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Abstract
We present NumLin, a functional programming language whose type system is designed to enforce
the safe usage of the APIs of low-level linear algebra libraries (such as BLAS/LAPACK). We do
so through a brief description of its key features and several illustrative examples. We show that
NumLin’s type system is sound and that its implementation improves upon naïve implementations
of linear algebra programs, almost towards C-levels of performance. By doing so, we demonstrate (a)
that linear types are well-suited to expressing the APIs of low-level linear algebra libraries accurately
and concisely and (b) that, despite the complexity of prior work on it, fractional permissions
can actually be implemented using simple, well-known techniques and be used practically in real
programs.
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1 Introduction

Programmers writing numerical software often find themselves caught on the horns of a
dilemma. The foundational, low-level linear algebra libraries such as BLAS and LAPACK
offer programmers very precise control over the memory lifetime and usage of vector and
matrix values. However, this power comes paired with the responsibility to manually manage
the memory associated with each array object, and in addition to bringing in the familiar
difficulties of reasoning about lifetimes, aliasing and sharing that plague low-level systems
programming; this also moves the APIs away from the linear-algebraic, mathematical style
of thinking that numerical programmers want to use.

As a result, programmers often turn to higher-level languages such as Matlab, R and
NumPy, which offer very high-level array abstractions that can be viewed as ordinary
mathematical values. This makes programming safer, as well as making prototyping and
verification much easier, since it lets programmers write programs which bear a closer
resemblance to the formulas that the mathematicians and statisticians designing these
algorithms prefer to work with, and ensures that program bugs will reflect incorrectly-
computed values rather than heap corruption.

The intention is that these languages can use libraries BLAS and LAPACK, without
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having to expose programmers to explicit memory management. However, this benefit comes
at a price: because user programs do not worry about aliasing, the language implementations
cannot in general exploit the underlying features of the low-level libraries that let them
explicitly manage and reuse memory. As a result, programs written in high-level statistical
languages can be much less memory-efficient than programs that make full use of the powers
the low-level APIs offer.

So in practice, programmers face a trade-off: they can eschew safety and exploit the full
power of the underlying linear algebra libraries, or they can obtain safety at the price of
unneeded copies and worse memory efficiency. In this work, we show that this trade-off is
not a fundamental one.

NumLin is a functional programming language whose type system is designed to enforce
the safe usage of the APIs of low-level linear algebra libraries (such as BLAS/LAPACK). It
does so by combining linear types, fractional permissions, runtime errors and recursion into
a small, easily understandable, yet expressive set of core constructs.

NumLin allows a novice to understand and work with complicated linear algebra library
APIs, as well as point out subtle aliasing bugs and reduce memory usage in existing programs.
In fact, we were able to use NumLin to find linearity and aliasing bugs in a linear algebra
algorithm that was generated by another program specifically designed to translate matrix
expressions into an efficient sequence of calls to linear algebra routines. We were also able to
reduce the number of temporaries used by the same algorithm, using NumLin’s type system
to guide us.

NumLin’s implementation supports several syntactic conveniences as well as a usable
integration with real OCaml libraries.

1.1 Contributions

Our contribution is the idea applying of linear types with fractional permissions to enforce
the correct usage (as opposed to implementation) of linear algebra libraries. We explain
the idea in detail and provide evidence for its efficacy. Prior type systems for fractional
permissions [11, 9, 8] are quite complex. This is because these type systems typically encode
a sophisticated analysis to automatically infer how fractional permissions should be split and
rejoined.

In contrast, in NumLin, we made sharing and merging explicit. As a result, we were able
to drastically simplify the type system. Thefore, our formal system is very close to standard
presentations of linear logic, and the implementation complexity is no worse than that for
parametric polymorphism.

In this paper
we describe NumLin, a linearly typed language for linear algebra programs
we illustrate that NumLin’s design and features are well-suited to its intended domain
with progressively sophisticated examples
we prove NumLin’s soundness, using a step-indexed logical relation
we describe a very simple, unification based type-inference algorithm for polymorphic
fractional permissions (similar to ones used for parametric polymorphism), demonstrating
an alternative approach to dataflow analysis [9]
we describe an implementation that is compatible with and usable from existing code
we show an example of how using NumLin helped highlight linearity and aliasing bugs,
and reduce the memory usage of a generated linear algebra program
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we show that using NumLin, we can achieve parity with C for linear algebra routines,
whilst having much better static guarantees about the linearity and aliasing behaviour of
our programs.

2 NumLin Overview and Examples

2.1 Type System and Other Features
The core type theory of NumLin is a nearly off-the-shelf linear type theory [3], supporting
familiar features such as linear function spaces A ( B and tensor products A ⊗ B. We
adopt linearity – the restriction that each program variable be used exactly once – since it
allows us to express purely functional APIs for numerical library routines that mutate arrays
and matrices [20]. Due to linearity, values cannot alias and are only used once, which means
that linearly-typed updates result in no observable mutation.

As a result, programmers can reason about NumLin expressions as if they were ordinary
mathematical expressions – as indeed they are! We are merely adopting a stricter type
discipline than usual to make managing memory safe.

2.1.1 Intuitionism: ! and Many
However, linearity by itself is not sufficient to produce an expressive enough programming
language. For values such as booleans, integers, floating-point numbers as well as pure
functions, we need to be able to use them intuitionistically, that is, more than once or not at
all. For this reason, we have the ! constructor at the type level and its corresponding Many
constructor and let Many <id> = .. in .. eliminator at the term level. Because we want
to restrict how a programmer can alias pointers and prevent a programmer from ignoring
them (a memory leak), NumLin enforces simple syntactic restrictions on which values can
be wrapped up in a Many constructor (details in Section 3).

2.1.2 Fractional Permissions
There are also valid cases in which we would want to alias pointers to a matrix. The most
common is exemplified by the BLAS routine gemm, which (rather tersely) stands for GEneric
Matrix Multiplication. A simplified definition of gemm(α, A, B, β, C) is C := αAB + βC.
In this case, A and B may alias each other but neither may alias C, because it is being written
to. Related to mutating arrays and matrices is freeing them. Here, we would also wish to
restrict aliasing so that we do not free one alias and then attempt to use another. Although
linearity on its own suffices to prevent use-after-free errors when values are not aliased (a
freed value is out of scope for the rest of the expression), we still need another simple, yet
powerful concept to provide us with the extra expressivity of aliasing without losing any of
the benefits of linearity.

Fractional permissions provide exactly this. Concretely, types of (pointers to) arrays
and matrices are parameterised by a fraction. A fraction is either 1 (20) or exactly half of
another fraction (2−k, for natural k). The former represents complete ownership of that
value: the programmer may mutate or free that value as they choose; the latter represents
read-only access or a borrow: the programmer may read from the value but not write to or
free it. Creating an array/matrix gives you ownership of it, so too does having one (with a
fractional permission of 20) passed in as an argument.

In NumLin, we can produce two aliases of a single array/matrix, by sharing it. If the
original alias had a fractional permission of 2−k then the two new aliases of it will have a
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fractional permission of 2−(k+1) each. Thanks to linearity, the original array/matrix with a
fractional permission of 2−k will be out of scope after the sharing. When an array/matrix is
shared as such, we can prevent the programmer from freeing or mutating it by making the
types of free and set (for mutation) require a whole (20) permission.

If we have two aliases to the same matrix with identical fractional permissions (2−(k+1)),
we can recombine or unshare them back into a single one, with a larger 2−k permission. As
before, thanks to linearity, the original two aliases will be out of scope after unsharing.

2.1.3 Runtime Errors

Aside from out-of-bounds indexing, matrix unsharing is one of only two operations that
can fail at runtime (the other being dimension checks, such as for gemm). The check being
performed is a simple sanity check that the two aliasing pointers passed to unshare point to
the same array/matrix. Section 5 contains an overview of how we could remove the need for
this by tracking pointer identities statically by augmenting the type system further.

2.1.4 Recursion

The final feature of NumLin which makes it sufficiently expressive is recursion (and of
course, conditional branches to ensure termination). Conditional branches are implemented
by ensuring that both branches use the same set of linear values. A function can be recursive
if it captures no linear values from its environment. Like with Many, this is enforced via
simple syntactic restrictions on the definition of recursive functions.

2.2 Syntax

NumLin’s concrete syntax is inspired by that of OCaml. It desugars (Figure 2) into a smaller,
core type and expression grammar (Figure 1).

As described in Section 2.1.2, fractional permissions f are either variables ′fc, z (20) or
f s (2−(f+1)).

Types are either simple (unit, bool, int, elt), indexed by fractional permission (f arr,
f mat) or compound (! constructor for intuitionism, universally-quantifying over a fractional-
permission ′fc in t for fraction-polymorphic types, pairs, linear functions).

Expressions are standard with the exception of ′fc. t introduction (fractional permission
abstraction) and elimination (fractional permission specialisation) forms.

The ! annotation on variables is a syntactic convenience for declaring the variable to used
intuitionistically; why it desugars the way it does is explained in Section 3.1.

Array/matrix indexing and duplication (non-destructive and destructive) also have
special syntax to lessen the syntactic overhead of re-binding identifiers. Furthermore, to
aid readability, there is support for using BLAS methods via conventional-looking matrix
expressions.

In particular, the syntax let y <- new (m,n) [| alpha * x1 * x2 |] is syntactic
sugar for first creating a new m × n matrix (let y = matrix m n) and then storing the
result of the multiplication in it (let ((x1, x2), y) = .. in ..).

Note that, the pattern let y <- [| x^T * x + beta * y |] translates to (syrk true
1. x beta y), which uses x once only.
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f ::= ′fc | z | f s

t ::= unit | bool | int | elt | f arr | f mat | !t | ′fc. t | t⊗ t′ | t( t′

e ::= p (primitives) | x (variable) | let x = e in e′ | () | let () = e in e′ | true | false
if e then e1 else e2 | k (integer) | l (heap location) | el (array element)
Many v | let Many x = e in e′ | fun ′fc→ e (frac. perm. abstraction)
e [f ] (frac. perm. specialisation) | (e, e′) | let (a, b) = e in e′

fun x : t→ e | e e′ | fix (g, x : t, e : t′)

Figure 1 Core fraction f , type t and expression e grammar of NumLin. Values v are a subset of
the expressions, their full definition and a list of all primitives p is in Appendix E.

x[e] ⇒ get _ x (e) (similarly for matrices)
x[e1] := e2 ⇒ set x (e1) (e2) (similarly for matrices)

pat ::= () | x | !x |Many pat | (pat, pat)
let !x = e1 in e2 ⇒ let Many x = e1 in

let Many x = Many (Many x) in e2

let Many 〈patx〉 = e1 in e2 ⇒ let Many x = x in
let 〈patx〉 = x in e2

let (〈pata〉, 〈patb〉) = e1 in e2 ⇒ let (a, b) = a_b in let 〈pata〉 = a in
let 〈patb〉 = b in e2

fun (〈patx〉 : t)→ e ⇒ fun (x : t)→ let 〈patx〉 = x in e

arg ::= (〈pat〉 : t) | (′x) (fractional permission variable)
fun 〈arg1..n〉 → e ⇒ fun 〈arg1〉 → .. fun 〈argn〉 → e

let f 〈arg1..n〉 = e1 in e2 ⇒ let f = fun 〈arg1..n〉 → e1 in e2

let !f 〈arg1..n〉 = e1 in e2 ⇒ let Many f = Many (fun 〈arg1..n〉 → e1) in e2

fixpoint ≡ fix (f, x : t, fun 〈arg0..n〉 → e1 : t′)
let rec f (x : t) 〈arg0..n〉 : t′ = e1 in e2 ⇒ let f = fixpoint in e2

let rec !f (x : t) 〈arg0..n〉 : t′ = e1 in e2 ⇒ let Many f = Many fixpoint in e2

Figure 2 Desugaring NumLin.
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let v ← x[e] in e′ ⇒ let (x, !v) = x[e] in e′ (similarly for matrices)
let x2 ← new [| x1 |] in e ⇒ let (x1, x2) = copyM _ x1 in e

let x2 ← [| x1 |] in e ⇒ let (x1, x2) = copyM_to _ x1 x2 in e

M ::= X | XT | sym(X)

let Y ← new (n, k) [| αM1M2 |] in e⇒
let Y = matrix n k in let Y ← [| αM1M2 + 0Y |] in e

let Y ← [| αXXT + βY |] in e⇒
let (X,Y ) = syrk false α _ X β Y in e

let Y ← [| αXTX + βY |] in e⇒
let (X,Y ) = syrk true α _ X β Y in e

let Y ← [| α sym(X1)X2 + βY |] in e⇒
let ((X1, X2), Y ) = symm false α _ X1_ X2 β Y in e

let Y ← [| αX2 sym(X1) + βY |] in e⇒
let ((X1, X2), Y ) = symm true α _ X1_ X2 β Y in e

let Y ← [| αXT?
1 XT?

2 + βY |] in e⇒
let ((X1, X2), Y ) = gemm α _ (X1, true

false) _ (X2, true
false) β Y in e

Figure 3 Purely syntactic pattern-matching translations of matrix expressions.

2.3 Examples

2.3.1 Factorial
Although a factorial function (Figure 4) may seem like an aggressively pedestrian first
example, in a linearly typed language such as NumLin it represents the culmination of many
features.

To simplify the design and implementation of NumLin’s type system, recursive functions
must have full type annotations (non-recursive functions need only their argument types
annotated). The body of the factorial function is a closed expression (with respect to the
function’s arguments), so it type-checks (since it does not capture any linear values from its
environment).

