
Focusing on Refinement Typing

DIMITRIOS J. ECONOMOU, Queen’s University, Canada
NEEL KRISHNASWAMI, University of Cambridge, United Kingdom

JANA DUNFIELD, Queen’s University, Canada

We present a logically principled foundation for systematizing, in a way that works with any computational

effect and evaluation order, SMT constraint generation seen in refinement type systems for functional pro-

gramming languages. By carefully combining a focalized variant of call-by-push-value, bidirectional typing,

and our novel technique of value-determined indexes, our system generates solvable SMT constraints without

existential (unification) variables. We design a polarized subtyping relation allowing us to prove our logically

focused typing algorithm is sound, complete, and decidable. We prove type soundness of our declarative system

with respect to an elementary domain-theoretic denotational semantics. Type soundness implies, relatively

simply, the total correctness and logical consistency of our system. The relative ease with which we obtain

both algorithmic and semantic results ultimately stems from the proof-theoretic technique of focalization.

CCS Concepts: • Theory of computation→ Type theory; Type structures; Denotational semantics;
Program reasoning; Proof theory; • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: refinement types, bidirectional typechecking, polarity, call-by-push-value

1 INTRODUCTION
True, “well-typed programs cannot ‘go wrong’ ” [Milner 1978], but only relative to a given semantics

(if the type system is proven sound with respect to it). Unfortunately, well-typed programs go

wrong, in many ways that matter, but about which a conventional type system cannot speak:

divisions by zero, out-of-bounds array accesses, information leaks. To prove a type system rules

out (at compile time) more run-time errors, its semantics must be refined. However, there is often

not enough type structure with which to express such semantics statically. So, we must refine our

types with more information that tends to be related to programs. Great care is needed, though,

because incorporating too much information (such as nonterminating programs themselves, as

may happen in a dependent type system, where program terms may appear in types) can spoil

good properties of the type system, like type soundness or the decidability of type checking and

inference.

Consider the inductive type List 𝐴 of lists with entries of type 𝐴. Such a list is either nil ([]) or
a term 𝑥 of type 𝐴 together with a tail list xs (that is, 𝑥 :: xs). In a typed functional language like

Haskell or OCaml, the programmer can define such a type by specifying its constructors:

data List 𝐴 where
[] : List 𝐴
(::) : 𝐴 → List 𝐴 → List 𝐴

Authors’ addresses: Dimitrios J. Economou, Queen’s University, Goodwin Hall 557, Kingston, ON, K7L 3N6, Canada,

d.economou@queensu.ca; Neel Krishnaswami, University of Cambridge, Computer Laboratory, William Gates Building,

Cambridge, CB3 0FD, United Kingdom, nk480@cl.cam.ac.uk; Jana Dunfield, Queen’s University, Goodwin Hall 557, Kingston,

ON, K7L 3N6, Canada, jd169@queensu.ca.

2023. 0164-0925/2023/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0001-7920-744X
HTTPS://ORCID.ORG/0000-0003-2838-5865
HTTPS://ORCID.ORG/0000-0002-3718-3395
https://orcid.org/0000-0001-7920-744X
https://orcid.org/0000-0003-2838-5865
https://orcid.org/0000-0002-3718-3395
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Suppose we define, by pattern matching, the function get, that takes a list xs and a natural number

𝑦, and returns the 𝑦th element of xs (where the first element is numbered zero):

get [] 𝑦 = error “Out of bounds”
get (x :: xs) zero = x
get (𝑥 :: xs) (succ 𝑦) = get xs 𝑦

A conventional type system has no issue checking get against, say, the type List 𝐴 → Nat → 𝐴

(for any type 𝐴), but get is unsafe because it throws an out-of-bounds error when the input number

is greater than or equal to the length of the input list. If it should be impossible for get to throw

such an error, then get must have a type where the input number is restricted to natural numbers

strictly less than the length of the input list. Ideally, the programmer would simply refine the type

of get, while leaving the program alone (except, perhaps, for omitting the first clause).

This, in contrast to dependent types [Martin-Löf 1984], is the chief aim of refinement types
[Freeman and Pfenning 1991]: to increase the expressive power of a pre-existing (unrefined) type

system, while keeping the latter’s good properties, like type soundness and, especially, decidability

of typing, so that programmers are not too burdened with refactoring their code or manually

providing tedious proofs. In other words, the point of refinement types is to increase the expressive

power of a given type system while maintaining high automation (of typing for normal programs),

whereas the point of dependent types is to be maximally expressive (even with the ambitious aim

of expressing all mathematics), at the cost of automation (which dependent type system designers

may try to increase after the fact of high expressivity).

To refine get’s type so as to rule out, statically, run-time out-of-bounds errors, we need to compare

numbers against list lengths. Thus, we refine the type of lists by their length: {𝜈 : List 𝐴 | len 𝜈 = 𝑛},
the type of lists 𝜈 of length 𝑛. This type looks a bit worrying, though, because the measurement,

len 𝜈 = 𝑛, seems to use a recursive program, len. The structurally recursive

len [] = 0

len (𝑥 :: xs) = 1 + len xs

happens to terminate when applied to lists, but there is no general algorithm for deciding whether

an arbitrary computation terminates [Turing 1936]. As such, we would prefer not to use ordinary

recursive programs at all in our type refinements. Indeed, doing so would seem to violate a phase

distinction
1
[Moggi 1989a; Harper et al. 1990] between static (compile time) specification and

dynamic (run time) program, which is almost indispensable for decidable typing.
The refinement type system Dependent ML (DML) [Xi 1998] provides a phase distinction in

refining ML by an index domain which has no run-time content.
2
Type checking and inference

in DML is only decidable when it generates constraints whose satisfiability is decidable. In prac-

tice, DML did generate decidable constraints, but that was not guaranteed by its design. DML’s

distinction between indexes and programs allows it to support refinement types in the presence of

computational effects (such as nontermination, exceptions, and mutable references) in a relatively

straightforward manner. Further, the index-program distinction clarifies how to give a denotational

semantics: a refinement type denotes a subset of what the type’s erasure (of indexes) denotes and a

program denotes precisely what its erasure denotes [Melliès and Zeilberger 2015]. Dependent type

systems, by contrast, do not have such an erasure semantics.

1
A language has a phase distinction if it can distinguish aspects that are relevant at run time from those that are relevant

only at compile time.

2
In today’s context, “Refinement ML” might seem a more appropriate name than Dependent ML. But when DML was

invented, “refinement types” referred to datasort refinement systems; the abstract of Xi [1998] describes DML as “another

attempt towards refining. . . type systems . . . , following the step of refinement types (Freeman and Pfenning 1991).”

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :3

It seems liquid type systems [Rondon et al. 2008; Kawaguchi et al. 2009; Vazou et al. 2013, 2014]

achieve highly expressive, yet sound and decidable recursive refinements [Kawaguchi et al. 2009] of
inductive types by a kind of phase distinction: namely, by restricting the recursive predicates of

specifications to terminating measures (like len) that soundly characterize, in a theory decidable

by off-the-shelf tools like SMT solvers, the static structure of inductive types. Unlike DML, liquid

typing can, for example, use the measure of whether a list of natural numbers is in increasing

order, while remaining decidable. However, liquid typing’s lack of index-program distinction makes

it unclear how to give it a denotational semantics, and has also led to subtleties involving the

interaction between effects and evaluation strategy (we elaborate later in this section and Sec. 2).

Vazou et al. [2014] appear to provide a denotational semantics in Section 3.3, but this is not really

a denotational semantics in the sense we intend, because it is defined in terms of an operational

semantics and not a separate and well-established mathematical model (such as domain theory).

