
Focusing on Pattern Matching

Neelakantan R. Krishnaswami
Carnegie Mellon University

neelk@cs.cmu.edu

Abstract
In this paper, we show how pattern matching can be seen to arise
from a proof term assignment for the focused sequent calculus.
This use of the Curry-Howard correspondence allows us to give
a novel coverage checking algorithm, and makes it possible to give
a rigorous correctness proof for the classical pattern compilation
strategy of building decision trees via matrices of patterns.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Lambda Calculus and Related Systems

Keywords Focusing, Pattern Matching, Type Theory, Curry-
Howard

1. Introduction
From the point of view of the semanticist, one of the chief at-
tractions of functional programming is the close connection of the
typed lambda calculus to proof theory and logic via the Curry-
Howard correspondence. The point of view of the workaday pro-
grammer seems, at first glance, less exalted — one of the most
compelling features in actual programming languages like ML and
Haskell is the ability to analyze structured data with pattern match-
ing. But pattern matching, though enormously useful, has histor-
ically lacked the close tie to logic that the other core features of
functional languages possess. The Definition of Standard ML (Mil-
ner et al. 1997), for example, contains a suggestion in English that
it would be desirable to check coverage, with no clear account of
what this means or how to accomplish it.

Our goal is to rectify this discrepancy, and show that the se-
manticist ought to be just as interested in pattern matching as the
programmer. We show that pattern matching has just as strong a
logical interpretation as everything else in functional programming,
and that filling in this part of the Curry-Howard correspondence en-
ables simple correctness proofs of parts of the compiler (such as the
coverage checker and the pattern compiler) that required consider-
able insight and creativity before.

Specifically, our contributions are:

• First, we give a proof term assignment for a focused sequent
calculus, which naturally gives rise to pattern matching. Then,
we show how to extend this calculus to properly model features
of ML-like pattern languages such as as-patterns, or-patterns,
incompleteness, and the left-to-right priority ordering of ML-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL ’09 21-23 January 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM [to be supplied]. . . $5.00

style pattern matching. This calculus also extends easily to
encompass features like recursive and existential types.
• Second, we give a simple inductive characterization of when

a pattern is exhaustive and non-redundant, and prove that this
algorithm is sound. This is of interest since it is a coverage
test that does not involve examining the output of a pattern
compilation algorithm.
• Third, we reconstruct the classical matrix-based method of

compiling patterns into decision trees in terms of our for-
malism, and prove its correctness. This correctness result is
stronger than prior results, since it is based directly upon the
language’s semantics.

2. An Introduction to Focusing
2.1 The Focused Sequent Calculus
A rule of a logical system is called invertible when the conclusion
of the rule is strong enough to imply the premises; that is, when
the rule can be read bidirectionally. For example, the right rule for
implication in the sequent calculus is invertible:

Γ, A ` B
Γ ` A→ B

We can give a proof that this rule is invertible by showing that the
conclusion lets us deduce the premise:

Γ ` A→ B

Γ, A ` A→ B
WEAK

Γ, A ` A
HYP

Γ, A,B ` B
HYP

Γ, A,A→ B ` B
→L

Γ, A ` B
CUT

Since the conclusion can be deduced from the premises, and the
premises follow from the conclusion, this means that applying
an invertible rule cannot change the provability of a sequent —
the same information is available. (In contrast, a rule like sum-
introduction is not invertible, since the knowledge thatA+B holds
is less informative than knowing that, say, A holds.)

This is problematic for applications involving proof search,
such as theorem proving. The fact that we can apply invertible
rules at any time means that there are many equivalent proofs that
differ only in the order that inversion steps are made in, which
increases the size of the theorem prover’s search space with no
benefit. Andreoli introduced the concept of focusing (Andreoli
1992) as a technique to reduce the nondeterminism in the sequent
calculus. First, he observed (as had others (Miller et al. 1991))
that applications of invertible rules could be done eagerly, since
inversion does not change provability. Then, he observed that each
connective in linear logic was either invertible on the left and non-
invertible on the right (the positive types), or invertible on the right
and non-invertible on the left (the negative types). Finally, he made
the remarkable observation that in a fully inverted sequent (i.e., one
in which no further inversions are possible), it is possible to select

a single hypothesis (on either the left or the right) and then eagerly
try to prove it, without losing completeness. This fact explains the
name focusing; one can “focus on” a hypothesis without losing
completeness. We give a version of the focused sequent calculus
for intuitionistic logic below. First, we group the connectives.

Types A ::= X | 1 | A×B | A→ B | 0 | A+B
Positives P ::= X | 1 | A×B | 0 | A+B
Negatives N ::= X | A→ B

The types are unit 1, products A × B, void 0, sums A + B,
function spaces A→ B , and atomic types X . Sums and products1

are positive, and function space is negative. Atoms are treated as
either polarity, as convenient. This system has four judgements.
First, we have a right focus phase Γ ` A, in which we try to prove
a positive formula on the right. As usual, Γ is taken to be a list of
hypotheses, with the rules presented in such a way as to make the
usual structural properties (exchange, weakening and contraction)
admissible.

Γ ` A

Γ ` 1
1R

Γ ` A Γ ` B
Γ ` A×B

×R
Γ ` A

Γ ` A+B
+R1

Γ ` B
Γ ` A+B

+R2
Γ; · ` N
Γ ` N

BLURR

Since the leaves of a positive proposition can contain negative for-
mulas, the BLURR rule lets us transition to the two-context right
inversion judgement Γ; ∆ ` A, in which a negative proposition on
the right is inverted. Since the only negative connective is implica-
tion, this means moving the left-hand-sides of arrows A→ B into
the context ∆, which can contain arbitrary positive or negative for-
mulas. The ∆ context is ordered – the structural rules of exchange,
contraction and weakening are not permitted in this context.

Γ; ∆ ` A

Γ; ∆, A ` B
Γ; ∆ ` A→ B

→R
Γ; ∆ B P

Γ; ∆ ` P
BLURL

Once the right-hand-side is positive once again, we have to con-
tinue with inversion on the left before we can resume focus. This
brings us to the left-inversion phase Γ; ∆ B P , which inverts all of
the positive hypotheses on the left starting from the leftmost end
of the pattern context, and moves negative hypotheses into Γ. The
ordering of ∆ forces the left-inversion rules to be applied from left
to right, eliminating the irrelevant choice of which order to apply
the left-invertible rules from the calculus.

Γ; ∆ B P

Γ, N ; ∆ B P

Γ;N,∆ B P
HYPL

Γ; ∆ B P

Γ; 1,∆ B P
1L

Γ;A,B,∆ B P

Γ;A×B,∆ B P
×L

Γ; 0,∆ B P
0L

1 Intutitionistic products can be either negative, with projective elimina-
tions, or positive, with a let-binding elimination. This corresponds to the
fact that intuitionistic products can be seen as corresponding to either one
of the linear connectives A&B or A ⊗ B. We choose the latter, since it
has a let-binding elimination letpair (x, y) = e in e′ and this is the more
natural elimination to explain pattern matching.

Γ;A,∆ B P Γ;B,∆ B P

Γ;A+B,∆ B P
+L

Γ ` P
Γ; ·B P

FOCUSR

Γ BX

Γ; ·BX
FOCUSL

Γ B P Γ;P BQ

Γ; ·BQ
FOCUSLP

Once the pattern context is emptied, we can resume focus, either
returning to right focus via FOCUSR, or by switching into the left
focus phase Γ B A, in which we focus on a hypothesis in the
negative context.

Γ BA

A ∈ Γ

Γ BA
HYP

Γ BA→ B Γ ` A
Γ BB

→L

Note that this focused sequent calculus is a restriction of the
traditional sequent calculus: if we collapsed all of the judgements
into a single judgement, elided the focus and blur rules that move
us between judgements, and turned the semicolon separating the Γ
and ∆ contexts into a comma, then each of these rules would be
one of the standard rules of the sequent calclus2. So it is easily
seen that every focused proof has a corresponding proof in the
regular sequent calculus. The completeness proof for focusing with
respect to the sequent calculus is a little bit harder, and can be found
elsewhere (Liang and Miller 2007).

2.2 A Proof Term Assignment
The next step on our path is to assign proof terms to this calculus.

Positive Right e ::= 〈〉 | 〈e, e′〉 | inl e | inr e | u
Negative Right u ::= λp. u | r
Arms (Positive Left) r ::= [] | [r | r′] | e | t | case(t, p⇒ r)
Applications (Neg. Left) t ::= x | t e
Patterns p ::= x | 〈〉 | 〈p, p′〉 | [] | [p | p′]
Ordinary Contexts Γ ::= · | Γ, x : N
Pattern Contexts ∆ ::= · | ∆, p : A

Γ ` e : A

Γ ` 〈〉 : 1
1R

Γ ` e1 : A Γ ` e2 : B

Γ ` 〈e1, e2〉 : A×B
×R

Γ ` e : A

Γ ` inl e : A+B
+R1

Γ ` e : B

Γ ` inr e : A+B
+R2

Γ; · ` u : N

Γ ` u : N
BLURR

Γ; ∆ ` u : A

Γ; ∆, p : A ` u : B

Γ; ∆ ` λp. u : A→ B
→R

Γ; ∆ B r : P

Γ; ∆ ` r : P
BLURL

2 In fact, the→L rule is the natural deduction elimination rule for implica-
tion, rather than a true left rule of the sequent calculus. We do this to keep
the upcoming proof terms more familiar.

Γ; ∆ B r : A

Γ, x : N ; ∆ B r : P

Γ;x : N,∆ B r : P
HYPL

Γ; ∆ B r : P

Γ; 〈〉 : 1,∆ B r : P
1L

Γ; p : A, p′ : B,∆ B r : P

Γ;
˙
p, p′

¸
: A×B,∆ B r : P

×L
Γ; [] : 0,∆ B [] : P

0L

Γ; p : A,∆ B r : P Γ; p′ : B,∆ B r′ : P

Γ; [p | p′] : A+B,∆ B [r | r′] : P
+L

Γ ` e : P

Γ; ·B e : P
FOCUSR

Γ B t : X

Γ; ·B t : X
FOCUSL

Γ B t : P Γ; p : P B r : Q

Γ; ·B case(t, p⇒ r) : Q
FOCUSLP

Γ B t : A

x : A ∈ Γ

Γ B x : A
HYP

Γ B t : A→ B Γ ` e : A

Γ B t e : B
→L

These rules exactly mimic the structure of the sequent calculus
we just presented. The proof terms for the right focus judgement
Γ ` e : A consists of all of the introduction forms for the
positive types. For the type 1, we have 〈〉; for products A × B,
pairs 〈e, e′〉; for sums A + B, the injections inl e and inr e; and
the empty type 0 has no introduction form. There is an interesting
interaction between the syntax and the typing judgement here;
while the negative introductions u are included in the productions
of the syntactic class e, the typing rule BLURR only permits us to
use these at a negative type. (A similar story can be told for all of
the other inclusions — of r in u, and t in r.)

