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Abstract

Today’s module systems do not effectively support informa-
tion hiding in the presence of shared mutable objects, causing
serious problems in the development and evolution of large
software systems. Ownership types have been proposed as
a solution to this problem, but current systems have ad-hoc
access restrictions and are limited to Java-like languages.

In this paper, we describe System Fown, an extension of
System F with references and ownership. Our design shows
both how ownership fits into standard type theory and the
encapsulation benefits it can provide in languages with first-
class functions, abstract data types, and parametric polymor-
phism. By looking at ownership in the setting of System F, we
were able to develop a design that is more principled and
flexible than previous ownership type systems, while also
providing stronger encapsulation guarantees.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Theory, Verification

Keywords Ownership Types, Domains, System F, Type
Theory, State, Modularity, Lambda Calculus, Permissions

1. Modularity and State

Modularity is at the core of software engineering. A well-
designed module system allows developers to break a pro-
gram into parts, but more importantly serves to hide design
decisions made within each of those parts. This information
hiding aspect of modules is the key criterion that supports
separate understanding, separate development, and ease of
change in large software systems [25].

Unfortunately, today’s module systems do not effectively
support information hiding in the presence of shared mu-
table state. The critical problem is aliasing: if a client gets
an alias to a module’s internal state, then information about
how that state is represented and used within the module is
no longer hidden. Thus the client may be affected by changes
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class Class {
private Object signers[];

/* clients cannot call a method
* returning an owned list */

public Object [] getSigners() {
return signers;

}
}

Figure 1. In an early version of the JDK, the
Class.getSigners method returned the internal list
of signers rather than a copy, allowing untrusted clients to
pose as trusted code.

in the representation of the module, interfering with separate
understanding, separate development, and software change.
Furthermore, the client may violate representation invariants
of the module, causing software defects or security holes.

1.1 Java Encapsulation Defect

For example, Figure 1 illustrates a security hole that was
present in an early release of the Java development kit,
version 1.1. In this defect, the security system function
Class.getSigners returns a pointer to an internal array
holding the principals that have signed a class. Clients can
then modify the contents of the array, compromising the Java
security model and potentially allowing malicious applets to
pose as trusted code.

The key issue that led to the defect was that Java’s mod-
ule system is too weak to effectively encapsulate the array
within the surrounding class object. Although the array was
stored in a private field, it was all too easy for the devel-
oper to make a careless mistake that exposed the array to
untrusted clients. Unfortunately, this problem is not unique
to Java; other module systems may include more advanced
mechanisms for hiding the visibility of members, but none
provides a guarantee that aliases to those members do not
escape to untrusted clients.

1.2 Ownership Types

Ownership types have been proposed as a practical mech-
anism for encapsulating internal, stateful objects within a
surrounding owner object [22, 10, 8, 2, 9]. In an ownership
type system, each type in the program is annotated with
its owner object, and the type system ensures that only the
owner can access the owned object. For example, in Figure 1
the signers array could have been marked owned, in which
case the compiler would have flagged an error when the code



returns the array to clients. Ownership is a stronger prop-
erty than the visibility control provided by module systems,
because it protects the owned object, not the variable that
points to it.

In contrast to conventional module systems, ownership
types provide a static guarantee that clients cannot refer to
owned objects. Initial experience with ownership types has
also shown that recent systems are flexible enough to apply
to existing code with few changes [2].

1.3 Contributions

Despite the promise of ownership for encapsulating state
in object-oriented systems, existing ownership type systems
have a number of significant weaknesses, which we address
in this paper.

Formal Models. The semantics of ownership has only been
explored in the context of object calculi [11, 8] and models
of Java [10, 9, 4, 6, 2, 1] which lack a direct connection to
mathematical logic. In this paper, we introduce System Fown,
a new formal model that naturally extends the type theory of
System F [18] with references and ownership types.

In our system of permission-based ownership, an owner-
ship domain represents a collection of references, functions,
and existential packages. Each domain has a kind that ex-
presses two forms of inter-domain access permission: the
permission to create references, functions, and existential
packages in another domain, and the permission to deref-
erence references, call functions, and unpack packages in
another domain. Our type system statically enforces these
access permissions, ensuring the encapsulation of mutable
state.

Advanced Language Features. Thus far, ownership types
have only been integrated into Java-like languages that lack
crucial advanced language features, such as first-class func-
tions and ML-style abstract data types. Our formal model ex-
plains how ownership can benefit advanced object-oriented
languages such as Scala [23] that include these features.

Expressiveness. Existing ownership systems rely on intu-
itive notions of encapsulation that are useful but overly con-
servative. In this paper, we show that guiding this intuition
with type theoretic principles yields a system that is far more
flexible, yet can enforce the stronger encapsulation guaran-
tees than previous systems. For example:

• Our system can express challenging higher-order design
patterns such as iterators and event callbacks in a cleaner
way than previous systems, while ensuring that the state
accessed via the iterator or callback is protected from
clients.

• Our system uses abstract data types to allow the clients of
a module to refer to private state while ensuring they can-
not access it via pointer dereferences. Previous systems
only support a weaker form of ADTs via inner classes.

• Our system’s bounded existential quantification allows
clients to use a domain to which they have access, even
if they cannot name that domain, providing considerable
practical flexibility compared to previous ownership sys-
tems.

• Our system allows a module to pass its private state to
library functions, while ensuring that those library func-
tions do not retain a persistent reference to the private
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Figure 2. A conceptual view of ownership domains. The
rounded, dashed rectangles represent ownership domains.
Solid rectangles represent existential packages or objects,
parallelograms represent functions, and diamonds represent
reference cells. Dashed arrows represent access permissions,
which allow arrows representing accesses, and double ar-
rows represent permission to create entities in another do-
main.

state. Our system provides stronger encapsulation than
previous work, in that it ensures that these library func-
tions do not report information about the private state to
clients through global variables.

1.4 Outline

The outline of the rest of this paper is as follows. In the next
section, we describe Permission-Based Ownership, the own-
ership model on which our design is built. Section 3 intro-
duces the syntax of System Fown, a formal model that inte-
grates ownership seamlessly with type theory. We illustrate
the expressiveness of System Fown through a series of exam-
ples. Section 4 gives the static and dynamic semantics for
System Fown and states type soundness and encapsulation
properties. Section 5 discusses related work, and Section 6
concludes.

2. Permission-Based Ownership

The purpose of Permission-Based Ownership is to give soft-
ware engineers the ability to express and enforce high-level
policies for encapsulation. The goal of our system is to encap-
sulate state; however, we believe that effectively encapsulat-
ing state also requires the encapsulation of functions and ob-
jects1 that use that state. The intuition behind this goal is that
the defect in Figure 1 would be the same if the array were
instead represented as a List object or a pair of accessor func-
tions. To fix the defect, we would need to encapsulate the List
just as carefully as we would the corresponding array.

An encapsulation policy is a set of rules that control when
a function can access or create a conceptually encapsulated
entity such as another function, a reference cell, or an object.
In this definition “access” means calling a function, derefer-
encing or assigning to a reference, or selecting a member of

1 In this section we use the term “object” informally. In later sections,
objects are represented by existential packages in the standard way.



an object. “Creation” means defining a new function, allo-
cating a new reference cell, or creating a new object that is
within an encapsulation boundary.

A fine-grained policy approach might attempt to specify
access and creation permissions between every pair of en-
tities in the system. However, such a policy would be pro-
hibitively expensive to specify and enforce. Instead, we pro-
vide more high-level policy specifications that relate groups
of functions, references and objects. These groups are called
ownership domains.

2.1 Ownership Domains

An ownership domain represents a group of conceptually-
related functions, reference cells, and objects (or more for-
mally, existential packages). Ownership domains can be cre-
ated at any time during program execution, and unlike re-
gions in other systems, domains can outlive the scope in
which they are declared. In our examples we will assume a
domain world that contains standard library functions, but
there is nothing special about this domain.

Figure 2 illustrates the Permission-Based Ownership
model used in System Fown. In the figure, domains are rep-
resented by dashed, rounded rectangles. Objects are shown
as solid rectangles, functions are represented by parallelo-
grams, and reference cells are represented as diamonds.

The somewhat anthropomorphic example in Figure 2
shows how ownership domains might be used to encapsu-
late state in a banking application. In this application, a num-
ber of customers interact with accessor functions in the bank-
ing interface, which in turn read and modify the data stored
in the bank’s vaults. An important security constraint is that
customers may not access the bank’s vaults directly, but in-
stead must go through the interface functions.

We model this system using three ownership domains.
The world domain contains the customer objects. The bank
domain includes the accessor functions for the bank, while
the vault domain contains reference cells storing the amount
of money in each account. Solid arrows show the calls made
from the customer objects to the bank functions, as well as
the accesses from the bank functions to the data in the vaults.

The customer object is part of the world domain. It may
call functions such as deposit and withdraw that are de-
clared in the bank domain, which represents the interface to
the bank. These functions in turn access state in the vault do-
main.

2.2 Policy Specifications

We want to ensure that the customer objects cannot directly
access the data in the bank’s vaults. Permission-Based Own-
ership allows engineers to specify two kinds of permissions
allowing one domain to affect another:

Access Permission. If one domain has access permission
to another domain, then functions in the first domain can
dereference or assign to references, call functions, or select
a member of an object (i.e. unpack an existential) in the sec-
ond domain. In Figure 2, access permission is represented by
a single dashed arrow. Thus, functions that are part of the
customer objects in the world domain can call functions in
the bank domain, and these functions can in turn access the
state in the vault domain.

Access permission is not transitive in our system, ensuring
that even though the world domain has access permission
to the bank domain and the latter has access to the vault
domain, the world domain does not have access to the vault

domain. Thus, customer objects cannot access data in the
vaults directly.

Creation Permission. If a customer object could create a
function in the bank domain, it could simply have that func-
tion access the vaults on its behalf, bypassing the accessor
functions provided by the bank. Therefore, we restrict the
ability to create functions, reference cells, and objects in other
domains using creation permissions.

In Figure 2, the bank domain has creation permission for
the vault domain (shown with a double arrow), allowing the
accessor functions to create reference cells for newly created
bank accounts.

Permission Assignment. When a new domain is created,
the creating entity assigns all of the access and creation per-
missions to and from that new domain. To ensure that do-
main creation cannot be used to circumvent access restric-
tions, our system ensures that the creating entity can only
give the newly created domain the permissions that it itself
possesses. For example, functions in the world domain can
create new domains that have either access or creation per-
mission in the world domain (since each domain has permis-
sion to access and create in itself) and access permission for
the bank domain. These new domains, however, cannot be
given any access to the vault domain, nor can they be given
creation permission for the bank domain.

Static Checking. System Fown statically verifies that no inter-
domain creations or accesses occur unless the source domain
has the appropriate permission to create in or access entities
in the target domain. Although our dynamic semantics pre-
serve ownership information in order to easily prove a per-
mission soundness theorem, ownership has no effect on the
run-time semantics and can be erased during compilation.

3. System Fown

In this section, we present System Fown, an extension of
System F [18] that incorporates references and permission-
based ownership. Although we work in a functional con-
text, many of our examples are inspired by object-oriented
systems, where ownership types were first developed. For
example, one of the well-known challenges for ownership
types is iterators in a collection library, and we will show
how our system handles this example.

Because we are working in the constructs of standard type
theory, we do not explicitly model inheritance, but it can be
encoded using existentials in the usual way. In the discussion
below, we will use the terms object and existential package
interchangeably.