Let’s return to the get example. Following the tradition of index refinement [Xi 1998], we

maintain a phase distinction by syntactically distinguishing index terms, which can safely appear

in types, from program terms, which cannot. In this approach, we want to check get against a more

informative type

∀𝑙 : N. {𝜈 : List 𝐴 | len 𝜈 = 𝑙}︸ ︷︷ ︸
List(𝐴) (𝑙)

→ {𝜈 : Nat | 𝜈 < 𝑙} → 𝐴

quantifying over indexes 𝑙 of sort N (natural numbers) and requiring the accessing number to be

less than 𝑙 . However, this type isn’t quite right, because Nat is a type and N is a sort, so writing

“𝜈 < 𝑙” confounds our phase distinction between programs and indexes. Instead, the type should

look more like

∀𝑙 : N. {𝜈 : List 𝐴 | len 𝜈 = 𝑙} → {𝜈 : Nat | index 𝜈 < 𝑙} → 𝐴

where

index zero = 0

index (succ 𝑦) = 1 + index 𝑦
computes the index term of sort N that corresponds to a program term of type Nat, by a structural

recursion homologous to that of len. The third clause of get has a nonempty list as input, so its

index (length) must be 1 +𝑚 for some𝑚; the type checker assumes index (succ𝑦) < 1 +𝑚; by the

aforementioned homology, these constraints are again satisfied at the recursive call (index𝑦 < 𝑚),

until the second clause returns (0 < 1+𝑚′
). The first clause of get is impossible, because no natural

number is less than zero. We can therefore safely remove this clause, or (equivalently) replace error
with unreachable, which checks against any type under a logically inconsistent context, such as

𝑙 : N, 𝑛 : N, 𝑙 = 0, 𝑛 < 𝑙 in this case.

get : ∀𝑙, 𝑛 : N. {𝜈 : List 𝐴 | len 𝜈 = 𝑙} → {𝜈 : Nat | index 𝜈 = 𝑛} ∧ (𝑛 < 𝑙) → 𝐴

get [] 𝑦 = unreachable -- 𝑙 = 0 and 𝑛 : N so 𝑛 ≮ 𝑙

get (x :: xs) zero = x
get (𝑥 :: xs) (succ 𝑦) = get xs 𝑦

Applying get to a list and a number determines the indexes 𝑙 and 𝑛. We say that 𝑙 and 𝑛 are

value-determined (here by applying the function to values). If (perhaps in a recursive call) get is
called with an empty list [] and a natural number, then 𝑙 is determined to be 0, and since no index

that is both negative and a natural number exists, no out-of-bounds error can arise by calling get.
(Further, because 𝑙 : N strictly decreases at recursive calls, calling get terminates.)

While this kind of reasoning about get’s type refinement may seem straightforward, how do we

generalize it to recursion over any algebraic datatype (ADT)? What are its logical and semantic

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:4 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

ingredients? How do we use these ingredients to concoct a type system with decidable typing,

good (localized) error messages and so on, while also keeping its metatheory relatively stable or

maintainable under various extensions or different evaluation strategies?

Type systems that can do this kind of reasoning automatically, especially in a way that can

handle any evaluation strategy, are hard to design correctly. Indeed, the techniques used in the

original (call-by-value) liquid type system(s) [Rondon et al. 2008; Kawaguchi et al. 2009] had to be

modified for Haskell, essentially because of Haskell’s call-by-name evaluation order [Vazou et al.

2014]. The basic issue was that binders can bind in (static) refinement predicates, which is fine

when binders only bind values (as in call-by-value), but not when they bind computations which

may not terminate (as in call-by-name). Liquid Haskell regained (operational) type soundness by

introducing ad hoc restrictions that involve approximating whether binders terminate, and using

the refinement logic to verify termination.

We design a foundation on which to build liquid typing features that allows us to establish

clear (semantic) soundness results, as well as the completeness of a decidable bidirectional typing

algorithm. The main technique facilitating this is focusing, which we combine with bidirectional

typing and value-determined indexes (the latter being a key ingredient to make measures work).

In other words, this paper is a first step toward reconciling DML and Liquid Haskell, using the

proof-theoretic technique of focusing.

Andreoli [1992] introduced focusing to reduce the search space for proofs (programs) of logical

formulas (types), by exploiting the property that some inference rules are invertible (the rule’s

conclusion implies its premises). In relation to functional programming, focusing has been used,

for example, to explain features such as pattern matching [Krishnaswami 2009], to explain the

interaction between evaluation order and effects [Zeilberger 2009], and to reason about contextual

program equivalence [Rioux and Zdancewic 2020]. Focusing has been applied to design a union

and intersection refinement typing algorithm [Zeilberger 2009]. As far as we know, until now

focusing has not been used to design an index refinement typing algorithm. By focusing on the

typing of function argument lists and results, our focused system guarantees that value-determined

existential indexes (unification variables) are solved before passing constraints to an SMT solver.

For example, when our system infers a type for get([3, 1, 2], 2), we first use the top-level annotation
of get to synthesize the type

↓ (∀𝑙, 𝑛 : N. {𝜈 : List 𝐴 | len 𝜈 = 𝑙} → {𝜈 : Nat | index 𝜈 = 𝑛} ∧ (𝑛 < 𝑙) → ↑𝐴)

(in which we have added polarity shifts ↓− and ↑− arising from focusing). The downshift ↓− takes

a negative type to a positive type of suspended computations. Second, we check the argument list

([3, 1, 2], 2) against the negative (universally quantified) type. The upshift ↑− takes a positive type

𝐴 to negative type ↑𝐴 (computations returning a value of type 𝐴). In typechecking the argument

list, the upshift signifies the end of a (left) focusing stage, at which point the first argument value

[3, 1, 2] will have determined 𝑙 to be 3 and the second argument value 2 will have determined 𝑛 to

be 2, outputting an SMT constraint without existentials: 2 < 3.

Levy [2004] introduced the paradigm and calculus call-by-push-value (CBPV) which puts both

call-by-name and call-by-value on equal footing in the storm of computational effects (such as

nontermination). CBPV subsumes both call-by-name (CBN) and call-by-value (CBV) functional

languages, because it allows us to encode both via type discipline. In particular, CBPV polarizes

types into (positive) value types 𝑃 and (negative) computation types 𝑁 , and provides polarity shifts

↑𝑃 (negative) and ↓𝑁 (positive); the monads functional programmers use to manage effects arise

as the composite ↓↑−. These polarity shifts are the same as those arising from focusing. CBPV

can be derived logically by way of focalization [Espírito Santo 2017], which we did in our system.

Focalized CBPV is a good foundation for a refinement typing algorithm: designing refinement

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :5

typing algorithms is challenging and sensitive to effects and evaluation strategy, so it helps to

refine a language that makes evaluation order explicit. We leverage focusing and our technique of

value-determined indexes (a novelty in the DML tradition) to guarantee (like Liquid Haskell) the

generation of SMT-solvable constraints.

Bidirectional typing [Pierce and Turner 2000] systematizes the difference between input (for

example, type checking) and output (for example, type inference), and seems to fit nicely with

focused systems [Dunfield and Krishnaswami 2021]. Bidirectional typing has its own practical

virtues: it is easy to implement (if inputs and outputs fit together properly, that is, if the system

is well-moded); it scales well (to refinement types, higher-rank polymorphism [Dunfield and

Krishnaswami 2019], subtyping, effects—and so does CBPV); it leads to localized error messages;

and it clarifies where type annotations are needed, typically in reasonable positions (such as at

the top level) that are helpful as machine-checked documentation. In our system, annotations are

needed only for recursive functions (to express termination refinements) and top-level definitions.

A focused and bidirectional approach therefore appears suitable, both theoretically and practically,

for systematically designing and implementing an expressive language of type refinement that can

handle any evaluation strategy and effect. We show that bidirectional typing and logical focusing

work very well together at managing the complex flow of information pertaining to indexes of

recursive data. In particular, value-determined existential indexes of input types are solved within

focusing stages, ultimately leading to the output of constraints (and types) in the quantifier-free

fragment solvable by SMT solvers.

Contributions. Our two key contributions are both a declarative/logical/semantic and an algorith-

mic account of recursive, index-based refinement of algebraic data types. For the logical account,

we design a declarative type system in a bidirectional and focused style, resulting in a system with

clear denotational semantics and soundness proofs, and which is convenient for type theorists

of programming languages. The declarative system conjures index solutions to existentials. For

the algorithmic account, we design a type system similar to the declarative one but solving all

existentials, and prove it is decidable, as well as sound and complete. We contribute:

• A polarized declarative type system, including (polarized) subtyping, universal types, existen-

tial types, and index refinements with ordinary SMT constraints, as well as (nullary) recursive

predicates on inductive data (which in ongoing work we are extending to multi-argument

measures, which can express, for example, lists of increasing integer elements).

• A proof that declarative typing is stable under substitution, which requires proving, among

other things, that subtyping is transitive and typing subsumption is admissible.

• A clear denotational semantics of the declarative system, based on elementary domain theory.

• A type soundness proof with respect to our denotational semantics, which implies, relatively

easily, both the refinement system’s logical consistency and total correctness—even if the

programs are non-structurally recursive. To prove type soundness, we prove that value-

determined indexes are sound: that is, semantic values uniquely determine value-determined

indexes, semantically speaking (in particular, see Lemma 5.4).

• A polarized subtyping algorithm, together with proofs that it is sound, complete and decidable.

• A polarized typing algorithm, together with proofs that it is sound, complete and decidable.

Completeness relies on the combination of our novel technique of value-determined indexes,

focusing, and bidirectional typing. In particular, Lemma 7.7 implies that all existential variables

are solved by the algorithm.

We relatively easily obtain both semantic and algorithmic results for a realistic language essentially

by applying just one technique (based on fundamental logical principles): focusing.

All proofs are in the appendix.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:6 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

2 OVERVIEW
This paper is a first step toward reconciling Dependent ML and Liquid Haskell. The main thing we

get from DML is the index-program distinction. Liquid Haskell provides or inspires three things.

First, the observation of difficulties with effects and evaluation order inspired our use of CBPV.

Second, we study (nullary) measures (supporting multi-argument measures is ongoing work). Third,

our technique of value-determined indexes was inspired by the observation that variables appearing

in liquid refinements correspond to inputs or outputs of functions.

Before diving into the details of our type system, we give an overview of the central logical,

semantic, and algorithmic issues informing its design. The main technique we use to easily support

both semantic and algorithmic results is focalization.

Refinement typing, evaluation strategy, and computational effects. The interactions between re-

finement typing (and other fancy typing), evaluation strategy, and computational effects are a

source of peril. The combination of parametric polymorphism with effects is often unsound [Harper

and Lillibridge 1991]; the value restriction in Standard ML recovers soundness in the presence of

mutable references by restricting polymorphic generalization to syntactic values [Wright 1995].

The issue was also not peculiar to polymorphism: Davies and Pfenning [2000] discovered that a

similar value restriction recovers type soundness for intersection refinement types and effects in

call-by-value languages. For union types, Dunfield and Pfenning [2003] obtained soundness by an

evaluation context restriction on union elimination.

For similar reasons, Liquid Haskell was also found unsound in practice, and had to be patched;

we adapt an example [Vazou et al. 2014] demonstrating the discovered unsoundness:

diverge :: Nat -> {v:Int | false}
diverge x = diverge x

safediv :: n:Nat -> {d:Nat | 0 < d} -> {v:Nat | v <= n}
safediv n d = if 0 < d then n / d else error "unreachable"

unsafe :: Nat -> Int
unsafe x = let notused = diverge 1 in let y = 0 in safediv x y

In typechecking unsafe, we need to check that the type of y (a singleton type of one value: 0) is

a subtype of safediv’s second argument type (under the context of the let-binding). Due to the

refinement of the let-bound notused, this subtyping generates a constraint or verification condition
of the form “if false is true, then. . . ”. This constraint holds vacuously, implying that unsafe is safe.

But unsafe really is unsafe because Haskell evaluates lazily: since notused is not used, diverge
is never called, and hence safediv divides by zero (and crashes if uncaught). Vazou et al. [2014]

recover type soundness and decidable typing by restricting let-binding and subtyping, using an

operational semantics to approximate whether or not expressions diverge, and whether or not

terminating terms terminate to a finite value.
The value and evaluation context restrictions seem like ad hoc ways to cope with the failure of

simple typing rules to deal with the interactions between effects and evaluation strategy. However,

Zeilberger [2009] explains the value and evaluation context restrictions in terms of a logical view of

refinement typing. Not only does this perspective explain these restrictions, it provides theoretical

tools for designing type systems for functional languages with effects. At the heart of Zeilberger’s

approach is the proof-theoretic technique of focusing, which we discuss near the end of this overview.
An important question we address is whether polarization and focusing can also help us understand

Liquid Haskell’s restrictions on let-binding and subtyping: basically, our let-binding rule requires

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :7

the bound computation (negative type) to terminate to a value (positive type). In other words,

focalized systems satisfy any necessary value (and covalue) restrictions by default. We discuss this

further in Sec. 8.

Focalization can also yield systems with good semantic properties under computational effects,

in particular, variants of call-by-push-value.

Refining call-by-push-value. Call-by-push-value [Levy 2004] subsumes both call-by-value and

call-by-name by polarizing the usual terms and types of the 𝜆-calculus into a finer structure that

can be used to encode both evaluation strategies in a way that can accommodate computational

effects: value (or positive) types (classifying terms which “are”, that is, values 𝑣), computation (or

negative) types (classifying terms which “do”, that is, expressions 𝑒), and polarity shifts ↑− and ↓−
between them. An upshift ↑𝑃 lifts a (positive) value type 𝑃 up to a (negative) computation type

of expressions that compute values (of type 𝑃). A downshift ↓𝑁 pushes a (negative) computation

type 𝑁 down into a (positive) value type of thunked or suspended computations (of type 𝑁). We

can embed the usual 𝜆-calculus function type 𝐴 →𝜆 𝐵 (written with a subscript to distinguish

it from the CBPV function type), for example, into CBPV (whose function types have the form

𝑃 → 𝑁 for positive 𝑃 and negative 𝑁) so that it behaves like CBV, via the translation 𝜄CBV with

𝜄CBV (𝐴 →𝜆 𝐵) = ↓ (𝜄CBV (𝐴) → ↑𝜄CBV (𝐵)); or so that it behaves like CBN, via the translation 𝜄CBN
with 𝜄CBN (𝐴 →𝜆 𝐵) = (↓𝜄CBN (𝐴)) → 𝜄CBN (𝐵).

Evaluation order is made explicit by CBPV type discipline. Therefore, adding a refinement layer

on top of CBPV requires directly and systematically dealing with the interaction between type

refinement and evaluation order. If we add this layer to CBPV correctly from the very beginning,

then we can be confident that our type refinement system will be semantically well-behaved when

extended with other computational effects. The semantics of CBPV are well-studied and this helps

us establish semantic metatheory. In later parts of this overview, we show the practical effects of

refining our focalized variant of CBPV, especially when it comes to algorithmic matters.

Type soundness, totality, and logical consistency. The unrefined system underlying our system

has the computational effect of nontermination and hence is not total. To model nontermination,

we give the unrefined system an elementary domain-theoretic denotational semantics. Semantic

type soundness says that a syntactic typing derivation can be faithfully interpreted as a semantic

typing derivation, that is, a morphism in a mathematical category, in this case a logical refinement

of domains. Semantic type soundness basically corresponds to syntactic type soundness with

respect to a big-step operational semantics. While we don’t provide an operational semantics in

this paper, we do prove a syntactic substitution lemma which would be a key ingredient to prove

that an operational semantics preserves typing (beta reduction performs syntactic substitution).

The substitution lemma is also helpful to programmers because it means they can safely perform

program transformations and preserve typing. Because the unrefined system is (a focalized variant

of) CBPV, proving type soundness is relatively straightforward.

In contrast to dependent types, the denotational semantics of our refined system is defined in

terms of that of its erasure (of indexes), that is, its underlying, unrefined system. A refined type

denotes a logical subset of what its erasure denotes. An unrefined return type ↑𝑃 denotes either

what 𝑃 denotes, or divergence/nontermination. A refined return type ↑𝑃 denotes only what 𝑃

denotes. Therefore, our refined type soundness result implies that our refined system (without a

partial upshift type) enforces termination. In we discuss how to extend the refined system (by a

partial upshift type) to permit divergence while keeping type soundness (which implies partial

correctness for partial upshifts). Type soundness also implies logical consistency, because a logically

inconsistent refinement type denotes the empty set. We also prove that syntactic substitution is

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:8 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

semantically sound, which would be a main lemma in proving that an operational semantics is

equivalent to our denotational semantics.

In Sec. 5, we discuss these semantic issues in more detail.

Algebraic data types and measures. A novelty of liquid typing is the use of measures: functions,
defined on algebraic data types, whichmay be structurally recursive, but are guaranteed to terminate

and can therefore safely be used to refine the inductive types over which they are defined. (In this

paper, we only consider nullary measures.)

For example, consider the type BinTree 𝐴 of binary trees with terms of type 𝐴 at leaves:

data BinTree 𝐴 where
leaf : 𝐴 → BinTree 𝐴
node : BinTree 𝐴 → BinTree 𝐴 → BinTree 𝐴

Suppose we want to refine BinTree 𝐴 by the height of trees. Perhaps the most direct way to specify

this is to measure it using a function hgt defined by structural recursion:

hgt : BinTree 𝐴 → N
hgt leaf = 0

hgt (node 𝑡 𝑢) = 1 +max(hgt(𝑡), hgt(𝑢))
As another example, consider an inductive type Expr of expressions in a CBV lambda calculus:

data Expr where
var : Nat → Expr
lam : Nat → Expr → Expr
app : Expr → Expr → Expr

Measures need not involve recursion. For example, if we want to refine the type Expr to expressions
Expr that are values (in the sense of CBV, not CBPV), then we can use isval:

isval : Expr → B
isval (var 𝑧) = tt
isval (lam 𝑧 expr) = tt
isval (app expr expr′) = ff

Because isval isn’t recursive and returns indexes, it’s safe to use it to refine Expr to expressions

that are CBV values: {𝜈 : Expr | isval 𝜈 = tt}. But, as with len (Sec. 1), we may again be worried

about using the seemingly dynamic, recursively defined hgt in a static type refinement. Again, we

need not worry because hgt, like len, is a terminating function into a decidable logic [Barrett et al.

2009]. We can use it to specify that, say, a height function defined by pattern matching on trees of

type {𝜈 : BinTree 𝐴 | hgt 𝜈 = 𝑛} actually returns (the program value representing) 𝑛 for any tree

of height 𝑛. Given the phase distinction between indexes (like 𝑛) and programs, how do we specify

such a function type? We use refinement type unrolling and singletons.

Unrolling and singletons. Let’s consider a slightly simpler function, length, that takes a list and
returns its length:

length [] = zero
length (𝑥 :: xs) = succ (length xs)

What should be the type specifying that length actually returns a list’s length? The proposal

∀𝑛 : N. List(𝐴) (𝑛) → ↑Nat does not work because Nat has no information about the length 𝑛.

Something like ∀𝑛 : N. List(𝐴) (𝑛) → ↑ (𝑛 : Nat), read literally as returning the index 𝑛, would

violate our phase distinction between programs and indexes. Instead, we use a singleton type in the

sense of Xi [1998]: a singleton type contains just those program terms (of the type’s erasure), that

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :9

correspond to exactly one semantic index. For example, given 𝑛 : N, we define the singleton type

Nat(𝑛) (which may also be written Nat 𝑛) by {𝜈 : Nat | index𝜈 = 𝑛} where
index : Nat → N
index zero = 0

index (succ 𝑥) = 1 + index(𝑥)
specifies the indexes (of sort N) corresponding to program values of type Nat.

How do we check length against ∀𝑛 : N. List(𝐴) (𝑛) → ↑ (Nat(𝑛))? In the first clause, the input

[] has type List(𝐴) (𝑛) for some 𝑛, but we need to know 𝑛 = 0 (and that the index of zero is 0).

Similarly, we need to know 𝑥 :: xs has length 𝑛 = 1+𝑛′ where 𝑛′ : N is the length of xs. To generate
these constraints, we use an unrolling judgment (Sec. 4.6) that unrolls a refined inductive type.

Unrolling puts the type’s refinement constraints, expressed by asserting and existential types, in the

structurally appropriate positions. An asserting type is written 𝑃 ∧𝜙 (read “𝑃 with 𝜙”), where 𝑃 is a

(positive) type and 𝜙 is an index proposition. If a term has type 𝑃 ∧𝜙 , then the term has type 𝑃 and

also 𝜙 holds. (Dual to asserting types, we have the guarded type 𝜙 ⊃ 𝑁 , which is equivalent to 𝑁 if

𝜙 holds, but is otherwise useless.) We use asserting types to express that index equalities like 𝑛 = 0

hold for terms of inductive type. We use existentials to quantify over indexes that characterize the

refinements of recursive subparts of inductive types, like 𝑛′. For example, modulo a small difference

(see Sec. 4.6), List(𝐴) (𝑛) unrolls to(
1 ∧ (𝑛 = 0)

)
+
(
𝐴 × ∃𝑛′ : N. {𝜈 : List 𝐴 | len𝜈 = 𝑛′} ∧ (𝑛 = 1 + 𝑛′)

)
That is, to construct an𝐴-list of length 𝑛, the programmer (or library designer) can either left-inject

a unit value, provided the constraint 𝑛 = 0 holds, or right-inject a pair of one 𝐴 value and a tail

list, provided that 𝑛′, the length of the tail list, is 𝑛 − 1 (the equations 𝑛 = 1 + 𝑛′ and 𝑛 − 1 = 𝑛′ are
equivalent). These index constraints are not a syntactic part of the list itself. That is, a term of the

above refined type is also a term of the type’s erasure (of indexes):

1 + (|𝐴| × (List |𝐴|))
where | − | erases indexes. Dual to verifying refined inductive values, pattern matching on refined

inductive values, such as in the definition of length, allows us to use the index refinements locally in

the bodies of the various clauses for different patterns. Liquid Haskell similarly extracts refinements

of data constructors for use in pattern matching.

The shape of the refinement types generated by our unrolling judgment (such as the one above)

is a judgmental and refined-ADT version of the fact that generalized ADTs (GADTs) can be

desugared into types with equalities and existentials that express constraints of the return types

for constructors [Cheney and Hinze 2003; Xi et al. 2003]. It would be tedious and inefficient for the

programmer to work directly with terms of types produced by our unrolling judgment, but we can

implement (in our system) singleton refinements of base types and common functions on them,

such as addition, subtraction, multiplication, division, and the modulo operation on integers, and

build these into the surface language used by the programmer, similarly to the implementation of

Dependent ML [Xi 1998].

Inference and subtyping. For a typed functional language to be practical, it must support some

degree of inference, especially for function application (to eliminate universal types) and con-

structing values (to introduce existential types). For example, to pass a value to a function, its

type must be compatible with the function’s argument type, but it would be burdensome to make

programmers always have to prove this compatibility. In our setting, for example, if 𝑥 : Nat(3) and
𝑓 : ↓ (∀𝑎 : N. Nat(𝑎) → ↑𝑃), then we would prefer to write 𝑓 𝑥 rather than 𝑓 [3] 𝑥 , which would

quickly make our programs incredibly—and unnecessarily—verbose.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:10 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Omitting index and type annotations, however, has significant implications. In particular, we

need a mechanism to instantiate indexes somewhere in our typing rules: for example, if 𝑔 :

↓ (↓ (Nat(4 + 𝑏) → ↑𝑃) → 𝑁) and ℎ : ↓ ((∃𝑎 : N. Nat(𝑎)) → ↑𝑃), then to apply 𝑔 to ℎ, we need to

know Nat(4 + 𝑏) is compatible with ∃𝑎 : N. Nat(𝑎), which requires instantiating the bound 𝑎 to

a term logically equal to 4 + 𝑏. Our system does this kind of instantiation via subtyping, which

refinement types naturally give rise to: a type refinement is essentially a subtype of its erasure.

Index instantiations are propagated locally across adjacent nodes in the syntax tree, similarly to

Pierce and Turner [2000]. (Liquid typing allows for more inference, including inference of refine-

ments based on templates, which provides additional convenience for programmers, but we do not

consider this kind of inference in this paper.)

We polarize subtyping into two, mutually recursive, positive and negative relations Θ ⊢ 𝑃 ≤+ 𝑄
and Θ ⊢ 𝑁 ≤− 𝑀 (where Θ is a logical context including index propositions). The algorithmic

versions of these only introduce existential variables in positive supertypes and negative subtypes,

guaranteeing they can always be solved by indexes without any existential variables. We delay

checking constraints until the end of certain, logically designed stages (the focusing ones, as we

will see), when all of their existential variables are guaranteed to have been solved.

Value-determined indexes and type well-formedness. Like DML, we have an index-program dis-

tinction, but unlike DML and like Liquid Haskell, we want to guarantee SMT solvable constraints.

We accomplish this with our technique of value-determined indexes. To guarantee that our algo-

rithm can always instantiate quantifiers, we restrict quantification to indexes appearing in certain

positions within types: namely, those that are uniquely determined (semantically speaking) by

values of the type, both according to a measure and before crossing a polarity shift (which in

this case marks the end of a focusing stage). For example, in {𝜈 : List 𝐴 | len𝜈 = 𝑏}, the index 𝑏 is

uniquely determined by values of that type: the list [𝑥,𝑦] uniquely determines 𝑏 to be 2 (by the

length measure). This value-determinedness restriction on quantification has served to explain why

a similar restriction in the typing algorithm of Flux (Liquid Rust) seemed to work well in practice

[Lehmann et al. 2023].

We make this restriction in the type well-formedness judgment, which outputs a context Ξ
tracking value-determined indexes; well-formed types can only quantify over indexes in Ξ. For
example, ∃𝑏 : N. {𝜈 : List 𝐴 | len𝜈 = 𝑏} is well-formed. The variables in Ξ also pay attention to

type structure: for example, a value of a product type is a pair of values, where the first value

determines all Ξ1 (for the first type component) and the second value determines all Ξ2 (second

type component), so the Ξ of the product type is their union Ξ1 ∪ Ξ2. We also take the union for

function types 𝑃 → 𝑁 , because index information flows through argument types toward the return

type, marked by a polarity shift.

By emptying Ξ at shift types, we prevent lone existential variables from being introduced at a

distance, across polarity shifts. In practice, this restriction on quantification is not onerous, because

most functional types that programmers use are, in essence, of the form

∀· · ·. 𝑃1 → · · · → 𝑃𝑛 → ↑∃· · ·. 𝑄

where the “∀” quantifies over indexes of argument types 𝑃𝑘 that are uniquely determined by

argument values, and the “∃” quantifies over indexes of the return type that are determined by (or

at least depend on) fully applying the function and thereby constructing a value to return. The idea

of this restriction was inspired by liquid types because they implicitly follow it: variables appearing

in liquid type refinements must ultimately come from arguments 𝑥 to dependent functions 𝑥 :𝐴 → 𝐵

and their return values (however, these are not explicitly index variables).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :11

Types that quantify only across polarity shifts tend to be empty, useless, or redundant. The

ill-formed type ∀𝑛 : N.1 → ↑Nat(𝑛) is empty because no function returns all naturals when applied

to unit. A term of ill-formed type ∃𝑚 : N. ↓ (Nat(𝑚) → ↑Bool) can only be applied to an unknown

number, which is useless because the number is unknown. The ill-formed type ∃𝑛 : N. ↑↓Nat(𝑛)
is redundant because it is semantically equivalent to ↓↑∃𝑛 : N. Nat(𝑛) (which does not quantify

across a polarity shift), and similarly ∀𝑛 : N. ↑↓ (Nat(𝑛) → ↑Nat(𝑛)) is semantically equivalent to

↑↓ (∀𝑛 : N. Nat(𝑛) → ↑Nat(𝑛)). Some refinements are not value-determined but useful nonetheless,

such as dimension types [Kennedy 1994; Dunfield 2007b] which statically check that dimensions

are used consistently (minutes can be added to minutes, but not to kilograms) but do not store the

dimensions at run time. In this paper, we do not consider these non-value-determined refinements,

and Liquid Haskell does not support them either.

Our value-determinedness restriction on type well-formedness, together with focusing, is very

helpful metatheoretically, because it means that our typing algorithm only introduces—and is

guaranteed to solve—existential variables for indexes within certain logical stages. For example,

consider checking a list against ∃𝑏 : N. {𝜈 : List 𝐴 | len𝜈 = 𝑏}. An existential variable
ˆ𝑏 for 𝑏 is

generated, and we check the unrolled list against the unrolling of

{
𝜈 : List 𝐴

��� len𝜈 = ˆ𝑏

}
. A solution

to
ˆ𝑏 will be found within value typechecking (the right-focusing stage), using the invariant that

no measure (such as len) contains any existential variables. Similarly, applying a function with

universal quantifiers will solve all existential variables arising from these quantifiers by the end of

a left-focusing stage, which typechecks an argument list.

Focusing, CBPV, and bidirectional typing. In proof theory, the technique of focusing [Andreoli

1992] exploits invertibility properties of logical formulas (types), as they appear in inference rules

(typing rules), in order to rule out many redundant proofs. Having fewer possible proofs makes

proof search more tractable. Brock-Nannestad et al. [2015] and Espírito Santo [2017] study the

relation between CBPV and focusing: each work provides a focused calculus that is essentially the

same as CBPV, “up to the question of 𝜂-expansion” [Brock-Nannestad et al. 2015]. Our system is

also a focused variant of CBPV; in fact, it arises from a certain focalization (and bidirectionalization)

of ordinary intuitionistic logic.

An inference rule is invertible if its conclusion implies its premises. For example, in intuitionistic

logic, the right rule for implication is invertible because its premise Γ, 𝐴 ⊢ 𝐵 can be derived from its

conclusion Γ ⊢ 𝐴 → 𝐵:

Γ ⊢ 𝐴 → 𝐵
(Assume →R conclusion)

Γ, 𝐴 ⊢ 𝐴 → 𝐵
(Weaken)

Γ, 𝐴 ⊢ 𝐴 Γ, 𝐴, 𝐵 ⊢ 𝐵
Γ, 𝐴,𝐴 → 𝐵 ⊢ 𝐵

→L

Γ, 𝐴 ⊢ 𝐵
(Cut)

However, both right rules for disjunction, for example, are not invertible, which we can prove with

a counterexample: 𝐴1 + 𝐴2 ⊢ 𝐴1 + 𝐴2 but 𝐴1 + 𝐴2 ⊬ 𝐴1 and 𝐴1 + 𝐴2 ⊬ 𝐴2. In a sequent calculus,

positive formulas have invertible left rules and negative formulas have invertible right rules. A

weakly focused sequent calculus eagerly applies non-invertible rules as far as possible (in either

left- or right-focusing stages); a strongly focused sequent calculus does too, but also eagerly applies

invertible rules as far as possible (in either left- or right-inversion stages). There are also stable
stages (or moments) in which a decision has to be made between focusing on the left, or on the

right [Espírito Santo 2017]. The decision can be made explicitly via proof terms (specifically, cuts):

in our system, a principal task of let-binding, a kind of cut, is to focus on the left (to process the list

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:12 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

of arguments in a bound function application); and a principal task of pattern matching, another

kind of cut, is to focus on the right (to decompose the value being matched against a pattern).

From a Curry–Howard view, let-binding and pattern matching are different kinds of cuts. The

cut formula𝐴—basically, the type being matched or let-bound—must be synthesized (inferred) as an

output (judgmentally, · · · ⇒ 𝐴) from heads ℎ (variables and annotated values) or bound expressions
𝑔 (function application and annotated returner expressions); and ultimately, the outcomes of these

cuts in our system are synthesized. But all other program terms are checked against input types 𝐴:

judgmentally, · · · ⇐ 𝐴 · · · or · · · [𝐴] ⊢ · · · . In this sense, both our declarative and algorithmic type

systems are bidirectional [Dunfield and Krishnaswami 2021].

In inversion stages, that is, expression typechecking (where a negative type is on the right of

a turnstile) and pattern matching (where a positive type is on the left of a turnstile), refinements

often need to be extracted from types in order to be used. For example, suppose we want to check

the expression 𝜆𝑥. return𝑥 against the type (1 ∧ ff) → ↑ (1 ∧ ff), which is semantically equivalent

to ff ⊃ 1 → ↑(1 ∧ ff). We need to extract ff (of (1 ∧ ff) → · · ·) and put it in the logical context so

that we can later use it (in typechecking the value 𝑥) to verify ff (of · · · ↑ (1 ∧ ff)). If we instead put

𝑥 : 1 ∧ ff in the program context, then ff would not be usable (unless we can extract it from the

program context, but its simpler to extract from types as soon as possible rather than to extend

the extraction judgment or to add another one) and typechecking would fail (it should succeed).

Similarly, since subtyping may be viewed as implication, index information from positive subtypes

or negative supertypes needs to be extracted for use. Declaratively, it is okay not to extract eagerly

at polarity shifts in subtyping (the subtyping rules that extract are invertible), but it seems necessary

in the algorithmic system.

Our declarative system includes two focusing stages, one (value typechecking) for positive types

on the right of the turnstile (⊢), and the other (spine typing) for negative types on the left. Our

algorithmic system closely mirrors the declarative one, but does not conjure index instantiations or

witnesses (like 𝑡 in DeclSpine∀ below), and instead systematically introduces and solves existential

variables (like solving the existential variable 𝑎 as 𝑡 in AlgSpine∀ below), which we keep in

algorithmic contexts Δ.

Θ ⊢ 𝑡 : 𝜏 Θ; Γ; [[𝑡/𝑎]𝑁] ⊢ 𝑠 ≫ ↑𝑃
Θ; Γ; [∀𝑎 : 𝜏 . 𝑁] ⊢ 𝑠 ≫ ↑𝑃

DeclSpine∀

Θ;Δ, 𝑎 : 𝜏 ; Γ; [[𝑎/𝑎]𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′, 𝑎 : 𝜏=𝑡

Θ;Δ; Γ; [∀𝑎 : 𝜏 . 𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′ AlgSpine∀

For example, applying a function of type ∀𝑏 : N. List(Nat) (𝑏) → · · · to the list [4, 1, 2] should solve
𝑏 to an index semantically equal to 3; the declarative system guesses an index term (like 3 + 0), but

the algorithmic system mechanically solves for it.

Our algorithmic right-focusing judgment has the form Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′
, where 𝜒 is

an output list of typing constraints and Δ′
is an output context that includes index solutions to

existentials. Similarly, the left-focusing stage is Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′
; it focuses on

decomposing 𝑁 (the type of the function being applied), introducing its existential variables for the

arguments in the list 𝑠 (sometimes called a spine [Cervesato and Pfenning 2003]), and outputting

its guards to verify at the end of decomposition (an upshift). These existential variables flow to the

right-focusing stage (value typechecking) and are solved there, possibly via subtyping. Constraints

𝜒 are only checked right at the end of focusing stages, when all their existential variables are solved.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :13

For example, consider our rule for (fully) applying a function ℎ to a list of arguments 𝑠:

Θ; Γ ▷ ℎ ⇒ ↓𝑁 Θ; ·; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ · Θ; Γ ◁ 𝜒

Θ; Γ ▷ ℎ(𝑠) ⇒ ↑𝑃
AlgSpineApp

After synthesizing a thunk type ↓𝑁 for the function ℎ we are applying, we process the entire list

of arguments 𝑠 , until 𝑁 ’s return type ↑𝑃 . All (existential) value-determined indexes Ξ𝑁 of 𝑁 are

guaranteed to be solved by the time an upshift is reached, and these solutions are eagerly applied to

constraints 𝜒 , so that 𝜒 does not have existential variables and is hence SMT-solvable (Θ; Γ◁ 𝜒). The
polarization of CBPV helps guarantee all solutions have no existential variables. Focusing stages

introduce existential variables to input types, which may appear initially as a positive supertype in

the subtyping premise for typechecking (value) variables. These existential variables are solved

using the positive subtype, which never has existential variables. Dually, negative subtypes may

have existential variables, but negative supertypes never do.

Our system requires intermediate computations likeℎ(𝑠) to be explicitly named and sequenced by

let-binding (a kind of 𝐴-normal [Flanagan et al. 1993] or let-normal form). Combined with focusing,

this allows us to use (within the value typechecking stage) subtyping only in the typing rule for

(value) variables. This makes our subsumption rule syntax-directed, simplifying and increasing the

efficiency of our algorithm. We nonetheless prove a general subsumption lemma, which is needed

to prove that substitution respects typing, a key syntactic or operational correctness property.

Focusing also gives us pattern matching for free [Krishnaswami 2009]: from a Curry–Howard

view, the left-inversion stage is pattern matching. The (algorithmic
3
) left-inversion stage in our

system is written Θ; Γ; [𝑃] ▷ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 : it decomposes the positive 𝑃 (representing the

pattern being matched) to the left of the turnstile (written ▷ to distinguish the algorithmic judgment

from the corresponding declarative judgment, which instead uses ⊢). Our system is “half” strongly

focused: we eagerly apply right-invertible but not left-invertible rules. This makes pattern matching

in our system resemble the original presentation of pattern matching in CBPV. From a Curry–

Howard view, increasing the strength of focusing would permit nested patterns.

A pattern type can have index equality constraints, such as for refined ADT constructors (for

example, that the length of an empty list is zero) as output by unrolling. By using these equality

constraints, we get a coverage-checking algorithm. For example, consider checking get (introduced
in Sec. 1) against the type

∀𝑙, 𝑘 : N. {𝜈 : List 𝐴 | len 𝜈 = 𝑙} → ({𝜈 : Nat | index 𝜈 = 𝑘} ∧ (𝑘 < 𝑙)) → ↑𝐴
At the clause

get [] 𝑦 = unreachable

we extract a logically inconsistent context (𝑙 : N, 𝑘 : N, 𝑙 = 0, 𝑘 < 𝑙), which entails that unreachable
checks against any type. Proof-theoretically, this use of equality resembles the elimination rule for

Girard–Schroeder-Heister equality [Girard 1992; Schroeder-Heister 1994].

Bidirectional typing controls the flow of type information. Focusing in our system directs the

flow of index information. The management of the flow of type refinement information, via the

stratification of both focusing and bidirectionality, makes our algorithmic metatheory highly

manageable.

3 EXAMPLE: VERIFYING MERGESORT
We show how to verify a non-structurally recursive mergesort function in our system: namely, that

it terminates and returns a list with the same length as the input list (to verify it returns an ordered

3
We give the algorithmic judgment to note existential variables Δ do not flow through it, or any of the non-focusing stages.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:14 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

list, we need to extend our system with multi-argument measures, which is outside the scope of

this paper). We only consider sorting lists of natural numbers Nat, defined as ∃𝑛 : N. Nat(𝑛). For
clarity, and continuity with Sections 1 and 2, we sometimes use syntactic sugar such as clausal

pattern-matching, combining let-binding with pattern-matching on the let-bound variable, using

“if-then-else” rather than pattern-matching on boolean type, and combining two or more pattern-

matching expressions into one with a nested pattern such as 𝑥 :: 𝑦 :: xs.
Given type𝐴 and𝑛 : N, we define List(𝐴) (𝑛) by {𝜈 : List 𝐴 | len 𝜈 = 𝑛}. Modulo a small difference

(see Sec. 4.6), our unrolling judgment unrolls List(𝐴) (𝑛) to(
1 ∧ (𝑛 = 0)

)
+
(
𝐴 × ∃𝑛′ : N. {𝜈 : List 𝐴 | len𝜈 = 𝑛′} ∧ (𝑛 = 1 + 𝑛′)

)
which is a refinement of 1 + (|𝐴| × List |𝐴|). This is an unrolling of the inductive type, not the

inductive type itself, so we must roll values of it into the inductive type. We use syntactic sugar:

namely, [] stands for into(inj
1
()) and 𝑥 :: xs stands for into(inj

2
⟨𝑥, xs⟩).

Just as we need a natural number type associating natural number program values with natural

number indexes, we need a boolean type of values corresponding to boolean indexes. To this end,

define the measure

ixbool : (1 + 1) → B
ixbool true = tt
ixbool false = ff

Given 𝑏 : B, the singleton type of boolean 𝑏 is Bool(𝑏) = {𝜈 : Bool | ixbool 𝜈 = 𝑏}. Our unrolling
judgment (Sec. 4.6) outputs the following type, a refinement of the boolean type encoded as 1 + 1:(

1 ∧ (𝑏 = tt)
)
+
(
1 ∧ (𝑏 = ff)

)
We encode true as into(inj

1
()) which has type Bool(tt), and false as into(inj

2
()) which has

type Bool(ff). The boolean type Bool is defined as ∃𝑏 : B. Bool(𝑏).
Assume we have the following:

add : ↓ (∀𝑚,𝑛 : N. Nat(𝑚) → Nat(𝑛) → ↑Nat(𝑚 + 𝑛))
sub : ↓ (∀𝑚,𝑛 : N. (𝑛 ≤ 𝑚) ⊃ Nat(𝑚) → Nat(𝑛) → ↑Nat(𝑚 − 𝑛))
div : ↓ (∀𝑚,𝑛 : N. (𝑛 ≠ 0) ⊃ Nat(𝑚) → Nat(𝑛) → ↑Nat(𝑚 ÷ 𝑛))
lt : ↓ (∀𝑚,𝑛 : N. Nat(𝑚) → Nat(𝑛) → ↑∃𝑏 : B. Bool(𝑏) ∧ (𝑏 = (𝑚 < 𝑛)))

len : ↓ (∀𝑛 : N. List(Nat) (𝑛) → ↑Nat(𝑛))
[] : List(Nat) (0)
(::) : ↓ (∀𝑛 : N. Nat → List(Nat) (𝑛) → ↑List(Nat) (1 + 𝑛))

The SMT solver Z3 [de Moura and Bjørner 2008], for example, supports integer division (and

modulo and remainder operators); internally, these operations are translated to multiplication.

Here, we are considering natural number indexes, but we can add the constraint 𝑛 ≥ 0 (for naturals

𝑛) when translating them to integers in an SMT solver such as Z3. Allowing integer division in

general is not SMT decidable, but for this example, 𝑛 is always instantiated to a constant (2), which

is decidable. Note that Z3 supports division by zero, but our div has a guard requiring the divisor

to be nonzero (𝑛 ≠ 0), so we need not consider this. Division on naturals takes the floor of what

would otherwise be a rational number (for example, 3 ÷ 2 = 1).

First, we define the function merge for merging two lists while preserving order. It takes two

lists as inputs, but also a natural number representing the sum of their lengths. Since at least one

list decreases in length at recursive calls, so does the sum of their lengths, implying the function

terminates when applied. However, in the refined system presented in (the figures of) this paper, to

keep things simple, we provide only one rule for recursive expressions, whose termination metric

is < on natural numbers. Because the system as presented lacks a rule that supports a termination

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :15

metric on sums 𝑛1 + 𝑛2 of natural numbers, we need to reify the sum 𝑛 = 𝑛1 + 𝑛2 of the length

indexes 𝑛1 and 𝑛2 into a ghost parameter 𝑛 of (asserting) singleton type. However, we emphasize

the ghost parameter in this example is not a fundamental limitation of our system, because our

system can be extended to include other termination metrics such as < on the sum of natural

numbers (we discuss this further in Sec. 4.7).

merge : ∀𝑛, 𝑛1, 𝑛2 : N. Nat(𝑛) ∧ (𝑛 = 𝑛1 + 𝑛2) → List(Nat) (𝑛1) → List(Nat) (𝑛2)
→ ↑List(Nat) (𝑛1 + 𝑛2)

merge 𝑦 [] xs2 = return xs2
merge 𝑦 xs1 [] = return xs1
merge (succ 𝑦) (𝑥1 :: xs1) (𝑥2 :: xs2) =

if lt(𝑥1, 𝑥2) then

let recresult = merge(𝑦, xs1, (𝑥2 :: xs2));
let result = 𝑥1 :: recresult;

return result
else

let recresult = merge(𝑦, (𝑥1 :: xs1), xs2);
let result = 𝑥2 :: recresult;

return result

In a well-typed let-binding let 𝑥 =𝑔; 𝑒 the bound expression 𝑔 is a value-returning computation

(that is, has upshift type), and 𝑒 is a computation that binds to 𝑥 the value (of positive type) resulting

from computing 𝑔. (Liquid Haskell, lacking CBPV’s type distinction between computations and

values, instead approximates whether binders terminate to a value.) Since 𝑥 has positive type, we

can match it against patterns (see, for example, the final clause of split, discussed next).

We now define the function split that takes a list and splits it into two lists. It is a standard

“every-other” implementation, and we have to be a bit careful about the type refinement so as not

to be “off by one” in the lengths of the resulting lists.

split : ∀𝑛 : N. List(Nat) (𝑛) → ↑ (List(Nat) ((𝑛 + 1) ÷ 2)) × (List(Nat) (𝑛 − ((𝑛 + 1) ÷ 2)))
split [] = return ⟨[], []⟩
split [𝑥] = return ⟨[𝑥], []⟩
split 𝑥1 :: 𝑥2 :: xs =

let recresult = split(xs);
match recresult {

⟨xs1, xs2⟩ ⇒ return ⟨𝑥1 :: xs1, 𝑥2 :: xs2⟩
}

We are ready to implement mergesort, but since we use a ghost parameter, we need to define

an auxiliary function auxmergesort additionally taking the length of the list being ordered. We

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:16 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

introduce syntactic sugar for a let-binding followed by pattern-matching on its result.

auxmergesort : ∀𝑛 : N. Nat(𝑛) → List(Nat) (𝑛) → ↑List(Nat) (𝑛)
auxmergesort 𝑦 [] = return []
auxmergesort 𝑦 [𝑥] = return [𝑥]
auxmergesort 𝑦 xs =

let ⟨leftxs, rightxs⟩ = split(xs);
let lenleftxs = div(succ 𝑦, 2);
let lenrightxs = 𝑦 − div(succ 𝑦, 2);
let sortleftxs = auxmergesort(lenleftxs, leftxs);
let sortrightxs = auxmergesort(lenrightxs, rightxs);
returnmerge(𝑦, sortleftxs, sortrightxs)

Finally, we define a mergesort that is verified to terminate and to return a list of the same length

as the input list.

mergesort : ∀𝑛 : N. List(Nat) (𝑛) → ↑List(Nat) (𝑛)
mergesort xs =

let len = len(xs);
returnmergesortaux(len, xs)

In the system of this paper, we cannot verify that mergesort returns a sorted list. This is because

our system lacks multi-argument measures which can specify relations between indexes of different

parts of a data type. (To handle this, we are extending our system with multi-argument measures,

which is nontrivial and requires a significant degree of additional machinery outside the scope of

this paper.) But this example is interesting nonetheless, because auxmergesort is not structurally
recursive: its recursive calls are on lists obtained by splitting the input list roughly in half, not on

the structure of the list (− :: −). Further, it showcases the main features of our foundational system,

the declarative specification of which we turn to next, in Sec. 4.

4 DECLARATIVE SYSTEM
We present our core declarative calculus and type system.

First, we discuss the syntax of program terms, types, index terms, sorts, functors, algebras, and

contexts. Then, in Sec. 4.1, we discuss the index sorting judgment Θ ⊢ 𝑡 : 𝜏 and the propositional

validity judgment Θ ⊢ 𝜙 true, index-level substitution, and basic logical properties required of

the index domain. In Sec. 4.2, we discuss the well-formedness of (logical and program) contexts

(Θ ctx and Θ ⊢ Γ ctx), types (Θ ⊢ 𝐴 type[Ξ]), functors (Θ ⊢ F functor[Ξ]), and algebras

(Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏). In Sec. 4.3, we discuss judgmental equivalence. In Sec. 4.4, we discuss

extraction (Θ ⊢ 𝐴⇝ 𝐴′ [Θ′]). In Sec. 4.5, we discuss subtyping (Θ ⊢ 𝐴 ≤ 𝐵). In Sec. 4.6, we discuss

the unrolling judgment for refined inductive types. In Sec. 4.7, we discuss the typing system. In Sec.

4.8, we extend substitution to that of program values for program variables, and prove a substitution

lemma stating that typing is stable under substitution (a key operational correctness result).

In Fig. 1, we summarize the key judgments constituting the declarative system. In the figure,

“pre.” abbreviates “presupposes”, which basically lists the judgments (rightmost column) we tend to

leave implicit in rules defining the given judgment (leftmost column). Presuppositions also indicate

the (input or output) moding of judgments. For example, on the one handΘ; Γ ⊢ 𝑣 ⇐ 𝑃 presupposes

Θ ⊢ Γ ctx and Θ ⊢ 𝑃 type[Ξ𝑃] for some Ξ𝑃 , where the former presupposes Θ ctx, and Θ, Γ, and 𝑃

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :17

are input-moded; on the other hand, Θ; Γ ⊢ ℎ ⇒ 𝑃 does not presuppose Θ ⊢ 𝑃 type[Ξ𝑃] for some

Ξ𝑃 , but rather we must prove that the output-moded 𝑃 is well-formed (which is straightforward).

Groups of mutually defined judgments are separated by blank lines.

Θ ctx (Sec. 4.2) pre. no judgment

Θ ⊢ 𝑡 : 𝜏 (Sec. 4.1) pre. Θ ctx

Θ ⊢ 𝜙 true (Sec. 4.1) pre. Θ ⊢ 𝜙 : B

Θ ⊢ 𝐴 type[Ξ] (Sec. 4.2) pre. Θ ctx
Θ ⊢ F functor[Ξ] (Sec. 4.2) pre. Θ ctx
Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 (Sec. 4.2) pre. Ξ ctx and Θ ⊢ 𝐹 functor[Ξ𝐹]

Θ ⊢ F ≡ G (Sec. 4.3) pre. Θ ⊢ F functor[ΞF] and Θ ⊢ G functor[ΞG]
Θ ⊢ 𝐴 ≡± 𝐵 (Sec. 4.3) pre. Θ ⊢ 𝐴 type[Ξ𝐴] and Θ ⊢ 𝐵 type[Ξ𝐵]

Θ ⊢ 𝐴⇝± 𝐴′ [Θ𝐴] (Sec. 4.4) pre. Θ ⊢ 𝐴 type[Ξ𝐴]

Θ ⊢ 𝐴 ≤± 𝐵 (Sec. 4.5) pre. Θ ⊢ 𝐴 type[Ξ𝐴] and Θ ⊢ 𝐵 type[Ξ𝐵]

Ξ;Θ ⊢ unroll𝐹 ;𝛼 (𝐺 ; 𝛽 ;𝜏 ; 𝑡) ⊜ 𝑃 (Sec. 4.6) pre. Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 and Ξ;Θ ⊢ 𝛽 : 𝐺 (𝜏) ⇒ 𝜏

and Θ ⊢ 𝑡 : 𝜏

Θ ⊢ Γ ctx (Sec. 4.2) pre. Θ ctx

Θ; Γ ⊢ ℎ ⇒ 𝑃 (Sec. 4.7) pre. Θ ⊢ Γ ctx
Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 (Sec. 4.7) pre. Θ ⊢ Γ ctx
Θ; Γ ⊢ 𝑣 ⇐ 𝑃 (Sec. 4.7) pre. Θ ⊢ Γ ctx and Θ ⊢ 𝑃 type[Ξ𝑃]
Θ; Γ ⊢ 𝑒 ⇐ 𝑁 (Sec. 4.7) pre. Θ ⊢ Γ ctx and Θ ⊢ 𝑁 type[Ξ𝑁]
Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 (Sec. 4.7) pre. Θ ⊢ Γ ctx and Θ ⊢ 𝑃 type[Ξ𝑃] and Θ ⊢ 𝑁 type[Ξ𝑁]
Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 (Sec. 4.7) pre. Θ ⊢ Γ ctx and Θ ⊢ 𝑁 type[Ξ𝑁]

Fig. 1. Declarative judgments and their presuppositions

Program terms. Program terms are defined in Fig. 2. We polarize terms into two main syntactic

categories: expressions (which have negative type) and values (which have positive type). Program

terms are further distinguished according to whether their principal types are synthesized (heads

and bound expressions) or checked (spines and patterns).

Expressions 𝑒 consist of functions 𝜆𝑥 . 𝑒 , recursive expressions rec 𝑥 : 𝑁 . 𝑒 , let-bindings let 𝑥 =𝑔; 𝑒 ,
match expressions match ℎ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 , value returners (or producers) return 𝑣 , and an unreach-

able expression unreachable (such as an impossible match). Bound expressions 𝑔, which can be

let-bound, consist of expressions annotated with a returner type (𝑒 : ↑𝑃) and applications ℎ(𝑠)
of a head ℎ to a spine 𝑠 . Heads ℎ, which can be applied to a spine or pattern-matched, consist of

variables 𝑥 and positive-type-annotated values (𝑣 : 𝑃). Spines 𝑠 are lists of values; we often omit

the empty spine ·, writing (for example) 𝑣1, 𝑣2 instead of 𝑣1, 𝑣2, ·. In match expressions, heads are

matched against patterns 𝑟 .

Values consist of variables 𝑥 , the unit value ⟨⟩, pairs ⟨𝑣1, 𝑣2⟩, injections into sum type inj𝑘 𝑣
where 𝑘 is 1 or 2, rollings into inductive type into(𝑣), and thunks (suspended computations) {𝑒}.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:18 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Program variables 𝑥,𝑦, 𝑧

Expressions 𝑒 ::= return 𝑣 | let 𝑥 =𝑔; 𝑒 | match ℎ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼
| 𝜆𝑥. 𝑒 | rec 𝑥 : 𝑁 . 𝑒 | unreachable

Values 𝑣 ::= 𝑥 | ⟨⟩ | ⟨𝑣, 𝑣⟩ | inj
1
𝑣 | inj

2
𝑣 | into(𝑣) | {𝑒}

Heads ℎ ::= 𝑥 | (𝑣 : 𝑃)
Bound expressions 𝑔 ::= ℎ(𝑠) | (𝑒 : ↑𝑃)
Spines 𝑠 ::= · | 𝑣, 𝑠
Patterns 𝑟 ::= into(𝑥) | ⟨⟩ | ⟨𝑥,𝑦⟩ | inj

1
𝑥 | inj

2
𝑥

Fig. 2. Program terms

Types. Types are defined in Fig. 3. Types are polarized into positive (value) types 𝑃 and negative

(computation) types 𝑁 . We write 𝐴, 𝐵 and 𝐶 for types of either polarity.

Positive types 𝑃,𝑄 ::= 1 | 𝑃 ×𝑄 | 0 | 𝑃 +𝑄 | ↓𝑁
| {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}
| ∃𝑎 : 𝜏 . 𝑃 | 𝑃 ∧ 𝜙

Negative types 𝑁,𝑀 ::= 𝑃 → 𝑁 | ↑𝑃 | ∀𝑎 : 𝜏 . 𝑁 | 𝜙 ⊃ 𝑁

Types 𝐴, 𝐵,𝐶 ::= 𝑃 | 𝑁

Fig. 3. Types

Positive types consist of the unit type 1, products 𝑃1 × 𝑃2, the void type 0, sums 𝑃1 + 𝑃2, down-

shifts (of negative types; thunk types) ↓𝑁 , asserting types 𝑃 ∧ 𝜙 (read “𝑃 with 𝜙”), index-level

existential quantifications ∃𝑎 : 𝜏 . 𝑃 , and refined inductive types {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}. We read

{𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡} as the type having values 𝜈 of inductive type 𝜇𝐹 (with signature 𝐹) such

that the (index-level) measurement (fold𝐹 𝛼) 𝜈 =𝜏 𝑡 holds; in Sec. 4.0.1 and Sec. 5, we explain the

metavariables 𝐹 , 𝛼 , 𝜏 , and 𝑡 , as well as what these and the syntactic parts 𝜇 and fold denote. Briefly,

𝜇 roughly denotes “least fixed point of” and a fold over 𝐹 with 𝛼 (having carrier sort 𝜏) indicates a

measure on the inductive type 𝜇𝐹 into 𝜏 .

Negative types consist of function types 𝑃 → 𝑁 , upshifts (of positive types; lift or returning
types) ↑𝑃 (dual to ↓𝑁), propositionally guarded types 𝜙 ⊃ 𝑁 (read “𝜙 implies 𝑁 ”; dual to 𝑃 ∧ 𝜙),

and index-level universal quantifications ∀𝑎 : 𝜏 . 𝑁 (dual to ∃𝑎 : 𝜏 . 𝑃).

In 𝑃∧𝜙 and𝜙 ⊃ 𝑁 , the index proposition𝜙 has no run-time content. Neither does the 𝑎 in ∃𝑎 : 𝜏 .𝑃

and ∀𝑎 : 𝜏 . 𝑁 , nor the recursive refinement predicate (fold𝐹 𝛼) 𝜈 =𝜏 𝑡 in {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}.

Index language: sorts, terms, and propositions. Our type system is parametric in the index domain,

provided the latter has certain (basic) properties. For our system to be decidable, the index domain

must be decidable. It is instructive to work with a specific index domain: Figure 4 defines a quantifier-

free logic of linear equality, inequality, and arithmetic, which is decidable [Barrett et al. 2009].

Sorts 𝜏 consist of booleans B, natural numbers N, integers Z, and products 𝜏1 × 𝜏2. Index terms

𝑡 consist of variables 𝑎, numeric constants 𝑛, addition 𝑡1 + 𝑡2, subtraction 𝑡1 − 𝑡2, pairs (𝑡1, 𝑡2),
projections 𝜋1 𝑡 and 𝜋2 𝑡 , and propositions 𝜙 . Propositions 𝜙 (the logic of the index domain) are built

over index terms, and consist of equality 𝑡1 = 𝑡2, inequality 𝑡1 ≤ 𝑡2, conjunction 𝜙1 ∧𝜙2, disjunction

𝜙1 ∨ 𝜙2, negation ¬𝜙 , trivial truth tt, and trivial falsity ff.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :19

Sorts 𝜏 ::= B | N | Z | 𝜏 × 𝜏

Index variables 𝑎, 𝑏, 𝑐

Index terms 𝑡 ::= 𝑎 | 𝑛 | 𝑡 + 𝑡 | 𝑡 − 𝑡 | (𝑡, 𝑡) | 𝜋1 𝑡 | 𝜋2 𝑡 | 𝜙
Propositions 𝜙,𝜓 ::= 𝑡 = 𝑡 | 𝑡 ≤ 𝑡 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙 | tt | ff

Fig. 4. Index domain

4.0.1 Inductive types, functors, and algebras. We encode algebraic data types (and measures on

them) using their standard semantics. In the introduction (Sec. 1), to refine the type of 𝐴-lists by

their length, we defined a recursive function len over the inductive structure of lists. Semantically,

we characterize this structural recursion by algebraic folds over polynomial endofunctors; we

design our system in line with this semantics. While this presentation may appear overly abstract

for the user, it should be possible to allow the user to use the same or similar syntax as programs to

express measures if they annotate them as measures in the style of Liquid Haskell.

We express inductive type structure without reference to constructor names by syntactic functors

resembling the polynomial functors. For example (modulo the difference for simplifying unrolling),

we can specify the signature of the inductive type of lists of terms of type 𝐴 syntactically as a

functor 1 ⊕ (𝐴 ⊗ Id), where𝐶 denotes the constant (set) functor (sending any set to the set denoted

by type𝐶), Id denotes the identity functor (sending any set to itself), the denotation of 𝐹1 ⊗ 𝐹2 sends

a set𝑋 to the product (J𝐹1K𝑋) × (J𝐹2K𝑋), and the denotation of 𝐹1 ⊕ 𝐹2 sends a set𝑋 to the disjoint

union (J𝐹1K𝑋) ⊎ (J𝐹2K𝑋). The idea is that each component of the sum functor ⊕ represents a data

constructor, so that (for example) 1 represents the nullary constructor [], and𝐴 represents the head

element of a cons cell which is attached (via ⊗) to the recursive tail list represented by Id.

A functor 𝐹 (Fig. 5) is a sum (⊕) of products (𝑃), which multiply (⊗) base functors (𝐵) consisting
of identity functors that represent recursive positions (Id) and constant functors (𝑃) at positive type

𝑃 . The rightmost factor in a product 𝑃 is the (product) unit functor 𝐼 . By convention, ⊗ has higher

precedence than ⊕. For convenience in specifying functor well-formedness (appendix Fig. 7) and

denotation (appendix Fig. 37), F is a functor 𝐹 or a base functor 𝐵.

Functors 𝐹,𝐺, 𝐻 ::= 𝑃 | 𝐹 ⊕ 𝐹

𝑃 ::= 𝐼 | 𝐵 ⊗ 𝑃

𝐵 ::= 𝑃 | Id
F ::= 𝐹 | 𝐵

Fig. 5. Functors

A direct grammar 𝐹 for sums of products (of constant and identity functors) consists of 𝐹 ::=

𝑃 | 𝐹 ⊕ 𝐹 and 𝑃 ::= 𝐵 | 𝐵 ⊗ 𝑃 and 𝐵 ::= 𝑃 | Id. The grammar 𝐹 ::= 𝐹 ⊕ 𝐹 | 𝐹 ⊗ 𝐹 | 𝐵 is

semantically equivalent to sums of products, but syntactically inconvenient, because it allows

writing products of sums. We do not use either of these grammars, but rather Fig. 5, because it

simplifies inductive type unrolling (Sec. 4.6). (In any case, a surface language where data types have

named constructors would have to be elaborated to use one of these grammars.) These grammars

have naturally isomorphic interpretations. For example, in our functor grammar (Fig. 5), we instead

write NatF = 𝐼 ⊕ (Id ