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In [4] we showed that in every model, Doy s OF =galculus as

. o =1 o N o D
constructed in | 8] the strict-ordering, < , is first-ordsr definable using
only application Here we-look at the, perhaps more parﬁimeﬂ%, question

e}
of definability by pure /K =terme -of such-lattice~tkh
Ja, ‘r , L , 'l and \f , the least Tixed-pcint operator,

The mein method will be to construct certain, so-called, logicael

relations which are gatigfied by all (conastart vectors of) JX =dafinable

elements and yet are not satisfied by -hz lati.cos

. 4, ¥

2 2 M I Mo, . 8 o . o ‘ g S o ]
discusgion, The definition of logical is derived from a corrssponding
; e e N p
);msalculusa Thig in wurn generalised

one of M, Gordon for the typed
the idea of an invariant funet
developed analogues of the- 1ogi al re

about preogremuing languazes.

It ig not known whether logical relations alsac

conditions for definability. In the goeecond half
digeuss this questicn for the typed case, obtaining necessary and
suffieient conditicng by using the more incluazive concept of an I=logical

relation,

This memorandun is by no meang self=contained. The reader should
have some knowledge of both the typed and untyped ,A K—=caleuli and be

fairly familiar with Scott's models of the untyped ,X Ke=palculus,
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2 Pure definability in D.p

A gtructure <D,X,S |_ ]) is called a (nen-trivial) modsl of the

A-calculus if K and S have the ‘usual properties-and extensionality holds
(and ID| > 1). Such structures give a denotational gemantics for the

A K-calculus which we will use informally, confusing use and mention.
Generally we will consider only the models Do s from-[S], given by a
Park retrasction, \P o= /\f‘: D1 ;f(t), ‘where t is -an isolated element of
DO. We will often-use facts about such models, accompanied by a
reference to the prcof for the case t= L. The -general proof is always
similar. -Alsc needed is the fact that if Yy is the paradoxical
combinator, Af{Ax f(xx))(A\ x- f(xx)), then, in Do 9 Y/\Cf}r>0 [

feJa + -> ¢, L]r @ngy) [5].

A relation R € DK, (K an ordinal) on such a structure is logical
iffs

V& . RE) = (Ve .RE) - rE[FD))).

Here K is any ordinal and application of vectors is defined
pointwise, An element x € D gatisfies R iff R('}?) is true, where 2 e DK

is the constant vector such that (S\c))‘ =x ( ACK).

An element x € D is A —definable if x=M, for some closed A —term M;

it is A —definable from X& D iff there is a closed term M and X,I....Xn in

X such that x=Mx, coeoX o
1 n

Theorem 1 1s Any closed A -term satisfies any logical relation.
2 If x is A -definable from X € D, -and each element in

X satisfies the logical relation R, then so does X

Prcof Clearly,if x and y satisfy a logical relation R, so does x[y].
So to finish the proof we need only show that K and S satisfy any such
relation, Suppose R is logical. To show K satisfies R, assuming
R(¥) we must show that R(K[Z]). This, in turn, follows if
R(ﬁ[§>][§>]) when R(j7>). But this olds as ’I\{[;§>][ ]~X o

In/
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In the same way we gee that S satisfies R if'R(§[§>][§>][E>})

» - LmSs . o

when R(X>), R{y >) and Riz ). But then we have succe351ve1y, by the
- X ..._

remark made ab-the beginning of the proof that R(x [ﬁﬂ), R( v [z ]) and

R\x[z>]ﬂy>qrf>]]/, oncluding the proof.

Q

Nothing is known about the converse of theorem 1: However it will
be very ugeful for pﬁ“ticular cages of undefinability. Here is & way

of constructing logical relations R & I

Suppese R. € T

2
~ c .
0 & oo Define Rn“ Dn by

(@]

Ve,g €D o(R (£,8)EV x,5 ¢ D (R (x,7) => Rn(fx,gy)))«

n-+1

Define R

>
oo S Do by

’

¥V d,e € Dg,(Rppld,e) = Vn Ry (a,5e,.))e

Thecrem 2. Suppose that Ro(t,t), that Ro(d,e) implies R, (<}50 d, 950 e),
for any d; & in DO’ and that RO igs closed under unions of increaging
sequences, Thens

g Roo iz logical,
2s is cloged under increasing sequences,
q
. If R, is closed under U (M) so is Req 5 if Ry(L,L)
(Ry(T o)) then B L, L) (Roo(T,T)).

. K
The congtruction also works for any R D" under the corresponding

O——
conditions, and the theorem analogous to theorem 2 can be proved; this

extension will be assumed.

