c))
α−1 : A ? (B ? C)→ (A ? B) ? C = λ(a, (b, c)).((a, b), c)
γ : A ? B → B ? A = λ(a, b). (b, a)
ρ : A ? I → A = λ(a, ∗). a
ρ−1 : A ? I → A = λa. (a, ∗)
λ̂ 〈f〉 : A→ B −?C = λa. λb. f(a, b)

where f : A ? B → C
eval−? : (A−?B) ? A→ B = λ(f, a). f a
ε : !A→ A = λa. a
f† : !A→!B = λa. f a

where f :!A→ B
!f : !A→!B = λa. f a

where f : A→ B
δ : !A→ •!A = λa. a
•f : •A→ •B = λa. f a

where f : A→ B
η : ! • A→ •!A = λa. a
η−1 : •!A→ •A = λa. a
head : S(A)→ A = λ(x · xs). x
tail : S(A)→ •S(A) = λ(x · xs). xs
cons : � ? (A× •S(A)→ S(A) = λ(∗, (x, xs)). x · xs
split : ♦→ � ? •♦ = λ∗. (∗, ∗)
split−1 : � ? •♦→ ♦ = λ(∗, ∗). ∗
fix : !(•!A⇒!A)→!A = λf. µ(f)
ι : •A× •B → •(A×B) = λ(a, b). (a, b)
ι−1 : •(A×B)→ •A× •B = λ(a, b). (a, b)
ι? : •A ? •B → •(A ? B) = λ(a, b). (a, b)
ι−1
? : •(A ? B)→ •A ? •B = λ(a, b). (a, b)
ξ : A ? B → A×B = λ(a, b). (a, b)
σ : A×!B → A?!B = λ(a, b). (a, b)
ψ : !(A×B)→!A?!B = λ(a, b). (a, b)
ψ−1 : !A?!B →!(A×B) = λ(a, b). (a, b)

Figure 8. Categorical Combinators

6.4 Denotational Interpretation
We give the interpretation of types and contexts in Figure 10. The
interpretation of types offers no surprises, but the interpretation
of contexts is relative to the current time. The interpretations of
Θ and ∆ keeps hypotheses at times earlier than the current time,
but Γ simply drops all earlier hypotheses. This corresponds to the
difference between the type rules RHYP and PHYP on the one
hand, and the rule EHYP on the other. In all three cases, future
hypotheses are interpreted with the delay modality.

In Figure 11, we give a time-indexed interpretation function for
expressions, [[Θ; Π; Γ ` e :i A]]i which has the type [[Θ]]i?![[Π]]i ?
[[Γ]]i → [[A]]. The interpretation of •I makes use of the functoriality
of •A to interpret the body of the delay in the future, and then bring
it back to the past, with the necessary action on contexts defined in
Figure 10. The other rules are as expected, with the resource context
managed in a single-threaded way and the other contexts duplicated
freely. We can then show that this semantics is sound with respect
to substitution.



dA+B = λ(v, v′).

 dA(x, x′) if v = inl x ∧ v′ = inl x′

dB(y, y′) if v = inr y ∧ v′ = inr y′

1 otherwise
d1 = λ(〈〉 , 〈〉). 0
dA×B = λ((a, b), (a′, b′)). max(dA(a, a′), dB(b, b′))
dA?B = λ((a, b), (a′, b′)). max(dA(a, a′), dB(b, b′))
dA⇒B = λ(f, g). max {dB(f a, g a) | a ∈ |A| }
dA−?B = λ(f, g). max {dB(f a, g a) | a ∈ |A| }
d•A = λ(a, a′). 1

2
dA(a, a′)

dS(A) = λ(xs, ys). max
{

2−n · dA(xsn, ysn) | n ∈ N
}

d!A = λ(a, a′). dA(a, a′)
d♦ = λ(〈〉 , 〈〉). 0
d� = λ(〈〉 , 〈〉). 0

σA+B = λv.