3.1 Syntax

Figure 3 shows the source syntax of the System Fown lan-
guage. System Fown is a formal core language inspired by Gi-
rard and Reynolds’ System F [18]. We take System F, includ-
ing polymorphic functions and existential types, and add ref-
erences and domain annotations.

Functions in the language are of the form λδx:τ. t,
where the annotation δ represents the ownership domain
to which the function belongs. Reference expressions of
the form ref δ t are annotated with the domain in
which the reference is created. Modules are represented us-
ing existential packages, with an expression of the form



Terms t ::= () | λδx:τ. t | x | t1 t2
| ref δ t | !t | t1 := t2
| pack (ω, t) as ∃δx:K. τ
| unpack (α, x) = t1 in t2
| Λδα:K. t | Λα:K. t | t[ω]
| letdomain z : domain(P ) in t
| letdomain z : domain(P ) into t

Types τ ::= unit | τ →δ τ ′ | ref δ τ
| ∀δα:K. τ | ∃δα:K. τ
| ∀α:domain(P ). τ | α

Domain γ, δ ::= α, β, . . .

ω ::= τ | δ

Kinds K ::= domain(P ) | type

Permissions P ::= P, _ ⇒ δ | P, δ ⇒ _ | P, _ ⇒ _
| P, _ → δ | P, δ → _ | P, _ → _
| ε

Figure 3. System Fown Source Syntax

“pack (ω, t) as ∃δα:K. τ”. Again, they have a domain anno-
tation.

System Fown supports explicit parametric polymorphism
with an expression of the form Λδα:K. t. These type lambdas
are as usual annotated with a domain, in which their body is
typechecked, and can quantify over both types and domains.

For each type binding, a kind is given. Our system has
two families of kinds. The first is the kind of types, which
we use for conventional parametric polymorphism. We also
have another family of kinds for domains, with a domain
kind for each possible set of access permissions. Permissions
include access permission (→) and creation permission (⇒)
to and from a domain (δ → _ vs. _ → δ). Using kinds to
treat types and domains in a unified way allows universal
and existential quantification to be used over both.

Normally, functions (and type functions) can only be cre-
ated in a domain to which the current entity has creation
permission. This restriction, however, prevents us from writ-
ing library functions that can act on arbitrary client domains.
Therefore, System Fown provides a special form of domain
polymorphism Λα:domain(P ). t that can be invoked from
(nearly) any domain, but whose body is typechecked in the
argument domain α. We ensure that this form cannot be
abused by restricting P to contain only access and creation
permission for the domain α (i.e., P may only contain _ → _
and _ ⇒ _).

Domains are created using the letdomain constructs. An
expression “letdomain α : K into t” or “letdomain α :
K in t” creates a new domain with the permissions speci-
fied in K, and binds it to the variable α. The difference be-
tween the “into” and “in” forms is whether the body t is
typechecked in the newly-created domain, or in the current
domain. In order to avoid privilege escalation, we statically
check letdomain forms to ensure that the newly-created do-
mains cannot be given any permissions that its creator does
not have.

Following Mitchell and Plotkin, System Fown uses existen-
tial quantification to model type abstraction [20]. In addition

val increment = Λ d : domain(_ → _) .
λd x : ref d int . x := (!x) + 1; !x

val COUNTER =
letdomain pub : domain(world → _, _ → _, _ ⇒ _) into
letdomain owned : domain(pub ⇒ _, pub → _, _ → _) in
pack (pub,

pack (ref owned int,
{ init = ref pub 0,
create = λpub x : unit . ref owned (!init),

inc = λpub x : ref owned int . increment owned x}
) as ...

) as ∃world public : domain(world → _, _ → _, _ ⇒ _) .
∃world t : type .
{ init : ref public int,

create : unit →public t,
inc : t →public int }

Figure 4. A counter abstract data type in System Fown.

to the familiar case of existential types, System Fown permits
us to write expressions with existential domains. We make
use of this feature to export domains out of the lexical scope
of a letdomain expression.

Types τ include arrow types, reference types, universal
types, and existentials. Just as function, reference and poly-
morphic and existential terms are annotated with domains,
so too are their types. Arrows, reference types, and univer-
sal and existential types are all annotated with the domain
to which they belong. The sole exception to this is the spe-
cial universal type corresponding to the special domain poly-
morphism term; a term of this type must run in any domain,
and so we don’t need to specially annotate it with a home
domain.

Like System F (and unlike core ML), System Fown sup-
ports impredicative polymorphism; that is, type variables
can range over polymorphic types. This means we can model
simple forms of ML-style functors and first class modules
with functions that return existential packages. The most so-
phisticated uses of functors, which rely on full dependent
sums, do not fit into this model.

3.2 Expressiveness

We demonstrate the expressiveness of System Fown through
a series of examples. Some of our examples assume records,
case statements, etc., which can be encoded in the standard
way.

Counter. Figure 4 shows a COUNTER module defining a
counter abstract data type. This module illustrates how own-
ership domains can be used to encapsulate internal state
even in the presence of abstract types, state-manipulating li-
brary functions, and references that are shared across module
boundaries.

The counter module defines a pub domain that will hold
its public functions and reference cells, and an owned domain
that will hold the reference cells used to implement the coun-
ters. The permissions for the pub domain, for example, give
the world domain access permission to pub (world → _), and
give pub create and access permission to itself (_ → _ and
_ ⇒ _). The module defines an abstract type t for the counter,
implemented as a reference cell in the owned domain.



rec val map : ∀ d : domain(_ → _) . ∀d a, b : type .
(a →d b) →d (a list →d b list)

= Λ d : domain(_ → _) .
Λd a : type .
Λd b : type .
λd f : a →d b .
λd l : a list .
case l of nil => nil

| x::xs => (f x) :: map d a b f xs

Figure 5. A polymorphic map function in System Fown.

When a client wants to create a counter, they will first
store the initial value of the counter into the init reference
cell, then call create to get a new counter. The implementa-
tion of create simply creates a fresh reference initialized to
the value stored in init.

The counter can be incremented by calling the inc func-
tion. The implementation of inc calls the increment library
function, which is polymorphic in the domain d of the refer-
ence cells it increments.

Discussion. Although simple, this example illustrates sev-
eral ways in which our design is more flexible yet provides
more encapsulation than any previous ownership type sys-
tem. On the flexibility side, we are able to implement the ab-
stract type t in terms of a reference, allowing clients to refer
directly to that reference, but ensuring that they cannot deref-
erence that reference, since its type is held abstract and in any
case, its domain is inaccessible. No previous ownership type
system supports abstract types of this form, although inner
classes can provide some of the expressiveness [8, 6].

On the encapsulation side, like other ownership type sys-
tems, our system provides a clear guarantee that no client can
access the hidden references directly. Simply observing that
the counter references are annotated with the owned domain,
and that the world domain does not have access to the owned
domain, is sufficient to guarantee this. If the implementor of
the COUNTER module made a mistake that would expose an
internal reference—for example, just using the init reference
when creating a counter instead of creating a new reference
initialized to the same value—the type system would notice
the inconsistent domain annotations and would flag the er-
ror.

Our type system goes further than previous ownership
systems, however, in that it allows developers to pass ref-
erences to domain-polymorphic functions without the dan-
ger that those functions might break the module’s abstrac-
tion guarantee. The increment function is defined with the
special domain polymorphism form, so that the body of the
function is typechecked as if it were within the argument do-
main. This gives increment permission to dereference and
assign to the references passed to it.

However, because the body of increment is typechecked
as if it were in a domain that has only permission to access
or create in itself, the body of the function loses access to any
other domains that were previously in scope. For example,
the increment function would not be able to access state in
the world domain. This ensures that although increment has
access to the internal state of the COUNTER module, it can-
not expose that state to clients, or even report any informa-
tion about the state to clients through global references.

Our type system’s support for writing domain polymor-
phic functions that do not violate abstraction is essential not
only for using library code safely, but also for many other
common programming idioms including callback functions
and plugin modules. In comparison, all previous ownership
type systems either prohibit fully polymorphic functions like
increment, or else allow such functions to break the abstrac-
tion of COUNTER by storing the reference in an object [2], or
reporting information about the references to clients through
global state [8, 6].

Comparison to Conventional Systems.
In this simple example, it is easy to see that the

counter reference is never accessed outside functions in the
COUNTER module and domain polymorphic functions like
increment. However, the JDK bug described earlier shows
that checking encapsulation properties like these is non-
trivial in larger systems. Checking this property in a conven-
tional module system would be considerably more difficult.
For example, checking to make sure that the COUNTER in-
terface contains no references is insufficient, because the in-
terface does have such a reference—one must also check that
the references used for counters don’t alias the init reference.
We cannot use an effect system to ensure that clients don’t
access the reference because in fact we want to allow them
to do so–as long as they access it through the interface of
COUNTER. Even doing an escape analysis is insufficient, be-
cause the counter reference actually escapes twice: to clients
through the abstract type t, and to the increment library.

In other module systems, it would be necessary to
manually verify that clients cannot use some function in
COUNTER to convert a t into the underlying reference, and
also to check that increment does not expose the reference
to clients. These checks are automatically guaranteed by our
type system. As mentioned above, since clients cannot access
the owned domain inside COUNTER, there is no way they
can possibly read or write the underlying reference.

Map. Figure 5 shows a map function that is polymorphic in
the argument type, return type, and domain of the function
to be mapped. As with the increment function above, Sys-
tem Fown’s type system restricts the direct side-effects of map
to calling functions and accessing references in domain d (in
this case, of course, map calls the function f ). This exam-
ple demonstrates that System Fown can express an important
functional programming idiom, but also shows how System
Fown’s domains help in reasoning about the effects of a func-
tion – we can tell from the type that map cannot have any
side-effects except those that arise through calling its argu-
ment function f .

Note that unlike an effect system, we restrict only the di-
rect effects of map, not the transitive side-effects that could
occur through the call to f . This feature makes our sys-
tem more lightweight in practice compared to effect systems,
which must track the transitive effects of each function.

Object-Oriented Sequence ADT. Although presented in the
context of System F, our type system can also express typical
object-oriented idioms that present challenges to many pre-
vious ownership type systems. For example, Figure 6 shows
a polymorphic sequence abstract data type, SEQ. The ADT
is implemented in a typical object-oriented style, with mu-
tator functions like add and support for iterating over the
sequence with an iterator object. The diagram shows the in-
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val ITER = Λ iter : domain(_ ⇒ _) .
Λiter owned : domain(iter ⇒ _, iter → _) .
Λiter t : type .
λiter head : t list .

let cur = ref owned head in
{ hasNext = λiter x : unit . isCons (!cur)

next = λiter x : unit .
let v = hd(!cur) in cur := tl(!cur); v }

val SEQ = Λworld t : type .
letdomain public : domain(world → _, _ ⇒ _, _ → _) into
letdomain owned : domain(public ⇒ _, public → _) in
let head = ref owned nil in
pack (public,

{ add = λpublic x : t . head := cons x (!head),
iter = λpublic x : unit . ITER public owned t (!head) }

) as ∃world public : domain(world → _) .
{ add : t →public unit,

iter : unit →public

{ hasNext : unit →public bool,
next : unit →public t }

}

Figure 6. The SEQ module implements a polymorphic se-
quence abstract data type. Iterators over the sequence are de-
fined by the ITER module.

tended design of the system, which is similar to the bank ex-
ample given earlier: the client can access the sequence and its
iterators, and the iterators can access the underlying linked
list, but the client should not be able to get to the underlying
list directly.

The SEQ module is parametric in the type t of elements
in the sequence. Like the COUNTER module above, the SEQ
module defines a public domain accessible from world, and
a owned domain for the private state in the sequence. That
state is represented by a reference cell in the owned domain
which points to the head of the list.

The module itself is implemented as a package that ex-
poses the public domain as well as two functions in that do-
main. The add function mutates the sequence by adding an-
other element to the front of the sequence. The iter function
returns an iterator over the sequence, using the ITER module
defined above.

The iterator is implemented with the special domain-
polymorphism form, just like the increment function in
the previous example, thus ensuring that the iterator im-
plementation will not break the abstraction boundary of
the sequence. The nested polymorphic function illustrates
bounded domain polymorphism: the owned domain passed
in must allow the iter domain to create and access state in

Values v ::= () | l | λmx:τ. t
| pack (ω, v) as ∃mα:K. τ
| Λmα:K. τ | Λα:domain(). τ

Expr t ::= ts | v | t@m

Store µ ::= ε | µ, l : v

Store typ. Σ ::= ε | Σ, l : τ

Environment Γ ::= ε | Γ, x : τ | Γ, α : K

Contexts C ::= ¤ | C t | v C | | C [ω] | ref δ C
| pack (ω, C) as ∃δα:K. τ
| unpack (α, x) = C in t

Figure 7. System Fown Intermediate Forms and Values

it. When the iterator is used, the iter and owned domains
are instantiated with the public and owned domains of the
sequence, respectively.

The iterator is also polymorphic in the element type be-
ing iterated over. Finally, a function acting as the iterator
constructor accepts the list to iterate over as an argument.
This list is stored as the reference cur, which is part of the
owned domain. The implementation of hasNext and next is
straightforward, assuming the existence of functions isCons,
hd, and tl for accessing lists. The next function not only re-
turns the current element, but also advances the cur pointer
to refer to the next cell in the list.

4. Formal Semantics

We formulate the semantics of System Fown as a set of small-
step reduction rules together with syntax-directed typing
rules. A number of auxiliary judgment forms are used to
reason about type and domain equality, access permissions
between domains, and sub-kinding. We first present the dy-
namic semantics, then the typing rules before considering
type soundness.

4.1 Dynamic Semantics

Figure 7 shows the value and intermediate computation
forms for System Fown, and Figure 8 shows the reduction
rules.

During execution, we keep track of the current domain δ,
representing the domain that is responsible for the currently
executing code.

The reduction relation is of the form δ ` µ; t Ã µ′; t′.
This is read as “In domain δ, the store µ and the expression t
reduce in one step to a new store µ′ and new expression t′.”

We represent reference values with locations l, and index
the store µ with locations. As the program reduces, new
domains can be created by “letdomain” expressions, and
we ensure they are distinct by using an alpha-conversion
convention.

Furthermore, we distinguish between lambda expressions
in the source program and lambda values by marking values
with an overbar, in order to create a distinction between the
ability to create a function and the ability to invoke it. As
discussed in section 2, the typing rule for a source level func-
tion requires that the current domain include a permission
to create new functions in the domain δ of the function. Once
a function λδx:τ. t reduces to λδx:τ. t, we no longer make
this check; instead, we check (at function application) that
the current domain has a permission to access δ.



δ ` µ; λγx:τ. t Ã µ; λγx:τ. t
EFun

δ ` µ; (λγx:τ. t) v Ã µ; ([v/x]t)@γ
EAppR

γ ` µ; t Ã µ′; t′

δ ` µ; t@γ Ã µ′; t′@γ
EAtC

δ ` µ; v@γ Ã µ; v
EAtR

µ′ = µ, l : v l 6∈ domain(µ)

δ ` µ; ref γ v Ã µ′; l
ERefR

δ ` µ; !l Ã µ; µ(l)
EDeefR

µ′ = [µ|l = v]

δ ` µ; l := v Ã µ′; ()
EAssignR

δ ` µ; (Λγα:K. t) [τ ] Ã µ; ([τ/α]t)@γ
ETAppR

δ ` µ; Λzα:K. t Ã µ; Λzα:K. t
EForall

v′ = pack (σ, v) as ∃γα:K. τ

δ ` µ; pack (σ, v) as ∃γα:K. τ Ã µ; v′
EPackR

v′ = pack (σ, v) as ∃γα:K. τ

δ ` µ; unpack (α, x) = v′ in t2 Ã

µ; [v/x][σ/α]t2

EUnpackR

δ ` µ; letdomain z : K in t Ã µ; t
EDmIn

δ ` µ; letdomain z : K into t Ã µ; t@z
EDmInto

δ ` µ; t Ã µ′; t′

δ ` µ; C[t] Ã µ′; C[t′]
EContext

Figure 8. Dynamic Semantics

Expressions are also extended with locative expressions
t@γ, which represents an expression evaluating in the con-
text of a domain γ. We use this locative in order to identify
code a domain other than the current domain – for example,
when we perform a function application (λmx:τ. t) v using
the EAppR rule, we substitute the formal parameter with a
value, and then mark the substituted expression [v/x]t with
the domain m. The locative marker lets us distinguish the
body of the function from the context it evaluates in, which
greatly simplifies the soundness proof.

Informally, locatives are related to stack inspection, in that
they change a principal for the lifetime of a dynamic ccall.
However, our locatives could be eliminated in a real im-
plementation (as an examination of the EAtR rule should
demonstrate), because have no computational impact – there
is no way for a program to test which domain it is in. In addi-
tion to function applications, both forms of type application
and the “letdomain z : K into t” expression create locatives
(in rules ETApp1, ETApp2, and EDmInto, respectively).