Lemma 1,1 Suppos

4]

thet Ry(t,%) and Ro(d,e) implies B (f, a,§ e)

for any d, e in D Then,

OO

Vo Ve e (R (f,6) > R (§,(£), ¢ (e)))ena

n

VYo Vi,g ¢ DrJ—’i / +,,(f,g‘ -> R (¢ (£), ¢n 8‘)))7

478

1.2 I#f R, is clocsed under increasing sequences so ig each Rn.

Proof/
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Progf 1.1 By induetien on n.
For n=0, note that if R1(f,g) then Ro(ft,gt) from the
definiticn of R, and the fact that Ro(t,t)°

1.5
For n+!, suppose Rn+1(f,g)'and suppose Rr-yii"g')°
By induction hypethesis Rn(yi £, i £').  Therefore
#

Rn(f{ rf’)ﬂg{Q’ﬁg'}}q and by the. induction hypothesis,

i"¢ . F ?gn“’ g). The other half is similar.
LT 2 =8}

m m °
1.2 By induction on n. For nt+l, let <f ,g >m;O be an
(infinite) increasing sequence in Rn+1 and suppose Rn(x,y)o Then
Lf x,g”y>ﬁjﬁ is an dncregging sequence in R and so
<(klfm)x9i K)5> is in R by induction hypothe31o and the complete

additivity of appiicazicn in its first argument, This conecludes the

prootf.
Proof of theorem 2 1 Firet suppose that Roo(f,g) and Rgﬂx,y)o We
il
X ) and similarly for (gy) [7]
Since Rmkf*+%xm9~m$?yﬁ) is twup for any m>n,R (4’ m: Xm)g

cws by m = n applications of 1amm 1.1, and then
1

; s / - P
we gee that R _(i{fx) ,{gy)n) by lemme 1.2 end the above formulas for

4 - 4 A
\fx) and (gy)_o

-2 1l / 9, \ -
Conversely, suppose that whenever R,Q(X,y)'men Rool .8y ) and

yet for some n)RrLfnggn) is falge. By lemme 1.1 we cen asgume that
n¥, and so for scme <x_ | > e R R ,(f x is
ol N n=1 901 n-1"? nul( n*n-18n7p- i)

e and define y similarly., - By lemma 1.1,

y) ig true and so therefore is Rac(fx.gy) and, consequently,

- [ 3 o similarly for

. ix,ﬁm],kgy>hdq)° But (fx)n (f nml/ and gimilarly fox

(gy) ’ (ef. the laws of application in 19J) and so Rn ?kfrxr i
o e

gy 1), a contradiction).

T
. 1] . P . , o
2  Supposge <x ,¥ >K_O is an (infinite) increasing segquence in
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.Now, (} = r* = Vo ‘#n'n m--O(X ). ,) and similarly for the
yts, lef. L?]
an»m bnﬁmu:@‘sq guccessively that, R (Xm> ,(y ) ) for all m.-and n,
n(u % ) mw,ﬂy ) ) for all n, by lemma 10(_, R (LII (»zm) ),
l)l/ ( ( Ip\l ) for n'>n, by lemma 1.1 and finally R ((le )n’
\ 1 2y .
(H /1’) by 1emma 1 elo
3 A gtraightforward inductive argument shows that if RO is closed
under L) so is each R’n" Then, clearly, R (z\ A y(x LI v, )
Ax A:y"(xn L yn)> and s0 Ry is closed under LJ as U = )\ /\*fix Uy, ))

expresses bl as an increasing sequence in D .

The argument for D, is similar; it uses the fact that if £, X =>

where X aund Y are continucus labttices then (fn g)x:(fx) (gx)o
Iif RO(J_ ,_L) then R (.L _L) for any n, by lemma 1.1,

If RO(T'O,TO> an easy inductive argument shows that R (”‘ T ) for
all n, concluding the proof.

Ag an example, leth Poz{t}»o Then by {the aagumed
extensiocn of) theorem 2, Py im 1oglc'~1 and so the Osh component of any
closged )\ =term is t. Therefore if @1 L nf—uther L nor, since Ju =¥T, Y is
,\«dei‘ina’ble; this is a result of Park [6].

The next example establishes all the definabilities among .L , T, W,

I and 7 for all possible valueg of t.

Theorem 3 1.1 If = L, Y=Yy and L =Ty I.
52 In general, L =YT and Y= A f(YA(/\ gkxf(g_L))I).

&L “'c:TO, then T=YA X,

%
o4 If =T, and Dozs,(’) ={1,T} then

M=1y\AgA xA v Az g(xz)(y2)).

N
©
~



G.D.P. 6= SAT-RM-4
October 1973.

2 The only definabilities among L LA U , and Y are
those implied ty 1,

Proof 1.1 This result is known - see [9].
2. 1 =TT is obvious.
Stppoge £ € Dgg and 1e’cT‘ /\g Ax f(gdl). As
Tt=TL=Axf L , we see that */\T. T‘ "(Axfl ). By induction
on n, T‘ (Axt 1)= ;\Srin“#(l.), glVlng YAT' m/\x(Yf), and the result

follows.

3. As Kt 3 b, f)\ k=W, as € 2 1 (421,, here),
for all n, Y/\ K=T,

4o Let T'=AgAxAyAzeg(xz)fs). Since,in this Dy,
x It iff xt I, one sees that | t I t. Now, t= AxAy x My, is

true in this lattice and then [1=Yy 1" follows by the usuwal inductive
A

argument,

2o As L and 7 are interdefinable, only definabilities among

L,7, ) ana [ need be considered.

We must show that if t# ) s then 1 is not A —definable from
{T,1J,M}; that 1§ »t;érro, T is not A —definable frem {L,U,N}; that
U is not A -definable from L ,T,n} in all cases; and that if
t;éTO or Do;é @ then M is not A ~definable from {L,T,U}.

To show that L is not )\ -definable from {T, [}, N}, when t# L 1let

RO={t,TO}.

is logical. It also follews from theorem 2 thatld , f_] and T satisfy

The conditions of theorem 2 are easily checked and so Pgq

Roo - Clearly L does not. The conclusion then follows from theorem 1.2.

In the rest of the proof we shall first display an appropriate RO

and leave the (ad_mi“‘s”i:edly tedious) details to the "reader.

To show that if $£T_, T is not A -definable from {1,TT,L}

o
take RO={J_,t1,

To/
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To show that, in all cases, W is not /\ -definable from {_L,T,rl},
take Ry={<T,T,T >, <.L,TO,_L> € oL, L <t,t,t>,<1,t,L>,<¢,1,L>,
<L,L, L>}, ©Note that RM(J,,TOg_L) and Rw(TO,.L,_L) but not

R (TgsTgs L)

To show that ifnt;éffo shen [] is not A -definable from {L,T, U},
take RO={<X,y,z> | {=, }C‘i {t,To , Xt or y&;!’c z € {4, @ V) {<L,L,-L->}o
Note that Rgg(t, pe ,,L) and Rm(Tv,,L) but ot Roo(t %, _L)

To show that if +=T O and D ;é O then M ie not /\ —definable from
{_L,T,LJ}, choose u € DO distinct from L and t and take
Ro={<t,u,udcu, b, w3¢t, 5,08, 5,45} U {<x,7,45 | x,5 € £4 ,u,t}}.

Note that‘Roo(t,u,u) and Roo (u,‘tyu) but not Rw(u,u u,) Thisg concludes
the proof.

It is interesting tc note that when ’cf:To and DO.-:@ then a normal

term can even equal an unsolvable +term, for example,

=7\ (AfAxAy £(xy) (ez. T=3, when t= L [9])

Our method of constructing logical relaticns is by no means alle
powerful. For example, we believe thet»1+'t%T or D # QD then ¢/O is
not ,A ~defingble. Clearly, for the R'w cons tructed so far, if

( ) then R A . ) )O) and-so R (,\o( ((x )0(,)0) Therefore
Yb On the cther hand suppe %10 were ‘X —~definable by a closed
term M when t= L . Clearly (see [ Jj) M ig not unsoivable, as
¥ L. So there are closed terms Mioooo M, (k20) such that
M M1..,.MR=I, but as mentioned abcve the Oth component of M1 must be o
and so either J_ =1 cr V’O:Ig e contrediction. Perhaps an extension of

Wadsworth's methods to the other %D's would scrt this out.

The last example concerns interdefinabilities among the members of
{tt,rr,T,U,MN,D)} in Too [9] which is gotten by taking =) and D, to
be the truth-value lattice displayed in figure 1.

t/
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fig. 1

g
v

The conditional, © , iz in ’_E'”=->T;39 and is regarded as being in T ¢

in the usual way. It iz defined Dys

(2 y ('Lf z.—_-T}

(z > x,y)= x (if +t E z#T)
y (if fr - z;éI)
L (otherwise)

It is known that T.is A\ —definaeble from ltt,ff, L3}, LJ is
A -definable from {D ,T} and [T cen be defined from {tt,ff,W,>}. Ve
will show that there syre ne more ~dafinabilities of tt,££,T, U or 0
other than those implied by the above cnes; +he sitvation for Il has only

been partly clarified.