The only argument is !x : !int. As explained before (Section 2.2), this declares x to be
used intuitionistically.

The condition for an if may or may not use linear values (here, with x < 0 || x = 0, it
does not). Any linear values used by the condition would not be in scope in either branch of
the if-expression. Both branches use x differently: one ignores it completely and the other
uses it twice.

All numeric and boolean literals are implicitly wrapped in a Many and all primitives
involving them return a !int, !bool or !elt (types of elements of arrays/matrices, typically
64-bit floating-point numbers). The short-circuiting || behaves in exactly the same way as a
boolean-valued if-expression.
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let rec factorial ( !x : !int ) : !int =
if x < 0 || x = 0 then

1
else

x * factorial (x - 1) in
factorial ;;

Figure 4 Factorial function in NumLin.

let rec sum_array (!i : !int) (!n : !int) (!x0 : !elt)
('x) (row : 'x arr) : 'x arr * !elt =

if i = n then
(row, x0)

else
let (row, !x1) = row[i] in
sum_array (i + 1) n (x0 +. x1) 'x row in

sum_array ;;

Figure 5 Summing over an array in NumLin.

2.3.2 Summing over an Array
Now we can add fractional permissions to the mix: Figure 5 shows a simple, tail-recursive
implementation of summing all the elements in an array. There are many new features; first
among them is !x0 : !elt, the type of array/matrix elements (64-bit floating point).

Second is ('x) (row: 'x arr) which is an array with a universally-quantified fractional
permission. In particular, this means the body of the function cannot mutate or free the
input array, only read from it. If the programmer did try to mutate or free row, then they
would get a helpful error message (Figure 6).

Alongside taking a row: 'x arr, the function also returns an array with exactly the
same fractional permission as the row (which can only be row). This is necessary because of
linearity: for the caller, the original array passed in as an argument would be out of scope
for the rest of the expression, so it needs to be returned and then rebound to be used for the
rest of the function.

An example of this consuming and re-binding is in let (row, !x1) = row[i]. Indexing
is implemented as a primitive get : ′x. ′x arr ( !int ( ′x arr⊗ !elt. Although fractional
permissions can be passed around explicitly (as done in the recursive call), they can also
be automatically inferred at call sites: row[i] ⇒ get _ row i takes advantage of this
convenience.

2.3.3 One-dimensional Convolution
Figure 7 extends the set of features demonstrated by the previous examples by mutating one
of the input arrays. A one-dimensional convolution involves two arrays: a read-only kernel
(array of weights) and an input vector. It modifies the input vector in-place by replacing
each write[i] with a weighted (as per the values in the kernel) sum of it and its neighbours;
intuitively, sliding a dot-product with the kernel across the vector.

What’s implemented in Figure 7 is a simplified version of this idea, so as to not distract
from the features of NumLin. The simplifications are:

the kernel has a length 3, so only the value of write[i-1] (prior to modification in the
previous iteration) needs to be carried forward using x0
write is assumed to have length n+1

ECOOP 2019
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let row = row[i] := x1 in (* or *) let () = free row in
(* Could not show equality: *)
(* z arr *)
(* with *)
(* 'x arr *)
(* *)
(* Var 'x is universally quantified *)
(* Are you trying to write to/free/unshare an array you don't own? *)
(* In examples/sum_array.lt, at line: 7 and column: 19 *)

Figure 6 Attempting to write to or free a read only array in NumLin.

let rec simp_oned_conv
(!i : !int) (!n : !int) (!x0 : !elt)
(write : z arr) ('x) (weights : 'x arr)
: 'x arr * z arr =

if n = i then (weights, write) else
let !w0 <- weights[0] in
let !w1 <- weights[1] in
let !w2 <- weights[2] in
let !x1 <- write[i] in
let !x2 <- write[i + 1] in
let written = write[i] := w0 *. x0 +. (w1 *. x1 +. w2 *. x2) in
simp_oned_conv (i + 1) n x1 written _ weights in

simp_oned_conv ;;

Figure 7 Simplified one-dimensional convolution.

i’s initial value is assumed to be 1
x0’s initial value is assumed to be write[0]
the first and last values of write are ignored.

Mutating an array is implemented similarly to indexing one – a primitive set : z arr (
!int ( !elt ( z arr. It consumes the original array and returns a new array with the
updated value.

Since write: z arr (where z stands for k = 0, representing a fractional permission
of 2−k = 2−0 = 1), we may mutate it, but since we only need to read from weights, its
fractional permission index can be universally-quantified. In the recursive call, we see _ being
used explicitly to tell the compiler to infer the correct fractional permission based on the
given arguments.

2.3.4 Digression: Types of Primitives
The most pertinent aspect of NumLin is the types of its primitives (Figure 8). While the types
of operations such as get and set might be borderline obvious, the types of BLAS/LAPACK
routines become an incredibly useful, automated check for using the API correctly.

We determine the types for these routines by consulting their documentation. Each
routine has a record of the expected aliasing behaviour and whether or not it modifies or
consumes its argument in any way. We use that to derive the types in Figure 8. Since
most of these low-level routines are very careful not to do any allocation themselves, it is
generally very easy to give each a NumLin type – every argument that can modify/consume
its argument needs a full permission, and all others can be fraction-polymorphic. Taking



D.C. Makwana and N. R. Krishnaswami 9:9

symm : !bool ( !elt ( ′x. ′x mat ( ′y. ′y mat ( !elt ( z mat (

(′x mat⊗ ′y mat)⊗ z mat
gemm : !elt ( ′x. ′x mat⊗ !bool ( ′y. ′y mat⊗ !bool ( !elt (

z mat ( (′x mat⊗ ′y mat)⊗ z mat
gesv : z mat ( z mat ( z mat⊗ z mat
posv : z mat ( z mat ( z mat⊗ z mat
potrs : ′x. ′x mat ( z mat ( ′x mat⊗ z mat
syrk : !bool ( !elt ( ′x. ′x mat ( !elt ( z mat ( ′x mat⊗ z mat

Figure 8 Types of some NumLin primitives.

let !square ('x) (x : 'x mat) =
let (x, (!m, !n)) = sizeM _ x in
let (x1, x2) = shareM _ x in
let answer <- new (m, n) [| x1 * x2 |] in
let x = unshareM _ x1 x2 in
(x, answer) in
square

;;

Figure 9 Squaring a matrix

Fortran as an example, it has a notion of in, out and inout parameters. The latter two
would need full z permissions; the first would be fraction-polymorphic.

2.3.5 Squaring a Matrix
Figure 9 shows how a linearly-typed matrix squaring function may be written in NumLin.
It is a non-recursive function declaration (the return type is inferred). Since we would like
to be able to use a function like square more than once, it is marked with a ! annotation
(which also ensures it captures no linear values from the surrounding environment).

To square a matrix, first, we extract the dimensions of the argument x. Then, because
we need to use x twice (so that we can multiply it by itself) but linearity only allows one
use, we use shareM : ′x. ′x mat ( ′x s mat⊗ ′x s mat to split the permission ’x (which
represents 2−x) into two halves (’x s, which represents 2−(x+1)).

Even if x had type z mat, sharing it now enforces the assumption of all BLAS/LAPACK
routines that any matrix which is written to (which, in NumLin, is always of type z mat)
does not alias any other matrix in scope. So if we did try to use one of the aliases in mutating
way, the expression would not type check, and we would get an error similar to the one in
Figure 6.

By using some simple pattern-matching and syntactic sugar (Figure 3), we can:
write normal-looking, apparently non-linear code
use matrix expressions directly and have a call to an efficient call to a BLAS/LAPACK
routine inserted with appropriate re-bindings
retain the safety of linear types with fractional permissions by having the compiler
statically enforce the aliasing and read/write rules implicitly assumed by BLAS/LAPACK

ECOOP 2019
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let !lin_reg ('x) (x : 'x mat)
('y) (y : 'y mat) =

let (x, (!_n, !m)) = sizeM _ x in
let xy <- new (m, 1) [| x^T * y |] in
let x_T_x <- new (m, m) [| x^T * x |] in
let (to_del, answer) = posv x_T_x xy in
let () = freeM to_del in
((x, y), answer) in

lin_reg ;;

Figure 10 Linear regression (OLS): β̂ = (XTX)−1XTy

routines.

2.3.6 Linear Regression

In Figure 10, we wish to compute β̂ = (XTX)−1XTy. To do that, first, we extract the
dimensions of matrix x. Then, we say we would like xy to be a new matrix, of dimension
m× 1, which contains the result of XTy (using syntactic sugar for matrix and gemm calls
similar to that used in Figure 9, with a ^T annotation on x to set x’s ‘transpose indices’-flag
to true).

Note that x can appear twice in the pattern without any calls to share because the
pattern is matched to a BLAS call to syrk true 1. x 0. x_T_x, which uses x once only.

After computing x_T_x, we need to invert it and then multiply it by xy. The BLAS
routine posv : z mat ( z mat ( z mat ⊗ z mat does exactly that: assuming the first
argument is symmetric, posv mutates its second argument to contain the desired value. Its
first argument is also mutated to contain the (upper triangular) Cholesky decomposition
factor of the original matrix. Since we do not need that matrix (or its memory) again, we
free it. If we forgot to, we would get a Variable to_del not used error. Lastly, we return
the answer alongside the untouched input matrices (x,y).

2.3.7 L1-norm Minimisation on Manifolds

L1-norm minimisation is often used in optimisation problems, as a regularisation term for
reducing the influence of outliers. Although the below formulation [12] is intended to be
used with sparse computations, NumLin’s current implementation only implements dense
ones. However, it still serves as a useful example of explaining NumLin’s features.

Primitives like transpose : ′x. ′x mat ( ′x mat ⊗ z mat and eye : !int ( z mat
allocate new matrices; transpose returns the transpose of a given matrix and eye k evaluates
to a k × k identity matrix.

We also see our first example of re-using memory for different matrices: like with to_del
and posv in the previous example, we do not need the value stored in tmp_n_n after the call
to gesv (a primitive similar to posv but for a non-symmetric first argument). However, we
can re-use its memory much later to store answer with let answer <- [| 0. * tmp_n_n
+ q_inv_u * inv_u_T |]. Again, thanks to linearity, the identifiers q and tmp_n_n are out
of scope by the time answer is bound. Although during execution, all three refer to the same
piece of memory, logically they represent different values throughout the computation.
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let !l1_norm_min (q : z mat) (u : z mat) =
let (u, (!_n, !k)) = sizeM _ u in
let (u, u_T) = transpose _ u in
let (tmp_n_n , q_inv_u ) = gesv q u in
let i = eye k in
let to_inv <- [| i + u_T * q_inv_u |] in
let (tmp_k_k, inv_u_T ) = gesv to_inv u_T in
let () = freeM tmp_k_k in
let answer <- [| 0. * tmp_n_n + q_inv_u * inv_u_T |] in
let () = freeM q_inv_u in
let () = freeM inv_u_T in
answer in

l1_norm_min ;;

Figure 11 L1-norm minimisation on manifolds: Q−1U(I + UTQ−1U)−1UT

2.3.8 Kalman Filter
A Kalman Filter [16] is an algorithm for combining prior knowledge of a state, a statistical
model and measurements from (noisy) sensors to produce an estimate a more reliable
estimated of the current state. It has various applications (navigation, signal-processing,
econometrics) and is relevant here because it is usually presented as a series of complex
matrix equations.

Figure 12 shows a NumLin implementation of a Kalman filter (equations in Figure 13).
A few new features and techniques are used in this implementation:

sym annotations in matrix expressions: when this is used, a call to symm (the equivalent
of gemm but for symmetric matrices so that only half the operations are performed) is
inserted
copyM_to is used to re-use memory by overwriting the contents of its second argument
to that of its first (erroring if dimensions do not match)
posvFlip is like posv except for solving XA = B

a lot of memory re-use; the following sets of identifiers alias each other:
r_1, r_2 and k_by_k
data_1 and data_2
mu and new_mu
sigma_hT and x.

The NumLin implementation is much longer than the mathematical equations for two
reasons. First, the NumLin implementation is a let-normalised form of the Kalman equations:
since there a large number of unary/binary (and occasionally ternary) sub-expressions in
the equations, naming each one line at a time makes the implementation much longer.
Second, NumLin has the additional task of handling explicit allocations, aliasing and frees
of matrices. However, it is exactly this which makes it possible (and often, easy) to spot
additional opportunities for memory re-use. Furthermore, a programmer can explore those
opportunities easily because NumLin’s type system statically enforces correct memory
management and the aliasing assumptions of BLAS/LAPACK routines.

3 Formal System

3.1 Core Type Theory
The full typing rules are in Appendix A.1, but the key ideas are as follow.
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let !kalman
('s) (sigma : 's mat) (* n,n *)
('h) (h : 'h mat) (* k,n *)
(mu : z mat) (* n,1 *)
(r_1 : z mat) (* k,k *)
(data_1 : z mat) (* k,1 *) =
let (h, (!k, !n)) = sizeM _ h in
(* could use [| sym(sigma) * hT |] but would

need a (n,k) temporary hT = tranpose _ h *)
let sigma_hT <- new (n, k) [| sigma * h^T |] in
let r_2 <- [| r_1 + h * sigma_hT |] in
let (k_by_k, x) = posvFlip r_2 sigma_hT in
let data_2 <- [| h * mu - data_1 |] in
let new_mu <- [| mu + x * data_2 |] in
let x_h <- new (n,n) [| x * h |] in
let () = freeM (* n,k *) x in
let sigma2 <- new [| sigma |] in
let new_sigma <- [| sigma2 - x_h * sym(sigma) |] in
let () = freeM (* n,n *) x_h in
((sigma, h), (new_sigma, (new_mu, (k_by_k, data_2)))) in

kalman ;;

Figure 12 Kalman filter: see Figure 13 for the equations this code implements and Figure 20 for
an equivalent Cblas/Lapacke implementation.

