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Abstract
Effective support for custom proof automation is essential for large-
scale interactive proof development. However, existing languages
for automation via tactics either (a) provide no way to specify
the behavior of tactics within the base logic of the accompanying
theorem prover, or (b) rely on advanced type-theoretic machinery
that is not easily integrated into established theorem provers.

We present Mtac, a lightweight but powerful extension to Coq
that supports dependently-typed tactic programming. Mtac tactics
have access to all the features of ordinary Coq programming, as
well as a new set of typed tactical primitives. We avoid the need to
touch the trusted kernel typechecker of Coq by encapsulating uses
of these new tactical primitives in a monad, and instrumenting Coq
so that it executes monadic tactics during type inference.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Mechanical verification

Keywords Interactive theorem proving; custom proof automation;
Coq; monads; typed meta-programming; tactics.

1. Introduction
The past decade has seen a dramatic rise in both the popularity
and sophistication of interactive theorem proving technology. Proof
assistants like Coq and Isabelle are now eminently effective for
formalizing “research-grade” mathematics [8, 9], verifying serious
software systems [15, 16, 32, 6], and, more broadly, enabling re-
searchers to mechanize and breed confidence in their results. Nev-
ertheless, due to the challenging nature of the verification problems
to which these tools are applied, as well as the rich higher-order
logics they employ, the mechanization of substantial proofs typi-
cally requires a significant amount of manual effort.

To alleviate this burden, theorem provers provide facilities for
custom proof automation, enabling users to instruct the system how
to carry out “obvious” or oft-repeated proof steps automatically.
In some systems like Coq, the base logic of the theorem prover
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is powerful enough that one can use “proof by reflection” to im-
plement automation routines within the base logic itself (e.g., [3]).
However, this approach is applicable only to pure decision proce-
dures, and requires them to be programmed in a restricted style (so
that their totality is self-evident). In general, one may wish to write
automation routines that engage in activities that even a rich type
system like Coq’s does not sanction—routines, for instance, that do
not (provably) terminate on all inputs, that inspect the intensional
syntactic structure of terms, or that employ computational effects.

Toward this end, theorem provers typically provide an addi-
tional language for tactic programming. Tactics support general-
purpose scripting of automation routines, as well as fine control
over the state of an interactive proof. However, for most existing
tactic languages (e.g., ML, Ltac), the price to pay for this freedom
is that the behavior of a tactic lacks any static specification within
the base logic of the theorem prover (such as, in Coq, a type). As
a result of being untyped, tactics are known to be difficult to com-
pose, debug, and maintain.

A number of researchers have therefore explored ways of sup-
porting typed tactic programming. One approach, exemplified by
Delphin [23], Beluga [21], and most recently VeriML [29], is to
keep a strict separation between the “computational” tactic lan-
guage and the base logic of the theorem prover, thus maintaining
flexibility in what tactics can do, but in addition employing rich
type systems to encode strong static guarantees about tactic behav-
ior. The main downside of these systems is a pragmatic one: they
are not programmable or usable interactively, and due to the ad-
vanced type-theoretic machinery they rely on—e.g., for Beluga and
VeriML, contextual modal type theory [20]—it is not clear how to
incorporate them into established interactive theorem provers.

A rather different approach, proposed by Gonthier et al. [11]
specifically in the context of Coq, is to encapsulate automation
routines as overloaded lemmas. Like an ordinary lemma, an over-
loaded lemma has a precise formal specification in the form of a
(dependent) Coq type. The key difference is that an overloaded
lemma—much like an overloaded function in Haskell—is not
proven (i.e., implemented) once and for all up front; instead, every
time the lemma is applied to a particular goal, the system will run
a user-specified automation routine in order to construct a proof on
the fly for that particular instance of the lemma. To program the
automation routine, one uses Coq’s “canonical structure” mecha-
nism to declare a set of proof-building rules—implemented as Coq
terms—that will be fired in a predictable order by the Coq unifica-
tion algorithm (but may or may not succeed). In effect, one encodes
one’s automation routine as a dependently-typed logic program to
be executed by Coq’s type inference engine.

The major benefit of this approach is its integration into Coq:
it enables users to program tactics in Coq directly, rather than in a
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separate language, while at the same time offering significant addi-
tional expressive power beyond what is available in the base logic
of Coq. The downside, however, is that the logic-programming
style of canonical structures is in most cases not as natural a fit
for tactics as a functional-programming style would be.1 Moreover,
canonical structures provide a relatively low-level language for
writing tactics. The control flow of sophisticated canonical struc-
ture programs depends closely on how Coq type inference is imple-
mented, and thus writing even simple tactics requires one to think
at the level of the Coq unification algorithm, sometimes embracing
its limitations and sometimes working around them. To make up for
this, Gonthier et al. [11] describe a series of “design patterns” for
programming canonical structures effectively. While these design
patterns are clearly useful, the desire for them nonetheless suggests
that there is a high-level language waiting to be born.

1.1 Mtac: A Monad for Typed Tactic Programming in Coq
In this paper, we present a new language—Mtac—for typed tactic
programming in Coq. Like Beluga and VeriML, Mtac supports
general-purpose tactic programming in a direct functional style.
Unlike those languages, however, Mtac is not a separate language,
but rather a simple extension to Coq. As a result, Mtac tactics (or as
we call them, Mtactics) have access to all the features of ordinary
Coq programming in addition to a new set of tactical primitives.
Furthermore, like overloaded lemmas, their (partial) correctness is
specified statically within the Coq type system itself, and they are
fully integrated into Coq, so they can be programmed and used
interactively. Mtac is thus, to our knowledge, the first language to
support interactive, dependently-typed tactic programming.

The key idea behind Mtac is dead simple. We encapsulate tactics
in a monad, thus avoiding the need to change the base logic and
trusted kernel typechecker of Coq at all. Then, we modify the
Coq infrastructure so that it executes these monadic tactics, when
requested to do so, during type inference (i.e., during interactive
proof development or when executing a proof script).

More concretely, Mtac extends Coq with:

1. An inductive type family #A (read as “maybe A”) classify-
ing Mtactics that—if they terminate successfully—will produce
Coq terms of typeA. The constructors of this type family essen-
tially give the syntax for a monadically-typed tactic language:
they include the usual monadic return and bind, as well as a
suite of combinators for tactic programming with fixed points,
exception handling, pattern matching, and more. (Note: the def-
inition of the type family #A does not per se require any ex-
tension to Coq—it is just an ordinary inductive type family.)

2. A primitive tactic execution construct, run t, which has type
A assuming its argument t is a tactic of type #A. When (our
instrumentation of) the Coq type inference engine encounters
run t, it executes the tactic t. If that execution terminates, it
will either produce a term u of type A (in which case Coq
will rewrite run t to u) or else an uncaught exception (which
Coq will report to the user). If a proof passes entirely through
type inference without incurring any uncaught exceptions, that
means that all instances of run in the proof must have been
replaced with standard Coq terms. Hence, there is no need to
extend the trusted kernel typechecker of Coq to handle run.

Example: Searching in a List. To get a quick sense of what
Mtac programming is like, consider the example in Figure 1. Here,
search is a tactical term of type ∀x : A. ∀s : list A. #(x ∈ s).
When executed, search x s will search for an element x (of type
A) in a list s (of type list A), and if it finds x in s, it will return a

1 In terms of expressivity, there are tradeoffs between the two styles—for
further discussion, see §6.

01 Definition search (x : A) :=
02 mfix f [s : list A] :=
03 mmatch s as s’ return #(x ∈ s’) with
04 | [l r] l ++ r ⇒
05 mtry
06 il ← f l;
07 ret (in or app l r x (or introl il))
08 with ⇒
09 ir ← f r;
10 ret (in or app l r x (or intror ir))
11 end
12 | [s’] (x :: s’) ⇒ ret (in eq )
13 | [y s’] (y :: s’) ⇒
14 r ← f s’;
15 ret (in cons y r)
16 | ⇒ raise NotFound
17 end.

Figure 1. Mtactic for searching in a list.

proof that x ∈ s. Note, however, that search x s itself is just a Coq
term of monadic type #(x ∈ s), and that the execution of the tactic
will only occur when this term is run.

The implementation of search relies on four new features of
Mtac that go beyond what is possible in ordinary Coq program-
ming: it iterates using a potentially unbounded fixed point mfix
(line 2), it case-analyzes the input list s using a new mmatch con-
structor (line 3), it raise-s an exception NotFound if the element
x was not found (line 16), and this exception is caught and han-
dled (for backtracking purposes) using mtry (line 5). These new
features, which we will present in detail in §2, are all constructors
of the inductive type family #A. Regarding mmatch, the reason
it is different from ordinary Coq match is that it supports pattern-
matching not only against primitive datatype constructors (e.g., nil
and ::) but also against arbitrary terms (e.g., applications of the ++
function for concatenating two lists). For example, search starts out
(line 4) by checking whether s is an application of ++ to two sub-
terms l and r. If so, it searches for x first in l and then in r. In this
way, mmatch supports case analysis of the intensional syntactic
structure of open terms, in the manner of VeriML’s holcase [29]
and Beluga’s case [21].