Pirst, 2 ig not definable from {tt,ff, u, n ,T}o Take
Ro={<l,J.>,<tt,-ff>,<ff,ff>,<ttg~r:t>9<t-th>,<T9T>,<_L,ff>,<tt,.|.>,<T,ff>}
and note that RO( S Wk £F %%, D £F £ 4t) ia false. Here and later

theorem 2 is used implicitly.

tt is not definable from {ff, Y, ,T}; take RO={L ,IE, T},
{ .,

ff is not definable from {tt,UW,2,T,M}; take Roz:{_L ,tt,T}.

T is not definable from any one of (%t,ff,2,}, {tt,U,2,N}
or {ff,U,d>,N}): +ake RO::{.L,tt,ff},{.L,tt} or {L,ff} respectively.

U is ncot definable from either one of %tt,ff,T, ﬂ} or {tt,ff, n, 3};
take/
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take Ry= <o, t1>, <ef, £ ,< L, L 5,47, T, <5, FE>. <58, L >, <L, Fr>}
and note that R k L tt tt, U &t ff‘) ig falee in the first case and

take R= ={L,tt, ff} in the second case.

In the cage of ﬂ , we would like to show that M is not definable
from any of the seds {tt,7f, U ,T}, {tt.fr,2}, {rr,U,2,7} or
{tt,U,>,T}. For the firss of these take R ={<tt,s+>,<ff,I1>,<T,T>,
<1, Ll>,<tt,£8>,<t%,T>,4T,f>] and note that RO{ M £f £t, A £f £f) is

false.

The trouble with the others is that if Ry (D, D) then R (M, M),
for the R's considered hers. For if x,y € TO then
(x 2(y >y, L) (yodL,.y))=x T v,
Mn (nzo) guch that Mnxy'::x My if x and y are in ‘Tno Therefore if

Rm(a,‘:) then Roo(A XNy x N yn) for any n and so Roo(ﬂ,rl)@

and so one can define from 2 teims

{J

On the other hand, 1 ig, in fact, not A —definable from 3 .
For suppose [l =M O for some closed A\ -term M. If M is unsclvable then
N =], a contradicticn;
where n>0 and 1<j<n. One can asgume thet j<3 gince one can always apply
the identity M =MD (M2)(MI). If j=i, then Mz eeeex =D Mlo, M)
where MI';(/\ X1Mr) D (1<x<k). Taking the x.=I and P,.= {l} we see that

1 ol
(M,‘l)O:: 4 and co N Teeool= 1 , & contradiction. If j#1 then since

An

D
)
o)

i 4

e

[0

there

@

e

n xy=flyx, for any x,y in Too » we have ;%:'.M}.,.O.M,l'{zl\/[:) Xy mm==l 2 yX m——=y M',:...,M

whe:re the lVI! and M‘.“ are A =definable from x,7, 2D and ===, Since x,¥

are arb;trary membars of Ty, , this is & contradiction.

Perhaps an extension of Wadsworth's ideas to LAMBDA [9}, would
gettle these question

M has the form A Xyooen ,\Xn.xj Moeosall

1

k
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B A —definability i
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For the zeke of clarity, we will b2 & little more fermal than in

Fr

the last section.

]

The set of type gvmbols is the least set containing ¢ and
ioes € and Y3 ¢ and VU are

metavariables,possibly suffixed, ranging over type symbols and

(61,.,.,5n,”c') abbreviates xé’ > ,“(Q’e>’1")..”)) (n>0).

(]
I

9

containing ( 6 => X ) wherever it cont

s

G

The 1anguag¢= of the typed A =calculus has denumerably many
variables 0( (i>0) of each type V¥ . We will uge K an (3 with
or without varicus decoratiors ez metevariables over variables. The

language hags a set of terms which is given by:

Y ,
1s O‘i ig & term of type T , (id0),
if M

2. and N gre terms cf type (6 =>7T) and & respectively
then (MN) is a term of type ¥ ,
T if M dis a tern of type T th )‘ 0(".. 1) is & term of type
L

, will be used as metavariables over
terms.‘ The reader is eagsumed to know what a /8 ’? -normal form of a

term is and the elementary properties of normal formg; M= N means that
M and N have identical /6 ?unomal forms, By the Church—Rosser theorem
this is an equlvalence relation. uuppow that Ko”t‘9 ~(>\°( (>\°< « ))