µ′ = µ+ ΣHT (R+HΣHT )−1(Hµ− data)
Σ′ = Σ(I −HT (R+HΣHT )−1HΣ)

Figure 13 Kalman filter equations (credit: matthewrocklin.com).

A typing judgement consists of Θ; ∆; Γ ` e : t.
Θ is the environment that tracks which fractional permission variables in scope. Fractional
permissions (the Perm judgement) and types (the Type judgement) are well-formed if all
of their free fractional variables are in Θ.
∆ is the environment storing non-linearly or inuitionistically typed variables.
Γ is the environment storing linearly typed variables.

Note that rules for typing (), booleans, integers and elements are typed with respect to
an empty linear environment: this means no linear values are needed to produce a value of
those types.

Θ; ∆; · ` () : unit Ty_Unit_Intro

Conversely, whenever two or more subexpressions need to be typed, they must consume
a disjoint set of linear values (pairs, let-expressions). In the case of if-expressions, both
branches must consume the same set of linear values (disjoint to the ones used to evaluate
the condition).

Θ; ∆; Γ ` e : !bool
Θ; ∆; Γ′ ` e1 : t′

Θ; ∆; Γ′ ` e2 : t′

Θ; ∆; Γ,Γ′ ` if e then e1 else e2 : t
Ty_Bool_Elim

http://matthewrocklin.com/blog/work/2012/11/24/Kalman-Filter
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The Many introduction and elimination rules are very important. Producing !-type values
may only be done if the expression inside is a syntactic value which is not a location. This
allows all safely duplicable resources, including functions which capture non-linear resources
from their environments, but prevents producing aliases of (pointers to) arrays and matrices.
This is exactly the same as value-restriction from the world of parametric polymorphism;
without it, the expression let Many x = Many (array 5) in let () = free x in x[0] would
type-check but error at runtime.

Θ; ∆; · ` v : t
v 6= l

Θ; ∆; · `Many v : !t
Ty_Bang_Intro

Consuming a variable that refers to a !-type value moves it from the linear environment
Γ and into the intuitionistic environment ∆.

Θ; ∆; Γ ` e : !t
Θ; ∆, x : t; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` let Many x = e in e′ : t′
Ty_Bang_Elim

Using this, we can explain how the ! annotation on variables – first introduced in the
factorial example in 2.3.1 – works. That is, we can explain why the meaning of let !x = e in e′

can be expressed using only the rules presented thus far, as let Many x = e in let Many x =
Many (Many x) in e′.1 The reader is invited to quickly convince themselves that the
following meta-rule is provable using Ty_Bang_Intro (twice), Ty_Bang_Elim (twice)
and weakening the intuitionistic environment ∆ (once).

Θ; ∆; Γ ` e : !t
Θ; ∆, x : !t; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` let !x = e in e′ : t′
Meta_Ty_Let_Bang

Rules Ty_Gen and Ty_Spc are for fractional permission generalisation and specialisa-
tion respectively. They allow the definition and use of functions that are polymorphic in the
fractional permission index of their results and one or more of their arguments.

Θ, fc; ∆; Γ ` e : t
Θ; ∆; Γ ` fun ′fc → e : ′fc.t

Ty_Gen
Θ ` f Perm
Θ; ∆; Γ ` e : ′fc.t

Θ; ∆; Γ ` e[f ] : t[f /fc]
Ty_Spc

Rule Ty_Fix shows how recursive functions are typed. Even though recursive functions
are fully annotated, type checking them is interesting for two reasons: to type check the
body of the fixpoint, the type of the recusive function is in the intuitionistic environment ∆
(without this, you would not be able to write a base case) whilst the argument and its type
are the only things in the linear environment Γ. The latter means that recursive functions
can be type checked in an empty environment (thus be wrapped in Many and used zero or
multiple times).

1 Why we have this at all is for the sake of ergonomics when using binary arithmetic operations (e.g.
of type !int ( !int ( !int): a programmer should be able to write let x = 5 + 5 in x - x, which,
although non-linear in x, is morally right because integers and operations on them rarely need to be
linear. Though it should be possible to handle this using a LNL-style presentation of linear types [5]
(using adjoint modalities to distinguish between intrinsically linear and intrinsically intuitionistic types)
that is a pretty big digression from the stated goals of this paper.
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Θ; ∆, g : t ( t′; ·, x : t ` e : t′

Θ; ∆; · ` fix (g, x : t, e : t′) : t ( t′
Ty_Fix

Lastly, types of almost all NumLin primitives, as embedded in OCaml’s type system, are
shown in Appendix F, with some similar ones (like those for binary arithmetic operators)
omitted for brevity. The main difference between the OCaml type of a primitive like gemm
and its NumLin counterpart (Figure 8) is the inclusion of explicit universal-quantification of
fractional permission variables in the latter.

3.2 Dynamic Semantics
The full, small-step transition relation is in Appendix A.2, but the key ideas are as follow.

Heaps σ are multisets containing triples of an abstract location l, a fractional permission
f and sized matrices mn,k. The notation l 7→f mk1,k2 should be read as “location l represents
f ownership over matrix m (of size k1 × k2)”. Each heap-and-expression either steps to
another heap-and-expression or a runtime error err. In the full grammar definition we see a
definition of values and contexts in the language.

We draw the reader’s attention to the definitions relating to fractional permissions.
Specifically, unlike a lambda, the body of a fun ′fc → v must be a syntactic value. The
context fun ′fc → [−] means expressions can be reduced inside a fractional permission
generalisation. This is to emphasize that fractions are merely compile-time constructs and
do not affect runtime behaviour. Correct usage of fractions is enforced by the type system,
so programs do not get stuck. Fractional permissions are specialised using substitution over
both the heap and an expression (Op_Frac_Perm).

〈σ, (fun ′fc → v)[f ]〉 → 〈σ[f /fc], v[f /fc]〉
Op_Frac_Perm

Like with the static semantics, the interesting rules in the dynamic semantics are those
relating to primitives. Creating a matrix (matrix k1 k2) successfully (Op_Matrix) requires
non-negative dimensions and returns a (fresh) location of a matrix of those dimensions,
extending the heap to reflect that l represents a complete ownership over the new matrix.

0 ≤ k1, k2

l fresh
〈σ,matrix k1 k2〉 → 〈σ + {l 7→1 Mk1,k2}, l〉

Op_Matrix

Dually, Op_Free, requires a location represent complete ownership before removing it
and the matrix it points to from the heap.

〈σ + {l 7→1 mk1,k2}, free l〉 → 〈σ, ()〉
Op_Free

Choosing a multiset representation as opposed to a set allows for two convenient invariants:
multiplicity of a triple l 7→f mk1,k2 in the heap corresponds to the number of aliases of l in the
expression with type f mat and the sum of all the fractions for l will always be 1 (for a closed,
well-typed expression). With this in mind, the rules Op_Share and Op_Unshare_Eq
are fairly natural.

〈σ + {l 7→f mk1,k2}, share[f ] l〉 → 〈σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}, (l, l)〉
Op_Share

σ′ ≡ σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}
〈σ′,unshare[f ] l l〉 → 〈σ + {l 7→f mk1,k2}, l〉

Op_Unshare_Eq
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Combining all of these features, we see that Op_Gemm_Match requires that the
location being updated (l3) has complete ownership of over matrix m3 and can thus change
what value it stores to m1m2 +m3. In particular, this places no restriction on l2 and l3: they
could be shared aliases of the same matrix. Transition rules for other primitives (omitted)
follow the same structure: 7→1 for any locations that are written to and 7→fc for anything
else.

σ′ ≡ σ + {l1 7→fc1 m1k1,k2}+ {l2 7→fc2 m2k2,k3}
σ1 ≡ σ′ + {l3 7→1 m3k1,k3}
σ2 ≡ σ′ + {l3 7→1 (m1 m2 + m3)k1,k3}
〈σ1,gemm[fc1] l1[fc2] l2 l3〉 → 〈σ2, ((l1, l2), l3)〉

Op_Gemm_Match

3.3 Logical Relation
First, we define an interpretation of heaps with fractional permissions in the style of Bornat
et. al [10] (interpreting the multiset as a partial map from locations to the sum of all its
associated fractions and a matrix) as well as the n-fold iteration of →.

H[[σ]] = F(l,f,m)∈σ[l 7→f m]

where

(ς1 ? ς2)(l) ≡


ς1(l) if l ∈ dom(ς1) ∧ l /∈ dom(ς2)
ς2(l) if l ∈ dom(ς2) ∧ l /∈ dom(ς1)
(f1 + f2,m) if (f1,m) = ς1(l) ∧ (f2,m) = ς2(l) ∧ f1 + f2 ≤ 1
undefined otherwise

We then define a step-indexed logical relation in the style of Ahmed et. al [2]. (ς, v) ∈ Vk[[t]]
means it takes a heap with exactly ς resources to produce a value v of type t in at most k
steps. So, something like a unit or a !t need no resources, whereas a f mat needs exactly f
ownership of a some matrix and a pair needs a ? combination of the heaps required for each
component.

Vk[[unit]] = {(∅, ∗)}
Vk[[f mat]] = {({l 7→2−f _}, l)}

Vk[[!t]] = {(∅,Many v) | (∅, v) ∈ Vk[[t]]}
Vk[[t1 ⊗ t2]] = {(ς1 ? ς2, (v1, v2)) | (ς1, v1) ∈ Vk[[t1]] ∧ (ς2, v2) ∈ Vk[[t2]]}

The definition of Vk[[′fc. t]] says a value and heap must be the same regardless of what
fraction is substituted into both; the k − 1 is to take into account fraction specialisation
takes one step (Op_Spc).

Vk[[′fc. t]] = {(ς, fun ′fc→ v) | ∀f. (ς[f/fc], v[f/fc]) ∈ Vk−1[[t[f/fc]]]}

To understand the definition of Vk[[t′ ( t]], we must first look at Ck[[t]], the computational
interpretation of types. Intuitively, it is a combination of a frame rule on heaps (no
interference), type-preservation and termination (in j < k steps) to either an error or a
heap-and-expression. For the case of termination to a heap-and-expression, there is a further
condition: if the expression is a value syntactically then it is also one semantically.

Ck[[t]] = {(ςs, es) | ∀ j < k, σr. ςs ? ςr defined ⇒ 〈σs + σr, es〉 →j err ∨ ∃σf , ef .
〈σs + σr, es〉 →j 〈σf + σr, ef 〉 ∧ (ef is a value ⇒ (ςf ? ςr, ef ) ∈ Vk−j [[t]])}
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In this light, Vk[[t′ ( t]] simply says that v is a function and that evaluating the application
of it to any argument (of the correct type, requiring its own set of resources, bounded by k
steps) satisfies all the aforementioned properties.

Vk[[t′ ( t]] = {(ςv, v) | (v ≡ fun x : t′ → e ∨ v ≡ fix(g, x : t′, e : t))∧
∀j ≤ k, (ςv′ , v′) ∈ Vj [[t′]]. ςv ? ς ′v defined ⇒ (ςv ? ς ′v, v v′) ∈ Cj [[t]]}

The interpretation of typing environments ∆ and Γ are with respect to an arbitrary
substitution of fractional permissions θ. Note that only the interpretation of Γ involves a
(potentially) non-empty heap.

Ik[[∆, x : t]]θ = {δ[x 7→ vx] | δ ∈ Ik[[∆]]θ ∧ (∅, vx) ∈ Vk[[θ(t)]]}
Lk[[Γ, x : t]]θ = {(ς ? ςx, γ[x 7→ vx]) | (ς, γ) ∈ Lk[[Γ]]θ ∧ (ςx, vx) ∈ Vk[[θ(t)]]}

And so the final semantic interpretation of a typing judgement simply quantifies over
all possible fractional permission substitutions θ, linear value substitutions γ, intuitionistic
value substitutions δ and heaps σ. Note that, ς ≡ H[[θ(σ)]].

k[[Θ; ∆; Γ ` e : t]] = ∀θ, δ, γ, σ. Θ = dom(θ) ∧ (ς, γ) ∈ Lk[[Γ]]θ ∧ δ ∈ Ik[[∆]]θ ⇒
(ς, θ(δ(γ(e)))) ∈ Ck[[θ(t)]]

3.4 Soundness Theorem
I Theorem 1. (The Fundamental Lemma of Logical Relations)

∀Θ,∆,Γ, e, t. Θ; ∆; Γ ` e : t⇒ ∀k. k[[Θ; ∆; Γ ` e : t]]

3.4.1 Explanation
If an expression e is syntactically type-checked (against a type t), then

for an arbitrary number of steps k,
under any substitution of

free fractional permission variables θ,
linear variables with a suitable heap (γ, ς) and
intuitionistic variables δ,

the aforementioned suitable heap and expression (ς, θ(δ(γ(e))))
are in the computational interpretation Ck[[θ(t)]] of the type t.

The computational interpretation is as defined before (Section 3.3); it identifies executions
that do no un- or ill-defined behaviours (e.g. adding a boolean and an integer). Since our
operational semantics explicitly models deallocation, we now know no well-typed program
will ever try to access deallocated memory, establishing the correctness of our memory
management checking.