By run-ning search, we can now, for example, very easily prove
the following lemma establishing that z is in the list [x; y; z]:

Lemma z in xyz (x y z : A) : z ∈ [x; y; z] := run (search )

Note here that we did not even need to supply the inputs to search
explicitly: they were picked up from context, namely the goal of
the lemma (z ∈ [x; y; z]), which Coq type inference proceeds to
unify with the output type of the Mtactic search.

1.2 Contributions and Overview
In the remainder of this paper, we will:

• Describe the design of Mtac in detail (§2).
• Give a number of examples to concretely illustrate the benefits

of Mtac programming (§3).
• Present the formalization of Mtac, along with meta-theoretic

results such as type safety (§4).
• Explore some technical issues regarding the integration of Mtac

into Coq (§5).
• Compare with related work and discuss future work (§6).

The Coq patch and the examples can be downloaded from:

http://plv.mpi-sws.org/mtac
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# : Type→ Prop
ret : ∀A. A→ #A
bind : ∀A B. #A→ (A→ #B)→ #B
raise : ∀A. Exception→ #A
mtry : ∀A. #A→ (Exception→ #A)→ #A
mfix : ∀A B. ((∀x : A. #(B x))→ (∀x : A. #(B x)))

→ ∀x : A. #(B x)
mmatch : ∀A B (t : A). list (Patt A B)→ #(B t)
print : ∀s : string. #unit
nu : ∀A B. (A→ #B)→ #B
abs : ∀A P x. P x→ #(∀y : A. P y)
is var : ∀A. A→ #bool
evar : ∀A. #A
is evar : ∀A. A→ #bool

Patt : ∀A (B : A→ Type). Type
Pbase : ∀A B (p : A) (b : #(B p)). Patt A B
Ptele : ∀A B C. (∀x : C. Patt A B)→ Patt A B

Figure 2. The # and Patt inductive types.

2. Mtac: A Language for Proof Automation
In this section, we describe the syntax and typing of Mtac, our
language for typed proof automation.

Syntax of Mtac. Mtac extends CIC, the Calculus of (co-)Inductive
Constructions (see e.g., [2]), with a monadic type constructor #A,
representing tactic computations returning results of type A, along
with suitable introduction and elimination forms for such compu-
tations. We define # : Type → Prop as a normal CIC inductive
predicate with constructors reflecting our syntax for tactic program-
ming, which are shown in Fig. 2. (We prefer to define # induc-
tively instead of axiomatizing it in order to cheaply ensure that we
do not affect the logical consistency of CIC.) The # constructors
include standard monadic return and bind (ret, bind), primitives
for throwing and handling exceptions (raise, mtry), a fixed point
combinator (mfix), a pattern matching construct (mmatch), and a
printing primitive useful for debugging Mtactics (print). Mtac also
provides more specialized operations for handling parameters and
unification variables (nu, abs, is var, evar, is evar), but we defer
explanation of those features until §3.2.

First, let us clear up a somewhat technical point. The reason we
define # as an inductive predicate (i.e., whose return sort is Prop
rather than Type) has to do with the handling of mfix. Specifically,
in order to satisfy Coq’s syntactic positivity condition on inductive
definitions, we cannot declare mfix directly with the type given in
Figure 2, since that type mentions the monadic type constructor
# in a negative position. To work around this, in the inductive
definition of #A, we replace the mfix constructor with a variant,
mfix′, in “Mendler style” [17, 14], i.e., in which references to #
are substituted with references to a parameter �:

mfix′ : ∀A B �. (∀x : A. �(B x)→ #(B x))→
((∀x:A. �(B x))→ (∀x:A. �(B x)))→ ∀x:A. #(B x)

The mfix from Figure 2 is then recovered simply by instantiating
the � parameter of mfix′ with #, and instantiating its first value
parameter with the identity function. However, due to the inherent
“circularity” of this trick, it only works if the type #A belongs to
an impredicative sort like Prop. (In particular, if #A were defined
in Type, then while mfix′ would be well-formed, applying mfix′ to
the identity function in order to get an mfix would cause a universe
inconsistency.) Fortunately, defining #A in Prop has no practical
impact on Mtac programming. Note that, in CIC, Prop : Type; so
it is possible to construct nested types such as #(#A).

Now, onto the features of Mtac. The typing of monadic ret
and bind is self-explanatory. The exception constructs raise and
mtry are also straightforward: their types assume the existence of
an exception type Exception. It is easy to define such a type, as
well as a way of declaring new exceptions of that type, in existing
Coq (see §5 for details). The print statement print takes the string
to print onto the standard output and returns the trivial element.

Pattern matching, mmatch, expects a term of type A and a se-
quence of pattern matching clauses of type PattAB, which match
objects x of type A and return results of type B x. Binding in the
pattern matching clauses is represented as a telescope: Pbase p b
describes a ground clause that matches the constant p and has body
b, and Ptele(λx. pc) adds the binder x to the pattern matching
clause pc. So, for example, Ptele(λx. Ptele(λy. Pbase (x+ y) b)
represents the clause that matches an addition expression, binds the
left subexpression to x and the right one to y, and then returns some
expression b which can mention both x and y. Another example is
the clause, Ptele(λx. Pbase x b) which matches any term and re-
turns b.

Note that it is also fine for a pattern to mention free variables
bound in the ambient environment (i.e., not bound by the telescope
pattern). Such patterns enable one to check that (some component
of) the term being pattern-matched is syntactically unifiable with a
specific term of interest. We will see examples of this in the search2
and lookup Mtactics in §3.

In our examples and in our Coq development, we often omit in-
ferrable type annotations and use the following notation to improve
readability of Mtactics:

x← t; t′ denotes bind t (λx. t′)

mfix f [x : A] := t denotes mfix (λf. λx. t)

νx : A. t denotes nu (λx : A. t)

mmatch t mmatch (λx. T ) t
as x return #T with [
| [x1] p1 ⇒ b1 Ptele x1 (Pbase p1 b1),
. . . denotes . . .
| [xm] pm ⇒ bm Ptele xm (Pbase pm bm)
end ]

mtry t denotes mtry t (λe.
with ps end mmatch e with ps end)

where Ptele x1 · · ·xn p means Ptele(λx1 . . .Ptele(λxn. p)· · ·).
The type annotation as x return #T in the mmatch notation is
optional and can be omitted, in which case the returning type is left
to the type inference algorithm to infer.

Running Mtactics. Defining # as an inductive predicate means
that terms of type #A can be destructed by case analysis and
induction. Unlike other inductive types, # supports an additional
destructor: tactic execution. Formally, we extend Coq with a new
construct, run t, that takes an Mtactic t of type #A (for some A),
and runs it at type-inference time to return a term t′ of type A.

Γ ` t : #A Γ ` t ∗ ret t′

Γ ` run t : A

We postpone the definition of the tactic evaluation relation, , as
well as a precise formulation of the rule, to §4, but note that since
tactic evaluation is type-preserving, t′ has type A, and thus A is
inhabited.

3. Mtac by Example
In this section, we offer a gentle introduction to the various fea-
tures of Mtac by working through a sequence of proof automation
examples.

3



3.1 noalias: Non-Aliasing of Disjointly Allocated Pointers
Our first example, noalias, is taken from Gonthier et al. [11]. The
goal is to prove that two pointers are distinct, given the assumption
that they appear in the domains of disjoint subheaps of a well-
defined memory.

In [11], the noalias example was used to illustrate a rather subtle
and sophisticated design pattern for composition of overloaded
lemmas. Here, it will help illustrate the main characteristics of
Mtac, while at the same time emphasizing the relative simplicity
and readability of Mtactics compared to previous approaches.

Preliminaries. We will work here with heaps (of type heap),
which are finite maps from pointers (of type ptr) to values. We
write h1 • h2 for the disjoint union of h1 and h2, and x 7→ v for
the singleton heap containing only the pointer x, storing the value
v. The disjoint union may be undefined if h1 and h2 overlap, so we
employ a predicate def h, which declares that h is in fact defined.

Motivating Example. With these definitions in hand, let us state
a goal we would like to solve automatically:

D : def (h1 • (x1 7→ v1 • x2 7→ v2) • (h2 • x3 7→ v3))
x1 != x2 ∧ x2 != x3

Above the line is a hypothesis concerning the well-definedness of
a heap mentioning x1, x2, and x3, and below the line is the goal,
which is to show that x1 is distinct from x2, and x2 from x3.