5
and S, =(A R 61’ %, 3)(A }“\6.1 6—2)( (/d ((361 6 3)0( °—1)
A%

(O((e”-i"-z)L f"- )) )33 Then, as i1s well=known, the' K's and S's generate

all closed termb under application, tc within =2 . The type subscripts
in K and S will often be omitted, ag will be as many other type symbols
as is convenient; the resulting propesitions are to be understood as

being asserted for every consistent way of putting the symbols back in,

Our langusge a8lso has & gemantlics based cn the full type

hierarchy {DG.; defined by:

D/
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=D = ) (she set of all f tions fror +6
D(,;_> ) \Dg >DT' (the set of all functions from 6 to D"E')’

where T{ is some given set,

The gementicg is a function ﬂ: ]: Ter GmMEmrn)U( Do-') where Env,
the set of enviromments, is the set of +ype regpecting functiocns from the
set of variables to U D.rg end 1s renged over by /5‘ o Then, [f ]] is the

unique function of that type such thai:

L II (p)= P > (120)
2. l[ MN)]](f’) [MJ]W B2
5. L (Al w)]],oxy»—)[vﬂ/o'x/« 1) (120, € Dy)

where /0 [X/O(i] is the environment /D' such thet

, U . <
1 (x ‘(O(i.=°(i>

\./

/D 0(1,) {otherwi

Note that if M has type 6 [[’vr { ) € DG», If M is closed then [[M] (/D)EMH(f
for any /0 and /0 ' so we often drop the ference to /0 for closed M,

If Ma M' then EMJ] /DJ EM' (/07 for any /0 we will give a converse later.

Suppose TL € D(L=-> 0 is a permutation. Permutations 7‘\'0- in any
D(o’->6) can be defined by:
1
. _ = = | v = \
—W(o,‘_yr)(f)m Trpetfe g (f € Digsp -
If M is closed term then T(KM])-[MH (see [2]). However this does

not characterise M\ ~definability.

For example ground equality, =2, is permutation-invariant, but is
certeinly not A =definanle, Explicitly let O abbreviate (L , ¢, C) and
let tt and £f be A O(OL XO(? o{ LQ end ) o(l(;) A 0(!,:0 o{L,l respectively.
Then =y is defined bys )

=ny (;&:,y € D()
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But the only A\ -defineble functionals of type (L, L ,0) are
L L
AO\LO)O(,H /\0(2 )\o{: 0(‘5 for 0Lj<3 none of which are =  if 'D,_' >l
M, Gordon proposed, as & possible remedy, that relations
RL € Di should be extended = not just permutations. Starting with such

an RL’ the Rs's are defined bys

R(6_>1') (f‘,g)E VXpy € DG,(RG(x,y)=>R,r(fx,gy)).

When R is a permutation 7TL9R0’ =g for all & . The definition
generalises, in the obvious way, if one starts with RLé DK, for any
ordinal K. if R6_C_ D:; is obtained from an RL in that way it is called
K-logical; f ¢ D6 sgbigfieg it iff Ro(gj holds. With the obvious
definitions of A =-definability and ) -definability from a set X& U Dy,
one shows thet any )\ =definable functional satisfies any K-logical
relation, of the right type and that if {Rg} is the system of relations
obtained from some Ry » and each member of X satisfies the appropriate
Rgand f is A -definable from X, then x satisfies the appropriate Rg

The proof ig like that of theorem 1.1.

One can now gee why ';‘“L is not A=definable if IDL|>1.
Let 0,1 be distinct elements of Dg « Let RL={<O,O>,<O,1>,<1,O>}.
Then R(tt,ff) is false for R(1,0) and R(0,1) but not R(tt10,££01),
Therefore R(=(,=,) is false for R(0,0) and R(0,1) but not
R(=¢(0)(0),=(0){1)).

As an example of non-relative definability, consider the

universal quantifier W of type ((¢~>0)->0) defined by:

tt (if‘ fx=%t for all x in DL)
Y ()=

ff (otherwisge).

Now V( is permutaticn=invariant; however if ]D(_i 23 it is not
>\ -definable from =, To gee this let RL=§<O,O>,<1,1>} where 0,1 are
distinct elements of D¢ e R(:L,s:§) is true, but if f,g € D(L _>°) are
such that f(x) igs always %t but g(x) ig tt iff x is O or 1 then

R/
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R(f,g) but not R(V¢ (£), V((g)). Incidentally, if |D] <3, Y is
,\ —definable from =(

We can only characterige definability using logical relationg,

for types of level £ 2,

Theorem 1  Suppose T has the form (’T‘,‘,.“,T’ ,{) where each ’t’
has the form ((,...,(,¢), Then if ‘DL|->~ )\(O and £ € Do satlsfles

every 2-logical relation, it is )\ =definable.

Proof We will just give two cases since this should give the idea

without overmuch detail.

Suppose V¥V ={(,(¢, (). Let x,y,0,1 be elements of D, with O
and 1 distinct and take R ={<x,1>,<y,0>}. Then R(fxy,f10). So for
every x,y € D¢ either fxy=x and f10=1 or else fxy=y and £10=0.
Therefore either £10=1 or £10=0 ard 80, since ’I;éO either

= [AK o Ay R §T or 2= I A’ 4]

The other case we comsider is P =((¢,¢),L,(). TIdentify the
integers, with a subsget of DL and let the restriction of s to the integers
be the successor functicn, Given g in D(<_> 0 and x € D let
R(={<gn(x),sn(0)> ,nZO}, Clearly R(x,0) and R(g,s). Therefore
R(f(g)(x),f(s)(O)) and so for every g € D(—>( and x € D¢ there is an
n such that £(g)(x)=g"(x) and £(s)(0)=s"(0). Since s™(0)=s® (0) iff
n=n', n must be :Lndepmnmnt of g and x and so for some n,

=h {9) ¢ xe xS0 )L ]

n times

We believe the theorem holds without the restriction on D¢ - The

simplest type which has us baffled when ] DL(_>_2 is (((€ >0=0=>0).

Some characterisation of definability can be obtained by
strengthening the implication in the definition of Rg to an

intuitionistic one, Q la Kripke [1],

To this end, suppose we have a set W {of World’.s) a reflexive,
transitive binary relation < which is a subset of W2 (alternativeness)

and a relation R(QDBXW such thats

v/
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VX’Y9Z € D(v w' € W(R <X9Y9Z9W) A (W £ W":‘} -> R(X5y9Z’W'))°

Define relations Ry < D2

°.><W bys

R(g_)’f)(f’g’h’w)i (Vx,7,2z € Dg Vw' € W((R(z,y,z,w") A (w <wt))
=> R(fe (")), (£,6,0 € Dig_yp . € W),

Any such Rg is called 3-I-logical; f € Dg satisfies Rg iff Rg (f,f,f)
is true. It is clear how the definition ofK-logical goes, for any

ordinal K, The reason for the magic number 3 is:

Theorem 2  If ]DLI > Xo,then I € Dg satisfies every 3-I-logical relation
iff it is >\ -definable.

We don't know if the restriction on D¢ can be dropped, or if 3 can

be reduced to 2; it cannot be reduced to 1 because if Dcis the integers

and f € IE(C—> ()—)([=>C)) is defined by:

f(g)(x)=gg(x)(x) (g € D(( _>(),x € D(), then f satisfies every
1-I-logical predicate but is not A\ -definable.

Neither do we know anything about characterising relative
definability, even in interesting special cases, or what happens in
other models of the typed /\ -calculus or, of course, what happens in
the case of the untyped A =cdculus. The rest of the memorandum is

devoted to the proof of theorem 2.,-

Lemmg 1 Suppose Rg & D3

< Vf,g,h € Dg Vww' € W((Rg (£,8,h,w) A ugi')=>Rg(f.g,h,w')).

XW is 3=I=logical. Then, for the appropriate

Proof By induction on 6 .

Lemmg 2 If £ € D6 is >\ ~definable, it satisfies every 3-I=logical

relation.

Proof Let {R6} be the collection of 3-I-logical relations built up, as

above, from some W, < and R, & D3

X, Clearly, if f € D(S >P) satisfies
R‘->T and g € Dg satisfies R6 then f(g) satisfies R’t’ . So we need

only/
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only show, by a remark made above, that [K:ﬂ and [S“ satisfy the

appropriate R's.

For K, suppose that wlw', R(f,g,h,w'),wﬂﬁw“ and R(x,y,z,w").
Then R( [K](f)(x) ,[[K]](g)(y),[Kﬂ(h\)(z),w“) by the previous lemma, since
R(f,g,h,w') and w'<w".

For S, suppose that w_éw',R(f,f',f",w'),w'ﬁw",R(g,g',g"’,w”),
w"<w"'! and R(x,x',x",w"')., As w'<w L R(F(x), £ (x), £ ("), w"") and
as w“ﬁw"",R(g(x),g'(x'),g”(x"),w""); Therefore, as w"'<w"',

R(f(x)(g(x)),f'(x) (g'(x')),f‘"(x")(g"’(x")),w"'), concluding the proof,

This establishes the "consistency" half of theorem 2. Of course,
the lemma also holds if 3 is replaced by any K and, further, an

analogue of theorem 1.,1.2 also holds in general.