Finally, we have two letdomain constructs, which we
use to introduce new domains. The only difference between
them is that the “letdomain z : K into t” evaluates its

Γ, z : domain(P, _ ⇒ δ, P ′) ` z ⇒ δ
DCreator

Γ, z : domain(P, δ ⇒ _, P ′) ` δ ⇒ z
DCreated

Γ, z : domain(P, _ ⇒ _, P ′) ` z ⇒ z
DCrRefl

Γ, z : domain(P, _ → δ, P ′) ` z → δ
DAccessor

Γ, z : domain(P, δ → _, P ′) ` δ → z
DAccessed

Γ, z : domain(P, _ → _, P ′) ` z → z
DAcRefl

Figure 9. Domain Definition, Creation, and Access Rules

subexpression t in the new domain z it just created, and
“letdomain z : K in t” evaluates t in the current domain. It
is worth noting that repeated evaluations of a letdomain ex-
pression (for example, if it is part of a function body) will
produce different domains. We enforce this by assuming an
alpha-conversion convention similar to the one for variable
bindings.

The rules for reference creation, assignment, and deref-
erence are completely standard. Finally, the congruence rule
EContext allows reduction to proceed within an evaluation
context.

4.2 Domain Access Rules

We begin with the most interesting component of the static
semantics: the rules showing when a domain has permission
to create or access references within a domain.

We have two judgments: first, Γ ` δ ⇒ γ, determines
whether domain δ has permission to create references or code
in domain γ, and second, Γ ` δ → γ, determines whether
domain δ can access objects in domain γ.1 We can read either
judgment as “given a domain heap D and a variable context
Γ, domain δ has the ability to touch domain γ”.

The first rule, DCreator, establishes that a domain z can
can create functions and references in another domain, and
conversely, DCreated grants another domain permission to
create objects in z. The DCrSelf rules is used to determine
whether a particular domain is reflexive – whether it can cre-
ate objects in itself. There are a parallel set of rules for domain
access, with DAccessor granting z permission to access an-
other domain, DAccessed granting another domain the right
to access z, and DAcRefl granting z reflexive access.

It’s worth observing once again that the access rules are
not transitive. However, if domain γ has both create and
access permission to domain δ, then it can access anything
δ can access simply by creating a new function in δ and
then calling it. Thus, create permission effectively enables
one domain to impersonate another, and so it should be used
with care.

4.3 Typing Rules

Figures 10 and 11 show the typing rules for System Fown.
The typing relation is of the form γ; Σ; Γ ` e : τ , read, “In the

1 Recall that to “access” γ means to read or write pointers from γ, or
to invoke functions or to open packages in it.



x : τ ∈ Γ
δ; Σ; Γ ` x : τ

V arref

γ; Σ; Γ, x : τ ` t : τ ′ Γ ` δ ⇒ γ

δ; Σ; Γ ` λγx:τ. t : τ →γ τ ′
Lambda

γ; Σ; Γ, x : τ ` t : τ ′

δ; Σ; Γ ` λγx:τ. t : τ →γ τ ′
LambdaV al

δ; Σ; Γ ` t1 : τ →γ τ ′

δ; Σ; Γ ` t2 : τ Γ ` δ → γ

δ; Σ; Γ ` t1 t2 : τ ′
App

γ; Σ; Γ ` t1 : τ Γ ` δ → γ

δ; Σ; Γ ` t1@γ : τ
At

l : ref γ τ ∈ Σ

δ; Σ; Γ ` l : ref γ τ
Label

δ; Σ; Γ ` t : τ Γ ` δ ⇒ γ

δ; Σ; Γ ` ref γ t : ref γ τ
Ref

δ; Σ; Γ ` t : ref γ τ Γ ` δ → γ

δ; Σ; Γ `!t : τ
DeRef

δ; Σ; Γ ` t1 : ref γ τ
δ; Σ; Γ ` t2 : τ Γ ` δ → γ

δ; Σ; Γ ` t1 := t2 : unit
Assign

γ; Σ; Γ, z : K ` t : τ Γ ` δ ⇒ γ Γ ` K : kind

δ; Σ; Γ ` Λγz:K. t : ∀γz:K. τ
Λ1

γ; Σ; Γ, z : K ` t : τ Γ ` K : kind

δ; Σ; Γ ` Λγz:K. t : ∀γz:K. τ
Λ1

z; Σ; Γ, z : domain(P ) ` t : τ fv(P ) = ∅

δ; Σ; Γ ` Λz:domain(P ). t : ∀z:domain(P ). τ
Λ2

z; Σ; Γ, z : domain(P ) ` t : τ fv(P ) = ∅

δ; Σ; Γ ` Λz:domain(P ). t : ∀z:domain(P ). τ
Λ2

δ; Σ; Γ ` t : ∀γα:K. τ Γ ` K′ ≤ K
δ; Σ; Γ ` ω : K′ Γ ` δ → γ

δ; Σ; Γ ` t[ω] : [ω/α]τ
TApp1

δ; Σ; Γ ` t : ∀α:domain(P ). τ
δ; Σ; Γ ` γ : K
Γ ` K ≤ domain()
Γ ` δ → γ if _ → _ ∈ P
Γ ` δ ⇒ γ if _ ⇒ _ ∈ P

δ; Σ; Γ ` t[γ] : [γ/α]τ
TApp2

Figure 10. Static Semantics

context of domain γ, store type Σ and type environment Γ,
expression e has type τ .”

Most of the typing rules are fairly straightforward, with
the main differences between System Fown and the standard
typing rules lying in the addition of checks to verify access
permissions. For example, notice that Lambda checks for a

creation permission, and that LambdaV al does not, as dis-
cussed earlier, and that the Λ1 and ∃I rules both have corre-
sponding creation permission checks and value forms. The
Ref rule is standard, with an extra check for creation rights,
and the App, DeRef and Assign rules are the familiar rules
for function application, type application, dereference and
assignment, with an additional check for access permissions.
(The Λ1 and related rules also check for the well-formedness
of types and domains. There is nothing unexpected in this
judgment, and we elide it for reasons of space.)

The TApp1 rule also follows this pattern, with the addi-
tional feature that it permits a subkind of its expected argu-
ment. The subkinding relation is defined in Figure 13; essen-
tially, we define a domain δ to be a subkind of γ if it offers
at least the permissions of γ. This lets us pass domains with
more permissions as arguments to functions that want a do-
main with some set of permissions.