Intuitively, the truth of the goal follows obviously from the fact
that x1, x2, and x3 appear in disjoint subheaps of a well-defined
heap. This intuition is made formal with the following lemma (in
plain Coq):

noalias manual : ∀(h:heap) (y1 y2:ptr) (w1:A1) (w2:A2).
def (y1 7→ w1 • y2 7→ w2 • h)→ y1 != y2

Unfortunately, we cannot apply this lemma using hypothesis D as
it stands, since the heap that D proves to be well-defined is not of
the form required by the premise of the lemma—that is, with the
pointers in question (x1 and x2, or x2 and x3) at the very front
of the heap expression. It is of course possible to solve the goal by:
(a) repeatedly applying rules of associativity and commutativity for
heap expressions in order to rearrange the heap in the type of D so
that the relevant pointers are at the front of the heap expression; (b)
applying the noalias manual lemma to solve the first inequality;
and then repeating (a) and (b) to solve the second inequality.

But we would like to do better. What we really want is an
Mtactic that will solve these kinds of goals automatically, no matter
where the pointers we care about are located inside the heap. One
option is to write an Mtactic to perform all the rearrangements
necessary to put the two pointers at the front, and then apply the
lemma above. The main inconvenience with this approach is that
each inequality in the goal requires a new rearrangement of the
heap, where each pointer has to be found and then “bubbled up” to
the front of the heap. Computationally, this takes twice the size of
the heap for each pointer.

Instead, we pursue a solution analogous to the one in [11],
breaking the problem into two smaller Mtactics scan and search2,
combined in a third Mtactic, noalias.

The Mtactic scan. Figure 3 presents the Mtactic scan. It scans
its input heap h to produce a list of the pointers x appearing
in singleton heaps x 7→ v in h. More specifically, it returns a
dependent record containing a list of pointers (seq of, of type
list ptr), together with a proof that, if h is well-defined, then (1)
the list seq of is “unique” (denoted uniq seq of), meaning that all
elements in it are distinct from one another, and (2) its elements all
belong to the domain of the heap.

To do this, scan inspects the heap and considers three different
cases. If the heap is a singleton heap x 7→ v, then it returns a

01 Record form h := Form {
02 seq of :> list ptr;
03 axiom of : def h → uniq seq of
04 ∧ ∀ x. x ∈ seq of → x ∈ dom h }.
05
06 Definition scan :=
07 mfix f [h : heap] : #(form h) :=
08 mmatch h with
09 | [x A (v:A)] x 7→ v ⇒ ret (Form [x] ...)
10 | [l r] l • r ⇒
11 rl ← f l;
12 rr ← f r;
13 ret (Form (seq of rl ++ seq of rr) ...)
14 | [h’] h’ ⇒ ret (scan h [] ...)
15 end.

Figure 3. Mtactic for scanning a heap to obtain a list of pointers.

01 Definition search2 x y :=
02 mfix f [s] : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret (foundx pf x r)
05 | [s’] y :: s’ ⇒ r ← search x s’; ret (foundy pf y r)
06 | [z s’] z :: s’ ⇒ r ← f s’; ret (foundz pf z r)
07 | ⇒ raise NotFound
08 end.

Figure 4. Mtactic for searching for two pointers in a list.

singleton list containing x. If the heap is the disjoint union of heaps
l and r, it proceeds recursively on each subheap and returns the
concatenation of the lists obtained in the recursive calls. Finally, if
the heap doesn’t match any of the previous cases, then it returns an
empty list. Note that this case analysis is not possible using Coq’s
standard match mechanism, because match only pattern-matches
against primitive datatype constructors. In the case of heaps, which
are really finite maps from pointers to values, x 7→ v and l • r are
applications not of primitive dataype constructors but of defined
functions ( 7→ and •). Thus, in order to perform our desired case
analysis, we require the ability of Mtac’s mmatch mechanism to
pattern-match against the syntax of heap expressions.

In each case, scan also returns a proof that the output list
obeys the aforementioned properties (1) and (2). For presentation
purposes, we omit these proofs (denoted with . . . in the figures),
but they are proven as standard Coq lemmas. (We will continue to
omit proofs in this way throughout the paper when they present no
interesting challenges. The reader can find them in the source files.)

The Mtactic search2. Figure 4 presents the Mtactic search2. It
takes two elements x and y and a list s as input, and searches for x
and y in s. If successful, search2 returns a proof that, if s is unique,
then x is distinct from y. Similarly to scan, this involves a syntactic
inspection and case analysis of the input list s.

When s contains x at the head (i.e., s is of the form x :: s′),
search2 searches for y in the tail s′, using the Mtactic search from
§1.1. If this search is successful, producing a proof r : y ∈ s′,
then search2 concludes by composing this proof together with the
assumption that s is unique, using the easy lemma foundx pf:

foundx pf : ∀x y : ptr. ∀s : list ptr.
y ∈ s→ uniq (x :: s) → x != y

(In the code, the reader will notice that foundx pf is not passed the
arguments y and s explicitly. That is because they are inferrable
from the type of r, and thus are treated as implicit arguments.)
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Definition noalias h (D : def h) : #(∀ x y. #(x != y)) :=
sc ← scan h;
ret (λ x y ⇒
s2 ← search2 x y (seq of sc);
ret (combine s2 D)).

Figure 5. Mtactic for proving that two pointers do not alias.

If s contains y at the head, search2 proceeds analogously. If
the head element is different from both x and y, then it calls itself
recursively with the tail. In any other case, it throws an exception.

Note that, in order to test whether the head of s is x or y, we
rely crucially on the ability of patterns to mention free variables
from the context. In particular, the difference between the first two
cases of search2’s mmatch and the last one is that the first two
do not bind x and y in their telescope patterns (thus requiring the
head of the list in those cases to be syntactically unifiable with x or
y, respectively), while the third does bind z in its telescope pattern
(thus enabling z to match anything).

The Mtactic noalias. Figure 5 shows the very short code for the
Mtactic noalias, which stitches scan and search2 together. The type
of noalias is as follows:

∀h : heap. def h→ #(∀x y. #(x != y))

As the two occurrences of # indicate, this Mtactic is staged: it
takes as input a proof that h is defined and first runs the scan
Mtactic on h, producing a list of pointers sc, but then it immediately
returns another Mtactic. This latter Mtactic in turn takes as input
x and y and searches for them in sc. The reason for this staging
is that we may wish to prove non-aliasing facts about different
pairs of pointers in the same heap. Thanks to staging, we can apply
noalias to someD just once and then reuse the Mtactic it returns on
many different pairs of pointers, thus avoiding the need to rescan h
redundantly.

At the end, the proofs returned by the calls to scan and search2
are composed using a combine lemma with the following type:

Lemma combine h x y (sc : form h) :
(uniq (seq of sc)→ x != y)→ def h→ x != y.

This lemma is trivial to prove by an application of the cut rule.

Applying the Mtactic noalias. The following script shows how
noalias can be invoked in order to solve the motivating example
from the beginning of this section:

pose F := run (noalias D)
by split; apply: run (F )

When Coq performs type inference on the run in the first line,
that forces the execution of (the first scan-ning phase of) the Mtac-
tic noalias on the input hypothesis D, and the standard pose mech-
anism then binds the result to F . This F has the type

∀x y : ptr. #(x != y)

In the case of our motivating example, F will be an Mtactic that,
when passed inputs x and y, will search for those pointers in the
list [x1;x2;x3] output by the scan phase.

The script continues with Coq’s standard split tactic, which gen-
erates two subgoals, one for each proposition in the conjunction.
For our motivating example, it generates subgoals x1 != x2 and
x2 != x3. We then solve both goals by executing the Mtactic F .
When F is run to solve the first subgoal, it will search for x1 and
x2 in [x1;x2;x3] and succeed; when F is run to solve the second
subgoal, it will search for x2 and x3 in [x1;x2;x3] and succeed.
QED. Note that we provide the arguments to F implicitly (as ). As
in the proof of the z in xyz lemma from §1.1, these arguments are

01 Program Definition interactive search2 x y :=
02 mfix f [s] : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret
05 | [s’] y :: s’ ⇒ r ← search x s’; ret
06 | [z s’] z :: s’ ⇒ r ← f s’; ret
07 | ⇒ raise NotFound
08 end.
09 Next Obligation. ... Qed.
10 Next Obligation. ... Qed.
11 Next Obligation. ... Qed.

Figure 6. Interactive construction of search2 using Program.

inferred from the respective goals being solved. (We will explain
how this inference works in more detail in §5.)

Developing Mtactics Interactively. One key advantage of Mtac
is that it works very well with the rest of Coq, allowing us among
other things to develop Mtactics interactively.

For instance, consider the code shown in Figure 6. This is an in-
teractive development of the search2 Mtactic, where the developer
knows the overall search structure in advance, but not the exact
proof terms to be returned, as this can be difficult in general. Here,
we have prefixed the definition with the keyword Program [27],
which allows us to omit certain parts of the definition by writing
underscores. Program instructs the type inference mechanism to
treat these underscores as unification variables, which—unless in-
stantiated during type inference—are exposed as proof obligations.
In our case, none of these underscores is resolved, and so we are
left with three proof obligations. Each of these obligations can then
be solved interactively within a Next Obligation . . .Qed block.

Finally, it is worth pointing out that within such blocks, as well
as within the actual definitions of Mtactics, we could be running
other more primitive Mtactics.