{
σA(a) if v = inl a
σB(b) if v = inr b

σ1 = λ〈〉. 0
σA×B = λ(a, b). max(σA(a), σB(b))
σA?B = λ(a, b). σA(a)⊕ σB(b)
σA⇒B = λf. min {k ∈ R | ∀a ∈ |A|. σB(f a) ≤ max(k, σA(a))}
σA−?B = λf. min {k ∈ R | ∀a ∈ |A|. σB(f a) ≤ k ⊕ σA(a)}
σ•A = •σA
σS(A) = λxs. λk. 1⊕max

{
(•iσA)(xsi) | i ∈ Time

}
σ♦ = λ〈〉. λk. 1
σ� = λ〈〉. λk. if k = 0 then 1 else 0
σ!A = λa. 0

•σ = λa. λk. if k = 0 then 0 else σ(a)(k − 1)

Figure 9. The Distance and Size Functions

Theorem 6. (Semantic Substitution) Suppose θ ∈ [[Θ]]i, θ′ ∈
[[Θ′]]i, π ∈ [[Π]]i and γ ∈ [[Γ]]i. Then

1. If Θ ` t :i R and Θ′, u :i R ` t′ :j R
′, then

[[Θ,Θ′ ` [t/u]t′ :j R
′]] (θ, θ′) is equal to

[[Θ′, u :i R ` t′ :j R
′]] (θ′, [[Θ ` t :i R]] θ).

2. If Θ ` t :i R and Θ′, u :i R; Π; Γ ` e :j A, then
[[Θ,Θ′; Π; Γ ` [t/u]e :j A]] ((θ, θ′), π, γ) equals
[[Θ′, u :i R; Π; Γ ` e :j A]] ((θ′, [[Θ ` t :i R]] θ), π, γ)

3. If ·; Π; · ` e :i A and Θ; Π, x :j A; Γ ` e′ :k B and i ≤ j,
then
[[Θ; Π; Γ ` [e/x]e′ :k B]] (θ, π, γ) equals
[[Θ; Π, x :j A; Γ ` e′ :k B]] (θ, (π, [[·; Π; · ` e :i A]] (〈〉 , π, 〈〉)), γ)

4. If ·; Π; Γ ` e :i A and Θ; Π; Γ, x :i A ` e′ :j B, then
Θ; Π; Γ ` [e/x]e′ :j B equals
[[Θ; Π; Γ, x :i A ` e′ :j B]] (θ, π, (γ, [[·; Π; Γ ` e :i A]] (〈〉 , π, γ)))

These theorems follow from structural induction on the typing
derivation of the term being substituted into.

Figure 12, gives the interpretation of contexts, using the ex-
pression semantics to define the meaning of each stream bound by
the context. This interpretation is sound with respect to the “hole-
filling” of terms in contexts:

Theorem 7. (Context Soundness) If Σ Bi Ωi ` C a Ω′i and
Σ′; ·; Ωi,Ω

′
i ` e :i A and σ ∈ [[Σ]]i and σ′ ∈ [[Σ′]]i and

ω ∈ [[Ωi]]i, then [[Σ,Σ′; ·; Ωi ` C[e] :i A]] ((σ, σ′), ω) is equal to
[[Σ′; ·; Ωi,Ω

′
i ` e :i A]] (σ′, 〈〉 , (ω, [[ΣBi Ωi ` C a Ω′i]] (σ, ω)).

Now we can show that the within-step operational semantics is
sound with respect to the denotational model:

Theorem 8. (Soundness of Within-Step Semantics) Let Σ; ·; · `
C[e] :i A and C[e] ⇓ C′[v]. Then [[Σ; ·; · ` C[e] :i A]] equals
[[Σ; ·; · ` C′[v] :i A]].

Finally, we can show that advancing the clock has the expected
semantics:

Theorem 9. (Soundness of Advancing the Clock) Let Σ; ·; Ωi `
C[x] :i S(A), and σ ∈ [[Σ]]i and ω ∈ [[Ωi]]i, and suppose
C[x] e. Then we have that

tail([[Σ; ·; Ωi ` C[x] :i S(A)]] (σ, 〈〉 , ω))

is equal to •[[Σ; ·; Step(Ωi) ` e :i+1S(A)]](σ′,〈〉, ω′)) where σ′ =
NextiΣ σ and ω′ = StepΩi

(ω).