The typing rule for Λ2 differs from this pattern, because
it checks its body in an environment in which its domain
is changed to its argument, a domain about which no as-
sumptions about any other domains are made – the condi-
tion fv(P ) = ∅ means that only the permissions _ ⇒ _ and
_ → _ can be in P . If the body typechecks with this minimal
assumption, then it can safely be run in any domain with the
permissions P . Thus, the application rule TApp2 also varies
from the established pattern. We require that the argument
passed to it be one that the current domain have permissions
for, because the body of a Λ2 can, given a rich enough P , cre-
ate references or access pointers in the domain it was given
as an argument. Consider “Λα:domain(_ ⇒ _). ref α ()” –
which has the type “∀α:domain(_ ⇒ _). ref α unit”. If the
current domain did not have permission to create references
in the domain it was given as an argument, access protection
could be violated.

Finally, we have the DmIn and DmInto rules. Both of
these create a new domain and typecheck the body with the
assumption that this domain is available, varying only in the
question of which domain the body is checked in. Both also
check that their domain z is creatable, which is a check that
z is given no permissions that the current domain does not
have. This judgment is in Fig 12.

One final question remains: the typing and reduction
judgments require a domain, but how can we get such a do-
main before the program starts evaluating? Our solution is
to begin evaluation in a context with initial domain Γ = δ :
domain(_ ⇒ _, _ → _), and we typecheck against this initial
domain.

Figure 13 shows the main rules for subkinding in our
system. The type kind is a subkind of itself, and two domains
domain(P ) and domain(Q) are in a subkind relationship if
Q ⊆ P (i.e., if P grants at least the permissions of Q). We
retain this judgment in order to show that it is possible to
actually invoke our domain-universal form.

4.4 Soundness

We prove the soundness of System Fown with the standard
combination of progress and type preservation theorems.

Theorem 1 (Progress)
If δ; Σ; ε ` t : τ and Σ ` µ, then either t is a value or
δ ` µ; t Ã µ′; t′.

Proof: We prove progress with a conventional induction
over the structure of the typing derivation. The progress
proof is wholly conventional; all of the interesting structure



γ; Σ; Γ ` t : [σ/x]τ Γ ` δ ⇒ γ

δ; Σ; Γ ` pack (σ, t) as ∃γx:K. τ : ∃γx:K. τ
∃I

γ; Σ; Γ ` v : [σ/x]τ

δ; Σ; Γ ` pack (σ, v) as ∃γx:K. τ : ∃γx:K. τ
∃I

δ; Σ; Γ ` t : ∃γx:K. τ
δ; Σ; Γ, α : K, x : τ ` t′ : σ Γ ` δ → γ

δ; Σ; Γ ` unpack (α, x) = t in t′ : σ
∃E

δ; Σ; Γ, z : K ` t : τ δ; Γ ` K creatable

δ; Σ; Γ ` letdomain z : K in t : τ
DmIn

γ; Σ; Γ, z : K ` t : τ δ; Γ ` K creatable

δ; Σ; Γ ` letdomain z : K in t : τ
DmInto

Figure 11. More Static Semantics

δ; Γ ` P accessible

δ; Γ ` domain(P ) creatable
Base

δ; Γ ` ε accessible
AccessEmpty

Γ ` δ Ã γ Ã∈ {→,⇒} δ; Γ ` P accessible

δ; Γ ` P, _ Ã γ accessible
AccessFrom

Γ ` γ Ã δ Ã∈ {→,⇒} δ; Γ ` P accessible

δ; Γ ` P, γ Ã _ accessible
AccessTo

Γ ` δ Ã δ Ã∈ {→,⇒} δ; Γ ` P accessible

δ; Γ ` P, _ Ã _ accessible
AccessRefl

Figure 12. Creatability

Γ ` type ≤ type
SType

Γ ` P ≤ P ′

Γ ` domain(P ) ≤ domain(P ′)
SDomain

Γ ` ε ≤ ε
SEmpty

Γ ` P, φ, Q ≤ P ′

Γ ` P, Q ≤ P ′
SShrink

Figure 13. Subtyping

is in the type preservation theorem. ¥

Theorem 2 (Type Preservation)
If δ; Σ; Γδ ` t : τ , and Σ ` µ, and δ ` µ; t Ã µ′; e′, then there
exists Σ′ ⊇ Σ and Γ′

δ ⊇ Γδ such that δ; Σ′; Γ′ ` t′ : τ and
Σ′ ` µ′.

Proof: We do this proof by an induction on the derivation
relation. The unusual features of this proof, relative to the
soundness proof of System F, are that first, we need to prove
a domain value lemma to show that a closed, well-typed value

is well-typed at any domain, and that the substitution lemma
only holds when substituting values for variables, which
means that the soundness proof for System Fown ends up
relying critically on the language being call-by-value.

Secondly, our type preservation lemma allows Γδ to
grow as the program evaluates. However, this context only
contains domains, which have no term representation, so
none of the problems of evaluating open terms ever arise.
(If desired, a separate context for domains could be created.)

¥

Once we have a soundness proof, we can use it prove that
the access permissions are always respected:

Theorem 3 (Access Correctness)
If there is a derivation C = δ; Σ; Γδ ` E [t] : τ , and if

• t =!l (with Σ(l) = ref γ σ),
• t = l := v (with Σ(l) = ref γ σ),

• t = (λγx:τ. t)v,

• t = (Λγα:K. t′)[ω],
• or t = unpack (α, x) = v in t′

(with v = pack (ω, v) as ∃γα:K. τ ),

and δ ` µ; E [t] Ã µ′; E [t′], then there exists a domain ω
such that there is a derivation ω; Σ; Γ′

δ; t : σ which is a
subderivation of C, and Γ′

δ ` ω → γ.