3.2 tauto: A Simple First-Order Tautology Prover
With this next example, we show how Mtac provides a simple but
useful way to write tactics that manipulate contexts and binders.
Specifically, we will write an Mtactic implementing a rudimen-
tary tautology prover, modeled after those found in the work on
VeriML [29] and Chlipala’s CPDT textbook [5]. Compared to
VeriML, our approach has the benefit that it does not require any
special type-theoretic treatment of contexts: for us, a context is
nothing more than a Coq list. Compared to Chlipala’s Ltac version,
our version is typed, offering a clear static specification of what the
tautology prover produces, if it succeeds.

To ease the presentation, we break the problem in two. First,
we show a simple propositional prover that uses the language
constructs we have presented so far. Second, we extend this prover
to handle first-order logic, and we use this extension to motivate
some additional features of Mtac.

Warming up the Engine: A Simple Propositional Prover. Fig-
ure 7 displays the Mtactic for a simple propositional prover, taking
as input a proposition p and, if successful, returning a proof of p:

prop-tauto : ∀p : Prop. #p

The Mtactic only considers three cases:

• p is True. In this case, it returns the trivial proof I.
• p is a conjunction of p1 and p2. In this case, it proves both

propositions and returns the introduction form of the conjunc-
tion (conj r1 r2).

• p is a disjunction of p1 and p2. In this case, it tries to prove
the proposition p1, and if that fails, it tries instead to prove
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01 Definition prop-tauto :=
02 mfix f [p : Prop] : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f p1;
07 r2 ← f p2;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f p1; ret (or introl r1)
12 with ⇒
13 r2 ← f p2; ret (or intror r2)
14 end
15 | ⇒ raise NotFound
16 end.

Figure 7. Mtactic for a simple propositional tautology prover.

01 Definition tauto’ :=
02 mfix f [c : list dyn; p : Prop] : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f c p1 ;
07 r2 ← f c p2 ;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f c p1 ; ret (or introl r1)
12 with ⇒
13 r2 ← f c p2 ; ret (or intror r2)
14 end
15 | [p1 p2 : Prop] p1 → p2 ⇒
16 ν (y:p1).
17 r ← f (Dyn p1 y :: c) p2;
18 abs y r
19 | [A (q:A → Prop)] (∀ x:A. q x) ⇒
20 ν (y:A).
21 r ← f c (q y);
22 abs y r
23 | [A (q:A → Prop)] (∃ x:A. q x) ⇒
24 X ← evar A;
25 r ← f c (q X);
26 b ← is evar X;
27 if b then raise ProofNotFound
28 else ret (ex intro q X r)
29 | [p’:Prop] p’ ⇒ lookup p’ c
30 end.

Figure 8. Mtactic for a simple first-order tautology prover.

the proposition p2. The corresponding introduction form of the
disjunction is returned (or introl r1 or or intror r2).

• Otherwise, it raises an exception, since no proof could be found.

Extending to First-Order Logic. We now extend the previous
prover to support first-order logic. This extension requires the tactic
to keep track of a context for hypotheses, which we model as a list
of (dependent) pairs pairing hypotheses with their proofs. More
concretely, each element in the hypothesis context has the type
dyn = Σp : Prop. p. (In Coq, this is encoded as an inductive
type with constructor Dyn p x, for any x : p.)

Definition lookup (p : Prop) :=
mfix f [s : list dyn] : #p :=

mmatch s return #p with
| [x s’] (Dyn p x) :: s’ ⇒ ret x
| [d s’] d :: s’ ⇒ f s’
| ⇒ raise ProofNotFound
end.

Figure 9. Mtactic to look up a proof of a proposition in a context.

Figure 8 shows the first-order logic tautology prover tauto. The
fixed point takes the proposition p and is additionally parameterized
over a context (c : list dyn). The first three cases of the mmatch
are similar to the ones in Figure 7, with the addition that the context
is passed around in recursive calls.

Before explaining the cases for →, ∀ and ∃, let us start with
the last one (line 29), since it is the easiest. In this last case, we
attempt to prove the proposition in question by simply searching
for it in the hypothesis context. The search for the hypothesis p′

in the context c is achieved using the Mtactic lookup shown in
Figure 9. lookup takes a proposition p and a context, and traverses
the context linearly in the hope of finding a dependent pair with p
as the first component. If it finds such a pair, it returns the second
component. Like the Mtactic search2 from §3.1, this simple lookup
routine depends crucially on the ability to match the propositions in
the context syntactically against the p for which we are searching.

Returning to the tautology prover, lines 15–18 concern the case
where p = p1 → p2. Intuitively, in order to prove p1 → p2, one
would (1) introduce a parameter y witnessing the proof of p1 into
the context, (2) proceed to prove p2 having y : p1 as an assumption,
and (3) abstract any usage of y in the resulting proof. The rationale
behind this last step is that if we succeed proving p2, then the result
is parametric over the proof of p1, in the sense that any proof of p1
will suffice to prove p2. Steps (1) and (3) are performed by two of
the operators we haven’t yet described: nu and abs (the former is
denoted by the νx binder). In more detail, the three steps are:

Line 16: It creates a parameter y : p1 using the constructor nu.
This constructor has type

nu : ∀(A B : Type). (A→ #B)→ #B

(where A and B are left implicit). It is similar to the operator
with the same name in [19] and [26]. Operationally, νx : A. f
(which is notation for nu (λx : A. f)), creates a parameter
y with type A, pushes it into the local context, and executes
f{y/x} (where ·{·/·} is the standard substitution) in the hope
of getting a value of type B. If the value returned by f refers
to y, then it causes the tactic execution to fail: such a result
would lead to an ill-formed term because y is not bound in
the ambient context. This line constitutes the first step of our
intuitive reasoning: we introduce the parameter y witnessing
the proof of p1 into the context.

Line 17: It calls tauto′ recursively, with context c extended with
the parameter y, and with the goal of proving p2. The result is
bound to r. This line constitutes the second step.

Line 18: The result r created in the previous step has type p2. In
order to return an element of the type p1 → p2, we abstract y
from r, using the constructor

abs : ∀(A : Type) (P : A→ Type) (y : A).
P y → #(∀x : A. P x)

(withA,P implicit). Operationally, abs y r checks that the first
parameter y is indeed a variable, and returns the function

λx : A. r{x/y}
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In this case, the resulting element has type ∀x : p1. p2, which,
since p2 does not refer to x, is equivalent to p1 → p2. This
constitutes the last step: by abstracting over y in the result, we
ensure that the resulting proof term no longer mentions the ν-
bound variable (as required by the use of nu in line 16).

Lines 19–22 consider the case that the proposition is an abstrac-
tion ∀x : A. q x. Here, q is the body of the abstraction, represented
as a function fromA to Prop. We rely on Coq’s use of higher-order
pattern unification [18] to instantiate q with a faithful representation
of the body. The following lines mirrors the body of the previous
case, except for the recursive call. In this case we don’t extend the
context with the parameter y, since it is not a proposition. Instead,
we try to recursively prove the body q replacing x with y (that is,
applying q to y).

If the proposition is an existential ∃x : A. q x (line 23), then the
prover performs the following steps:

Line 24: It uses Mtac’s evar constructor to create a fresh unifica-
tion variable called X .

Line 25: It calls tauto′ recursively, replacing x for X in the body
of the existential.

Lines 26–28: It uses Mtac’s is evar mechanism to check whether
X is still an uninstantiated unification variable. If it is, then it
raises an exception, since no proof could be found. If it is not—
that is, ifX was successfully instantiated in the recursive call—
then it returns the introduction form of the existential, with X
as its witness.

Now we are ready to prove an example, where P : nat→ Prop:

Definition exmpl : ∀P x. P x→ ∃y. P y := run (tauto [] ).

The proof term generated by run is

exmpl = λP x (H : P x). ex intro P x H

3.3 Inlined Proof Automation
Due to the tight integration between Mtac and Coq, Mtactics can
be usefully employed in definitions, notations and other Coq terms,
in addition to interactive proving. In this respect, Mtac differs from
the related systems such as VeriML [29] and Beluga [21], where,
to the best of our knowledge, such expressiveness is not currently
available due to the strict separation between the object logic and
the automation language.

In this section, we illustrate how Mtactics can be invoked from
Coq proper. To set the stage, consider the scenario of developing a
library for n-dimensional integer vector spaces, with the main type
vector n defined as a record containing a list of nats and a proof
that the list has size n:

Record vector (n : nat) := Vector {
seq of : list nat;

: size seq of = n}.

One of the important methods of the library is the accessor function
ith, which returns the i-th element of the vector, for i < n. One
implementation possibility is for ith to check at run time if i < n,
and return an option value to signal when i is out of bounds. The
downside of this approach is that the clients of ith have to explicitly
discriminate against the option value. An alternative is for ith to
explicitly request a proof that i < n as one of its arguments, as in
the following type ascription:

ith : ∀n:nat.vector n→ ∀i:nat.i < n→ nat

Then the clients have to construct a proof of i < n before invoking
ith, but we show that in some common situations, the proof can be
constructed automatically by Mtac, and then passed to ith.