This theorem connects the operation of stepping the heap with
the denotational interpretation — each time we advance the clock,
each stream in a closed contextC will become its tail. So advancing
the clock successively enumerates the elements of the stream.

7. Discussion
In this paper, we have introduced an expressive type system for
writing stream programs, and given an operational semantics re-
specting the space-efficiency claims of the type system. Our seman-
tic model is one of the primary contributions of this paper, since it
lets us reason about space usage without surrendering the sets-and-
functions view of FRP. Also, our model contains many operations
which are not currently expressible in our language: for example,
in the future we might want richer types in the affine context and
function space, so that operations like in-place map can be typed
!(A→ B)→ S(A)−?S(B).

Our language contains an explicit delay modality (as in logi-
cal presentations of step-indexing [2, 7, 18]) and an update-based
operational semantics. The reader may find it surprising that, al-
though our operational semantics does make use of a form of mu-
table higher-order store, the logical relation we give is not step-
indexed. The reason this is possible is essentially that FRP is a syn-
chronous model of computation, in which all the updates happen in
a separate phase from ordinary functional evaluation. This explains
why we were able to present a two-phase semantics, and since no
heap modifications take place during ticks, there is no need for step-
indexing.

Wan et al. [25] introduced real-time FRP; a restricted subset
of FRP sharing many of the same design choices of synchronous
dataflow languages. It is essentially first-order (streams can carry
general values of the host language, but these values can not them-
selves refer to streams), and makes use of a novel continuation typ-
ing to ensure that all recursive signals are tail-recursive. As a result,
the language requires only constant-stack and constant-time FRP
reductions. Event-driven FRP [26] is similar, but relaxes FRP’s tim-
ing constraints by dropping the global clock.

None of our examples using higher-order functions or nested
streams can be programmed in real-time FRP, which is carefully
engineered to avoid exposing a first-class behaviour type, and so
cannot express higher-order operations on streams. All productive
real-time FRP programs can be written in our language, since
we can define all of real-time FRP’s stream operators (switching,
delays, multimodal recursion) as ordinary user-level programs.

Liu et al.’s causal commutative arrows [17] are another attempt
to control the memory and space usage of reactive programs. This
work takes advantage of the fact that pure arrowized FRP (i.e.,
without switching) builds fixed dataflow graphs, allowing programs
to be optimized into single-loop code via a transformation reminis-
cent of the Bohm-Jacopini theorem. Our language does not seem
to support such an elegant normal form, because of the presence



[[A→ B]] = [[A]] ⇒ [[B]]
[[S(A)]] = S([[A]])
[[•A]] = •[[A]]
[[!A]] = ![[A]]
[[R( A]] = [[R]] −?[[A]]
[[♦]] = ♦
[[R⊗ S]] = [[R]] ? [[S]]

[[Θ]]i [[Π]]i [[Γ]]i

[[Θ]]i ∈ Obj
[[·]]i = I
[[Θ, x :n R]]i = [[Θ]]i ? •n−i[[R]] when n ≥ i
[[Θ, x :n R]]i = [[Θ]]i ? [[R]] when n < i

[[Π]]i ∈ Obj
[[·]]i = I
[[Π, x :n A]]i = [[Π]]i × •n−i[[A]] when n ≥ i
[[Π, x :n A]]i = [[Π]]i × [[A]] when n < i

[[Γ]]i ∈ Obj
[[·]]i = I
[[Γ, x :n A]]i = [[Γ]]i × •n−i[[A]] when n ≥ i
[[Γ, x :n A]]i = [[Γ]]i when n < i

NextiΘ ∈ [[Θ]]i → •[[Θ]]i+1 NextiΠ ∈ [[Π]]i → •[[Π]]i+1

NextiΓ ∈ [[Γ]]i → •[[Γ]]i+1

Nexti· 〈〉 = 〈〉
NextiΘ,x:nR (θ, r) = (NextiΘ θ, δ(r)) if n ≤ i
NextiΘ,x:nR (θ, r) = (NextiΘ θ, r) if n > i