Negative introduction forms — that is, functions — are typed
with the judgement Γ; ∆ ` u : A, and the proof terms are
lambda-terms λp.u. Our lambda terms differ in two respects from
the usual presentation of functions in the lambda calculus, one
minor and one major. The minor difference is that we need no
type annotation for the binder — this is because focused calculi
are inherently bi-directionally typed.3 The major difference is that
instead of a variable binder λx. u, we have a pattern as the binder
for a function. This will be common to all the binding forms of our
language, and is where most of the novelty of this calculus resides.

The introduction rule for functions→R moves the pattern from
the proof term into the right-hand side of the pattern context ∆.
The reason we say “right-hand-side” in particular is because the
pattern context is an ordered context — we cannot make free use
of the rule of exchange. So a context p : A, p′ : B,∆ is considered
to be different from a context p′ : B, p : A,∆. This is unlike the
behavior of the ordinary variable context Γ, in which we identify
permutations. Furthermore, instead of mapping variables to types, a
pattern context assigns types to patterns — in the previous example
p and p′ are schematic variables.

The patterns themselves range from the familiar to the unfamil-
iar. We have a variable pattern x, unit pattern 〈〉, and pair patterns
〈p, p′〉, which all match the syntax of patterns from ML. However,
we depart quite radically from ML when we reach the case of sum
patterns. A pattern for a sum typeA+B is a pattern [p | p′], which
can be read as a pattern p for the left branch, and a pattern p′ for

3 Concretely, the typing judgements form a well-moded logic program. All
of the judgements take the contexts and proof terms as inputs. Bidirection-
ality arises from the fact that the type argument is an output of the ΓBt : A
judgement, and an input of all of the others.

STLC Focused STLC

abort(t) case(t, []⇒ [])

case(t, x1. t1, x. t2) case(t, [x1 | x2]⇒ [t1 | t2])

letunit 〈〉 = t in t′ case(t, 〈〉 ⇒ t′)

letpair (x, y) = t in t′ case(t, 〈x, y〉 ⇒ t′)

let x = t in t′ case(t, x⇒ t′)

Figure 1. Traditional and Focused Eliminations

the right branch. This choice deviates from the ML practice of hav-
ing separate patterns for each constructor, but it has the benefit of
ensuring that a well-typed pattern will always be complete.

After decomposing all of the implications, we have a pattern
context ∆ and an arm r. Now, we come to the reason why the
context must be ordered. Patterns and arms are separate: patterns
live in the pattern context on the left of the turnstile B, and the
body of the proof term, r, carries the arms. So we must regard ∆ as
an ordered context to track which branches of a sum-pattern [p | p′]
correspond with which arms [r | r′]. This can be seen in the sum
elimination rule +L — given a pattern hypothesis [p | p′] : A+B
at the left-most end of the context, and an arm body [r | r′], we
break it down into two premises, one of which uses the pattern/arm
pair p : A/r, and the other of which uses p′ : B/r′. If we were
free to permute the pattern hypotheses, then we would lose this
correlation.

As an aside, note that functions, as inhabitants of the negative
type A → B, are only bound with variable patterns. So the struc-
ture of the sequent calculus naturally precludes decomposing func-
tions with pattern matching, showing that this is not an ad-hoc re-
striction. Furthermore, each variable in a pattern becomes a distinct
addition to the context Γ, so repeating variables does not require
their equality; it will shadow them instead. So the linearity restric-
tion on ML-style patterns can be seen as a restriction that forbids
patterns that shadow their own bindings.

After decomposing all of the pattern hypotheses, we can either
apply a function with the FOCUSL rule, or we can apply a function
and case analyze the result with the FOCUSLP rule. The proof
term of the FOCUSLP rule is case analysis, and this offers us
an opportunity to examine how the pattern elimination compares
with the traditional elimination constructs for sums and products.
In Figure 1, we give a table with the traditional eliminator on the
left, and the focused elimination on the right. Observe that we have
an elimination form for the unit type — this is in analogy to the
elimination for the type 1 in linear logic, which is the unit to the
tensor A⊗B.

Since the syntax of patterns allows nesting, we can also express
case expressions like the following SML expression:

case t of
(Inl x, Inl u) => t1

| (Inr y, Inl u) => t2
| (Inl x, Inr v) => t3
| (Inr y, Inr v) => t4

in our focused calculus:

case(t, 〈[x | y], [u | v]〉 ⇒ [[t1 | t2] | [t3 | t4]])

Instead of writing a series of four disjuncts, we write a single
pattern 〈[x | y], [u | v]〉, which is a pair pattern with two sum-
patterns as subexpressions. The ordering in our context means that

the nested arm [[t1 | t2] | [t3 | t4]] will be decomposed by the left-
hand sum-pattern [x | y], yielding either [t1 | t2] or [t3 | t4], and
then the result will be decomposed by the right-hand sum-pattern
[u | v]. In other words, it is also possible to see this pattern calculus
as a shorthand for writing nested case statements.

2.3 From Sequent Calculus to Programming Language
All of the well-typed terms of this language are in β-normal, η-long
form. This property is enforced by the rules to transition between
the judgements, which limit at which types they can be applied. For
example, the BLURR rule only allows departing the right positive
judgment at a function types, which means that a tuple containing
a function component must have it as a lambda-abstraction.

This restriction is extremely useful in a type theory intended for
proof search, since this means that the system is cut-free. However,
the Curry-Howard correspondence tells us that evaluation of func-
tional programs corresponds to the normalization of proofs. There-
fore, we must add the Cut rule back into the calculus in order to
get an actual programming language. This introduces non-normal
proofs into the calculus, whose corresponding lambda terms are
non-normal forms that we can use as programs that actually com-
pute results.

To write η-short terms in our langauge, we relax the restrictions
on how long we retain focus and how far we decompose invertible
types. We allow hypotheses of arbitrary type in Γ, and relax the
BlurR, BlurL, FocusR, FocusL and FocusLP rules so that they ac-
cept subterms at any type A, rather than just at positive or negative
types. Then, to allow non β-normal terms, we add a type-annotated
term (e : A) (with rule ANNOT), which permits normal forms to
appear at the heads of case statements and function applications.
We also introduce a notion of value for our language suitable for a
call-by-value evaluation strategy, with strict sums and products and
no evaluation under lambda-abstraction.

Negative Elims t ::= x | (e : A) | t e
Values v ::= 〈〉 | 〈v, v′〉 | inl v | inr v | λp. u

Γ ` e : A

Γ B (e : A) : A
ANNOT

Now, we need to explain what substitution means for our pattern
context. Intuitively, the pattern associated with each hypothesis
should drive how values are decomposed, an idea we formalize with
the following relations:

R〈〈v/p〉〉A u ↪→ u′ L〈〈v/p〉〉A r ↪→ r′

R〈〈v/p〉〉A u ↪→ u′

R〈〈v/p〉〉A λp′. u ↪→ λp′. u′

L〈〈v/p〉〉A r ↪→ r′

R〈〈v/p〉〉A r ↪→ r′

L〈〈v/x〉〉A r ↪→ [(v : A)/x]r L〈〈〈〉/〈〉〉〉1 r ↪→ r

L〈〈v1/p1〉〉A1
r ↪→ r′ L〈〈v2/p2〉〉A2

r′ ↪→ r′′

L〈〈〈v1, v2〉 / 〈p1, p2〉〉〉A1×A2
r ↪→ r′′

L〈〈v/p1〉〉A r1 ↪→ r′

L〈〈inl v/[p1 | p2]〉〉A+B [r1 | r2] ↪→ r′

L〈〈v/p2〉〉B r2 ↪→ r′

L〈〈inr v/[p1 | p2]〉〉A+B [r1 | r2] ↪→ r′

These rules match a value against a pattern, decomposing the
value. When we reach a pair pattern 〈p1, p2〉, we decompose the
value 〈v1, v2〉 into two pieces, and sequentially match v1 against

p1, and then do another pattern substitution on the result, matching
v2 against p2. When we reach a sum-pattern [p1 | p2], we decide to
take either the left branch or the right branch depending on whether
the value is inl v or inr v. Finally, when we reach a variable pattern,
we substitute the value for the variable. Since variables are in the
category of negative focus terms t, we wrap the value in a type
annotation (v : A) to ensure that the result is type-correct.

This definition of pattern substitution that satisfies the following
principle:

PROPOSITION 1. If · ` v : A, then:

• If Γ; p : A,∆ ` u : C, and R〈〈v/p〉〉A u ↪→ u′, then Γ; ∆ `
u′ : C.
• If Γ; p : A,∆ B r : C, and L〈〈v/p〉〉A r ↪→ r′, then Γ; ∆ B r′ :
C.

If we have a value v of the appropriate type, and a well-typed
term r in a pattern context with p at the leftmost end, then if the
pattern substitution relation relates r to r′, we can deduce that r′ is
well-typed in the smaller pattern context. The following definition
of pattern substitution satisfies this principle:

As an aside, it is evident that these rules define a relation that
is syntax-directed and total. So it appears we could have defined a
pattern substitution function instead of using a more syntactically
heavyweight judgement. However, later on we will need to relax
this condition, so we present pattern substitution as a relation from
the beginning.

Equipped with an understanding of what pattern substitution is,
we give the operational semantics below, with mutually recursive
reduction relations for each of the syntactic categories. The only
novelties in this semantics are that we use pattern substitution in-
stead of ordinary substitution when reducing function applications
and case statements, and that there is an extra rule to discard redun-
dant type annotations.

e1 7→PR e′1

〈e1, e2〉 7→PR
˙
e′1, e2

¸ e2 7→PR e′2

〈v1, e2〉 7→PR
˙
v1, e

′
2

¸
e 7→PR e′

inl e 7→PR inl e′
e 7→PR e′

inr e 7→PR inr e′
u 7→NR u′

u 7→PR u′

r 7→PL r′

r 7→NR r′
t 7→NL t′

case(t, p⇒ r) 7→PL case(t′, p⇒ r)

(v : A) 7→PL v

L〈〈v/p〉〉A r ↪→ r′

case((v : A), p⇒ r) 7→PL r′
t 7→NL t′

t e 7→NL t′ e

e 7→PR e′

(v : A) e 7→NL (v : A) e′
e 7→PR e′

(e : A) 7→NL (e′ : A)

R〈〈v/p〉〉A u ↪→ u′

(λp. u : A→ B) v 7→NL (u′ : B)

This semantics validates the usual progress and preservation
theorems.

PROPOSITION 2 (Type Soundness). This language is sound.

• Progress holds:
1. If · ` e : A, then e 7→PR e′ or e is a value v.
2. If ·; · ` u : A, then u 7→NR u′ or u is a value v.
3. If ·; ·B r : A, then r 7→PL r′ or r is a value v.
4. If ·B t : A, then t 7→NL t′ or t is a term (v : A).

• Type preservation holds:
1. If · ` e : A and e 7→PR e′, then · ` e′ : A

2. If ·; · ` u : A and u 7→NR u′, then ·; · ` u′ : A

3. If ·; ·B r : A and r 7→PL r′, then ·; ·B r′ : A

4. If ·B t : A and t 7→NL t′, then · ` t′ : A

3. From ML Patterns to Focused Patterns
While our language is very pleasant theoretically, it is not yet ade-
quate to fully explain ML pattern matching. Consider an example
from SML like:

case e of
(Inl x, Inl u) => e1

| w as (Inr _, Inr _) => e2
| z => e3

This small example is doing quite a few things. First, it uses
wildcard patterns and as-patterns, which have no analog in the pat-
tern language we have described so far. Second, this example relies
on implicit priority ordering — we expect the first two patterns to
be tested before the last. This is what ensures that even though the
variable pattern z (in the third clause) matches anything on its own,
it will only serve as a catch-all.

To explain as-patterns and wildcards, we will extend the lan-
guage of patterns with the patterns > (for wildcard) and the and-
pattern p ∧ p′. We extend the typing rules and pattern substitution
relation below.

Γ; ∆ B r : B

Γ;> : A,∆ B r : B
TOP

Γ; p : A, p′ : A,∆ B r : B

Γ; p ∧ p′ : A,∆ B r : B
AND

L〈〈v/>〉〉A r ↪→ r

L〈〈v/p1〉〉A r ↪→ r′ L〈〈v/p2〉〉A r′ ↪→ r′′

L〈〈v/p1 ∧ p2〉〉A r ↪→ r′′

We can introduce a wildcard or and-pattern at any type. The
typing rule TOP requires that the term be well-typed without the
wildcard hypothesis, and the rule AND for the and-pattern p ∧ p′
requires that we be well-typed in a context with both p and p′

pattern hypotheses. If we erase the proof terms from the rules, we
see that the rules for these two patterns have a very clear logical
interpretation: the rule TOP rule is the rule of weakening, and the
AND rule is the rule of contraction.

The pattern substitution for the > pattern simply throws away
the value and returns the arm unchanged. The and-pattern p1 ∧ p2

matches v against p1, and then matches it a second time against p2.
However, we are no closer to the goal of being able to account

for the priority ordering of conventional pattern matching. Looking
once more at the example at the start of this section, it is clear that
when we interpret the third clause — the pattern Z — we must
also have some way of saying “match Z, but not if it matches the
first or second clauses”. If we had some sort of negation operation
on patterns, we could express this constraint, if we interpreted the
ML pattern Z as the focused pattern z ∧ ¬[[(Inl x, Inl u)]]∧
¬[[(y as (Inr , Inr))]]. Here, we use negation to indicate
an as-yet-undefined pattern negation, and the semantic brackets
to indicate an as-yet-undefined translation of ML patterns into
focused form. The idea is that we want a pattern that is z and not
the first clause, and not the second clause.

To make this possible, we start with the wildcard > and and-
pattern p ∧ p′ patterns, and add their duals to the language of
patterns. That is, we add patterns ⊥ and p ∨ p′ to our pattern
language.

Patterns p ::= . . . | ⊥ | p ∨ p′
Arms r ::= . . . | ⊥ | r ∨ r′

Γ;⊥ : A,∆ B⊥ : B
BOT

Γ; p : A,∆ B r : B Γ; p′ : A,∆ B r′ : B

Γ; p ∨ p′ : A,∆ B r ∨ r′ : B
OR

L〈〈v/p1〉〉A r1 ↪→ r′

L〈〈v/p1 ∨ p2〉〉A r1 ∨ r2 ↪→ r′

L〈〈v/p2〉〉A r2 ↪→ r′

L〈〈v/p1 ∨ p2〉〉A r1 ∨ r2 ↪→ r′

The intended semantics of the false-pattern⊥ is guaranteed fail-
ure — just as > matches successfully against anything, ⊥ will
successfully match nothing. This semantics is given by not giv-
ing a rule for ⊥ in the pattern substitution judgement, which en-
sures there is no way for a false pattern to match. Likewise, when
we match a value against the or-pattern p ∨ p′, we will nondeter-
ministically choose one or the other pattern to match against. To
implement this semantics, we give two rules in the pattern substi-
tution judgement for or-patterns, one corresponding to taking the
left branch and one for the right. So pattern substitution may now
be undefined (if a false pattern appears), or it may give multiple
results (if an or-pattern appears), revealing why we defined it in
relational style, as a judgement.

The OR typing rule says that p ∨ p′ typechecks if the left-hand
pattern p typechecks against the left-hand arm r, and the right-
hand pattern p′ typechecks against the right-hand arm r′. Despite
the name, this pattern form is much more general than the or-
patterns found in functional programming languages – neither is
there a requirement that the two patterns bind the same variables,
nor do the two patterns have to share the same arm. Instead, this
pattern form is better compared to the vertical bar separating case
alternatives p1 → e1 | p2 → e2 | . . . | pn → en.

The BOT typing rule says that ⊥ is a valid pattern at all types.
It is a syntactic marker for an incomplete pattern match: there is
no way for any value to successfully match against it. As a result,
the progress lemma fails when the ⊥ pattern can be used without
restriction (though type preservation still holds), because a false-
pattern can be used to block reduction in a well-typed program.
This is an intentional decision, made for two reasons.

First, internalizing incompleteness as a form of type-unsafety
makes it easy to prove the soundness of a coverage algorithm: we
know that a coverage algorithm is sound if it is strong enough to
make the progress lemma go through. Second, having false- and
or-patterns allows us to define the complement of a pattern — for
any pattern at a type A, we can define another pattern that matches
exactly the values of type A the original does not. The negation
operation has a very similar form to the de Morgan identities:

¬x = ⊥
¬〈〉 = ⊥
¬〈p, p′〉 = 〈¬p,>〉 ∨ 〈>,¬p′〉
¬[] = []
¬[p | p′] = [¬p | ¬p′]
¬> = ⊥
¬(p ∧ p′) = ¬p ∨ ¬p′
¬⊥ = >
¬(p ∨ p′) = ¬p ∧ ¬p′

We can show that this definition is a genuine complement.

PROPOSITION 3 (Pattern Negation). If Γ; p : A,∆ B r1 : C,
Γ′;¬p : A,∆′ B r2 : C′, and · ` v : A, then:

• L〈〈v/p〉〉A r1 ↪→ r′1 or L〈〈v/p′〉〉A r2 ↪→ r′2
• It is not the case that there exist r′1, r

′
2 such that L〈〈v/p〉〉A r1 ↪→

r′1 and L〈〈v/¬p〉〉A r2 ↪→ r′2.

So any value v will successfully match against either p or ¬p, but
not both. The proof of this theorem is a routine induction, but uses
the deep operations defined in the next section.

Now, we can explain how to interpret ML-style case statements
in terms of focused pattern matching. Suppose we have a case
statement with the branches q1 → e1| . . . qn → en, where we
write q for ML pattern expressions:

ML Patterns q ::= x | 〈〉 | 〈q, q′〉 | inl q | inr q
| | x as q

First, we give a simple priority-free interpretation of each pattern,
which defines the semantic brackets [[q]] used earlier to motivate our
extensions to the pattern language:

[[x]] = x
[[〈〉]] = 〈〉
[[〈q1, q2〉]] = 〈[[q1]], [[q2]]〉
[[inl q]] = [[[q]] | ⊥]
[[inr q]] = [⊥ | [[q]]]
[[]] = >
[[x as q]] = x ∧ [[q]]

Next, we translate a series of disjunctive ML patterns q1 →
e1| . . . |qn → en into a pattern/arm pair (p; r) as follows:

translate(q1 → e1| . . . |qn → en) =
translate′(q1 → e1| . . . |qn → en;>)

translate′(·;neg) = (⊥;⊥)
translate′(q1 → e1|−−−→q → e; neg) =

let p1 = [[q1]] ∧ neg
let r1 = arm(p1; [[e1]])
let (p; r) = translate′(−−−→q → e; ¬[[q1]] ∧ neg)
(p1 ∨ p; r1 ∨ r)

So q1 gets translated to [[q1]] ∧ >, q2 gets translated to [[q2]] ∧
¬[[q1]] ∧ >, and so on, with all of the negated patterns being stored
in the accumulator argument neg. We then disjunctively join the
patterns for each branch. Likewise, to translate the ML term e1 to a
pattern term r1, we first need to find the translation of the term on
its own (which we assume to be [[e1]]), and then “expand it” so that
the sum- and or-patterns within p1 can find the term [[e1]] where
they expect to. We give the function to do this below:

arm(·; r) = r
arm(x, ps; r) = arm(ps; r)
arm(〈〉, ps; r) = arm(ps; r)
arm(〈p1, p2〉 , ps; r) = arm(p1, p2, ps; r)
arm([], ps; r) = []
arm([p | p′], ps; [r | r′]) = [arm(p, ps; r) | arm(p′, ps; r)]
arm(>, ps; r) = arm(ps; r)
arm(p ∧ p′, ps; r) = arm(p, p′, ps; r)
arm(⊥, ps; r) = ⊥
arm(p ∨ p′, ps; r) = arm(p, ps; r) ∨ arm(p′, ps; r)

This function walks down the structure of its argument, repli-
cating the or/sum structure of its pattern arguments with or/sum
arms, and placing r at the leaves of this tree. (Unsurprisingly, this
function exactly mimics the way that the left-inversion phase de-
composes the pattern context.)

4. Deep Operations on the Pattern Context
In order to explain features like pattern compilation, we need to be
able to manipulate and reorder the pattern context. For example,
we would like to be able to simplify a pattern like [x | ⊥]∨ [⊥ | y]
into a pattern like [x | y]. However, the pattern context is ordered,
in order to fix the order in which case analyses are performed.
So theorems about manipulating patterns deep inside the pattern
context must also have associated algorithms, which explain how
to perform this restructuring.

4.1 Deep Inversion and Deep Introduction Lemmas
We begin by showing that it is admissible to decompose pattern
hypotheses anywhere in the context. Each of these lemmas gener-
alizes one of the positive left rules, allowing the decomposition of
a pattern hypothesis anywhere within the pattern context. To save
space, the lemmas are given in inference rule style, with the double
line indicating that the top and the bottom imply each other.

Γ, x : A; ∆,∆′ B r : C

Γ; ∆, x : A,∆′ B r : C
===================== DVAR

Γ; ∆,∆′ B r : C

Γ; ∆, 〈〉 : 1,∆′ B r : C
==================== D1

Γ; ∆, p1 : A1, p2 : A2,∆
′ B r : C

Γ; ∆, 〈p1, p2〉 : A1 ×A2,∆
′ B r : C

================================= D×

Γ; ∆,∆′ B r : C

Γ; ∆,> : A,∆′ B r : C
===================== D>

Γ; ∆, p1 : A, p2 : A,∆′ B r : C

Γ; ∆, p1 ∧ p2 : A,∆′ B r : C
============================ D∧

These lemmas show that the inversion and introduction principles
for variable, unit, pair, and and-patterns can be generalized to work
deep within the pattern context are all admissible, and that doing so
does not change the shape of the associated arm.

Next, we generalize the introduction and inversion principles
associated with the +L and ∨L rules, and say that it is admissible
to apply left-rules for sums and ors deep within the pattern context.
However, unlike the case for pair- and and-patterns, doing so does
require substantially restructuring the arms, because we may need
to go deep within the arms to ensure that the case splits in the
proof terms still match the order in the context. As a result, we use
auxilliary functions to restructure the proof terms appropriately.

Γ; ∆, p1 : A1,∆
′ B OutL+(∆; r) : C

Γ; ∆, p2 : A2,∆
′ B OutR+(∆; r) : C

Γ; ∆, [p1 | p2] : A1 +A2,∆
′ B r : C

================================== D+OUT

Γ; ∆, p1 : A,∆′ B OutL∨(∆; r) : C

Γ; ∆, p2 : A,∆′ B OutR∨(∆; r) : C

Γ; ∆, p1 ∨ p2 : A,∆′ B r : C
=============================== D∨OUT

Γ; ∆, p1 : A1,∆
′ B r1 : C Γ; ∆, p2 : A2,∆

′ B r2 : C

Γ; ∆, [p1 | p2] : A1 +A2,∆
′ B Join+(∆; r1; r2) : C

== D+JOIN

Γ; ∆, p1 : A,∆′ B r1 : C Γ; ∆, p2 : A,∆′ B r2 : C

Γ; ∆, p1 ∨ p2 : A,∆′ B Join∨(∆; r1; r2) : C
== D∨JOIN

In the D∨JOIN and D+JOIN rules, we use the functions Join∨ and
Join+ to properly combine the two arms r1 and r2. Here is the
definition of the Join+ function:

Join+(·; r1; r2) = [r1 | r2]
Join+(x : A,∆; r1; r2) = Join+(∆; r1; r2)
Join+(〈〉 : 1,∆; r1; r2) = Join+(∆; r1; r2)
Join+(〈p1, p2〉 : A1 ×A2,∆; r1; r2) = Join+(p1 : A1, p2 : A2,∆; r1; r2)
Join+([] : 0,∆; r1; r2) = []
Join+([p1 | p2] : A+B,∆; [r′1 | r′′1]; [r′2 | r′′2]) =

[Join+(p1 : A,∆; r′1; r′2) | Join+(p2 : B,∆; r′′1 ; r′′2)]
Join+(> : A,∆; r1; r2) = Join+(∆; r1; r2)
Join+(p1 ∧ p2 : A,∆; r1; r2) = Join+(p1 : A, p2 : A,∆; r1; r2)
Join+(⊥ : A,∆; r1; r2) = ⊥
Join+(p1 ∨ p2 : A,∆; r′1 ∨ r′′1 ; r′2 ∨ r′′2) =

Join+(p1 : A,∆; r′1; r′2) ∨ Join+(p2 : a,∆; r′′1 ; r′′2)

This function walks down the structure of the pattern contexts,
destructuring the arms in lockstep (and hence their proof trees),
until it reaches the leaves of the derivation, where the goal patterns
are at the leftmost position. Then it simply puts the two derivations
together according to the +L rule. Note that this function definition
is apparently partial — when the head of the context argument

∆ is a sum pattern [p | p′] or an or-pattern p ∨ p′, then both of
the term arguments must be either sum-case bodies [r | r′] or
or-pattern bodies r ∨ r′ respectively. However, well-typed terms
always satisfy this condition. (The definition of Join∨ is similar;
the only difference is that the base case becomes Join∨(·; r1; r2) =
r1 ∨ r2.)

Likewise, the D+OUT rule shows that we can take apart a term
based on a case analysis it performs deep within its arm. The OutL
function walks down the structure of the context to grab the correct
branch of the case at each leaf:

OutL+(·; [r1 | r2]) = r1
OutL+(x : A,∆; r) = OutL+(∆; r)

OutL+(〈〉 : 1,∆; r) = OutL+(∆; r)

OutL+(〈p1, p2〉 : A1 ×A2,∆; r) = OutL+(p1 : A1, p2 : A2,∆; r)

OutL+([] : 0,∆; r) = []

OutL+([p1 | p2] : A1 +A2,∆; [r1 | r2]) =

[OutL+(p1 : A1,∆; r1) | OutL+(p2 : A2,∆; r2)]

OutL+(> : A,∆; r) = OutL+(∆; r)

OutL+(p1 ∧ p2 : A,∆; r) = OutL+(p1 : A, p2 : A,∆; r)

OutL+(⊥ : A,∆; r) = ⊥
OutL+(p1 ∨ p2 : A,∆; r1 ∨ r2) =

OutL+(p1 : A,∆; r1) ∨ OutL+(p2 : A,∆; r2)

The other Out projections are identical, except with differing
base cases as follows:

OutR+(·; [r1 | r2]) = r2
OutL∨(·; r1 ∨ r2) = r1
OutR∨(·; r1 ∨ r2) = r2

Finally, we have generalized rules for the 0 type and false-
pattern.

Γ; ∆, [] : 0,∆′ B Abort0(∆) : C
D0

Γ; ∆,⊥ : A,∆′ B Abort⊥(∆) : C
D⊥

As expected, there are associated functions to ensure that an abort
or a ⊥ occurs at every leaf of the proof tree:

Abort0(·) = []
Abort0(x : A,∆) = Abort0(∆)
Abort0(〈〉 : 1,∆) = Abort0(∆)
Abort0(〈p1, p2〉 : A1 ×A2,∆) = Abort0(p1 : A1, p2 : A2,∆)
Abort0([] : 0,∆) = []
Abort0([p1 | p2] : A1 +A2,∆) =

[Abort0(p1 : A1,∆) | Abort0(p2 : A2,∆)]
Abort0(> : A,∆) = Abort0(∆)
Abort0(p1 ∧ p2 : A,∆) = Abort0(p1 : A, p2 : A,∆)
Abort0(⊥ : A,∆) = ⊥
Abort0(p1 ∨ p2 : A,∆) =

Abort0(p1 : A,∆) ∨ Abort0(p2 : A,∆)

Abort⊥(∆) is similar, with the first case returning ⊥.

4.2 Coherence of the Deep Rules
The deep inversions let us destructure terms based on a pattern hy-
pothesis anywhere in the pattern context, and the deep introductions
let us re-construct them. Beyond the admissibility of the deep inver-
sion and introduction rules, we will need the following coherence
properties:

PROPOSITION 4. The following equations hold for all ∆, r, r1, r2

• Join∨(∆; r1; r2) = r if and only if r1 = OutL∨(∆; r) and
r2 = OutR∨(∆; r),
• Join+(∆; r1; r2) = r if and only if r1 = OutL+(∆; r) and
r2 = OutR+(∆; r),
• If Γ; ∆, [] : 0,∆′ B r : C, then r = Abort0(∆),
• If Γ; ∆,⊥ : A,∆′ B r : C, then r = Abort⊥(∆).

These properties give us a “round-trip” property — if we take
a term apart with a deep inversion and put it back together with
a deep introduction (or vice-versa), then we get back the term we
started with. In addition to this, we will need some lemmas that let
enable us to commute uses of Join and Out.

PROPOSITION 5. For all ⊕ ∈ {+,∨} and d ∈ {L,R}, we have:

• r′ = Outd∨(∆; Outd
′
⊕(∆, pL ∨ pR : A,∆′; r)) iff

r′ = Outd
′
⊕(∆, pd : A,∆′; Outd∨(∆; r)).

• r′ = Outd⊕(∆, pL ∨ pR : A,∆′; Join∨(∆; r1; r2)) iff
r′ = Join∨(∆; Outd⊕(∆, pL : A,∆′; r1); Outd⊕(∆, pR : A,∆′; r2))

• r′ = Outd∨(∆; Join⊕(∆, pL ∨ pR : A,∆′; r1; r2)) iff
r′ = Join⊕(∆, pd : A,∆′; Outd∨(∆; r1); Outd∨(∆; r2))
• r′ = Join⊕(∆, pL ∨ pR : A,∆′; Join∨(∆; r1; r′1); Join∨(∆; r2; r′2))

iff r′ =
Join∨(∆; Join⊕(∆, pL : A,∆′; r1; r2); Join⊕(∆, pR : A,∆′; r′1; r′2))

In addition to these equalities, we have another four similar
cases where the ∨-functions are replaced with +-functions. The
net effect of these equalities is that we can use the deep inversions
and introductions in any order, with the confidence that the order
will not change the final result term — we get the same result term
regardless of the path to its construction.

4.3 Deep Exchange and Substitution
Since reordering the pattern context corresponds to doing case
splits in different orders, it seems intuitively clear that reordering
the pattern context should give rise to a new proof term that is in
some sense equivalent to the old one. To make this idea precise,
we do three things. First, we prove that the rule of exchange is
admissible for the pattern context. Second, we extend the notion of
pattern substitution to include substitutions deep within the context,
and not just at the leftmost hypothesis. Finally, we show that if
we get the same result regardless of whether deep substitution
follows an exchange, or preceeds it, which justifies the intuition
that moving the pattern hypothesis in the ordered context “didn’t
matter”.

4.3.1 Exchange
PROPOSITION 6 (Exchange). If Γ; ∆, p : A,∆′,∆′′ B r : C
holds, then we have Γ; ∆,∆′, p : A,∆′′BEx(∆; p : A; ∆′; r) : C.

Here, we assert that if we have a derivation of Γ; ∆, p : A,∆′,∆′′B
r : C, then we can move the hypothesis p : A to the right, past the
assumptions in ∆′. The proof term naturally gets altered, and so
we must give a function Ex which computes the new arm.