3.4.2 Proof Sketch
To prove the above theorem, we need several lemmas; the interesting ones are: the moral
equivalent of the frame rule (C.1), monotonicity for the step-index (C.5), splitting up
environments corresponds to splitting up heaps (C.7) and heap-and-expressions take the
same steps of evaluation under any substitution of their free fractional permissions (C.8).

The proof proceeds by induction on the typing judgement. The case for Ty_Fix is the
reason we quantify over the step-index k in the conclusion of the soundness theorem. It
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allows us to then induct over the step-index and assume exactly the thing we need to prove
at a smaller index.

The case for Ty_Gen follows a similar pattern, but has the extra complication of reducing
an expression with an arbitrary fractional permission variable in it, and then instantiating it
at the last moment to conclude, which is where C.8 (heap-and-expressions take the same
steps of evaluation under any substitution of their free fractional permissions) is used.

The rest of the cases are either very simple base cases (variables, unit, boolean, integer
or element literals) or follow very similar patterns; for these, only Ty_Let is presented in
full and other similar cases simply highlight exactly what would be different. The general
idea is to split up the linear substitution and heap along the same split of Γ/Γ′, then (by
induction) use Ck[[−]] and one ‘half’ of the linear substitution and heap to conclude the ‘first’
sub-expression either takes j < k steps to err or another heap-and-expression.

In the first case, you use Op_Context_Err to conclude the whole let-expression does
the same. Similarly we use Op_Context j times in the second case. However, a small
book-keeping wrinkle needs to be taken care of in the case that the heap-and-expression
turns into a value in i ≤ j steps: Op_Context is not functorial for the n-fold iteration of
→. Basically, the following is not quite true:

〈σ, e〉 →j 〈σ′, e′〉
〈σ,C [e]〉 →j 〈σ′,C [e′]〉

Op_Context

because after the i steps, we need to invoke Op_Let_Var to proceed evalution for any
remaining j − i steps. After that, it suffices to use the induction hypothesis on the second
sub-expression to finish the proof. To do so, we need to construct a valid linear substitution
and heap (one in Lk[[Γ′, x : t]]θ). We take the other ‘half’ of the linear substitution and heap
(from the inital split at the start) and extend it with [x 7→ v], (where x is the variable bound
in the let-expression and v is the value we assume the first sub-expression evaluated to in i
steps).

4 Implementation

4.1 Implementation Strategy
NumLin transpiles to OCaml and its implementation follows the structure of a typical
domain-specific language (DSL) compiler. Although NumLin’s current implementation is
not as an embedded DSL, its the general design is simple enough to adapt to being so and
also to target other languages.

Alongside the transpiler, a ‘Read-Check-Translate’ loop, benchmarking program and a
test suite are included in the artifacts accompanying this paper.

1. Parsing. A generated, LR(1) parser parses a text file into a syntax tree. In general, this
part will vary for different languages and can also be dealt with using combinators or
syntax-extensions (the EDSL approach) if the host language offers such support.

2. Desugaring. The syntax tree is then desugared into a smaller, more concise, abstract
syntax tree. This allows for the type checker to be simpler to specify and easier to
implement.

3. Matrix Expressions are also desugared into the abstract syntax tree through pattern-
matching.

4. Type checking. The abstract syntax tree is explicitly typed, with some inference to
make writing typical programs more convenient.
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5. Code Generation. The abstract syntax tree is translated into OCaml, with a few
‘optimisations’ to produce more readable code. This process is type-preserving: NumLin’s
type system is embedded into OCaml’s (Figure 14), so the OCaml type checker acts as a
sanity check on the generated code.

A very pleasant way to use NumLin is to have the build system generate code at compile-
time and then have the generated code be used by other modules like normal OCaml functions.
This makes it possible and even easy to use NumLin alongside existing OCaml libraries;
in fact, this is exactly how the benchmarking program and test-suite use code written in
NumLin.

4.1.1 Desugaring, Matrix Expressions and Type Checking
As seen earlier (Figure 2), desugaring is conventional. Matrix expressions are translated into
BLAS/LAPACK calls via purely syntactic pattern-matching (also seen earlier in Figure 3).

4.1.2 Type checking
Type checking is mostly standard for a linearly typed language, with the exception of
fractional permission inference. By restricting fractions to be non-positive integer powers
of two, we only need to keep track of the logarithm of the fractions used. Explicit sharing
and unsharing removes the need for performing dataflow analysis. As a result, all fractional
arithmetic can be solved with unification, and in doing so, fractions become directly usable
in NumLin’s type-system as opposed to a convenient theoretical tool.

Because all functions must have their argument types explicitly annotated, inferring the
correct fraction at a call-site is simply a matter of unification. We believe full-inference
of fractional permissions is similarly just matter of unification (thanks to an experimental
implementation of just this feature), even though the formal system we present here is for an
explicitly-typed language.

There are a few differences between the type system as presented in 3.2 and how we
implemented it: the environment changes as a result of type checking an expression (the
standard transformation to avoid a non-deterministic split of the environment for checking
pairs); variables are marked as used rather than removed for better error messages; variables
are tagged as linear or intuitionistic in one environment as opposed to being stored in two
separate ones (this allows scoping/variable look-up to be handled uniformly).

4.1.3 Code Generation
Code generation is a straightforward mapping from NumLin’s core constructs to high-level
OCaml ones. We embed NumLin’s type- and term- constructors into OCaml as a sanity
check on the output (Figure 14).

This is also useful when using NumLin from within OCaml; for example, we can use
existing tools to inspect the type of the function we are using (Figure 15). It is worth
reiterating that only the type- and term- constructors are translated into OCaml, NumLin’s
precise control over linearity and aliasing are not brought over.

We actually use this fact to our advantage to clean up the output OCaml by removing
what would otherwise be redundant re-bindings (Figure 16). Combined with a code-formatter,
the resulting code is not obviously correct and exactly what an expert would intend to write
by hand, but now with the guarantees and safety of NumLin behind it. A small example is
shown in Figure 17, a larger one in Figure 19.
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f ::=
| ’fc
| z
| f s

t ::=
| unit
| bool
| int
| elt
| f arr
| f mat
| ! t
| ’fc. t
| t ⊗ t′

| t ( t′

module Arr =
Owl.Dense.Ndarray.D

type z = Z
type 'a s = Succ

type 'a arr =
A of Arr.arr
[@@unboxed]

type 'a mat =
M of Arr.arr
[@@unboxed]

type 'a bang =
Many of 'a
[@@unboxed]

[[′fc]] = ’fc

[[z]] = z

[[f s]] = [[f ]] s

[[unit]] = unit

[[bool]] = bool

[[int]] = int

[[elt]] = float

[[f arr]] = [[f ]] arr

[[f mat]] = [[f ]] mat

[[! t]] = [[t]] bang

[[′fc. t]] = [[t]]
[[t⊗ t′]] = [[t]]*[[t′]]

[[t( t′]] = [[t]]→ [[t′]]

Figure 14 NumLin’s type grammar (left) and its embedding into OCaml (right).

Figure 15 Using NumLin functions from OCaml.

4.2 Performance Metrics
We think that using NumLin has two primary benefits: safety and performance. We discuss
safety in 5.1, where we describe how we used NumLin to find linearity and aliasing bugs in a
linear algebra algorithm that was generated by another program.

4.2.1 Setup
For performance, we measured the execution times of four equivalent implementations of a
Kalman filter: in C (using Cblas), NumLin (using Owl’s low-level Cblas bindings), OCaml
(using Owl’s intended, safe/copying-by-default interface), and Python (using NumPy, with
the interpreter started and functions interpreted). We measured execution time in micro-
seconds, against an exponentially (powers of 5) increasing scaling factor for matrix size
parameters n = 5 and k = 3.

For large scaling factors (n = 54, 55), we triggered a full garbage-collection before
measuring the execution time of a single call of a function. However, due to the limitations
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let Many x = x in
let Many x = Many (Many x) in <exp> ⇒ <exp>

(* fixp = fix (f, x:t, <exp> : t') *)
(*1*) let Many f = Many fixp in <body>
(*2*) let f = fixp in <body>

⇒ let rec f x = <exp> in <body>

(*1*) let Many x = <exp> in
(*-*) let Many x = Many (Many x) in <body>
(*2*) let Many x = Many <exp> in <body>
(*3*) (fun x : t -> <body>) <exp>

⇒ let x = <exp> in <body>

Figure 16 Removing redundant re-bindings during translation to OCaml.

let rec f i n x0 row =
if Prim.extract @@ Prim.eqI i n then (row, x0)
else

let row, x1 = Prim.get row i in
f (Prim.addI i (Many 1)) n (Prim.addE x0 x1) row

in
f

Figure 17 Recursive OCaml function for a summing over an array, generated (at compile time)
from the code in Figure 5, passed through ocamlformat for presentation.

of the micro-benchmarking library we used, for smaller scaling factors (n = 51, 52, 53), we
measured the execution time of multiple calls to a function in a loop, thus including potential
garbage-collection effects.

We also measured the execution times of L1-norm minimisation and the “linear-regression”
((XTX)−1XTy) similary, but without a C implementation.

4.2.2 Hypothesis
We expected the C implementation to be faster than the NumLin one because the latter has
the additional (but relatively low) overhead of dimension checks and crossing the OCaml/C
FFI for each call to a Cblas routine, even though the calls and their order are exactly the
same. We expected the OCaml and Python implementations to be slower because they
allocate more temporaries (so possibly less cache-friendly) and carry out more floating-point
operations – the Cblas and NumLin implementations use ternary kernels (coalescing steps),
a Cholesky decomposition (of a symmetric matrix, which is more efficient than the LU
decomposition used for inverting a matrix in Owl and NumPy) and symm (symmetric matrix
multiplication, halving the number of floating-point multiplications required).

4.2.3 Results
The results in Figures 18 are as we expected: C is the fastest, followed by NumLin, with
OCaml and Python last. Differences in timings are quite pronounced at small matrix sizes,
but are still significant at larger ones. Specifically for the Kalman filter, for n = 625, Cblas
took 112 ± 35ms, NumLin took 105 ± 25ms, Owl took 124 ± 38ms and NumPy took
112± 12ms; for n = 3125, Cblas took 10.8± 0.7 s, NumLin took 12.0± 1.2 s, Owl took
13.3± 0.2 s and NumPy took 12.7± 0.6 s.
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Worth highlighting here is the other major advantage of using NumLin is reduced
memory usage. Whilst the Owl and NumPy use 11 temporary matrices for the Kalman
filter, (excluding the 2 matrices which store the results), using n+n2 + 4nk+ 3k2 + 2k ≈ 4n2

(for k = 3n/5) words of memory, Cblas and NumLin use only 2 temporary matrices
(excluding the one matrix which stores one of the results), using only n2 + nk ≤ 2n2 words
of memory.

4.2.4 Analysis
As matrix sizes increase, assuming sufficient memory, the difference in the number of floating-
point operations (O(n3)) dominates execution times. However for small matrix sizes, since
n is small and the measurements were over multiple calls to a function in a loop, the large
number of temporaries show the adverse effect of not re-using memory at even quite small
matrix sizes: creating pressure on the garbage collector.

5 Discussion and Related Work

5.1 Finding Bugs in SymPy’s Output
Prior to this project, we had little experience with linear algebra libraries or the problem
of matrix expression compilation. As such, we based our initial NumLin implementation
of a Kalman filter using BLAS and LAPACK, on a popular GitHub gist of a Fortran
implementation, one that was automatically generated from SymPy’s matrix expression
compiler [18].

Once we translated the implementation from Fortran to NumLin, we attempted to compile
it and found that (to our surprise) it did not type-check. This was because the original
implementation contained incorrect aliasing, unused variables and unnecessary temporaries,
and did not adhere to Fortran’s read/write permissions (with respect to intent annotations
in, out and inout) all of which were now highlighted by NumLin’s type system.

The original implementation used 6 temporaries, one of which was immediately spotted
as never being used due to linearity. It also contained two variables which were marked as
intent(in) but would have been written over by calls to ‘gemm’, spotted by the fractional
permissions feature. Furthermore, it used a matrix twice in a call to ‘symm’, once with a
read permission but once with a write permission. Fortran assumes that any parameter being
written to is not aliased and so this call was not only incorrect, but illegal according to the
standard, both aspects of which were captured by linearity and fractional permissions.

Lastly, it contained another unnecessary temporary, however one that was not obvious
without linear types. To spot it, we first performed live-range splitting (checked by linearity)
by hoisting calls to freeM and then annotated the freed matrices with their dimensions.
After doing so and spotting two disjoint live-ranges of the same size, we replaced a call to
freeM followed by allocating call to copy with one, in-place call to copyM_to. We believe
the ability to boldly refactor code which manages memory is good evidence of the usefulness
of linearity as a tool for programming.

5.2 Related Work
5.2.1 Linear types for implementing linear algebra routines
Using linear types for BLAS routines is a particularly good domain fit (given the implicit
restrictions on aliasing arguments), and as a result the idea of using substructural types
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to express array computations is not a particularly new one [19, 14, 7]. However, many
of these designs have been focused on building languages to implement the kernel linear
algebra functions, and as a result, they tend to add additional limitations on the language
design. Both Futhark [14] and Single Assignment C [19] omit higher-order functions to
facilitate compilation to GPUs. The work of [7] forbids term-level recursion, in order to
ensure that all higher-order computations can be statically normalized away and thereby
maximize opportunities for array fusion.