Nexti· 〈〉 = 〈〉
NextiΠ,x:nA(π, v) = (NextiΠ π, δ(v)) if n ≤ i
NextiΠ,x:nA(π, v) = (NextiΠ π, v) if n > i

Nexti· 〈〉 = 〈〉
NextiΓ,x:nA(γ, v) = NextiΓ if n ≤ i
NextiΓ,x:nA(γ, v) = (NextiΓ γ, v) if n > i

Figure 10. Interpretation of Types and Contexts

of higher-order streams and functions, but it would nonetheless be
interesting to investigate related optimizations in our setting.

Sculthorpe and Nilsson’s work [22] on safe functional program-
ming uses Agda’s types to ensure productivity, by having depen-
dent types track whether signal processors have delays before per-
mitting feedback. Our guardedness modality is simpler but less
flexible, since it cannot depend on the values a signal produces.
However, the advantage of our modality is that it works smoothly
at higher-order.

Cooper and Krishnamurthi [6] described the FrTime system,
which embeds FRP into the PLT Scheme (now Racket) implemen-
tation. One commonality between FrTime and our work is that
switching does not come from special primitives, but from or-
dinary conditionals and case statements. Unlike our denotational
model, Cooper’s operational semantics [5] exemplifies the “imper-
ative FRP” tradition, in which reactivity is modelled explicitly as

[[Θ ` t :i R]]i ∈ [[Θ]]i → [[R]]

[[Θ; Π; Γ ` e :i A]]i ∈ [[Θ]]i?![[Π]]i ? [[Γ]]i → [[A]]

[[Θ ` u :j R]]i θ = θ(u)
[[Θ,Θ′ ` (t, t′) :j R⊗ S]]i (θ, θ′) = ([[t]] θ, [[t′]] θ′)

[[Θ; Π; Γ ` x :j A]]i (θ, π, γ) = π(x) (if x :i A ∈ Π)

[[Θ; Π; Γ ` x :i A]]i (θ, π, γ) = γ(x) (if x :i A ∈ Γ)

[[Θ; Π; Γ ` λx : A. e :i A→ B]]i (θ, π, γ) =
λv. [[·; Π; Γ, x :i A ` e :i B]]i (〈〉 , π, (γ, v))

[[Θ,Θ′; Π; Γ ` e e′ :i B]]i ((θ, θ′), π, γ) =
let f = [[e : A→ B]]i (θ, π, γ) in
let v = [[e′ : A]]i (θ′, π, γ) in
eval(f, v)

[[Θ; Π; Γ ` !e :i !A]]i (θ, π, γ) = [[·; Π; · ` e :i A]]†i (〈〉 , π, 〈〉)
[[Θ,Θ′; Π; Γ ` let !x = e in e′ :i B]]i (θ, π, γ) =

[[e′]]i (θ′, ψ−1(π, [[e]]i (θ′, π, γ)), γ)

[[Θ,Θ′,Θ′′; Π; Γ ` cons(t, e, u′.e′) :i S(A)]]i ((θ, θ′, θ′′), π, γ) =
let (d, r) = split([[t]]i θ) in
let h = [[e]]i (θ′, π, γ) in
let t = •[[e′]]i+1 ((NextiΘ′′ θ′′, r),NextiΠ π,NextiΓ γ) in
cons(d, (h, t))

[[Θ; Π; Γ ` head(e) :i A]]i (θ, π, γ) =
head([[Θ; Π; Γ ` e :i S(A)]]i (θ, π, γ))

[[Θ,Θ′; Π; Γ ` let x = tail(e) in e′ :i B]]i ((θ, θ′), π, γ) =
let vs = [[Θ]]iΠΓeS(A)i in (θ, π, γ)
[[Θ′; Π; Γ, x :i+1 S(A) ` e′ :i B]]i (θ′, π, (γ, tail(vs)))

[[Θ; Π; Γ ` •e :i •A]]i (θ, π, γ) =
•[[·; Π; Γ ` e :i+1 A]]i+1 (〈〉 ,NextiΠ π,NextiΓ γ)