Ex(∆;x : A; ∆′; r) = r
Ex(∆; 〈〉 : 1; ∆′; r) = r
Ex(∆; 〈p1, p2〉 : A1 ×A2; ∆′; r) =

let r′ = Ex(∆; p1 : A1; p2 : A2,∆′; r)
Ex(∆; p2 : A2; ∆′, p1 : A1; r′)

Ex(∆; [] : 0; ∆′; r) = Abort0(∆)
Ex(∆; [p1 | p2] : A1 +A2; ∆′; r) =

let r′1 = Ex(∆; p1 : A1; ∆′; OutL+(∆; r))

let r′2 = Ex(∆; p2 : A2; ∆′; OutR+(∆; r))
Join+(∆,∆′; r′1; r′2)

Ex(∆;> : A; ∆′; r) = r
Ex(∆; p1 ∧ p2 : A; ∆′; r) =

let r′ = Ex(∆; p1 : A; p2 : A,∆′; r)
Ex(∆; p2 : A; ∆′, p1 : A1; r′)

Ex(∆;⊥ : A; ∆′; r) = Abort⊥(∆)
Ex(∆; p1 ∨ p2 : A1 +A2; ∆′; r) =

let r′1 = Ex(∆; p1 : A1; ∆′; OutL∨(∆; r))
let r′2 = Ex(∆; p2 : A2; ∆′; OutR∨(∆; r))
Join∨(∆,∆′; r′1; r′2)

This function is inductively defined on the structure of the
pattern argument p, and it uses the deep inversion principles (and
their associated functions Out) to break down the derivation for the
recursive calls, and it uses the deep introduction functions (and their
associated functions Join) to rebuild the arm for the new pattern
context.

4.3.2 Deep Substitution
The statement of the deep pattern substitution lemma is a straight-
forward generalization of the substitution principle for the pattern
context:

PROPOSITION 7. If · ` v : A, and Γ; ∆, p : A,∆′ B r : C, and
L〈〈v/p〉〉∆A r ↪→ r′, then Γ; ∆,∆′ B r′ : C.

Of course, we need to define deep pattern substitution. In the
definition below, note that it is nearly identical to the ordinary
pattern substitution — we simply index the relation by ∆, and use
the Join∗ and Out∗∗ functions in the place of the [· | ·] and · ∨ ·
constructors.

L〈〈v/x〉〉∆A r ↪→ [(v : A)/x]r L〈〈〈〉/〈〉〉〉∆1 r ↪→ r

L〈〈v1/p1〉〉∆A1
r ↪→ r′ L〈〈v2/p2〉〉∆A2

r′ ↪→ r′′

L〈〈〈v1, v2〉 / 〈p1, p2〉〉〉∆A1×A2
r ↪→ r′′

L〈〈v/p1〉〉∆A (OutL+(∆; r)) ↪→ r′

L〈〈inl v/[p1 | p2]〉〉∆A+B r ↪→ r′

L〈〈v/p2〉〉∆A (OutR+(∆; r)) ↪→ r′

L〈〈inr v/[p1 | p2]〉〉∆A+B r ↪→ r′

L〈〈v/>〉〉∆A r ↪→ r

L〈〈v/p1〉〉∆A r ↪→ r′ L〈〈v/p2〉〉∆A r′ ↪→ r′′

L〈〈v/p1 ∧ p2〉〉∆A r ↪→ r′′

L〈〈v/p1〉〉∆A (OutL∨(∆; r)) ↪→ r′

L〈〈v/p1 ∨ p2〉〉∆A r ↪→ r′

L〈〈v/p2〉〉∆A (OutR∨(∆; r)) ↪→ r′

L〈〈v/p1 ∨ p2〉〉∆A r ↪→ r′

4.3.3 Permuting Substitution and Exchange
Now, we can show that we can permute the order in which we
do substitutions and exchanges. That is, we want to show that
if we substitute a value for a pattern in a context after doing an
exchange, we get the same result as performing the exchange, and
then substituting into the permuted context. We end up with four
cases to this lemma, depending on whether the target hypothesis of
the exchange is to the right of the hypothesis to be substituted, the
pattern to be substituted itself, or is a hypothesis to the left of the
substitution target. For clarity, we write these lemmas in inference
rule style, putting the premises above the line and the conclusion
below. In the following two cases, we assume · ` v : A:

L〈〈v/p〉〉∆A r ↪→ r′ Γ; ∆, p : A,∆′, p′ : B,∆′′ B r : C
L〈〈v/p〉〉∆A Ex(∆, p : A,∆′; p′ : B; ∆′′; r) ↪→ Ex(∆,∆′; p′ : B; ∆′′; r′)

L〈〈v/p〉〉∆A r ↪→ r′ Γ; ∆, p : A,∆′,∆′′ B r : C

L〈〈v/p〉〉∆,∆′

A Ex(∆; p : A; ∆′; r) ↪→ r′

In the first case, we exchange the position of a hypothesis to the
right of the substitution target, and in the conclusion we see that
performing the substitution on the exchanged term yields the same
result as performing exchange on the substitutand. In the second
case, we see that exchanging the target of a substitution does not
change the result.

In the next two cases, we assume that · ` v : B:
L
˙̇
v/p′

¸̧ ∆,p:A,∆′,∆′′

B
r ↪→ r′ Γ; ∆, p : A,∆′,∆′′, p′ : B,∆′′′ B r : C

L
˙̇
v/p′

¸̧ ∆,∆′,p:A,∆′′

B
Ex(∆; p : A; ∆′; r) ↪→ Ex(∆; p : A; ∆′; r′)

L
˙̇
v/p′

¸̧ ∆,p:A,∆′

B
r ↪→ r′ Γ; ∆, p : A,∆′, p′ : B,∆′′,∆′′′ B r : C

L
˙̇
v/p′

¸̧ ∆,∆′

B
Ex(∆; p : A; ∆′, p′ : B,∆′′; r) ↪→ Ex(∆; p : A; ∆′,∆′′; r′)

In the third case, the target of the exchange is to the left of the
substitution target, but is not exchanged past it. In the fourth case,
the exchange target is to the left of the substitution target, and the
action of the exchange moves it to the right of the substitution
target.

Proving this commutation involves proving it for Out and Join,
and then working up.

4.3.4 Discussion
In this section, we have stated numerous technical lemmas. The rea-
son for going into this level of detail is to illustrate that the overall
structure of the metatheorems 1) is extremely regular and 2) con-
sists of statements of familiar logical principles. The only thing that
makes these lemmas differ from the corresponding lemmas for the
sequent calculus formulation is that we have to explicitly manage
the proof terms. Even so, we can see the algorithms as nothing more
than the constructive content of the proofs showing the admissibil-
ity of principles like inversion, introduction, exchange and substi-
tution. When we use these algorithms as subroutines to implement
coverage checking and pattern compilation, we will be able to see
exactly how directly they depend on logical proof transformations.

5. Coverage Checking
In order to get useful answers out of the machinery of the previous
sections, we first need some good questions. One question is the
question of coverage checking — how can we ensure that a pattern
match against a value will always yield a unique result?

This is an interesting question because the pattern language we
have introduced does not always answer these questions in the
affirmative. For example, the pattern [x | ⊥] ∧ [⊥ | y] will never
match against any value, and likewise, the pattern x ∨ 〈>, y〉 can
match in two different ways.

So we must find out how to check whether the pattern substitu-
tion relation defines a total function for a particular pattern. Since a
relation is functional when it is total and it has only one output for
each input, we will define judgements to track both of these con-
ditions. We begin with the judgement p det A, which should hold
whenever there is at most one way any value of type A can match
against the pattern p.

p det A

x det A [] det 0

p1 det A1 p2 det A2

[p1 | p2] det A1 +A2 〈〉 det 1

p1 det A1 p2 det A2

〈p1, p2〉 det A1 ×A2 > det A

p1 det A p2 det A

p1 ∧ p2 det A

⊥ det A

p1 det A p2 det A p1, p2 fail A

p1 ∨ p2 det A

This judgement inductively follows the structure of the pattern,
asking only that each pattern’s sub-components are deterministic,
until it reaches the case for the or-pattern p ∨ p′. This is the
difficult case, because both p and p′ might be deterministic, but
the combination might not be. For example, consider the pattern

x ∨ >. Each half is trivially deterministic, but because there are
values that can match either pattern, the or-pattern as a whole is not
determinate.

If we knew that there were no values that could match both pat-
terns, then we could know the whole pattern covers. To determine
this, we introduce the judgement p1, . . . , pn fail A, which holds
when no value v of type A can match against all of the patterns pi.
Now, we call out to p1, p2 fail A to establish the premise of the or-
pattern case — we believe p1 ∨ p2 det A when we know that there
is nothing in the intersection of p1 and p2. We give the definition
of −→p fail A itself below:

−→p fail A

−→p1,
−→p2 fail A

−→p1,>,−→p2 fail A

−→p1, p, p
′,−→p2 fail A

−→p1, p ∧ p′,−→p2 fail A −→p1,⊥,−→p2 fail A

−→p1, p,
−→p2 fail A −→p1, p

′,−→p2 fail A
−→p1, p ∨ p′,−→p2 fail A

−→p1,
−→p2 fail A

−→p1, x,
−→p2 fail A

−→
[] fail 0

−→p1 fail A1
−→p2 fail A2

−−−−−→
[p1 | p2] fail A1 +A2

−→p1 fail A1
−−−−→
〈p1, p2〉 fail A1 ×A2

−→p2 fail A2
−−−−→
〈p1, p2〉 fail A1 ×A2

Furthermore, we can use the fact that we have a syntactic negation
on patterns to turn our failure judgement into a coverage judgement.
That is, if ¬p fail A, then we know that p must match against all
values of typeA— which is precisely what we require of coverage!

(¬p) fail A

p covers A

Now, we can make these informal claims precise, and show the
soundness of these judgements.

PROPOSITION 8 (Failure). If we have derivations

• p1, . . . , pn fail A
• Γ; ∆, p1 : A, . . . , pn : A,∆′ B r1 : C,
• · ` v : A

then it is not the case that there exist r2, . . . , rn+1 such that for all
i ∈ {1, . . . , n}, L〈〈v/pi〉〉∆A ri ↪→ ri+1.

The proof of this statement is via an induction on the failure
judgement, and in each case we make use of the deep operations
defined in the previous section.

The most interesting case of the proof is when we reach the
rule for decomposing a set of pair patterns

−−−−→
〈p1, p2〉. In this case,

we need to make use of the lemmas that allow us to commute ex-
change and substitution — we begin with a context in the form
∆,
−−−−−−−−−−−−→
〈p1, p2〉 : A1 ×A2,∆

′. Inversion lets us rewrite the context to
∆,
−−−−−−−−−−→
p1 : A1, p2 : A2,∆

′. Then, we use exchange to transform it into
the form ∆,

−−−−→
p1 : A1,

−−−−→
p2 : A2,∆

′, and appeal to the induction hy-
pothesis. This gives us enough evidence to construct the refutation
we need only because we can reorder a series of exchanges and
substitutions without changing the final result.

PROPOSITION 9 (Coverage). If we have derivations · ` v : A,
p covers A, and Γ; ∆, p : A,∆′ B r : C, then L〈〈v/p〉〉∆A r ↪→ r′.

This is an immediate consequence of the soundness of the
failure judgement, and the semantics of pattern negation.