To obtain the "completeness" half we use a special W, £ and R
which in turn requ%{ses us to give a "standard" exwwironment, /00, which
assigns to each o ; an element of D'l' which behaves like o(ajrj, in a
way to be made clear by lemmas 3 and 4.

Now we suppose that ,D(.' 2/\(0 and (( )) is a map from the set of
terms of type € to D(. such that:

((m))=((N)) iff Mas N,

-> 5 ; . . .
A vector, o, of variables is non—repeating if no varisble occurs

twice in it. If M is a term and ﬁ>:<N1,...,Nn> (n>0) is a vector of

terms, M g abbreviates (...((M N,,)NZ)...NH); similarly if =7 is a

vector of elements of U D’t’ then f§> abbreviates f(x1)...(xn), where
§>=<x1,...,xn> and f is a functional of the appropriate type. If

;(>=<°(1 seees & > is & vector of variables, then f (:{>)=</0 (°<1),...,/0 (°<n)>

for any environmen‘c/O o
The standard environment, /OO’ is defined by:
1 (& )=((®))  (330)
‘ /o AN oL he | <
2./
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2. If there is a vector I'\T> of terms of length n such that for any

j (1€j<n) and almost every* non-repeating ;(>. containing no variable free
—> —> \ Z ‘“> -'> J (’ti 000 ’rm )(> f

in (F)s, £ Pl )=(( () &5 )], then P 7420 Pm0) (g hur(£,)=
YU, R 25\ 2>d. ’ *, :

((O(ii? n N )), where N° is one such vector; if there is no such

vector then

(¥ yeeey X, ,0) , ¢
Y m> P > Ve 1303
Lol () eea(r )=((¢ ). (1205 £, €Dy
if 1<idn) 9
Notice that if ﬁ: and ﬁi satisfy the conditions of the second

clause then they are, componentwise, & . So /OO is well—defined.

Lemma 3 For every term M and vector Ez of variables of the appropriate

type, [N ] ( fo)=((M)). ,

Proof First we prove the lemme for variables, by induction on types.
If M= 0(;, the result is immediate from the definition of /ooo For
“(?1 ””"":n), let ;f: o(ﬂl“”o(no For 1£j<n, let;g & b? any
vector of variables such that . B . has type C . Bydi;rz'ciﬁction
hypothesis, [[°<J. :-B>J~ ]](/"O)m((o(j /_8)3))., Therefore ;2 satisfies the
condition in clause 2 of the definition of P, when <Ly yoeeyf d= O(3<> .

0]
Therefore, EMT:%H (/OO): /oo(x(? ,a.o,jvm))/oo(z):((M-éz}).

Finally the lemme isproved for terms Hin ,g , 7-norma1 form by
induction on their size. JIf M is a variable, we are finished. Otherwise,
if M';E A (.(OZM,‘).,I"IK)(//KW>I%)Te o ig some variable and the Ml(1~<-‘1‘$k)
all are /5 ,79 normal forms of smaller size than M9 tae proof then
proceeds by applying the induction hypothesis to the M., in a way

s ol ¢
gimilar to the above. The only other case is when M 22 X/31 0oe >‘/8k

i
for some i, and this is very easy.

. . =>
* Here and elsewhere assertions of the form "for almost every o cooo'"
should be read as "there is a finite set of variables such that for
every o , none of whose component variables are in the sety caas'e
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From now on, we drop references o in EMJ] (fo)o Lemmre 5
implies that[[M]= M iff Mg mr, I D, were finite them thevewould
be
always/closed M, N', even of typs ({¢=>0) 5( >¢)), such that

u]= )IMI, but MsEM!, Th

given closed M, M', thers is an integer m, guch that if ]Dcl >m and

HM]= EM'J] then M22 M'.,  Thege remarks form the converse fo the

above methods can be used to show that

(6]

consistency of @ , menticned above,

A term M is of order zero iff it has the form & M,i...aMko

(8]

Lemma 4 Suppose M has order-zero and x /00<;<>)‘y/) (e<) for
almost all non-repeating vectors ;z guch that X/DO x) €D C ¢

Then [ ]| (x)= [[Mﬂ (y).