Here, E represent contexts that can go inside locatives
(E ::= . . . | E@m′) unlike the evaluation contexts defined
earlier.

5. Related Work

Ownership. A number of early research projects, including
Islands [17] and Balloons [3], provided a way to encapsu-
late one object within another. The term “ownership” is due
to the Flexible Alias Protection project [22, 10], which added
ownership parameters in order to support object-oriented id-
ioms like collection classes. Early ownership systems all en-
forced a strong encapsulation property known as owners-as-
dominators: an owned object is dominated by its owner, in
the sense that all paths in the heap from external objects to
the owned object must go through its owner. In practice, this
property is too restrictive: idioms such as object-oriented iter-
ators, callback functions, and calls to the standard library all
may require more flexible heap structures. A number of so-
lutions have been proposed for this problem, including sup-
porting stack-based aliases to owned objects [9], capability-
based encapsulation [2], or allowing inner objects to have
privileged access to the state of their enclosing objects [8, 6].

Several systems build on the owners-as-dominators prop-
erty to provide secondary properties including safe con-
currency [6], safe memory management [7], reasoning
about effects [9], and abstraction [4]. While the owners-
as-dominators property loses its meaning in System Fown

(which is not object-oriented), we believe that our system in
principle can enable similar kinds of reasoning–an important
direction for future work.

Clarke et al.’s Simple Ownership Types system intro-
duced the idea of ownership contexts, which provided ad-
ditional flexibility by decoupling ownership from individ-
ual objects, and studied ownership in a foundational ob-
ject calculus [11, 8]. Our previous work on Ownership Do-



mains builds on ownership contexts by introducing owner-
ship domains with user-defined access permissions, but cre-
ation permissions and a hierarchy of domains were still hard-
wired [1].

Our system is simpler, more uniform, and more flexible
than our previous work, because we have added explicit cre-
ation permissions, done away with the idea of domain hier-
archy, and permit the creation of new domains at will. As a
result, the previous systems can be encoded in System Fown.
Furthermore, unlike the previous work, we work in an im-
perative version of System F, rather than in an object calcu-
lus. This lets us work in a simpler and better-understood sys-
tem, and opens the door to using ownership in functional
and procedural languages.

Region and Effect Systems. Region-based memory manage-
ment systems group references into ownership-domain-like
regions [28, 7]. Our system differs from region systems in
several ways. First of all, in order to accurately track access
permissions, our domains include not only references but
also functions and existential packages.

Second, region systems are intended to support statically
checkable explicit memory management, requiring these sys-
tems to restrict inter-region references according to a stack-
like discipline or linear logic. Our system’s goal of enforc-
ing encapsulation allows us to support more general aliasing
patterns, according to the access policies specified by the pro-
grammer.

Type and effect systems[27] are another way of tracking
access to state. The main difference is that such systems are
usually track the transitive closure all possible effects, and
while System Fown tracks access, which is not a transitive
property. Thus, while effect systems verify that a function
only affects a given part of the program’s state, System Fown

verifies that any effects a function has are mediated through
the proper information-hiding interface. Tracking only local
access also allows our annotations to remain small compared
to a system that tracks transitive effects.

Other Related Work. Grossman et al.’s syntactic type ab-
straction is similar to our work in tagging data with labels
that represent the principals that own the data [16]. The do-
mains of our ownership system resemble the principals, ex-
cept that new domains can arise dynamically during pro-
gram execution, rather than partitioning the program stati-
cally.

Furthermore, our notion of locatives bears a strong re-
semblance to the work on stack inspection [14]. We use loca-
tives of the form e@δ in order to identify the bodies of func-
tion invocations and keep track of their permissions. This
closely resembles the dynamic grant of permissions in a
stack-inspection calculus. System Fown differs from stack in-
spection in that it supports an unbounded number of princi-
pals, each of which protects its own data from other princi-
pals according to a well-defined access policy.

Adoption is another mechanism, similar to ownership,
that can be used to encapsulate one object within an-
other [12]. Although adoption can enforce strong encapsula-
tion in the presence of state, it is less flexible than ownership
in the programming idioms that it allows–for example, itera-
tor and callback objects would be forbidden in this approach.

Confined types [5] restrict aliases of an object to within
a particular package, a weaker but more lightweight no-

tion compared to the object-based encapsulation provided by
ownership domains.

Systems like alias types [29] and separation logic [26] pro-
vide a finer control of aliasing compared to ownership do-
mains, but are also much more intricate, requiring more dec-
larations for the same level of reasoning about aliasing. As
future work, we plan on encoding ownership domains in
separation logic, to more precisely characterize how they
modularize the use of state [24].

Leino et al.’s data groups [19] and Greenhouse et al.’s re-
gions [15] are similar to ownership domains. Here groups
and regions refer to sets of fields rather than sets of objects,
references, and functions, and are used to reason about ef-
fects rather than aliasing. Banerjee and Naumann [4] make
use of this methodology to prove an abstraction theorem for
a specification-based ownership technique.

The functional language Haskell has the concept of a state
monad, which is a type representing computations with state.
This idea has strong connections to region systems, which
can be regarded [13] as a way of creating indexed families of
state monads. We speculate that future work could relate the
two via a mutual connection to modal logic. Monads give
rise to the diamond modality in constructive modal logic.
Our permissions form a globally-visible access control list,
as in information flow analysis, and so it may be possible to
model this with a box modality as in [21].

6. Conclusion

This paper has shown how an ownership type system can
be integrated with the type theory of System F, including ab-
stract data types, first-class functions, and universal and ex-
istential quantification. The resulting system is simpler and
more flexible than previous ownership type systems, yet pro-
vides stronger encapsulation guarantees.

In future work, we plan to integrate this design into a
user-level language that will combine the benefits of own-
ership and advanced language constructs. We are currently
working on supporting local type inference for ownership in
the setting of object-oriented languages. Finally, we would
like to investigate connections between ownership and logic.
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