PROPOSITION 10 (Determinacy). If we have derivations

• · ` v : A,
• p det A,
• Γ; ∆, p : A,∆′ B r : C,
• D1 :: L〈〈v/p〉〉∆A r ↪→ r′,

then if D2 :: L〈〈v/p〉〉∆A r ↪→ r′′, we know D1 = D2.

We write D :: L〈〈v/p〉〉∆A r ↪→ r′ to indicate that we want
to consider a particular derivation D of the pattern substitution of
v into p. This means that our determinacy judgement ensures that
there is at most one way to perform a pattern substitution for each
value.

We can now recover the progress lemma, by changing the rules
governing the introduction of pattern hypotheses:

Γ; ∆, p : A ` u : B p covers A p det A

Γ; ∆ ` λp. u : A→ B
→R’

Γ B t : A Γ; p : AB r : B p covers A p det A

Γ; ·B case(t, p⇒ r) : B
FOCUSP’

PROPOSITION 11 (Progress, Redux). We have that:

1. If · ` e : A, then e 7→PR e′ or e is a value v.
2. If ·; · ` u : A, then u 7→NR u′ or u is a value v.
3. If ·; ·B r : A, then r 7→PL r′ or r is a value v.
4. If ·B t : A, then t 7→NL t′ or t is a term (v : A).

Finally, while we are discussing coverage, it is worth pointing
out that the failure judgement also allows us to detect redundant or
useless patterns, during the translation of ML patterns to focused
patterns. As we compile each arm, we can check to see if the arm
conjoined with the negation of its predecessor pattern fails, and if
so, we know that the arm is redundant, and can signal an error.

6. Pattern Compilation
6.1 What Is Pattern Compilation?
If we implemented the focused pattern calculus in a naive way,
we would observe that there are several inefficiencies in the pat-
tern substitution algorithm, arising from and- and or-patterns. And-
patterns p ∧ p′ can force the same value to be destructured mul-
tiple times. For example, a match of a value v against the pattern
[x | y] ∧ [u | v] will result in v being destructured twice — once
to determine whether to take left or right branch for the pattern
[x | y], and again to determine whether to take the left or right
branch for [u | v]. This is redundant, since one test suffices to es-
tablish whether v is a left- or right-injection.

Likewise, or-patterns can also introduce inefficiency, because
their naive implementation is via backtracking — when a value v
is matched against a pattern p1 ∨ p2, we will try to match p1 and
if it fails, try matching p2. This can result in repeated re-tests if
the cause of the failure is deep within the structure of a term. For
example, suppose we match a value of the form inl inl v′ against a
pattern like [[⊥ | >] | >]∨ [[> | ⊥] | ⊥]. Here, a naive left-to-right
backtracking algorithm will case analyze two levels deep before
failing on the left branch, and then it will repeat that nested case
analysis to succeed on the right branch.

To avoid these inefficiencies, we want a pattern compilation
algorithm. That is, we want to take an otherwise complete and
deterministic pattern and arm, and transform them into a form that
does no backtracking and does not repeatedly analyze the same

term, and whose behavior under pattern substitution is identical to
the original pattern and arm.

We can state this constraint by restricting our language of pat-
terns to one in which 1) failure and or-patterns do not occur, and 2)
the only use of conjunctive patterns is in patterns of the form x∧p.
The first conditions ensures that pattern substitution will never fail
or backtrack, and the second condition ensures that and-patterns
can never force the re-analysis of a term, since a variable pattern
can only trigger a substitution. The target sublanguage of patterns
is given in the following grammar:

c ::= x | 〈〉 | 〈c1, c2〉 | [] | [c1 | c2]
| > | x ∧ [c1 | c2] | x ∧ 〈c1, c2〉

Observe that a restricted pattern c corresponds to a series of primi-
tive let-bindings, pair bindings, and case statements on sums, each
of which corresponds to a form in the usual lambda calculus.

So we can formalize the pattern compilation as asking: is there
an algorithm that can take a complete, deterministic pattern p with
arm r, and translate it into a pattern c (with arm r′), such that for
all v, if L〈〈v/p〉〉A r ↪→ r′′ if and only if L〈〈v/p〉〉A r

′ ↪→ r′′?

6.2 The Pattern Compilation Algorithm
We give a pattern compilation algorithm in Figure 2, which takes
two arguments as an input. The first is a pattern context ∆. This
argument will be used as the termination metric for the function,
and will get smaller at each recursive call. It also constrains the type
of the second argument. The second argument is a set S of pairs,
with each pair consisting of a row of patterns qi and an arm r. Each
row’s pattern list is the same length as the metric argument, and the
n-th pattern in the pattern list is either > or the same pattern as the
n-th pattern in the metric list ∆. Additionally, this set satisfies the
invariant that for any sequence of values vi : Ai of the right types,
there is exactly one element of S for which all of the vi can succeed
in matching its qi.

The set S is related to the matrix of patterns found in the
traditional presentations of pattern compilation. We only need a
set instead of an array, because our alternation operator p ∨ p′ is
a form of non-deterministic choice. However, this also means we
need the extra invariant that there is only one matching row for any
value, because we have no ordering that would let us pick the first
matching row.

With this description in mind, we can state the correctness
theorems below:

PROPOSITION 12 (Soundness of Pattern Compilation). If we have
that

• ∆ = p1 : A1, . . . , pn : An

• S is a set of pairs such that for every (p′1, . . . , p
′
n; r′) ∈ S,

p′i ∈ {pi,>}, and Γ; p′1 : A1, . . . , p
′
n : An,∆

′ B r′ : C
• For all v1 : A1, . . . , vn : An there exist (p′1, . . . , p

′
n; r′1) ∈

S such that there exist r′2 . . . r
′
n+1 such that for all i ∈

{1 . . . n}. L〈〈vi/p
′
i〉〉Ai

r′i ↪→ r′i+1.
• (c1, . . . , cn; r1) = Compile(∆;S)

then it holds that

• Γ; c1 : A1, . . . , cn : An,∆
′ B r′1 : C, and

• For all v1 : A1, . . . , vn : An, if there exists a unique
(p′1, . . . , p

′
n; r1) ∈ S, such that there exists a unique r2, . . . , rn+1,

such that for all 1 ≤ i ≤ n,L〈〈vi/p
′
i〉〉A r

′
i ↪→ r′i+1, then there

exist r2 . . . rn+1 such that for all 1 ≤ i ≤ n, L〈〈vi/ci〉〉A ri ↪→
ri+1 and rn+1 = r′n+1.

PROPOSITION 13 (Termination of Pattern Compilation). If we have
that

• ∆ = p1 : A1, . . . , pn : An

• S is a set of pairs such that for every (p′1, . . . , p
′
n; r′) ∈ S,

p′i ∈ {pi,>}, and Γ; p′1 : A1, . . . , p
′
n : An,∆

′ B r′ : C
• For all v1 : A1, . . . , vn : An there exists a unique (p′1, . . . , p

′
n; r′1) ∈

S such that there exist unique r′2 . . . r
′
n+1 such that for all

i ∈ {1 . . . n}. L〈〈vi/p
′
i〉〉Ai

r′i ↪→ r′i+1

then there is a (c1, . . . , cn; r1) = Compile(∆;S)

Looking at Figure 2, we see that the compilation algorithm is recur-
sive, and at each step it 1) breaks down the outermost constructor of
the leftmost pattern in the pattern context ∆, 2) adjusts the set S to
match the invariant, 3) recursively calls Compile, and 4) constructs
the desired result from the return value.

Clearly, if ∆ is empty, then there is no work to be done, and the
algorithm terminates. If the first pattern is a unit pattern, then we
know that the first element of each of the pattern lists in S is either
> or 〈〉. So, we can adjust the elements of S by using inversion
to justify dropping the > and 〈〉 patterns from the start of each
of the pattern lists in S. Then, we can recursively call the pattern
compiler, and use the unit introduction rule to justify restoring the
unit pattern to the front of the list.

Likewise, if the first pattern is a pair pattern 〈p1, p2〉, we can use
inversion to justify splitting each of the pattern lists in S. If the first
pattern in a pattern list is 〈p1, p2〉, then we can send it to p1, p2,
and if it is>, we can send it to>,>.4 (The intuition is that at a pair
type, > is equivalent to 〈>,>〉.) Then, after the recursive call we
can use pair introduction to construct the optimized pair pattern.

If the first pattern is an abort pattern [], then we can return a
pattern list that starts with [] and is followed by a sequence of >
patterns. This is fine because there are no values of type 0, so the
correctness constraint holds vacuously.

We reach the first complex case when the first pattern is a sum
pattern [p1 | p2]. First, we define the Left and Right functions,
which take the elements of S and choose the left and right branches,
respectively. (If the head of the pattern list is a > pattern, it gets
assigned to both sides, since (>, qs; r) with the head at a sum type
is equivalent to ([> | >], qs; [r | r]).)

After splitting, we call Compile on the left and right sets. How-
ever, we can’t just put them back together with a sum pattern, be-
cause we don’t know that the tails of the two pattern lists are the
same — they arise from different calls to Compile. This is what the
Merge function is for. Given two pattern contexts and arms consist-
ing of optimized patterns, it will find a new pattern context and a
new pair of arms, such that the new arms are substitution equivalent
to the old ones, but which are typed under the new pattern list.

PROPOSITION 14 (Context Merging). If we have that

• Γ; ∆1, c1 : A,∆′1 B r1 : C,
• Γ; ∆2, c2 : A,∆′2 B r2 : C, and
• · ` v : A,

then we may conclude that

• (c′; r′1; r′2) = MergeA(∆1; c1; r1; ∆2; c2; r2),
• Γ; ∆1, c

′ : A,∆′1 B r′1 : C,
• Γ; ∆2, c

′ : A,∆′2 B r′2 : C,
• L〈〈v/c′〉〉∆1

A r′1 ↪→ r′′1 if and only if L〈〈v/c1〉〉∆1
A r1 ↪→ r′′1 , and

• L〈〈v/c′〉〉∆2
A r′2 ↪→ r′′2 if and only if L〈〈v/c2〉〉∆1

A r2 ↪→ r′′2

The notation Merge∗ in Figure 2 indicates that we apply Merge
to each element of the sequences cs1 and cs2. Its definition uses
another auxilliary function Weaken. As its name might suggest,
this is a generalized weakening lemma for the pattern context.

4 Here, as in many of the other cases, we define a local function split((p; r))
to perform this decomposition. Also, we write map split(S) to indicate
mapping over a set.

PROPOSITION 15 (Extended Weakening). If Γ; ∆,∆′Br : C and
r′ = WeakenA(∆; c; r), then Γ; ∆, c : A,∆′ B r′ : C, and for all
· ` v : A, L〈〈v/c〉〉∆A r

′ ↪→ r.