Proof Immediate from the definition of /OO

Now W, < and RQ can be defined. The worlds, W are triples,
- =P =
<¢>’ > /§> where ﬁ is a vector of members of U D’]:” o ,Ig are non=

repeating and 5 , ,'5 have the sams length and correspending rembers
have the same type. If wi:: 1,3(? ,;? > (i=1,2) then

Ad DD LS .
W W = ¢> p 50 &K 1 olos f? 'g ,7 where the component vectors have been

conca’cena‘ted. Then w,<w, iff w -»/:“AQAM, Tor some wWorld, W Pinally, Rd

1="2 2

is defined by:
o . oo e st vz
R (x,y,z <ﬁ ,o( ,/3>) iff 3 a MO%J term M guch that x:ﬂ_M_Dfo s

EM]] /00(0( ) and g= H_’Wﬂ/og(

Clearly W, £ and R( gatigTy the required conditiors for obtaining
a system of 3-I-logical R,;'s.

P SR -
Lemma 5 1 If Rg(fyg,h,w) whaere W“"<§ ,03, I§> then there is & closed

=D -> + =D =Dk .
term M such that whenever o« y /g ﬁ are non-repeating vectors

=[] 7, & fo &K= LK ena n p (@ =[HE™

2  Suppose that f= ﬂMﬂ fbo,g&: EMTO?B and hs= [[Mjiﬂ where M is

a closed term and g and h are denotations of order-zero terms and

w/
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w_.<5> l[?> € Wo Then Rg(f9g9b,9mr) for the appropriats & .,
Proof  Both partz are proved together by induction on O .

1  For { the result is immediate from the definition of R( .
S0 su,ppcm t hag type 3 =>’€’)
Suppose R(G‘ >1,) ,g,h.w) where w-=—<@'>,a> F>>
Suppose next that W+e-:‘wm<x, 4 ,F >, where x ha.s type 5:, ig in W,
By induction hypothesis 1ng we gee that, R6(X /oo(cé PO(\F,‘),W ).
(

Therefore R,t(i.) (g /DO\ 1“/00(,3 ) ,w )

By induction hypothesis, Laln.g 1, there is a closed term LV‘( ﬁ )
such that if &> ”"o<,,"(,<\>1 and 7(;& - ,Z> are non—-repea’slng v@ctorg
= -> =D+
thenfx_ﬁM ]]Bx, \g/oocx ))f (&)=L uX“ B ol ) oy e
=->+ = i
The subscripts on M( o( ) indicate its dependence on x, 0(1 and
? -=->'1‘
p1. Then, B:((M & g )3 ))0(1)(,( I( g/oo(o( ﬁ (> -
H-((M(X:’o( ):x)fxl)oc or any x,x' € Do'lfo(/\c‘1 2;( ig none-
repeating. Thﬂrefon, by lemma 3, M( 0{ P )v M /3 ) A
similar argument shows that M( . o '3 ) 1s also 1ndep¢=nonn of ’ and
1 9

F 1» end the conclusion foll owm

2 Suppose f’-—}[Mﬂ@ e H.N‘Xﬂ and he= HM/;E where M is a closed term
and g and h are denotations of order-zero terms, and w= @ o(> /K> € W,

+ PIEE>S S SN, S S S, S
Let w -:<5 ) sy KX T, /3"‘/3 > be a world and suppose
+
Ro.(x,y,z,w ). Then by induction hypcthesis for part 1 'thcre is a

~ Lo o . > Db LD 34
closed term lVI1 such that wherever L=~ T~ , andp /S /3 e

non=repeating vectors,

X; BM ] Qf’\ >-~ /a ﬁ‘w{;z,\&wr,\ o-(>++B and
s ;2" T
Then we have fx==( B ( E M‘ ( @>" E>+))
] 2

= [

; .=> -
= HM?N :H/OO( >+*) for almost all non-repeating

" for a certain closed tarm MJ.

>r'+
Since y/DO\o(

vectors/
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vectors ;f++'such that **/9 (“>?") is in D, and g is the denotation of a

term of order zero, lemma 4 appliss and we have,
9 3

gy—g(ﬂ:M - o"(>+:ﬂ)
~<LCM],°< D1 P~

_H:Ma"ﬂ Ipo o( N o( ), wher s M, is the same term ag above. In

E)

the same way,

- =>:
hz= HM,]] ria
ol [o'p ,3
It is now clear thet gy and hz are themselves denotations of order
zero terms, and so applying the induction hypothesis for part 2, we

conclude that
: -
R (fx,gy,nz,w ).
4
Therefore R@r—>Tﬁ<f’g’h9W>’ as was required, concluding the proof,

Lemma 5 gives us the second part of theorem 2, For suppose f
satifies every 3=I=logical Rd-; Then in particular we have R¢(f,f,f,wo)
where R 4 is the one to which lemma 5 applies and Wo has all its
components empty. By part 1 of lemme 5, there is a closed term M such
that f=][M]), which is just what was wanted.
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