Program Definition compare (n1 n2 : nat) : #(n1 ≤ n2) :=
r1 ← to ast nil n1;
r2 ← to ast (ctx of r1) n2;
match cancel (ctx of r2) (term of r1) (term of r2)

return #(n1 ≤ n2) with
| true ⇒ ret (@sound n1 n2 r1 r2 )
| ⇒ raise NotLeqException
end.

Next Obligation. ... Qed.

Figure 10. Mtactic for proving inequalities between nat’s.

Specifically, we describe an Mtactic compare, which automati-
cally searches for a proof that two natural numbers n1 and n2 sat-
isfy n1 ≤ n2. compare is incomplete, and if it fails to find a proof,
because the inequality doesn’t hold, or because the proof is too
complex, it raises an exception.

Once compare is implemented, it can be composed with ith as
follows. Given a vector v whose size we denote as vsize v, and
an integer i, we introduce the following notation, which invokes
compare to automatically construct a proof that i + 1 ≤ vsize v
(equivalent to i < vsize v).

Notation ”[ ’ith’ v i ]” :=
(@ith v i (run (compare (i+1) (vsize v))))

The notation can be used in definitions. For example, given
vectors v1, v2 of fixed size 2, we could define the inner product
of v1 and v2 as follows, letting Coq figure out automatically that
the indices 0, 1 are within bounds.

Definition inner prod (v1 v2 : vector 2) :=
[ith v1 0] × [ith v2 0] + [ith v1 1] × [ith v2 1].

If we tried to add the summand [ith v1 2] × [ith v2 2], where the
index 2 is out of bounds, then compare raises an exception, making
the whole definition ill-typed. Similarly, if instead of vector 2, we
used the type vector n, where n is a variable, the definition will
be ill-typed, because there is no guarantee that n is larger than 1.
On the other hand, the following is a well-typed definition, as the
indices k and n are clearly within the bound n+ k + 1.

Definition indexing n k (v : vector (n+ k + 1)) :=
[ith v k] + [ith v n].

We proceed to describe the implementation of compare, pre-
sented in Figure 10. compare is implemented using two main
helper functions. The first is the Mtactic to ast which reflects the
numbers n1 and n2. More concretely, to ast takes an integer ex-
pression, and considers it as a syntactic summation of a number of
components. It parses this syntactic summation into an explicit list
of summands, each of which can be either a constant or a free vari-
able (subexpressions containing operations other than + are treated
as free variables).

The second helper is a CIC function cancel which cancels the
common terms from the syntax lists obtained by reflecting n1 and
n2. If all the summands in the syntax list of n1 are found in
the syntax list of n2, then it must be that n1 ≤ n2 and cancel
returns the boolean true. Otherwise, cancel doesn’t search for other
ways of proving n1 ≤ n2 and simply returns false to signal the
failure to find a proof. This failure ultimately results in compare
raising an exception. Notice that cancel can’t directly work on
n1 and n2, but has to receive their syntactic representation from
to ast (in the code of compare these are named term of r1 and
term of r2, respectively). The reason is that cancel has to compare
names of variables appearing in n1 and n2, and has to match
against the occurrences of the (non-constructor) function +, and
such comparisons and matchings are not possible in CIC.
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Alternatively, we could use mmatch to implement cancel in
Mtac, but there are good reasons to prefer a purely functional Coq
implementation when one is possible, as is the case here. With a
pure cancel, compare can return a very short proof term as a result
(e.g., (sound n1 n2 r1 r2 ) in the code of compare). An Mtac
implementation would have to expose the reasoning behind the
soundness of the Mtactic at a much finer granularity, resulting in
a larger proof.

We next describe the implementations of the two helpers.

Data Structures for Reflection. There are two main data struc-
tures used for reflecting integer expressions. As each expression is
built out of variables, constants and +, we syntactically represent
the sum as term containing a list of syntactic representations of
variables appearing in the expression, followed by a nat constant
that sums up all the constants from the expression. We also need
a type of variable contexts ctx, in order to determine the syntactic
representation of variables. In our case, a variable context is sim-
ply a list of nat expression, each element standing for a different
variable, and the position of the variable in the context serves as the
variable’s syntactic representative.

Definition ctx := list nat
Record var := Var of nat
Definition term := (list var)× nat

Example 1. The expression n = (1+x)+(y+3) may be reflected
using a variable context c = [x, y], and a term ([Var 0,Var 1], 4).
Var 0 and Var 1 correspond to the two variables in c (x and y,
respectively). 4 is the sum of the constants appearing in n.

Example 2. The syntactic representations of 0, successor construc-
tor S, addition and an individual variable, may be given as follow-
ing term constructors. We use .1 and .2 to denote projections out
of a pair.

Definition syn zero : term := (nil, 0).
Definition syn succ (t : term) := (t.1, t.2 + 1).
Definition syn add (t1 t2 : term) :=

(t1.1 ++ t2.1, t1.2 + t2.2).
Definition syn var (i : nat) := ([Var i], 0).

In prose, 0 is reflected by an empty list of variable indexes, and 0
as a constant term; if t is a term reflecting n, then the successor S n
is reflected by incrementing the constant component of t, etc.

We further need a function interp that takes a variable context
G and a term t, and interprets t into a nat, as follows.

interp vars (G : ctx) (t : list var) :=
if t is j :: t’ then

if (vlook G j, interp G t’) is (Some v, Some e)
then Some (v + e) else None

else Some 0.

interp (G : ctx) (t : term) :=
if interp vars G t.1 is Some e
then Some (e + t.2) else None.

First, interp vars traverses the list of variable indices of t, turning
each index into a natural number by looking it up into the context
G, and summing the results. The lookup function vlook G j is
omitted here, but it either returns Some j-th element of the context
G, or None if G has less than j elements. Then, interp simply
adds the result of interp vars to the constant part of the term. For
example, if the context c = [x, y] and term t = ([Var 0,Var 1], 4),
then interp c t equals Some (x+ y + 4).

Reflection by to ast. The to ast Mtactic is applied twice in
compare: once to reflect n1, and again to reflect n2. Each time,

Record ast (G : ctx) (n : nat) :=
Ast {term of : term;

ctx of : ctx;
: interp ctx of term of = Some n ∧ prefix G ctx of}

Definition to ast : ∀ G n. #(ast G n) :=
mfix f [G ; n] :=

mmatch n with
| 0 ⇒ ret (Ast G 0 syn zero G ...)
| [n’] S n’ ⇒
r ← f G n’;
ret (Ast G (S n’) (syn succ (term of r))

(ctx of r) ...)
| [n1 n2] n1 + n2 ⇒
r1 ← f G n1; r2 ← f (ctx of r1) n2;
ret (Ast G (n1 + n2)

(syn add (term of r1) (term of r2)) (ctx of r2) ...)
| ⇒

ctx index ← find n G;
ret (Ast G n (syn var ctx index.2) ctx index.1 ...)

end.

Figure 11. Mtactic for reflecting nat expressions.

Fixpoint cancel vars (G : ctx) (s1 s2 : list var) : bool :=
if s1 is v :: s1’ then v ∈ s2 &&

cancel vars G s1’ (remove var v s2)
else true.

Definition cancel (G : ctx) (t1 t2 : term) : bool :=
cancel vars G t1.1 t2.1 && t1.2 ≤ t2.2.

Figure 12. Algorithm for canceling common variables from terms.

to ast is passed as input a variable context, and extends this con-
text with new variables encountered during reflection. To reflect n1

in compare, to ast starts with the empty context nil, and to reflect
n2, it starts with the context obtained after the reflection of n1.
This ensures that if the reflections of n1 and n2 encounter the same
variables, they will use the same syntactic representations for them.

The invariants associated with to ast are encoded in the data
structure ast (Figure 11). ast is indexed by the input context G
and the number n to be reflected. Upon successful termination of
to ast, the term of field contains the term reflecting n, and the
ctx of field contains the new variable context, potentially extending
G. The third field of ast is a proof formalizing the described
properties of term of and ctx of.

Referring to Figure 11, the Mtactic to ast takes the input vari-
able context G and the number n to be reflected, and traverses n
trying to syntactically match the head construct of nwith 0, S or +,
respectively. In each case it returns an ast structure containing the
syntactic representation of n, e.g.: syn zero, syn succ or syn add,
respectively. In the n1 + n2 case, to ast recurses into n2 by using
the variable context returned from reflection of n1 as an input, sim-
ilar as in compare. In each case, the Ast constructor is supplied a
proof that we omit but can be found in the sources. In the default
case, when no constructor matches, n is treated as a variable. The
Mtactic find n G (omitted here), searches for n in G, and returns
a ctx × nat pair. If n is found, the pair consists of the old context
G, and the position of n in G. If n is not found, the pair consists of
a new context in which n is cons-ed to G, and the index k, where
k is the index of n in the new context. to ast then repackages the
context and the index into an ast structure.