If the first pattern is an and-pattern p1∧p2, we can use inversion
to justify splitting each of the pattern lists in S. If the first pattern
in a pattern list is p1 ∧ p2, then we can send it to p1, p2, and if
it is >, we can send it to >,>. (As usual, the intuition is that >
is equivalent to > ∧ >.) Then, after the recursive call we can use
pair introduction to construct the optimized pair pattern. However,
we’re not quite done — our context has two patterns c1 and c2, and
if we combined them with an and-pattern then we would potentially
be forced to repeat tests, which we want to avoid. So we introduce
an auxilliary function And, which satisfies the following property:

PROPOSITION 16 (Conjunction Simplification). If we have that
Γ; ∆, c1 : A, c2 : A,∆′ B r : C and · ` v : A, then

• (c; r′) = AndA(∆; c1; c2; r),
• Γ; ∆, c : A,∆′ B r′ : C, and
• L〈〈v/c〉〉∆A r

′ ↪→ r′′ if and only if L〈〈v/c1 ∧ c2〉〉∆A r ↪→ r′′.

It is worth looking at the pair pattern case in Figure 3 in a little
more detail. It uses the exchange lemma to move the components
of two pair patterns together – to change 〈c1, c2〉 , 〈c′1, c′2〉 into
c1, c

′
1, c2, c

′′
2 , so that the subcomponents of the pair patterns can be

conjoined together. This illustrates why it was necessary to prove
that substitution and the deep pattern operations could commute:
changing this order implies changing the order that the patterns
substitutions would be performed.

This function follows the structure of the two pattern arguments,
and when it reaches the pair-pair or sum-sum cases, it uses the
deep inversion, introduction, and exchange algorithms to reorder
the pattern hypotheses so that the tests can be merged.

Finally, we reach the case where the head of the pattern con-
text is the or-pattern p1 ∨ p2. For each element of S, the split-
ting algorithm proceeds as follows. Each element of the form
(p1 ∨ p2, . . . ; r1 ∨ r2) becomes two cases — (p1,>, . . . ; r1)
and (>, p2, . . . ; r2). We know via inversion that (p1, . . . ; r1) and
(p2, . . . ; r2) are well-typed, and using top-introduction makes each
element satisfy the compile invariant for p1 : A, p2 : A, Fur-
thermore, any sequence of values v, v, . . . with a repeated value
v will match one of these two elements exactly when the original
would match v,

So we can invoke Compile recursively, and receive (c1, c2, . . . ; r)
as a return value. As in the and-pattern case, we can combine the
c1 and c2 patterns with the And function to find a c that does the
job.

With the correctness of the compilation algorithm established, it
is easy to show that the coverage algorithm of the previous section
permits us to confidently invoke the pattern compiler.

PROPOSITION 17 (Pattern Compilation). If we have that

• p covers A and p det A,
• Γ; p : A,∆ B r : C, and
• · ` v : A,

then it is the case that

• (c; r′) = Compile(p : A; {(p, r)}),
• L〈〈v/p〉〉A r ↪→ r′′ if and only if L〈〈v/c〉〉A r

′ ↪→ r′′

7. Extensions and Future Work
This language is highly stylized, but some obvious extensions work
out very easily. First, adding iso-recursive types µα.A is straight-
forward. If we have a term roll(e) as the constructor for a recursive

Compile(·; {(·; r)}) ≡
(·; r)

Compile(〈〉 : 1,∆;S) ≡
let split((>, qs; r)) = {(qs; r)}

split((〈〉, qs; r)) = {(qs; r)}
let (cs; r) = Compile(∆;

S
map split(S))

(〈〉, cs; r)
Compile(〈p1, p2〉 : A1 ×A2,∆;S) ≡

let split((>, qs; r)) = {(>,>, qs; r)}
split((〈p1, p2〉 , qs; r)) = {(p1, p2, qs; r)}

let (c1, c2, cs; r) = Compile(p1 : A1, p2 : A2,∆;
S

map split(S))
(〈c1, c2〉 , cs; r)

Compile([] : 0,
−−→
p : A;S) ≡

([] : 0,
−→
> ; [])

Compile([p1 | p2] : A1 +A2,
−−→
p : A;S) ≡

let Left((>,
−→
p′ ; r)) = {(>,

−→
p′ ; r)}

Left(([p1 | p2],
−→
p′ ; [r1 | r2])) = {(p1,

−→
p′ ; r1)}

let Right((>,
−→
p′ ; r)) = {(>,

−→
p′ ; r)}

Right(([p1 | p2],
−→
p′ ; [r1 | r2])) = {(p2,

−→
p′ ; r2)}

let (c1,
−→cs1; r1) = Compile(p1 : A1,

−−→
p : A;

S
map Left(S))

let (c2,
−→cs2; r2) = Compile(p2 : A2,

−−→
p : A;

S
map Right(S))

let (cs; r′1; r′2) = Merge∗−→
A

(c1 : A1;−→cs1; r1; c2 : A2;−→cs2; r2)

([c1 | c2],−→cs; [r′1 | r′2])
Compile(x : A,∆;S) ≡

let split((>, qs; r)) = {(qs; r)}
split((x, qs; r)) = {(qs; r)}

let (cs; r) = Compile(∆;
S

map split(S))
(x, cs; r)

Compile(> : A1,∆;S) ≡
let split((>, qs; r)) = {(qs; r)}
let (cs; r) = Compile(∆;

S
map split(S))

(>, cs; r)
Compile(p1 ∧ p2 : A1,∆;S) ≡

let split((>, qs; r)) = {(>,>, qs; r)}
split((p1 ∧ p2, qs; r)) = {(p1, p2, qs; r)}

let (c1, c2, cs; r) = Compile(p1 : A1, p2 : A1,∆;
S

map split(S))
let (c; r′) = AndA(·; c1; c2; r)
(c, cs; r′)

Compile(⊥ : A1,∆;S) ≡
let split((>, qs; r)) = {(qs; r)}

split((⊥, qs; r)) = ∅
let (cs; r) = Compile(∆;

S
map split(S))

(>, cs; r)
Compile(p1 ∨ p2 : A1,∆;S) ≡

let split((>, qs; r)) = {(>,>, qs; r)}
split((p1 ∨ p2, qs; r1 ∨ r2)) = {(p1,>, qs; r1), (>, p2, qs; r2)}

let (c1, c2, cs; r) = Compile(p1 : A1, p2 : A1,∆;
S

map split(S))
let (c; r′) = AndA(·; c1; c2; r)
(c, cs; r′)

Figure 2. Pattern Compilation

type, then we can simply add a pattern roll(p) to the pattern lan-
guge. We believe supporting System-F style polymorphism is also
straightforward. Universal quantification ∀α. A is a negative con-
nective, and so does not interact with the pattern language. Existen-
tial quantification ∃α. A is a positive connective with introduction
form pack(A, e), and we can add a pattern pack(α, p) to support
its elimination.

Features such as GADTs (Jones et al. 2006; Simonet and Pottier
2007) and pattern matching for dependent types (Coquand 1992;
Xi 2003; McBride 2003), are much more complicated. In both of
these cases, matching against a term can lead to the discovery of
information that refines the types in the rest of the match. This is a
rather subtle interaction, and deserves further study.

AndA(∆;>; c; r) = AndA(∆; c;>; r) =
(c; r)

AndA(∆;x ∧ c1; c2; r) = AndA(∆; c1;x ∧ c2; r) =
let (c′; r′) = AndA(∆; c1; c2; r)
if c′ = y ∧ c′′ then (c′; [x/y]r′) else(x ∧ c′; r′)

And1(∆; 〈〉;x; r) = And1(∆;x; 〈〉; r) =
(x; r)

And0(∆; [];x; r) = And0(∆;x; []; r) =
([]; Abort0(∆))

AndA×B(∆;x; 〈c1, c2〉; r) = AndA×B(∆; 〈c1, c2〉;x; r) =
(x ∧ 〈c1, c2〉; r)

AndA+B(∆;x; [c1 | c2]; r) = AndA+B(∆; [c1 | c2];x; r) =
(x ∧ [c1 | c2]; r)

AndA(∆;x; y; r) =
(x; [x/y]r)

And1(∆; 〈〉; 〈〉; r) =
(〈〉; r)

And0(∆; []; []; r) =
([]; Abort0(∆))

AndA×B(∆; 〈c1, c2〉;
˙
c′1, c

′
2

¸
; r) =

let (c′′1 ; r′) = AndA(∆; c1; c′1; Ex(∆, c1 : A; c2 : B; c′1 : A; r))
let (c′′2 ; r′′) = AndB(∆; c2; c′2; r′)
(
˙
c′′1 , c

′′
2

¸
; r′′)

AndA+B(∆; [c1 | c2]; [c′1 | c′2]; r) =
let (c′′1 ; r′′1) = AndA(∆; c1; c′1; OutL+(∆, c1 : A; OutL+(∆; r)))

let (c′′2 ; r′′2) = AndB(∆; c2; c′2; OutR+(∆, c2 : A; OutR+(∆; r)))
([c′′1 | c′′2]; Join+(∆; r′′1 ; r′′2))

Figure 3. Conjunction Simplification

Another direction is to treat the proof term assignment discussed
here as a lambda calculus in and of itself, rather than as a program-
ming language, as we have done here. For example, we can use
the exchange function to generalize the pattern substitution to deal
with open terms and study properties like confluence and normal-
ization. The presence of sums makes this a trickier question than it
may seem at first glance; focusing seems to eliminate the need for
some, but not all, of the commuting conversions for sum types.

Finally, we should more carefully study the implications for
implementation. A simple ML implementation of the algorithms
given in this paper can be found at the author’s web site, but it
is difficult to draw serious conclusions from it because so little
engineering effort has gone into it.

However, a few prelimary observations are possible. Imple-
menting coverage checking is very easy – it is roughly 80 lines
of ML code. This closely follows the inference rules given above,
with the the addition of memoization to avoid repeatedly trying
to find failure derivations of the same sequence of patterns. This
seems to suffice for the sorts of patterns we write by hand; it is not
clear whether there are (easily-avoidable) pathological cases that
machine-generated programs might exhibit. A more-or-less direct
transliteration of the pattern compiler is in the neighborhood of 300
lines of ML. While it is reasonably fast on small hand-written ex-
amples, it should probably not be used in a production compiler. In
particular, the Merge∗ algorithm is implemented via iterated calls
to Merge, which can result in an enormous number of redundant
traversals of the pattern tree. This was done to simplify the correct-
ness proof, but a production implementation should avoid that.

8. Related Work
We first learned to view pattern matching as arising from the in-
vertible left rules of the sequent calculus due to the work of Kesner
et al. (1996), and Cerrito and Kesner (2004). We have extended
their work by building on a focused sequent calculus. This permits

MergeA(∆1;>; r1; ∆2; c2; r2) =
MergeA(∆2; c2; r2; ∆1;>; r1) =

let r′1 = WeakenA(∆1; c2; r1)
(c2; r′1; r2)

MergeA(∆1;x; r1; ∆2; c2; r2) =
MergeA(∆2; c2; r2; ∆1;x; r1) =

let r′1 = WeakenA(∆1; c2; r1)
let (c; r′2) = AndA(∆2;x; c2; r2)
(c; r′1; r′2)

MergeA(∆1;x ∧ c1; r1; ∆2; c2; r2) =
MergeA(∆2; c2; r2; ∆1;x ∧ c1; r1) =

let (c′; r′1; r′2) = MergeA(∆1; c1; r1; ∆2; c2; r2)
let (c′′; r′′1) = AndA(∆1;x; c′1; r′1)
let (; r′′2) = AndA(∆2;x; c′2; r′2)
(c′′; r′′1 ; r′′2)

Merge1(∆1; 〈〉; r1; ∆2; 〈〉; r2) =
(〈〉; r1; r2)

Merge0(∆1; []; r1; ∆2; []; r2) =
([]; Abort0(∆1); Abort0(∆2))

MergeA×B(∆1; 〈c1, c2〉; r1; ∆2;
˙
c′1, c

′
2

¸
; r2) =

let (c′′1 ; r′1; r′2) = MergeA(∆1; c1; r1; ∆2; c′1; r2)
let (c′′2 ; r′′1 ; r′′2) = MergeB(∆1, c′′1 : A; c2; r′1; ∆2, c′′1 : A; c′2; r′2)
(
˙
c′′1 , c

′′
2

¸
; r′′1 ; r′′2)

MergeA+B(∆1; [c1 | c2]; r1; ∆2; [c′1 | c′2]; r2) =

let (c′′1 ; r′1; r′2) = MergeA(∆1; c1; OutL+(∆1; r1); ∆2; c′1; OutL+(∆2; r2))

let (c′′2 ; r′′1 ; r′′2) = MergeB(∆1; c2; OutR+(∆1; r1); ∆2; c′2; OutR+(∆2; r2))
([c′′1 | c′′2]; Join+(∆1; r′1; r′′1); Join+(∆2; r′2; r′′2))

WeakenA(∆;>; r) = r
WeakenA(∆;x; r) = r
Weaken1(∆; 〈〉; r) = r
Weaken0(∆; []; r) = Abort0(∆)
WeakenA(∆;x ∧ c; r) = WeakenA(∆; c; r)
WeakenA×B(∆; 〈c1, c2〉; r) =

WeakenB(∆, c1 : A; c2; WeakenA(∆; c1; r))
WeakenA+B(∆; [c1 | c2]; r) =

Join+(∆; WeakenA(∆; c1; r); WeakenB(∆; c2; r))

Figure 4. Pattern Merge

us to give a simpler treatment; the use of an ordered context allows
us to eliminate the communication variables they used to link sum
patterns and their bodies. Furthermore, our failure and nondeter-
ministic choice patterns permit us to explain the sequential pattern
matching found in functional languages, coverage checking, and
pattern compilation.

Focusing was introduced by Andreoli (1992), in order to con-
strain proof search for linear logic. Pfenning (in unpublished lec-
ture notes) gives a simple focused calculus for intuitionistic logic,
and Liang and Miller (2007) give calculi for focused intuitionistic
logic, which they relate to both linear and classical logic. Neither of
these have proof terms. Zeilberger (2007) gives a focused calculus
based on Dummett’s notion of logical harmony (Dummett 1991).
This calculus does not have a coverage algorithm; instead coverage
is a side-condition of his typing rules.

Our pattern substitution is a restricted form of hereditary substi-
tution, which Watkins et al. (2004) introduced as a way of reflect-
ing the computational content of structural proofs of cut admissi-
bility (Pfenning 2000).

In his work on Ludics, Girard (2001) introduced the idea of the
daimon, a sequent which corresponds to a failed proof. Introducing
such sequents can give a logical calculus certain algebraic closure
properties, at the cost of soundness. However, once the requisite
properties have been used, we can verify that we have any given
proof is genuine by checking that the undesirable sequents are not
present. This is an idea we exploited with the introduction of the⊥

and p1 ∨ p2 patterns, which make our language of patterns closed
under complement.

Zeilberger (2008) gives a higher-order focused calculus. In this
style of presentation, the inversion judgement is given as a single
infinitary rule, defined using the functions of the ambient meta-
logic, rather than the explicit collection of rules we gave. The virtue
of their approach is that it defers questions of coverage and de-
composition order into the metalogic. However, this is precisely
the question we wanted to explicitly reason about.

In real compilers, there are two classical approaches to compil-
ing pattern matching, either by constructing a decision tree (de-
scribed by Cardelli (1984) and Pettersson (1992)) or building a
backtracking automaton (described by Augustsson (1985)). Our
calculus uniformly represents both approaches, since backtracking
can be represented with the use of the nondeterministic disjunction
pattern p1 ∨ p2 and the abort pattern [], and case splitting is rep-
resented with the sum-pattern [p1 | p2]. This lets us view pattern
compilation as a source-to-source transformation, which simplifies
the correctness arguments.

Fessant and Maranget (2001) describe a modern algorithm for
pattern compilation which operates over matrices of patterns. Their
algorithm tries to make use of an efficient mix of backtracking
and branching, whereas our compilation algorithm builds a pure
decision tree. It might be possible to find a presentation of their
ideas without having to explicitly talk about low-level jumps and
gotos, by replacing p ∨ p′ with a biased choice that always tries p
first.

Maranget (2007) also describes an algorithm for generating
warnings for non-exhaustive matches and useless clauses. This
algorithm is a specialized version of the decision tree compilation
algorithm which returns a boolean instead of a tree. However,
his correctness proof is not as strong as ours: Maranget defines a
matching relation and shows that a complete pattern will always
succeed on a match, but the connection between the matching
relation and the language semantics is left informal.

Sestoft (1996) shows how to generate pattern matching code via
partial evaluation. This ensures the correctness of the compilation,
but he does not consider the question of coverage checking.

Jay (2004) has also introduced a pattern calculus. Roughly, he
takes the view that datatypes are just subsets of the universe of
program terms (like Prolog’s Herbrand universe), and then allows
defining programs to match on the underlying tree representations
of arbitrary data. This approach to pattern matching is very expres-
sive, but its extremely intensional nature means its compatibility
with data abstraction is unclear.

The work on the ρ-calculus (Cirstea and Kirchner 2001) is an-
other general calculus of pattern matching. It treats terms similarly
to Jay’s pattern calculus. Additionally, it uses the success or failure
of matching as a control primitive, similar to the way that false- and
or-patterns work in this work. However, the focus in this paper was
on the case where the nondeterminism is inessential, rather than
exploring its use as a basic control mechanism.

Acknowledgements. The author thanks Jonathan Aldrich,
Robert Harper, Dan Licata, William Lovas, Frank Pfenning, Ja-
son Reed, John Reynolds, Kevin Watkins, and Noam Zeilberger
for encouragement and advice. This work was supported in part
by NSF grant CCF-0541021, NSF grant CCF-0546550, DARPA
contract HR00110710019 and the Department of Defense.

References
J.M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic.

Journal of Logic and Computation, 2(3):297, 1992.

L. Augustsson. Compiling pattern matching. Proc. of a conference on
Functional Programming Languages and Computer Architecture, pages
368–381, 1985.

Luca Cardelli. Compiling a functional language. In LFP ’84: Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming,
pages 208–217, New York, NY, USA, 1984. ACM Press. ISBN 0-89791-
142-3. doi: http://doi.acm.org/10.1145/800055.802037.

S. Cerrito and D. Kesner. Pattern matching as cut elimination. Theoretical
Computer Science, 323(1-3):71–127, 2004.

H. Cirstea and C. Kirchner. The rewriting calculus - Part I. Logic Journal
of the IGPL, 9(3): 2001.

T. Coquand. Pattern matching with dependent types. Proceedings of the
Workshop on Types for Proofs and Programs, pages 71–83, 1992.

M. Dummett. The Logical Basis of Metaphysics. Duckworth, 1991.
Fabrice Le Fessant and Luc Maranget. Optimizing pattern match-

ing. In ICFP ’01: Proceedings of the sixth ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 26–37, New
York, NY, USA, 2001. ACM Press. ISBN 1-58113-415-0. doi:
http://doi.acm.org/10.1145/507635.507641.

J.Y. Girard. Locus Solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(03):301–506, 2001.

C. B. Jay. The pattern calculus. Transactions on Programming Languages
and Systems 26(6):911-937, 2004.

S.P. Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for GADTs. Proceedings of the eleventh ACM
SIGPLAN International Conference on Functional Programming, pages
50–61, 2006.

D. Kesner, L. Puel, and V. Tannen. A Typed Pattern Calculus. Information
and Computation, 124(1):32–61, 1996.

Chuck Liang and Dale Miller. Focusing and polarization in
intuitionistic logic. In 16th EACSL Annual Conference on
Computer Science and Logic. Springer-Verlag, 2007. URL
http://www.cs.hofstra.edu/~cscccl/focusil.pdf.

Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 2007.

C. McBride. Epigram. Types for Proofs and Programs, 3085:115–129,
2003.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Ann. Pure Appl.
Logic, 51(1-2):125–157, 1991.

R.R. Milner, Mads Tofte, Robert Harper, and David McQueen. The Defini-
tion of Standard ML:(revised). MIT Press, 1997.

Mikael Pettersson. A term pattern-match compiler inspired by finite au-
tomata theory. In Uwe Kastens and Peter Pfahler, editors, CC, volume
641 of Lecture Notes in Computer Science, pages 258–270. Springer,
1992. ISBN 3-540-55984-1.

F. Pfenning. Structural Cut Elimination I. Intuitionistic and Classical Logic.
Information and Computation, 157(1-2):84–141, 2000.

P. Sestoft. ML pattern match compilation and partial evalua-
tion. Lecture Notes in Computer Science, 1110:446, 1996. URL
citeseer.ist.psu.edu/sestoft96ml.html.

Vincent Simonet and Francois Pottier. A constraint-based approach to
guarded algebraic data types. Transactions on Programming Languages
and Systems 29(1), 2007.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical
framework: The propositional fragment. Types for Proofs and Programs,
pages 355–377, 2004.

H. Xi. Dependently Typed Pattern Matching. Journal of Universal Com-
puter Science, 9(8):851–872, 2003.

Noam Zeilberger. The logical basis of evaluation order. Thesis proposal,
May 2007. Carnegie Mellon, Pittsburgh, Pennsylvania. Available
at http://www.cs.cmu.edu/~noam/research/proposal.pdf.,
2007.

Noam Zeilberger. Focusing and higher-order abstract syntax. In George C.
Necula and Philip Wadler, editors, POPL, pages 359–369. ACM, 2008.
ISBN 978-1-59593-689-9.