[[Θ,Θ′; Π; Γ ` let •x = e in e′ :i B]]i ((θ, θ′), π, γ) =
let v = [[Θ; Π; Γ ` e :i •A]]i (θ, π, γ) in
[[Θ′; Π; Γ, x :i+1 A ` e′ :i B]]i (θ′, π, (γ, v))

[[Θ; Π; Γ ` λu : R. e :i R( A]]i (θ, π, γ) =
λr. [[u :i R; Π; Γ ` e :i A]] (r, π, γ)

[[Θ,Θ′; Π; Γ ` e t :i A]]i ((θ, θ′), π, γ) =
eval−?([[e]] (θ, π, γ), [[t]] θ′)

[[Θ,Θ′; Π; Γ ` let (u, v) = t in e :i A]]i ((θ, θ′), π, γ) =
let (r, s) = [[Θ ` t :i R⊗ S]] θ in
[[Θ′, u :i R, v :i S; Π; Γ ` e :i A]] ((θ′, r, s), π, γ)

[[Θ; Π; Γ ` fix x : A. e :i A]]i (θ, π, γ) =

let f = λv.

(
let π′ = ψ−1(π, η−1 v) in
[[·; Π, x :i+1 A; · ` e :i A]]i (〈〉 , π′, 〈〉)

)
in

fix (f)

[[Θ,Θ′; Π; Γ ` let x = e in e′ :i B]]i ((θ, θ′), π, γ) =
let v = [[Θ; Π; Γ ` e :i A]]i (θ, π, γ) in
[[Θ′; Π; Γ, x :i A ` e′ :i B]]i (θ′, (π, v), γ)

Figure 11. Denotational Semantics of Terms



[[ΣBi Ωi ` C a Ω′i]] ∈ [[Σ]]i ? [[Ωi]] → [[Ω′i]]

[[ΣBi Ωi ` � a ·]] (θ, γ) = 〈〉
[[ΣBi Ωi ` let y = tail(x) in C a y :i+1 S(A),Ω′i]] (θ, γ) =

let v = tail(γ(x)) in
let γ′ = [[ΣBi Ωi, y :i+1 S(A) ` C a Ω′i]] (θ, (γ, v)) in
(γ′, v)

[[Σ,Σ′,Σ′′ Bi Ωi ` let x = cons(u, v, u′. e) in C a Ω′i, x :i+1 S(A)]]
((θ, θ′, θ′′), γ) =

let (r, d) = [[Σ′ ` u :i ♦]] θ′ in
let h = [[·; ·; Ωi ` v :i A]] (〈〉 , 〈〉 , γ) in
let θ′′1 = (NextiΣ′′ θ′′, d) in
let γ1 = NextΩi

γ in
let t = •[[Σ′′, u′ :i+1 ♦; ·; Ωi ` e :i+1 S(A)]] (θ′′1 , 〈〉 , γ′1) in
let vs = cons(r, (h, t)) in
let γ′ = [[ΣBi Ωi, x :i S(A) ` C a Ω′i]] (θ, (γ, vs)) in
(γ′, vs)

Figure 12. Interpretation of Contexts

a kind of heap update in the operational semantics. We think the
operational semantics in this paper, which is quasi-imperative in
flavour, is close enough to both a denotational model and Cooper’s
semantics that it makes sense to study how to reunify the pure and
the imperative flavours of FRP.

Krishnaswami and Benton [14] have also presented a language
for writing reactive GUI programs. This language also makes use of
linear types, but in this case they are used to track the allocation of
new GUI widgets. It is not yet clear to us how one might combine
space-boundedness with this kind of dynamism: we may need to
add a dynamic allocation monad to our model to integrate the two
lines of work.

Supporting other dynamic data structures (not necessarily
streams) suggests looking at the work of Acar et al. [1], who have
studied adding user-controlled incrementalization to self-adjusting
computation, which shares many implementation issues with FRP.
Conversely, it will be worth investigating whether our denotational
semantics can be adapted to provide a useful categorical cost se-
mantics for self-adjusting computation[16].
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