Canceling Common Variables. The cancel function is presented
in Figure 12. It takes a variable context G, and terms t1 and t2 and
tries to determine if t1 and t2 syntactically represent two≤-related
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Γ; Σ ` t whd
 t′

Γ ` (Σ; t) (Σ; t′) mfix f t f (mfix f) t

t t′

bind t f  bind t′ f

t t′

mtry t f  mtry t′ f

bind (ret t) f  f t bind (raise t) f  raise t

mtry (ret t) f  ret t mtry (raise t) f  f t

psi
whd
 ∗ Ptele x (Pbase p b)

Σ, ?y ` p{?y/x} ≈ t . Σ′, ?y := t′

∀j < i. psj does not unify with t
Γ ` (Σ; mmatch t ps) (Σ′; b{t′/x})

?x /∈ dom(Σ)

(Σ; evarA) (Σ, ?x : A; ret ?x)

e
whd
 ∗ ?x (?x := ) /∈ Σ

(Σ; is evar e) (Σ; ret true)

e
whd
 ∗ t t not unif. variable

(Σ; is evar e) (Σ; ret false)

Γ, x : A ` (Σ; t) (Σ′; t′)

Γ ` (Σ; νx : A. t) (Σ′; νx : A. t′)

x /∈ FV(v)

(νx. v) v

e
whd
 ∗ x (x : A) ∈ Γ

Γ ` abs e t ret (λy. t{y/x})
(* print s to stdout *)

print s ret 〈〉

Figure 13. Operational small-step semantics.
expressions by cancelling common terms, as we described previ-
ously. First, the helper cancel vars iterates over the list of variable
representations of t1, trying to match each one with a variable rep-
resentation in t2 (in the process, removing the matched variables
by using yet another helper function remove vars, omitted here). If
the matching is successful and all variables of t1 are included in t2,
then cancel merely needs to check if the constant of t1 is smaller
than the constant of t2.

We conclude the example with the statement of the correctness
lemma of cancel, which is the key component of the soundness
proof for compare. We omit the proof here, but it can be found in
our Coq files.

Lemma sound n1 n2 (a1 : ast [] n1) (a2 : ast (ctx of a1) n2) :
cancel (ctx of a2) (term of a1) (term of a2)→
n1 ≤ n2.

In prose, let a1 and a2 be reflections of n1 and n2 respectively,
where the reflection of a1 starts in the empty context, and the
reflection of a2 starts in the variable context returned by a1. Then
running cancel in the final context of a2 over the reflected terms of
a1 and a2 returns true only when it is correct to do so; that is, only
when n1 ≤ n2.

4. Operational Semantics
In this section, we let e, e′ range over CIC terms and t, t′ over Mtac-
tics, i.e., CIC terms of type #A for some type A. The operational
semantics of Mtac defines the judgment form

Γ ` (Σ; t) (Σ′; t′)

where Γ is the typing context containing parameters and (let-
bound) local definitions, while Σ and Σ′ are contexts for unifi-
cation variables ?x. Both kinds of contexts contain both variable
declarations (standing for parameters and uninstantiated unifica-
tion variables, respectively) and definitions (let-bound variables

and instantiated unification variables, respectively).

Γ ::= · | Γ, x : A | Γ, x : A := e

Σ ::= · | Σ, ?x : A | Σ, ?x : A := e

These contexts are needed for weak head reduction of CIC terms
(Γ; Σ ` e

whd
 e′), but also for some of Mtac constructs. Except

where noted, every rule just passes around the contexts, so to avoid
clutter we omit them. We also omit the types, although we assume
that the terms are well-typed in their given contexts and we ensure
that this invariant is maintained throughout execution.

Tactic computation may either (a) terminate successfully return-
ing a term, ret e, (b) terminate by throwing an exception, raise e,
(c) diverge, or (d) get blocked. (We explain the possible reasons for
getting blocked below.) Hence we have the following tactic values:

Definition 1 (Values). v ∈ Values ::= ret e | raise e .

Figure 13 shows our operational semantics. The first rule per-
forms a CIC weak head reduction step. Weak head reduction re-
quires both contexts because, among other things, it will unfold
definitions of variables and unification variables in head position.
For a precise description of Coq’s standard reduction rules, see §4.3
of Coq’s Reference Manual [31].

Next, we have the standard unfolding of Mtac fixpoints. The
next six rules are quite standard and concern the semantics of bind
and mtry: note the symmetry between bind/ret and mtry/raise.

The most complex rule is the next one concerning pattern
matching. It matches the term t with some pattern described in
the list ps. Each element psi of ps is a pair containing a pattern p
and a body b, abstracted over a list of (dependent) variables x : A.
Since patterns are first class citizens in CIC, psi is first reduced to
weak head normal form in order to expose the pattern and the body.
The normalization relation is written whd

 ∗ and, as with the weak
head reduction relation, it requires the two contexts that we omit
for clarity. Then, we replace each variable x with a corresponding
unification variable ?y in p, and proceed to unify the result with
term t. For this, the context Σ is extended with the freshly created
unification variables ?y. After unification is performed, a new uni-
fication variable context is returned that might not only instantiate
the freshly generated unification variables ?y, but may also instan-
tiate previously defined unification variables. (Instantiating such
unification variables is important, for instance, to instantiate the
existentials in the tautology prover example of §3.2). We actually
require that unification unifies all the freshly generated variables, so
that we can safely remove them after substituting them in the body,
thereby avoiding context pollution. Finally, we require that patterns
are tried in sequence, i.e., that the scrutinee, t, should not be unifi-
able with any previous pattern psj . In case no patterns match the
scrutinee, the mmatch is blocked.

The semantics for pattern matching is parametric with respect
to the unification judgment and thus does not rely on any particu-
lar unification algorithm. (Our implementation uses Coq’s standard
unification algorithm.) We observe that our examples, however, im-
plicitly depend on higher-order pattern unification [18]. Higher-
order unification is in general undecidable, but Miller identified a
decidable subset of problems, the pattern fragment, where unifica-
tion variables appear only in equations of the form ?f x1 . . . xn ≈
t, with x1, . . . , xn distinct variables. The ∀ and ∃ cases of the tau-
tology prover (§3.2) fall into this pattern fragment, and their proper
handling depends on higher-order pattern unification.

Another notable aspect of Coq’s unification algorithm is that it
equates terms up to definitional equality. In particular, if a pattern
match at first does not succeed, Coq will take a step of reduction on
the scrutinee, try again, and repeat. Thus, the ordering of two pat-
terns in a mmatch matters, even if it seems the patterns are syn-

9



tactically non-overlapping. Take for instance the search example
in §1.1. If the pattern for concatenation of lists were moved after
the patterns for consing, then the consing patterns would actually
match against (many) concatenations as well, since the concatena-
tion of two lists is often reducible to a term of the form h :: t.

Related to this, the last aspect of Coq’s unification algorithm
that we depend on is its first-order approximation. That is, in the
presence of an equation of the form c t1 . . . tn ≈ c t′1 . . . t′n,
where c is a constant, the unification algorithm tries to equate each
ti ≈ t′i. While this may cause Coq to miss out on some solutions,
it has the benefit of being simple and predictable. For instance,
consider the equation

?l++?r ≈ []++(h :: t)

that might result from matching the list []++(h :: t) with the
pattern for concatenation of lists in the search example from §1.1,
with ?l and ?r fresh unification variables. Here, although there exist
many solutions, the algorithm assigns ?l := [] and ?r := (h :: t),
an assignment that is intuitively easy to explain.

Coming back to the rules, next is the rule for evarA, which
simply extends Σ with a fresh uninstantiated unification variable of
the appropriate type. The two following rules govern is evar e and
check whether an expression (after reduction to weak head normal
form) is an uninstantiated unification variable.

The next two rules define the semantics of the νx binder: the
parameter x is pushed into the context and the execution proceeds
until a value is reached. The computed value is simply returned if it
does not contain the parameter, x; otherwise, νx. v is blocked. The
latter rule is for abstracting over parameters. If the first argument
of abs weak-head reduces to a parameter, then we abstract it from
the second argument of abs, thereby returning a function.

The astute reader may wonder why we decided to have νx and
abs instead of one single constructor combining the semantics of
both. Such a combined constructor would always abstract the pa-
rameter x from the result, therefore avoiding the final check that the
parameter is not free in the result. The reason we decided to keep
nu and abs separate is simple: it is not always desirable to abstract
the parameters in the same order as they were introduced. This is
the case, for instance, in the Mtactic skolemize for skolemizing a
formula (provided in the Mtac distribution). Moreover, sometimes
the parameter is not abstracted at all, for instance in the Mtactic fv
for computing the list of free variables of a term (also provided in
the Mtac distribution).

Coming back to the rules, finally, the last rule replaces a printing
command with the trivial value 〈〉. Informally, we also print out the
string s to the standard output, although standard I/O is not formally
modeled here.

Assuming that unification is sound, we can show that Mtac
reduction is type-preserving.

Theorem 1 (Type preservation). If Γ ` (Σ; t)  (Σ′; t′) and
Γ; Σ ` t : #A, then Γ; Σ′ ` t′ : #A.

As mentioned earlier, Mtactic execution can block. Here, we
define exactly the cases when execution of a term is blocked.

Definition 2 (Blocked terms). A term t is blocked if and only if the
subterm in reduction position satisfies one of the following cases:

• It is not an application of one of the # constructors and it is not
reducible using the standard CIC reduction rules (whd ).

• It is νx. v and x ∈ FV(v).
• It is abs e t and e whd

 ∗ e′ and (e′ : ) /∈ Γ.
• It is mmatch t ps and no pattern in ps unifies with t.

With this definition, we can then also establish a standard type
safety theorem for Mtac.

Theorem 2 (Type safety). Whenever Γ; Σ ` t : #A, then either
t is a value, or t is blocked, or there exist t′ and Σ′ such that
Γ ` (Σ; t) (Σ′; t′) and Γ; Σ′ ` t′ : #A .

Example: We show the trace of a simple example to get a grasp
of the operational semantics. In this example, Γ = {h : nat}.

let s := (h :: [])++[] in search h s

We want to show that the final term produced by running this
Mtactic expresses the fact that h was found at the head of the list
on the left of the concatenation, that is,

in or app (h :: []) [] (or introl (in eq h []))

First, the let is expanded, obtaining

search h ((h :: [])++[])

Then, after expanding the definition of search and β-reducing the
term, we are left with the fixpoint being applied to the list:

(mfix f [s : list A] := . . .) ((h :: [])++[])

At this point the rule for mfix triggers, exposing the mmatch:

mmatch ((h :: [])++[]) with . . . end

Thanks to first-order approximation, the case for append is unified,
and its body is executed:

mtry il ← f (h :: []); ret . . . with ⇒ . . . end (1)

where f stands for the fixpoint. The rule for mtry executes the code
for searching for the element in the sublist (h :: []):

il ← f (h :: []); ret (in or app (h :: []) [] h (or introl il)) (2)

The bind rule triggers, after which the fixpoint is expanded and a
new mmatch exposed:

mmatch (h :: []) with . . . end

This time, the rule for append fails to unify, but the second case
succeeds, returning the result in eq h []. Coming back to (2), il is
replaced with this result, getting the expected final result that is in
turn returned by the mtry of (1).

As a last remark, notice how at each step the selected rule is the
only applicable one: the semantics of Mtac is deterministic.

5. Implementation
This section presents a high-level overview of the architecture of
our Mtac extension to Coq, explaining our approach for guarantee-
ing soundness even in the possible presence of bugs in our Mtac
implementation.

The main idea we leverage in integrating Mtac into Coq is that
Coq distinguishes between fully and partially type-annotated proof
terms: Coq’s type inference (or elaboration) algorithm transforms
partially annotated terms into fully annotated ones, which are then
fed to Coq’s kernel type checker. In this respect Coq follows the
typical architecture of interactive theorem provers, ensuring that all
proofs are ultimately certified by a small trusted kernel. Assuming
that the kernel is correct, no code outside this kernel may generate
incorrect proofs. Thus, our Mtac implementation modifies only the
elaborator lying outside of Coq’s kernel, and leaves the kernel type
checker untouched.

Extending Elaboration. The typing judgment used by Coq’s
elaboration algorithm [24, 25] takes a partially type-annotated
term e, a local context Γ, a unification variable context Σ, and
an optional expected typeB, and returns its typeA, and produces a
fully annotated term e′, and updated unification variable context Σ′.

Γ; Σ `B e ↪→ e′ : A . Σ′
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If an expected type B, is provided, then the returned type A will
be convertible to it, possibly instantiating any unification variables
appearing in both A and B. The elaboration judgment serves three
main purposes that the kernel typing judgment does not support:

1. To resolve implicit arguments. We have already seen several
cases where this is useful (e.g., in §1.1), allowing us to write
underscores and let Coq’s unification mechanism replace them
with the appropriate terms.

2. To insert appropriate coercions. For example, Ssreflect [10]
defines the coercion is true : bool→ Prop := (λb. b = true).
So whenever a term of type Prop is expected and a term b of
type bool is encountered, elaboration will insert the coercion,
thereby returning the term is true b having type Prop.

3. To perform canonical structure and type class resolution. Am-
ple examples of canonical structures can be found in Gonthier
et al. [11]. A type class example will be shown towards the end
of this section.

We simply extend the elaboration mechanism to perform a
fourth task, namely to run Mtactics. We achieve this by adding
the following rule for handling run t terms:

Γ; Σ `#B t ↪→ t′ : #A . Σ′ Γ ` (Σ′; t′) ∗ (Σ′′; ret e)

Γ; Σ `B run t ↪→ e : A . Σ′′

This rule first recursively type-checks the tactic body, while also
unifying the return typeA of the tactic with the expected goalB (if
present). This results in the refinement of t to a new term t′, which
is then executed. If execution terminates successfully returning a
value e (which from Theorem 2 will have type A), then that value
is returned. Therefore, as a result of elaboration, all run t terms are
replaced by the terms produced when running them, and thus the
kernel type checker does not need to be modified in any way.

Elaboration and the apply Tactic. We have just seen how the
elaborator coerces the return type A of an Mtactic to be equivalent
to the goal B, but we did not stipulate in what situations the
knowledge of B is available. Our examples so far assumed B was
given, and this was indeed the case thanks to the specific ways we
invoked Mtac. For instance, at the end of §1.1 we proved a lemma
by direct definition—i.e., providing the proof term directly—and in
§3.1 we proved the goal by calling the Ssreflect tactic apply: (note
the colon!). In both these situations, we were conveniently relying
on the fact that Coq passed the knowledge of the goal being proven
into the elaboration of run.

Unfortunately, not every tactic does this. In particular, the
standard Coq tactic apply (without colon) does not provide the
elaborator with the goal as expected type, so if we had written
apply (run (F )), the Mtactic F would have been executed on
unknown parameters, resulting in a different behavior from what
we expect. (Specifically, it would have unified the implicits with
the first two pointers appearing in the heap, succeeding only if,
luckily, these are the pointers in the goal.)

To ensure that information about the goal is available when run-
ning Mtactics, we recommend installing Ssreflect [10]. However,
we note that using the standard Coq tactic refine instead of apply
also works.

One last point about tactics: Mtac is intended as a typed alter-
native to Ltac for developing custom automation routines, and it is
neither intended to replace the built-in tactics (like apply) nor to
subsume all uses of existing Coq tactics. For example, the OCaml
tactic vm compute enables dramatic efficiency gains for reflection-
based proofs [12], but its performance depends critically on being
compiled. Mtac is interpreted, and it is not clear how it could be
compiled, given the interaction between Mtac and Coq unification.

01 Class runner A (f : #A) := { eval : A }.
02
03 Hint Extern 20 (runner ?f) ⇒
04 (exact (Build runner f (run f)))
05 : typeclass instances.

Figure 14. Type class for delayed execution of Mtactics.

Delaying Execution of Mtactics for Rewriting. Consider the
goal from §3.1, after doing pose F := run (noalias D), unfolding
the implicit is true coercions for clarity:

D : def (h1 • (x1 7→ v1 • x2 7→ v2) • (h2 • x3 7→ v3))
F : ∀x y. #((x != y) = true)

(x1 != x2) = true ∧ (x2 != x3) = true

Previously we solved this goal by applying the Mtactic F twice
to the two subgoals x1 != x2 and x2 != x3. An alternative way in
which a Coq programmer would hope to solve this goal is by using
Coq’s built-in rewrite tactic. rewrite enables one to apply a lemma
one or more times to reduce various subterms of the current goal.
In particular, we intuitively ought to be able to solve the goal in this
case by invoking rewrite !(run (F )), where the ! means that the
Mtactic F should be applied repeatedly to solve any and all pointer
inequalities in the goal. Unfortunately, however, this does not work,
because—like Coq’s apply tactic—rewrite typechecks its argument
without knowledge of the expected type from the goal, and only
later unifies the result with the subterms in the goal. Consequently,
just as with apply, F gets run prematurely.

Fortunately, we can circumvent this problem, using a cute trick
based on Coq’s type class resolution mechanism.

Type classes are an advanced Coq feature similar to canonical
structures, with the crucial difference that their resolution is trig-
gered by proof search after elaboration [28]. We exploit this func-
tionality in Figure 14, by defining the class runner, which is param-
eterized over an Mtactic f with return type A and provides a value,
eval, of the same type. We then declare a Hint instructing the type
class resolution mechanism how to build an instance of the runner
class, which is precisely by running f .

The details of this implementation are a bit of black magic, and
beyond the scope of this paper to explain fully. But intuitively,
all that is going on is that eval is delaying the execution of its
Mtactic argument until type class resolution time, at which point
information about the goal to be proven is available.

Returning to our example, we can now use the following script:

rewrite !(eval (F )) .

This will convert the goal to is true true ∧ is true true, which is
trivially solvable.

In fact, with eval we can even employ the standard apply tactic,
with the caveat that eval creates slightly bigger proof terms, as the
final proof term will also contain the unevaluated Mtactic inside it.

A Word about Exceptions In ML, exceptions have type exn and
their constructors are created via the keyword exception, as in

exception MyException of string

Porting this model into Coq is difficult as it is not possible to define
a type without simultaneously defining its constructors. Instead,
we opted for a simple yet flexible approach. We define the type
Exception as isomorphic to the unit type, and to distinguish each
exception we create them as opaque, that is, irreducible. Figure 15
shows how to create two exceptions, the first one parameterized
over a string. What is crucial is the sealing of the definition with
Qed, signaling to Coq that this definition is opaque. The example
test ex illustrates the catching of different exceptions.
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01 Definition MyException (s : string) : Exception.
02 exact exception.
03 Qed.
04
05 Definition AnotherException : Exception.
06 exact exception.
07 Qed.
08
09 Definition test ex e :=
10 mtry (raise e) with
11 | AnotherException ⇒ ret ””
12 | MyException ”hello” ⇒ ret ”world”
13 | [s] MyException s ⇒ ret s
14 end.

Figure 15. Exceptions in Mtac.

6. Related Work
Languages for Typechecked Tactics. In the last five years there
has been increasing interest in languages that support safe tactics to
manipulate proof terms of dependently typed logics. Delphin [23],
Beluga [21, 22, 4], and VeriML [29, 30] are languages that, like
Mtac, fall into this category. By “safe” we mean that, if the execu-
tion of a tactic terminates, then the resulting proof term has the type
specified by the tactic.

But, unlike Mtac, these prior systems employ a strict separation
of languages: the computational language (the language used to
write tactics) is completely different from the logical language (the
language of proofs), making the meta-theory heavier than in Mtac.
Indeed, our proof of type safety is completely straightforward, as it
inherits from CIC all the relevant properties such as type preserva-
tion under substitution. Having a simple meta-theory is particularly
important to avoid precluding future language extensions—indeed,
extensions of the previous systems have often required a reworking
of their meta-theory [30, 4].

Another difference between these languages and Mtac is the
logical language they support. For Delphin and Beluga it is LF [13],
for VeriML it is λHOL [1], and for Mtac it is CIC [2]. CIC is
the only one among these that provides support for computation at
the term and type level, thereby enabling proofs by reflection (e.g.,
see §3.3). Instead, in previous systems term reduction must be wit-
nessed explicitly in proofs. To work around this, VeriML’s compu-
tational language includes a construct letstatic that allows one to
stage the execution of tactics, so as to enable equational reasoning
at typechecking time. Then, proofs of (in-)equalities obtained from
tactics can be directly injected in proof terms generated by tactics.
This is similar to our use of run in the example from §3.3, with the
caveat that letstatic cannot be used within definitions, as we did in
the inner prod example, but rather only inside tactics.

In Beluga and VeriML the representation of objects of the logic
in the computational language is based on Contextual Modal Type
Theory [20]. Therefore, every object is annotated with the context
in which it is immersed. For instance, a term t depending only in
the variable x is written in Beluga as [x. t], and the typechecker
enforces that t has only x free. In Mtac, it is only possible to
perform this check dynamically, writing an Mtactic to inspect a
term and rule out free variables not appearing in the set of allowed
variables (the interested reader may find an example of this Mtactic
in the Mtac distribution). On the other hand, the syntax of the
language and the meta-theory required to account for contextual
objects are significantly heavier than those of Mtac.

Delphin shares with Mtac the νx : A binder from [26, 19]. In
Delphin, the variable x introduced by this binder is distinguished
with the type A#, in order to statically rule out offending terms
like νx : A. ret x. In Mtac, instead, this check gets performed

01 Structure tagged heap := Tag {untag :> heap}.
02 Definition default tag := Tag.
03 Definition ptr tag := default tag.
04 Canonical Structure union tag h := ptr tag h.
05
06 Structure form (s : list ptr) := Form {
07 heap of :> tagged heap;
08 : def heap of → uniq s ∧
09 ∀ x. x ∈ s → x ∈ dom heap of}.
10
11 Canonical Structure union form s1 s2 h1 h2 :=
12 Form (s1 ++ s2) (union tag (h1 • h2)) ...
13
14 Canonical Structure ptr form A x (v : A) :=
15 Form [:: x] (ptr tag (x 7→ v)) ...
16
17 Canonical Structure default form h :=
18 Form [::] (default tag h) ...

Figure 16. Scan tactic in lemma overloading style.

dynamically. Yet again, we see a tension between the simplicity of
the meta-theory and the static guarantees provided by the system.
In Mtac we favor the former.

From all these systems, VeriML is the only system that provides
ML-style references at the computational level. References are
useful for writing efficient tactics. For instance, Stampoulis and
Shao [29] first present a tautology prover similar to the one in
§3.2, with a linear list lookup function. Then, they replace the
list of hypotheses with a hash table to efficiently store and lookup
hypotheses. In our implementation of Mtac, we have begun to look
into this, and the interested reader can find in the Mtac distribution
a similar optimized version of the tautology prover, but we have yet
to work out its meta-theory.

Finally, a key difference between Mtac and all the aforemen-
tioned systems is the ability to program Mtactics interactively, as
shown at the end of §3.1. None of the prior systems supports this.

Proof Automation Through Lemma Overloading. At heart, one
of the key ideas of Mtac is to get tactic execution to be performed by
Coq’s type inference engine. In that sense, Mtac is closely related
to (and indeed was inspired by) Gonthier et al.’s work on lemma
overloading using canonical structures [11].

However, as explained in the introduction, whereas Mtac sup-
ports a functional style of programming, the style of programming
imposed by lemma overloading is that of (dependently-typed) logic
programming. For instance, Figure 16 shows the scan algorithm
from §3.1 rewritten using canonical structures. Without going into
detail, the structure (a.k.a. record) form in line 9 is the backbone of
the tactic. The (tagged) heap heap of is the input to the algorithm,
and the list of pointers s and the (unnamed) axiom are the output of
the algorithm. The “tagging” of the heap (lines 1 to 4) is required
in order to specify an order in which the canonical instance decla-
rations in lines 13 to 20 (much like type class instances in Haskell)
should be considered during canonical instance resolution.

The reason for using a parameter of the structure (s) to represent
one of the outputs of the algorithm is tricky to explain. More gener-
ally, knowing where to place the inputs and outputs of overloaded
lemmas, and how to compose them together effectively, requires
deep knowledge of the unification algorithm of Coq. In fact, the ma-
jor technical contribution of Gonthier et al.’s paper [11] is the de-
velopment of a set of common “design patterns” to help in dealing
with these issues. For instance, in order to encode the noalias tac-
tic as a composition of several overloaded lemmas, Gonthier et al.
employ a rather sophisticated “parametrized tagging” pattern for
reordering of unification subproblems.
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In contrast, the Mtac encoding of noalias is entirely straight-
forward functional programming. Admittedly, the operational se-
mantics of Mtac’s mmatch construct is also tied to the unification
algorithm of Coq, and the lack of a clear specification of this algo-
rithm is an issue we hope to tackle in the near future. But, crucially,
the high-level control flow of Mtactics is easy to understand without
a detailed knowledge of Coq unification.

That said, there are some idioms that canonical structures sup-
port but Mtactics do not. In particular, their logic programming
style makes them openly extensible (as with Haskell type classes,
new instances can be added at any time), whereas Mtactics are
closed to extension. It also enables them to be applied in both back-
ward and forward reasoning, whereas Mtactics are unidirectional.

Simulable Monads. Claret et al. [7] present Cybele, a framework
for building more flexible proofs by reflection in Coq. Like Mtac,
it provides a monad to build effectful computations, although these
effects are compiled and executed in OCaml. Upon success, the
OCaml code creates a prophecy that is injected back into Coq to
simulate the effects in pure CIC. On the one hand, since the effects
Cybele supports must be replayable inside CIC, it does not provide
meta-programming features like Mtac’s mmatch, nu, abs, and
evar, which we use heavily in our examples. On the other hand,
for the kinds of effectful computations Cybele supports, the proof
terms it generates ought to be smaller than those Mtac generates,
since Cybele enforces the use of proof by reflection. The two
systems thus offer complementary benefits, and can in principle be
used in tandem.
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[23] A. Poswolsky and C. Schürmann. System description: Delphin – a
functional programming language for deductive systems. ENTCS,
228:113–120, 2009.

[24] C. Sacerdoti Coen. Mathematical Knowledge Management and Inter-
active Theorem Proving. PhD thesis, University of Bologna, 2004.

[25] A. Saı̈bi. Typing algorithm in type theory with inheritance. In POPL
1997. ACM, 1997.
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