5.2.2 Our contribution: linear types for enforcing correct usage of
linear algebra routines

In contrast, our approach is to begin with the assumption that we can take existing efficient
BLAS-like libraries, and then enforce their correct usage using a linear type discipline with
fractional permissions.

5.2.3 Traditionally complex approaches to sharing
Our approach is similar to the one taken in linear algebra libraries for Rust – these libraries
typically take advantage of the distinction that Rust’s type system offers between mutable
views/references to arrays. The work of [21] and [15] suggest that Rust’s borrow-checker
can be expressed in simpler terms using fractional permissions, though to our knowledge the
programmer-visible lifetime analysis in Rust has never been formalized.

Working explicitly with fractional permissions has two main benefits. First, our type
system demonstrates that type systems for fractional permissions can be dramatically simpler
than existing state-of-the-art approaches, including both industrial languages like Rust, as
well as academic (such as those developed by [9]). Bierhoff et al’s type system, much like
Rust’s, builds a complex dataflow analysis into the typing rules to infer when variables can
be shared or not. This allows for more natural-looking user programs, but can create the
impression that using fractional permissions requires a heavy theoretical and engineering
effort going well beyond that needed for supporting basic linear types.

5.2.4 Our contribution: a simpler approach to sharing
Instead, our approach, of requiring sharing to be made explicit, lets us demonstrate that the
existing unification machinery already in place for ordinary ML-style type inference can be
reused to support fractions. Basically, we can view sharing a value as dividing a fraction
by two, and after taking logarithms all fractions are Peano numbers, whose equality can be
established with ordinary unification.

5.2.5 Implications
This fact is important because there are major upcoming implementations of linear types
such as Linear Haskell [6], which do not have built-in support for fractional permissions.
Instead, Linear Haskell takes a slightly different definition of linearity, one based on arrows as
opposed to kinds: for f : a( b, if fu is used exactly once then u is used exactly once. Whilst
this has the advantage of being backwards-compatible, it also means that the type system
has no built-in support for the concurrent reader, exclusive writer pattern that fractional
permissions enable.

However, since our type system shows unification is “all one needs” for fractions, it should
be possible to encode NumLin’s approach to fractional permissions in Linear Haskell by
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adding a GADT-style natural number index to array types tracking the fraction, which
should enable supporting high-performance BLAS bindings in Linear Haskell. Actually
implementing this is something we leave for future work, as there remains one issue which
we do not see a good encoding for. Namely, only having support for linear functions makes
it a bit inconvenient to manipulate linear values directly – programs end up taking on a
CPS-like structure. This seems to remain an advantage of a direct implementation of linear
types over the Linear Haskell style.

5.3 Simplicity and Further Work
We are pleasantly surprised at how simple the overall design and implementation of NumLin
is, given its expressive power and usability. So simple in fact, that fractions, a convenient
theoretical abstraction until this point, could be implemented by restricting division and
multiplication to be by 2 only [11], thus turning any required arithmetic into unification.

Indeed, the focus on getting a working prototype early on (so that we could test it with
real BLAS/LAPACK routines as soon as possible) meant that we only added features to
the type system when it was clear that they were absolutely necessary: these features were
!-types and value-restriction for the Many constructor.

Going forwards, one may wish to eliminate even more runtime errors from NumLin, by
extending its type system. For example, we could have used existential types to statically
track pointer identities [2], or parametric polymorphism.

We could also attempt to catch mismatched dimensions at compile time as well. While
this could be done with generative phantom types [1], using dependent types may offer more
flexibility in partitioning regions [17] or statically enforcing dimensions related constraints of
the arguments at compile-time. ATS [13] is an example of a language which combines linear
types with a sophisticated proof layer. But although it provides BLAS bindings, it does not
aim to provide aliasing restrictions as demonstrated in this paper.

Taking this idea one step even further, since matrix dimensions are typically fixed at
runtime, we could stage NumLin programs and compile matrix expressions using more soph-
isticated algorithms [4]. However, it is worth noting that without care, such algorithms [18],
usually based on graph-based, ad-hoc dataflow analysis, can produce erroneous output which
would not get past a linear type system with fractions.

We also think that this concept (and the general design of its implementation) need not
be limited to linear algebra: we could conceivably ‘backport’ this idea to other contexts that
need linearity (concurrency, single-use continuations, zero-copy buffer, streaming I/O) or
combine it with dependent types to achieve even more expressive power to split up a single
block of memory into multiple regions in an arbitrary manner [17].
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Figure 18 Comparison of execution times (error bars are present but quite small). Small
matrices and timings n ≤ 53 were micro-benchmarked with the Core_bench library. Larger ones
used Unix’s getrusage functionality, sandwiched between calls to Gc.full_major for the OCaml
implementations.
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A NumLin Specification

A.1 Static Semantics

Θ; ∆; Γ ` e : t Typing rules for expressions

Θ; ∆; ·, x : t ` x : t
Ty_Var_Lin

x : t ∈ ∆
Θ; ∆; · ` x : t

Ty_Var

Θ; ∆; Γ ` e : t
Θ; ∆; Γ′, x : t ` e′ : t′

Θ; ∆; Γ,Γ′ ` let x = e in e′ : t′
Ty_Let

Θ; ∆; · ` () : unit Ty_Unit_Intro

Θ; ∆; Γ ` e : unit
Θ; ∆; Γ′ ` e′ : t

Θ; ∆; Γ,Γ′ ` let () = e in e′ : t
Ty_Unit_Elim

Θ; ∆; · ` true : bool Ty_Bool_True

Θ; ∆; · ` false : bool Ty_Bool_False

Θ; ∆; Γ ` e : !bool
Θ; ∆; Γ′ ` e1 : t′

Θ; ∆; Γ′ ` e2 : t′

Θ; ∆; Γ,Γ′ ` if e then e1 else e2 : t
Ty_Bool_Elim

Θ; ∆; · ` k : int Ty_Int_Intro

Θ; ∆; · ` el : elt Ty_Elt_Intro

Θ; ∆; · ` v : t
v 6= l

Θ; ∆; · `Many v : !t
Ty_Bang_Intro

Θ; ∆; Γ ` e : !t
Θ; ∆, x : t; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` let Many x = e in e′ : t′
Ty_Bang_Elim

Θ; ∆; Γ ` e : t
Θ; ∆; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` (e, e′) : t ⊗ t′
Ty_Pair_Intro



D.C. Makwana and N. R. Krishnaswami 9:27

Θ; ∆; Γ ` e12 : t1 ⊗ t2

Θ; ∆; Γ′, a : t1, b : t2 ` e : t
Θ; ∆; Γ,Γ′ ` let (a, b) = e12 in e : t

Ty_Pair_Elim

Θ ` t′ Type
Θ; ∆; Γ, x : t′ ` e : t

Θ; ∆; Γ ` fun x : t′ → e : t′ ( t
Ty_Lambda

Θ; ∆; Γ ` e : t′ ( t
Θ; ∆; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` e e′ : t
Ty_App

Θ, fc; ∆; Γ ` e : t
Θ; ∆; Γ ` fun ′fc → e : ′fc.t

Ty_Gen

Θ ` f Perm
Θ; ∆; Γ ` e : ′fc.t

Θ; ∆; Γ ` e[f ] : t[f /fc]
Ty_Spc

Θ; ∆, g : t ( t′; ·, x : t ` e : t′

Θ; ∆; · ` fix (g, x : t, e : t′) : t ( t′
Ty_Fix

A.2 Dynamic Semantics

〈σ, e〉 → Config Operational semantics

〈σ, let () = () in e〉 → 〈σ, e〉
Op_Let_Unit

〈σ, let x = v in e〉 → 〈σ, e[v/x]〉
Op_Let_Var

〈σ, if (Many true) then e1 else e2〉 → 〈σ, e1〉
Op_If_True

〈σ, if (Many false) then e1 else e2〉 → 〈σ, e2〉
Op_If_False

〈σ, let Many x = Many v in e〉 → 〈σ, e[v/x]〉
Op_Let_Many

〈σ, let (a, b) = (v1, v2) in e〉 → 〈σ, e[v1/a][v2/b]〉
Op_Let_Pair

〈σ, (fun ′fc → v)[f ]〉 → 〈σ[f /fc], v[f /fc]〉
Op_Frac_Perm

〈σ,fix (g, x : t, e : t′) v〉 → 〈σ, e[v/x][fix (g, x : t, e : t′)/g]〉
Op_App_Fix

〈σ, (fun x : t → e) v〉 → 〈σ, e[v/x]〉
Op_App_Lambda
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〈σ, e〉 → 〈σ′, e′〉
〈σ,C [e]〉 → 〈σ′,C [e′]〉

Op_Context

〈σ, e〉 → err
〈σ,C [e]〉 → err Op_Context_Err

0 ≤ k1, k2 l fresh
〈σ,matrix k1 k2〉 → 〈σ + {l 7→1 Mk1,k2}, l〉

Op_Matrix

k1 < 0 or k2 < 0
〈σ,matrix k1 k2〉 → err Op_Matrix_Neg

〈σ + {l 7→1 mk1,k2}, free l〉 → 〈σ, ()〉
Op_Free

〈σ + {l 7→f mk1,k2}, share[f ] l〉 → 〈σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}, (l, l)〉
Op_Share

σ′ ≡ σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}
〈σ′,unshare[f ] l l〉 → 〈σ + {l 7→f mk1,k2}, l〉

Op_Unshare_Eq

l 6= l ′

〈σ + {l 7→ 1
2 f mk1,k2}+ {l ′ 7→ 1

2 f m′k1,k2},unshare[f ] l l ′〉 → err Op_Unshare_Neq

σ′ ≡ σ + {l1 7→fc1 m1k1,k2}+ {l2 7→fc2 m2k2,k3}
σ1 ≡ σ′ + {l3 7→1 m3k1,k3}
σ2 ≡ σ′ + {l3 7→1 (m1 m2 + m3)k1,k3}
〈σ1,gemm[fc1] l1[fc2] l2 l3〉 → 〈σ2, ((l1, l2), l3)〉

Op_Gemm_Match

k2 6= k′2
σ′ ≡ σ + {l1 7→fc1 m1k1,k2}+ {l2 7→fc2 m2k′2,k3}
〈σ′ + {l3 7→1 m1k1,k3},gemm[fc1] l1[fc2] l2 l3〉 → err Op_Gemm_Mismatch
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B Interpretation

B.1 Definitions

Operationally, Heap v Loc× Permission×Matrix (a multiset), denoted with a σ.
Define its interpretation to be Loc⇀ Permission×Matrix with ? : Heap×Heap⇀ Heap as
follows:

(ς1 ? ς2)(l) ≡


ς1(l) if l ∈ dom(ς1) ∧ l /∈ dom(ς2)
ς2(l) if l ∈ dom(ς2) ∧ l /∈ dom(ς1)
(f1 + f2,m) if (f1,m) = ς1(l) ∧ (f2,m) = ς2(l) ∧ f1 + f2 ≤ 1
undefined otherwise

Commutativity and associativity of ? follows from that of +.
ς1 ? ς2 is defined if it is for all l ∈ dom(ς1) ∪ dom(ς2).
Define H[[σ]] = F(l,f,m)∈σ[l 7→f m] and implicitly denote ς ≡ H[[θ(σ)]].

The n−fold iteration for the → (functional) relation, is also a (functional) relation:

∀n. err→n err 〈σ, v〉 →n 〈σ, v〉 〈σ, e〉 →0 〈σ, e〉 〈σ, e〉 →n+1 ((〈σ, e〉 →)→n)

Hence, all bounded iterations end in either an err, a heap-and-expression or a heap-and-value.
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B.2 Interpretation

Vk[[unit]] = {(∅, ∗)}

Vk[[bool]] = {(∅, true), (∅, false)}

Vk[[int]] = {(∅, n) | 2−63 ≤ n ≤ 263 − 1}

Vk[[elt]] = {(∅, f) | f a IEEE Float64 }

Vk[[f mat]] = {({l 7→2−f _}, l)}

Vk[[!t]] = {(∅,Many v) | (∅, v) ∈ Vk[[t]]}

Vk[[′fc. t]] = {(ς, fun ′fc→ v) | ∀f. (ς[f/fc], v[f/fc]) ∈ Vk−1[[t[f/fc]]]}

Vk[[t1 ⊗ t2]] = {(ς1 ? ς2, (v1, v2)) | (ς1, v1) ∈ Vk[[t1]] ∧ (ς2, v2) ∈ Vk[[t2]]}

Vk[[t′ ( t]] = {(ςv, v) | (v ≡ funx : t′ → e ∨ v ≡ fix(g, x : t′, e : t))∧
∀j ≤ k, (ςv′ , v′) ∈ Vj [[t′]]. ςv ? ς ′v defined ⇒ (ςv ? ς ′v, v v′) ∈ Cj [[t]]}

Ck[[t]] = {(ςs, es) | ∀ j < k, σr. ςs ? ςr defined ⇒ 〈σs + σr, es〉 →j err ∨ ∃σf , ef .
〈σs + σr, es〉 →j 〈σf + σr, ef 〉 ∧ (ef is a value ⇒ (ςf ? ςr, ef ) ∈ Vk−j [[t]])}

Ik[[·]]θ = {[]}

Ik[[∆, x : t]]θ = {δ[x 7→ vx] | δ ∈ Ik[[∆]]θ ∧ (∅, vx) ∈ Vk[[θ(t)]]}

Lk[[·]]θ = {(∅, [])}

Lk[[Γ, x : t]]θ = {(ς ? ςx, γ[x 7→ vx]) | (ς, γ) ∈ Lk[[Γ]]θ ∧ (ςx, vx) ∈ Vk[[θ(t)]]}

H[[σ]] = F(l,f,m)∈σ[l 7→f m]
ς ≡ H[[θ(σ)]]

k[[Θ; ∆; Γ ` e : t]] = ∀θ, δ, γ, σ. Θ = dom(θ) ∧ (ς, γ) ∈ Lk[[Γ]]θ ∧ δ ∈ Ik[[∆]]θ ⇒
(ς, θ(δ(γ(e)))) ∈ Ck[[θ(t)]]
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C Lemmas

C.1 Moral equivalent of frame-rule
∀σs, σr, e. ςs ? ςr defined ⇒ ∀n. 〈σs, e〉 →n= 〈σs + σr, e〉 →n

Suffices: By induction on n, consider only the cases 〈σs, e〉 → 〈σf , ef 〉 where σs 6= σf .

Proof sketch: Only Op_{Free, Matrix, Share, Unshare_Eq, Gemm_Match}
change the heap: the rest are either parametric in the heap or step to an err.

Prove: 〈σs + σr, e〉 → 〈σf + σr, ef 〉.

〈1〉1. Case: Op_Free, σs ≡ σ′ + {l 7→1 m}, σf = σ′.
Proof: Instantiate Op_Free with (σ′ + σr) + {l 7→1 m},
valid because l /∈ dom(ςr) by ς ′ ? [l 7→1 m] ? ςr defined (assumption).

〈1〉2. Case: Op_Matrix
Proof: Rule has no requirements on σs so will also work with σs + σr.

〈1〉3. Case: Op_Share, σs ≡ σ′ + {l 7→f m}, σf = σ′ + {l 7→ 1
2 ·f

m}+ {l 7→ 1
2 ·f

m}.
Proof: Union-ing σr does not remove l 7→f m, so that can be split out of σs + σr as
before.

〈1〉4. Case: Op_Unshare_Eq, σs ≡ σ′ + {l 7→ 1
2 ·f

m}+ {l 7→ 1
2 ·f

m}, σf = σ′ + {l 7→f m}.

〈2〉1. Union-ing σr does not remove l 7→ 1
2 ·f

m, so that can still be split out of σs + σr.

〈2〉2. There may also be other valid splits introduced by σr.

〈2〉3. However, by assumption of ςs ? ςr defined, any splitting of σs + σr will satisfy
f ≤ 1.

〈1〉5. Case: Op_Gemm_Match

〈2〉1. By assumption of ςs ? ςr defined, either l1 (or l2, or both) are not in σr, or they
are and the matrix values they point to are the same.

〈2〉2. The permissions (of l1 and/or l2) may differ, but Op_Gemm_Match universally
quantifies over them and leaves them unchanged, so they are irrelevant.

〈2〉3. Only the pointed to matrix value at l3 changes.

〈2〉4. Suffices: l3 /∈ π1[σr].

〈2〉5. By assumption of ςs ? ςr defined, l3 /∈ dom(ςr).

〈2〉6. Hence l3 /∈ π1[σr].
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C.2 Semantically, values are expressions ∀k, t. Vk[[t]] ⊆ Ck[[t]]

Follows from definition of Ck[[t]], →j (∀n. 〈σ, v〉 →n 〈σ, v〉) for arbitrary j ≤ k and C.1.

C.3 Values remain values under all substitutions
∀θ, δ, γ, v. θ(δ(γ(v))) is a value.

θ is irrelevant because it only maps fractional permission variables to fractional permissions.
By construction, δ and γ only map variables to values, and values are closed under substitution.

C.4 Stepping reduces the step-index
∀k, σ, σ′, e, e′, t. (ς ′, e′) ∈ Ck[[t]] ∧ 〈σ, e〉 → 〈σ′, e′〉 ⇒ (ς, e) ∈ Ck+1[[t]]

In the lemma, and for the rest of its proof, ς = H[[σ]].

Assume: arbitrary j < k + 1, and σr such that ς ? ςr defined.

〈1〉1. Case: j = 0. Clearly σf = σs + σr and e′ = e.
Remains to show that if e is a value then (ςs ? ςr, e) ∈ Vk[[t]].
This is true vacuously, because by assumption, e is not a value.

〈1〉2. Case: j ≥ 1. We have 〈σ, e〉 →j = 〈σ′, e′〉 →j−1.
Instantiate (ς ′, e′) ∈ Ck[[t]], with j − 1 < k and σr to conclude the required conditions.

C.5 Monotonicity for step-index j ≤ k ⇒ _ k[[·]] ⊆ _ j[[·]]

For the rest of this proof, ς = H[[σ]].
Lemma C.4 is the inductive step for this lemma for the C[[]] case.
Need to prove for V[[]], by induction on t and then index.

Suffices: Consider only t( t′ case, rest use k directly on structure of type.
Assume: Arbitrary j ≤ k and (ςv′ , v′) ∈ Vk[[t( t′]].
Prove: (ςv′ , v′) ∈ Vj [[t( t′]].

〈1〉1. v′ is of the correct syntactic form (lambda or fixpoint) by assumption.

〈1〉2. Assume: arbitrary j′ ≤ j and (ςv, v) ∈ Vj′ [[t]] such that ςv′ ? ςv is defined.

〈1〉3. Suffices: to show (ςv′ ? ςv, v′v) ∈ Cj′ [[t′]].

〈1〉4. This is true by instantiating (ςv′ , v′) ∈ Vk[[t( t′]] with j′ ≤ k and (ςv, v) ∈ Vj′ [[t]].

C.6 Domains match
∀∆,Γ, t, k, θ, δ, γ. δ ∈ Ik[[∆]]θ ∧ γ ∈ π2[Lk[[Γ]]θ]⇒ dom(∆) = dom(δ)
and dom(Γ) = dom(γ)

Proof: By induction on ∆ and Γ.
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C.7 Splitting up linear environments corresponds to splitting up heaps
∀k,Γ,Γ′, θ, σ+, γ+. (ς+, γ) ∈ Lk[[Γ,Γ′]]θ ∧ Γ,Γ′ disjoint ⇒
∃σ, γ, σ′, γ′. σ+ = σ + σ′ ∧ γ, γ′ disjoint ∧ γ+ = γ ∪ γ′ ∧ (ς, γ) ∈
Lk[[Γ]] ∧ (ς ′, γ′) ∈ Lk[[Γ′]]

Proof: By induction on Γ′.

C.8 Fractional permission substitutions preserve progress
∀e, σ, e′, σ′, θ. 〈σ, e〉 → 〈σ′, e′〉 ⇒ 〈θ(σ), θ(e)〉 → 〈θ(σ′), θ(e′)〉

Proof: By induction on →.

〈1〉1. Assume: Arbitrary e, σ, e′, σ′, θ such that 〈σ, e〉 → 〈σ′, e′〉.

〈1〉2. Suffices: To consider only the following rules which mention fractional permission
variables: Op_Frac_Perm, Op_Share, Op_Unshare_(N)Eq and
Op_Gemm_(Mis)Match.

〈1〉3. Case: Op_Frac_Perm.
Because substitution avoids capture,
〈θ(σ), θ((fun ′fc→ v) [f ])〉 → 〈θ(σ′ [f/fc]), θ(v [f/fc])〉.

〈1〉4. The rest of the cases are parametric in their use of fractional permission variables and
so will take the same step ater any substitution.

〈1〉5. Corollary: If 〈σ [f1/fc], e [f1/fc]〉 →n 〈σ2, e
′
2〉 and 〈σ [f2/fc], e [f2/fc]〉 →n 〈σ2, e

′
2〉,

then ∃σ, e′. σ1 = σ [f1/fc] ∧ σ2 = σ [f2/fc] ∧ e′1 = e′ [f1/fc] ∧ e′2 = e′ [f2/fc].

D Soundness

∀Θ,∆,Γ, e, t. Θ; ∆; Γ ` e : t⇒ ∀k. k[[Θ; ∆; Γ ` e : t]]

D.1 Explanation
If an expression e is syntactically type-checked (against a type t), then

for an arbitrary number of steps k,
under any substitution of

free fractional permission variables θ,
linear variables with a suitable heap (γ, ς) and
intuitionistic variables δ,

the aforementioned suitable heap and expression (ς, θ(δ(γ(e))))
are in the computational interpretation Ck[[θ(t)]] of the type t.

The computational interpretation is as defined before (Section 3.3); it identifies executions
that do no un- or ill-defined behaviours (e.g. adding a boolean and an integer). Since our
operational semantics explicitly models deallocation, we now know no well-typed program
will ever try to access deallocated memory, establishing the correctness of our memory
management checking.
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D.2 Proof

Proof sketch: Induction over the typing judgements.

Assume: 1. Arbitrary Θ,∆,Γ, e, t such that Θ; ∆; Γ ` e : t.
2. Arbitrary k, θ, δ, γ, σ such that:

a. Θ = dom(θ)
b. δ ∈ Ik[[∆]]θ.
c. (ς, γ) ∈ Lk[[Γ]]θ

3. W.l.o.g., all variables are distinct, hence Θ, dom(∆) and dom(Γ) are disjoint so
order of θ, δ and γ (as substitutions defined recursively over expressions) is
irrelevant.

Prove: (ς, θ(δ(γ(e)))) ∈ Ck[[θ(t)]].
Assume: Arbitrary j < k and σr, such that ς ? ςr defined.
Suffices: 〈σ + σr, e〉 →j err ∨ ∃σf , ef . 〈σ + σr, e〉 →j 〈σf + σr, ef 〉

∧ (ef is a value ⇒ (ςf ? ςr, ef ) ∈ Vk−j [[t]]).
Suffices: By C.1, to show 〈σ, e〉 →j err ∨ ∃σf , ef . 〈σ, e〉 →j 〈σf , ef 〉

∧ (ef is a value ⇒ (ςf , ef ) ∈ Vk−j [[t]])

〈1〉1. Case: Ty_Let.

〈2〉1. By induction,
1. ∀k. k[[Θ; ∆; Γ ` e : t]]
2. ∀k. k[[Θ; ∆; Γ′, x : t ` e′ : t′]].

〈2〉2. By 2c, 3 and C.7, we know there exists the following (for all k):
1. (ςe, γe) ∈ Lk[[Γ]]
2. γ = γe ∪ γe′
3. σ = σe + σe′ .

〈2〉3. So, using k, θ, δ, γe, σe, we have (ςe, θ(δ(γe(e)))) ∈ Ck[[θ(t)]].

〈2〉4. By 〈2〉2 (γ = γe ∪ γe′), have (ςe, θ(δ(γ(e)))) ∈ Ck[[θ(t)]].

〈2〉5. By definition of Ck[[·]] and 〈2〉2, we instantiate with j and σr = σe′ to conclude
that
〈θ(σ), θ(δ(γ(e)))〉 either takes j steps to err or another heap-and-expression
〈σf , ef 〉.

〈2〉6. Case: j steps to err
By Op_Context_Err, the whole expression reduces to err in j < k steps.

〈2〉7. Case: j steps to another heap-and-expression.
If it is not a value, then Op_Context runs j times and we are done.

〈2〉8. If it is, then ∃i ≤ j. (ςf , v1) ∈ Vk−i[[θ(t1)]] ⊆ Vk−j [[θ(t1)]] by C.3 and C.5.
So, Op_Context runs i times, and then we have the following.
Suffices: (ςf ? ςe′ , letx = v in θ(δ(γ(e′)))) ∈ Ck−i[[θ(t′)]] by C.4 i times.
Suffices: (ςf ? ςe′ , θ(δ(γ(e′)))[v/x]) ∈ Ck−i−1[[θ(t′)]] by C.4.
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〈2〉9. By C.5, (ςe′ , γe′ [x 7→ v]) ∈ Lk[[Γ′, x : t]]θ ⊆ Lk−i−1[[Γ′, x : t]]θ.

〈2〉10. Instantiate 2 of step 〈2〉1 with k − i− 1, θ, δ, γe′ [x 7→ v], σe′ to conclude
(ςe′ , θ(δ(γe′ [x 7→ v](e′)))) ∈ Ck−i−1[[θ(t′)]].

〈2〉11. By 3, we have θ(δ(γ(e′)))[v/x] = θ(δ(γe′ [x 7→ v](e′))) and
by C.1 we conclude (ςf ? ςe′ , θ(δ(γ(e′)))[v/x]) ∈ Ck−i−1[[θ(t′)]]

〈1〉2. Case: Ty_Pair_Elim.
Proof sketch: Similar to Ty_Let, but with the following key differences.

〈2〉1. When (ςf , v) ∈ Vk−i[[θ(t1)⊗ θ(t2)]], we have v = (v1, v2).

〈2〉2. Suffices: (ςe′ , θ(δ(γ(e′)))) ∈ Ck−i−1[[θ(t′)]] by C.4 i+ 1 times.

〈2〉3. By C.5, (ςe′ , γe′ [a 7→ v1, b 7→ v2]) ∈ Lk[[Γ′, a : t1, b : t2]]θ ⊆ Lk−i−1[[Γ′, a : t1, b :
t2]]θ.

〈2〉4. Instantiate k−i−1[[Θ; ∆; Γ′, a : t1, b : t2 ` e′ : t′]] with θ, δ, γe′ [a 7→ v1, b 7→ v2], σe′ .

〈2〉5. By 3 (for γ = γe∪γe′ and a, b), conclude (ςe′ , θ(δ(γ(e′[v1/a][v2/b])))) ∈ Ck−i−1[[θ(t′)]].

〈1〉3. Case: Ty_Bang_Elim.
Proof sketch: Similar to Ty_Let, but with the following key differences.

〈2〉1. When (ςf , v) ∈ Vk−i[[θ(!t)]], since Vk−i[[θ(!t)]] = Vk−i[[!θ(t)]],
we have ςf = ∅ and v = Many v′ for some (∅, v′) ∈ Vk−i[[θ(t)]].

〈2〉2. Suffices: (ςe′ , let Manyx = Many v′ in θ(δ(γ(e′)))) ∈ Ck−i[[θ(t)]].

〈2〉3. Suffices: (ςe′ , θ(δ(γ(e′)))[v/x]) ∈ Ck−i−1[[θ(t)]] by C.4 i+ 1 times.

〈2〉4. Instantiate k−i−1[[Θ; ∆, x : t,Γ′ ` e′ : t′]] with θ, δe′ = δ[x 7→ v′], γe′ , σe′ .

〈2〉5. By 3, (ςe′ , θ(δ(γ(e′)))[v/x]) ∈ Ck−i−1[[θ(t)]].

〈1〉4. Case: Ty_Unit_Elim.
Proof sketch: Similar to Ty_Let, but with the following key differences.

〈2〉1. When (ςf , v) ∈ Vk−i[[unit]], we have ςf = ∅ and v = ().

〈2〉2. Suffices: (ςe′ , θ(δ(γ(e′)))) ∈ Ck−i−1[[θ(t′)]] by C.4 i+ 1 times.

〈2〉3. By C.5, (ςe′ , γe′) ∈ Lk[[Γ′]]θ ⊆ Lk−i−1[[Γ′]]θ.

〈2〉4. Instantiate k−i−1[[Θ; ∆; Γ′ ` e′ : t′]] with θ, δ, γe′ , σe′ .

〈2〉5. By 3 (ςe′ , θ(δ(γ(e′)))) ∈ Ck−i−1[[θ(t′)]].

〈1〉5. Case: Ty_Bool_Elim.
Proof sketch: Similar to Ty_Unit_Elim but with Op_If_{True,False}, ςf = ∅
and v = Many true or v = Many false.
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〈1〉6. Case: Ty_Bang_Intro.

〈2〉1. We have, e = v for some value v 6= l, Γ = ∅ and so
∀k. k[[Θ; ∆; · ` v : t]] by induction.

〈2〉2. Suffices: (∅,Many θ(δ(v))) ∈ Ck[[!θ(t)]] by 2c (ς = ∅, γ = []).

〈2〉3. Instantiate k[[Θ; ∆; · ` v : t]] with θ, δ, γ = [], σ = ∅ to obtain (∅, θ(δ(v))) ∈
Ck[[θ(t)]].

〈2〉4. Instantiate (∅, θ(δ(v))) ∈ Ck[[θ(t)]] with j = 0, σr = ∅ and C.3 (θ(δ(v)) is a value),
to conclude (∅, θ(δ(v))) ∈ Vk[[θ(t)]].

〈2〉5. By definition of Vk[[!θ(t)]], C.3 and C.2 we have (∅,Many θ(δ(v))) ∈ Ck[[!θ(t)]].

〈1〉7. Case: Ty_Pair_Intro.

〈2〉1. By 2c, 3 and C.7, we know there exists the following (for all k):
1. (ς1, γ1) ∈ Lk[[Γ1]]
2. (ς2, γ2) ∈ Lk[[Γ2]]
3. γ = γ1 ∪ γ2
4. σ = σ1 + σ2.

〈2〉2. By induction,
1. ∀k. k[[Θ; ∆; Γ1 ` e1 : t1]]
2. ∀k. k[[Θ; ∆; Γ2 ` e2 : t2]].

〈2〉3. Instantiate the first with k, θ, δ, γ1, σ1.

〈2〉4. By that and 〈2〉1, (ς1, θ(δ(γ1(e1)))) = (ς1, θ(δ(γ(e1)))) ∈ Ck[[θ(t)]].

〈2〉5. So, 〈θ(σ1 +σ2), θ(δ(γ1(e1)))〉 either takes j steps to err or a heap-and-expression
〈σ1f , e1f 〉.

〈2〉6. Case: j steps to err
By Op_Context_Err, the whole expression reduces to err in j < k steps.

〈2〉7. Case: j steps to another heap-and-expression.
If it is not a value, then Op_Context runs j times and we are done.

〈2〉8. If it is, then ∃i1 ≤ j. (ς1f , v1) ∈ Vk−i1 [[θ(t1)]] ⊆ Vk−j [[θ(t1)]] by C.3 and C.5.
So, Op_Context runs i1 times, and then we have the following.
Suffices: By C.4, (ς1f ? ς2, (v1, e2) ) ∈ Ck−i1 [[θ(t1 ⊗ t2)]].

〈2〉9. Instantiate the second IH with k, θ, δ, γ2, σ2.

〈2〉10. So, 〈θ(σ1f+σ2), θ(δ(γ2(e2)))〉 either takes j steps to err or a heap-and-expression
〈σ2f , e2f 〉.

〈2〉11. Case: j steps to err
By Op_Context_Err, the whole expression reduces to err in j < k steps.
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〈2〉12. Case: j steps to another heap-and-expression.
If it is not a value, then Op_Context runs j times and we are done.

〈2〉13. If it is, then ∃i2 ≤ j. (ς2f , v2) ∈ Vk−i2 [[θ(t2)]] ⊆ Vk−j [[θ(t2)]] by C.3 and C.5.
So, Op_Context runs i2 times, and then we have the following.
Suffices: By C.4, (ς1f ? ς2f , (v1, v2) ) ∈ Vk−i1−i2 [[θ(t1)⊗ θ(t2)]].

〈2〉14. By C.5 and k − i1 − i2 ≤ k − i1, k − i2, have
(ς1f , v1) ∈ Vk−i1 [[θ(t1)]] ⊆ Vk−i1−i2 [[θ(t1)]] and
(ς2f , v2) ∈ Vk−i2 [[θ(t2)]] ⊆ Vk−i1−i2 [[θ(t2)]] as needed.

〈1〉8. Case: Ty_Lambda.
Suffices: By C.2, to show ( ς, θ(δ(γ(funx : t→ e))) ) ∈ Vk[[θ(t( t′)]].
Assume: Arbitrary j ≤ k, (ςv, v) ∈ Vj [[θ(t)]] such that ς ? ςv is defined.
Suffices: (ς ? ςv, θ(δ(γ(funx : t→ e))) v) ∈ Cj [[θ(t′)]].
Suffices: (ς ? ςv, θ(δ(γ(e)))[v/x]) ∈ Cj−1[[θ(t′)]] by C.4.

〈2〉1. By induction, ∀k. k[[Θ; ∆; Γ, x : t ` e]].

〈2〉2. Instantiate it j − 1, θ, δ, γ[x 7→ v], σ + σv.

〈2〉3. Hence, ( ς ? ςv, θ(δ(γ[x 7→ v](e))) ) ∈ Cj−1[[θ(t′)]].

〈2〉4. By 3, θ(δ(γ[x 7→ v](e))) = θ(δ(γ(e)))[v/x], we are done.

〈1〉9. Case: Ty_App.

〈2〉1. By 2c, 3 and C.7, we know there exists the following (for all k):
1. (ςe, γe) ∈ Lk[[Γe]]
2. (ςe′ , γe′) ∈ Lk[[Γe′ ]]
3. γ = γe ∪ γe′
4. σ = σe + σe′ .

〈2〉2. By induction,
1. ∀k. k[[Θ; ∆; Γ ` e : t′ ( t]]
2. ∀k. k[[Θ; ∆; Γ′ ` e′ : t′]].

〈2〉3. Instantiate the first with k, θ, δ, γe, σe to conclude (ςe, θ(δ(γe(e)))) ∈ Ck[[θ(t′) (
θ(t)]].

〈2〉4. Instantiate this with j and σe′ and use 〈2〉1 to conclude 〈θ(σe + σe′), θ(δ(γ(e)))〉
either takes j steps to err or a heap-and-expression 〈σf + σe′ , ef 〉.

〈2〉5. Case: j steps to err
By Op_Context_Err, the whole expression reduces to err in j < k steps.

〈2〉6. Case: j steps to another heap-and-expression.
If it is not a value, then Op_Context runs j times and we are done.

〈2〉7. If it is, then ∃ie ≤ j. (ςf , ef ) ∈ Vk−ie [[θ(t′) ( θ(t)]] ⊆ Vk−j [[. . .]] by C.3 and C.5.
So, Op_Context runs ie times, and then we have the following.
Suffices: By C.4 ie times, (ςf ? ςe′ , ef e′ ) ∈ Ck−ie [[θ(t′)]].
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〈2〉8. By C.5, (ςe′ , γe′ ∈ Lk[[Γ′]]θ ⊆ Lk−ie [[Γ′]]θ.

〈2〉9. So, instantiate the second IH with k − ie, θ, δ, γe′ , σe′ to conclude
(ςe′ , θ(δ(γe′(e′)))) ∈ Ck−ie [[θ(t′)]].

〈2〉10. Instantiate this with j − ie and σf to conclude 〈θ(σf + σe′), θ(δ(γe′(e′)))〉
either takes j − ie steps to err or 〈σf + σ′f , e

′
f 〉.

〈2〉11. Case: j − ie steps to err
By Op_Context_Err, the whole expression reduces to err in j − ie < k− ie
steps.

〈2〉12. Case: j − ie steps to another heap-and-expression.
If it is not a value, then Op_Context runs j − ie times and we are done.

〈2〉13. If it is, then ∃ie′ ≤ j − ie. (ς ′f , ve′) ∈ Vk−ie−i′e [[θ(t′)]] by C.3.
So, Op_Context runs ie′ times, and then we have the following.
Suffices: By C.4 ie′ times, (ςf ? ς ′f , ef e′f ) ∈ Ck−ie−ie′ [[θ(t

′)]].

〈2〉14. Instantiate (ςf , ef ) ∈ Vk−ie [[θ(t′) ( θ(t)]] with k − ie − ie′ ≤ k − ie and
(ςv′ , ve′) ∈ Vk−ie−ie′ [[θ(t

′)]], to conclude (ςf ? ς ′f , ef e′f ) ∈ Ck−ie−ie′ [[θ(t)]] as
needed.

〈1〉10. Case: Ty_Gen.

〈2〉1. By induction, ∀k. k[[Θ, fc; ∆; Γ ` e : t]].

〈2〉2. Let: f be arbitrary; θ′ ≡ θ[fc 7→ f ].
Instantiate induction hypothesis with k − 1, θ′, δ, γ, σ,
to conclude (ς, θ′(γ(δ(e)))) ∈ Ck−1[[θ′(t)]] (for all f , by C.8).

〈2〉3. Instantiate this with j and ∅ to conclude 〈θ′(σ), θ′(γ(δ(e)))〉
either takes j steps to err or a heap-and-expression 〈σ′, e′〉 (for all f , by C.8).

〈2〉4. Case: j steps to err.
By Op_Context_Err, whole expression reduces to err in j < k − 1 steps
(for f = fc).

〈2〉5. Case: j steps to another heap-and-expression.
If it is not a value, then for f = fc, Op_Context runs j times and we are
done.

〈2〉6. If it is, then ∃ie ≤ j. (ς ′, e′) ∈ Vk−1−ie [[θ′(t)]] ⊆ Vk−1−j [[. . .]]
by C.3 and C.5 (for all f , by C.8).

〈2〉7. So, Op_Context runs ie times, and then we have the following.
Suffices: By C.4 ie times, (ς ′, fun ′fc→ e′) ∈ Vk−ie [[θ(′fc. t)]] (for f = fc).

〈2〉8. Assume: Arbitrary f ′.
Suffices: (ς ′, e′[f ′/fc]) ∈ Vk−1−ie [[θ(t)[f ′/fc]]] (for f = fc).

〈2〉9. This is true by instantiating 〈2〉6 with f = f ′.
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〈1〉11. Case: Ty_Spc.

〈2〉1. By induction, ∀k. k[[Θ; ∆; Γ ` e : ′fc. t]].

〈2〉2. Instantiate with k, θ, δ, γ, σ to conclude (ς, θ(δ(γ(e)))) ∈ Ck[[θ(′fc. t]]).

〈2〉3. Instantiate this with j and ∅ and to conclude 〈θ(σ), θ(δ(γ(e)))〉
either takes j steps to err or a heap-and-expression 〈σf , ef 〉.

〈2〉4. Case: j steps to err.
By Op_Context_Err, the whole expression reduces to err in j < k steps.

〈2〉5. Case: j steps to another heap-and-expression.
If it is not a value, then Op_Context runs j times and we are done.

〈2〉6. If it is, then ∃ie ≤ j. (ςf , ef ) ∈ Vk−ie [[θ(′fc.t)]] ⊆ Vk−j [[. . .]] by C.3 and C.5.
So ef ≡ fun ′fc→ v for some v.

〈2〉7. So, Op_Context runs ie times, and then we have the following.
Suffices: By C.4 ie times, (ςf , (fun ′fc→ v) [f ]) ∈ Ck−ie [[θ(t[f/fc])]].
Suffices: By C.4 once more, (ςf , v[f/fc]) ∈ Ck−ie−1[[θ(t[f/fc])]].

〈2〉8. This is true by instantiating 〈2〉6 with f and C.2.

〈1〉12. Case: Ty_Fix.
Suffices: (∅, θ(δ(fix(g, x : t, e : t′))))) ∈ Vk[[θ(t( t′)]], by C.2 (σ = {}, γ = []).
Assume: Arbitrary j ≤ k, (ςv, v) ∈ Vj [[θ(t)]] (ς = ∅, so ς ? ςv is defined).
Let: ẽ ≡ θ(δ(e))).
Suffices: (ςv,fix(g, x : t, ẽ : t′) v) ∈ Cj [[θ(t′)]].
Suffices: (ςv, ẽ [v/x] [fix(g, x : t, ẽ : t′)/g]) ∈ Cj−1[[θ(t′)]] by C.4.

〈2〉1. By induction, ∀k. k[[Θ; ∆, g : t( t′;x : t ` e : t′]].

〈2〉2. Instantiate this with j − 1, δ[g 7→ fix(g, x : t, ẽ : t′)], γ = [x 7→ v], σv.

〈2〉3. We have (∅,fix(g, x : t, ẽ : t′)) ∈ Vj−1[[θ(t( t′)]].

〈3〉1. Again by induction (over k), (∅,fix(g, x : t, ẽ : t′)) ∈ Cj−1[[θ(t( t′)]].

〈3〉2. Instantiate this with j = 0 and ∅ and we are done.

〈2〉4. We have (ςv, v) ∈ Vj−1[[θ(t)]] by assumption and C.5.

〈2〉5. So we conclude (ςv, θ(δ′(γ(e)))) ∈ Cj−1[[θ(t′)]] as required.

〈1〉13. Case: Ty_Var_Lin.
Prove: (ς, θ(δ(γ(x)))) ∈ Ck[[θ(t)]].

〈2〉1. Γ = {x : t} by assumption of Ty_Var_Lin.

〈2〉2. Suffices: (ς, γ(x)) ∈ Ck[[θ(t)]] by 3 (θ and δ irrelevant).

〈2〉3. By 2c, there exist (ςx, vx) ∈ Vk[[θ(t)]], such that ς = ςx and γ = [x 7→ vx].
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〈2〉4. Hence, (ςx, vx) ∈ Ck[[θ(t)]], by C.2.

〈1〉14. Case: Ty_Var.
Prove: (ς, θ(δ(γ(x)))) ∈ Ck[[θ(t)]].

〈2〉1. x : t ∈ ∆ and Γ = ∅ by assumption of Ty_Var.

〈2〉2. Suffices: (∅, δ(x)) ∈ Ck[[θ(t)]] by 3.

〈2〉3. By 2b, there exists vx such that (∅, vx) ∈ Vk[[θ(t)]] (θ irrelevant and γ empty).

〈2〉4. Hence, (∅, vx) ∈ Ck[[θ(t)]], by C.2.

〈1〉15. Case: Ty_Unit_Intro.
True by C.2 and definition of Vk[[unit]].

〈1〉16. Case: Ty_Bool_True, Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro.
Similar to Ty_Unit_Intro.

D.3 Well-formed types

Θ ` f Perm Well-formed fractional permissions

fc ∈ Θ
Θ ` fc Perm WF_Perm_Var

Θ ` 1 Perm WF_Perm_Zero

Θ ` f Perm
Θ ` 1

2 f Perm WF_Perm_Succ

Θ ` t Type Well-formed types

Θ ` unit Type WF_Type_Unit

Θ ` bool Type WF_Type_Bool

Θ ` int Type WF_Type_Int

Θ ` elt Type WF_Type_Elt

Θ ` f Perm
Θ ` f arr Type WF_Type_Array

Θ ` t Type
Θ ` !t Type WF_Type_Bang
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Θ, fc ` t Type
Θ ` ′fc.t Type WF_Type_Gen

Θ ` t Type
Θ ` t′ Type

Θ ` t ⊗ t′ Type WF_Type_Pair

Θ ` t Type
Θ ` t′ Type

Θ ` t ( t′ Type WF_Type_Lolly

E NumLin Grammar

m ::= matrix expressions
| M matrix variables
| m + m′ matrix addition
| m m′ matrix multiplication
| (m) S

f ::= fractional permission
| fc variable
| 1 whole permission
| 1

2 f

t ::= linear type
| unit unit
| bool boolean (true/false)
| int 63-bit integers
| elt array element
| f arr arrays
| f mat matrices
| !t multiple-use type
| ′fc.t bind fc in t frac. perm. generalisation
| t ⊗ t′ pair
| t ( t′ linear function
| (t) S parentheses

p ::= primitive
| not boolean negation
| (+) integer addition
| (−) integer subtraction
| (∗) integer multiplication
| (/) integer division
| (=) integer equality
| (<) integer less-than
| (+.) element addition

ECOOP 2019



9:42 NumLin: Linear Types for Linear Algebra

| (−.) element subtraction
| (∗.) element multiplication
| (/.) element division
| (= .) element equality
| (< .) element less-than
| set array index assignment
| get array indexing
| share share array
| unshare unshare array
| free free arrary
| array Owl: make array
| copy Owl: copy array
| sin Owl: map sine over array
| hypot Owl: xi :=

√
x2

i + y2
i

| asum BLAS:
∑

i
|xi|

| axpy BLAS: x := αx+ y

| dot BLAS: x · y
| rotmg BLAS: see its docs
| scal BLAS: x := αx

| amax BLAS: argmax i : xi

| setM matrix index assignment
| getM matrix indexing
| shareM share matrix
| unshareM unshare matrix
| freeM free matrix
| matrix Owl: make matrix
| copyM Owl: copy matrix
| copyM_to Owl: copy matrix onto another
| sizeM dimension of matrix
| trnsp transpose matrix
| gemm BLAS: C := αAT ?BT ? + βC

| symm BLAS: C := αAB + βC

| posv BLAS: Cholesky decomp. and solve
| potrs BLAS: solve with given Cholesky
| syrk BLAS: C := αAT ?AT ? + βC

v ::= values
| p primitives
| x variable
| () unit introduction
| true true
| false false
| k integer
| l heap location



D.C. Makwana and N. R. Krishnaswami 9:43

| el array element
| Many v !-introduction
| fun ′fc → v frac. perm. abstraction
| (v, v′) pair introduction
| fun x : t → e bind x in e abstraction
| fix (g, x : t, e : t′) bind g ∪ x in e fixpoint
| (v) S parentheses

e ::= expression
| p primitives
| x variable
| let x = e in e′ bind x in e′ let binding
| () unit introduction
| let () = e in e′ unit elimination
| true true
| false false
| if e then e1 else e2 if
| k integer
| l heap location
| el array element
| Many e !-introduction
| let Many x = e in e′ !-elimination
| fun ′fc → e frac. perm. abstraction
| e[f ] frac. perm. specialisation
| (e, e′) pair introduction
| let (a, b) = e in e′ bind a ∪ b in e′ pair elimination
| fun x : t → e bind x in e abstraction
| e e′ application
| fix (g, x : t, e : t′) bind g ∪ x in e fixpoint
| (e) S parentheses

C ::= evaluation contexts
| let x = [−] in e bind x in e let binding
| let () = [−] in e unit elimination
| if [−] then e1 else e2 if
| Many [−] !-introduction
| let Many x = [−] in e !-elimination
| fun ′fc → [−] frac. perm. abstraction
| [−][f ] frac. perm. specialisation
| ([−], e) pair introduction
| (v, [−]) pair introduction
| let (a, b) = [−] in e bind a ∪ b in e pair elimination
| [−]e application
| v[−] application
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Θ ::= fractional permission environment
| ·
| Θ, fc

Γ ::= linear types environment
| ·
| Γ, x : t
| Γ,Γ′

∆ ::= intuitionistic types environment
| ·
| ∆, x : t

σ ::= heap (multiset of triples)
| {} empty heap
| σ + {l 7→f mk1,k2} location l points to matrix m

Config ::= result of small step
| 〈σ, e〉 heap and expression
| err error
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F Primitives

module Arr = Owl.Dense.Ndarray.D
type z = Z
type 'a s = Succ
type 'a arr = A of Arr.arr [@@unboxed]
type 'a mat = M of Arr.arr [@@unboxed]
type 'a bang = Many of 'a [@@unboxed]
module Prim :
sig

val extract : 'a bang -> 'a
(** Boolean *)
val not_ : bool bang -> bool bang
(** Arithmetic, many omitted for brevity *)
val addI : int bang -> int bang -> int bang
val eqI : int bang -> int bang -> bool bang
(** Arrays *)
val set : z arr -> int bang -> float bang -> z arr
val get : 'a arr -> int bang -> 'a arr * float bang
val share : 'a arr -> 'a s arr * 'a s arr
val unshare : 'a s arr -> 'a s arr -> 'a arr
val free : z arr -> unit
(** Owl *)
val array : int bang -> z arr
val copy : 'a arr -> 'a arr * z arr
val sin : z arr -> z arr
val hypot : z arr -> 'a arr -> 'a arr * z arr
(** Level 1 BLAS *)
val asum : 'a arr -> 'a arr * float bang
val axpy : float bang -> 'a arr -> z arr -> 'a arr * z arr
val dot : 'a arr -> 'b arr -> ('a arr * 'b arr) * float bang
val scal : float bang -> z arr -> z arr
val amax : 'a arr -> 'a arr * int bang
(* Matrix, some omitted for brevity *)
val matrix : int bang -> int bang -> z mat
val eye : int bang -> z mat
val copy_mat : 'a mat -> 'a mat * z mat
val copy_mat_to : 'a mat -> z mat -> 'a mat * z mat
val size_mat : 'a mat -> 'a mat * (int bang * int bang)
val transpose : 'a mat -> 'a mat * z mat
(* Level 3 BLAS/LAPACK *)
val gemm : float bang -> ('a mat * bool bang) -> ('b mat * bool bang) ->

float bang -> z mat -> ('a mat * 'b mat) * z mat
val symm : bool bang -> float bang -> 'a mat -> 'b mat -> float bang ->

z mat -> ('a mat * 'b mat) * z mat
val gesv : z mat -> z mat -> z mat * z mat
val posv : z mat -> z mat -> z mat * z mat
val potrs : 'a mat -> z mat -> 'a mat * z mat
val syrk : bool bang -> float bang -> 'a mat -> float bang -> z mat ->

'a mat * z mat
end
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G Kalman Filters from NumLin and C

let kalman sigma h mu r_1 data_1 =
let h, _p_k_n_p_ = Prim.size_mat h in
let k, n = _p_k_n_p_ in
let sigma_hT = Prim.matrix n k in
let (sigma, h), sigma_hT =

Prim.gemm (Many 1.) (sigma, Many false) (h, Many true) (Many 0.) sigma_hT in
let (h, sigma_hT), r_2 =

Prim.gemm (Many 1.) (h, Many false) (sigma_hT, Many false) (Many 1.) r_1 in
let k_by_k, x = Prim.posv_flip r_2 sigma_hT in
let (h, mu), data_2 =

Prim.gemm (Many 1.) (h, Many false) (mu, Many false) (Many (-1.)) data_1 in
let (x, data_2), new_mu =

Prim.gemm (Many 1.) (x, Many false) (data_2, Many false) (Many 1.) mu in
let x_h = Prim.matrix n n in
let (x, h), x_h =

Prim.gemm (Many 1.) (x, Many false) (h, Many false) (Many 0.) x_h in
let () = Prim.free_mat x in
let sigma, sigma2 = Prim.copy_mat sigma in
let (sigma, x_h), new_sigma =

Prim.symm (Many true) (Many (-1.)) sigma x_h (Many 1.) sigma2 in
let () = Prim.free_mat x_h in
((sigma, h), (new_sigma, (new_mu, (k_by_k, data_2))))

Figure 19 OCaml code for a Kalman filter, generated (at compile time) from the code in Figure 12,
passed through ocamlformat for presentation.

static void kalman( const int n, const int k,
const double *sigma, /* n,n */ const double *h, /* k,n */
const double *mu, /* n,1 */ double *r, /* k,k */
double *data, /* k,1 */ double **ret_sigma /* n,n */ ) {

double* n_by_k = (double *) malloc(n * k * sizeof(double));
cblas_dgemm(RowMajor, NoTrans, Trans, n, k, n, 1., sigma, n, h, n, 0., n_by_k, k);
cblas_dgemm(RowMajor, NoTrans, NoTrans, k, k, n, 1., h, n, n_by_k, k, 1., r, k);
LAPACKE_dposv(LAPACK_COL_MAJOR, 'U', k, n, r, k, n_by_k, k);
cblas_dgemm(RowMajor, NoTrans, NoTrans, k, 1, n, 1., h, n, mu, 1, -1., data, 1);
cblas_dgemm(RowMajor, NoTrans, NoTrans, n, 1, k, 1., n_by_k, k, data, 1, 1., mu, 1);
double* n_by_n = (double *) malloc(n * n * sizeof(double));
cblas_dgemm(RowMajor, NoTrans, NoTrans, n, n, k, 1., n_by_k, k, h, n, 0., n_by_n, n);
free(n_by_k);
double* n_by_n2 = (double *) malloc(n * n * sizeof(double));
cblas_dcopy(n*n, sigma, 1, n_by_n2, 1);
cblas_dsymm(RowMajor, Right, Upper, n, n, -1., sigma, n, n_by_n, n, 1., n_by_n2, n);
free(n_by_n);
*ret_sigma = n_by_n2; }

Figure 20 Cblas/Lapacke implementation of a Kalman filter. I used C instead of Fortran
because it is what Owl uses under the hood and OCaml FFI support for C is better and easier to
use than that for Fortran. A distinct ‘measure_kalman’ function that sandwiches a call to this
function with getrusage is omitted for brevity.
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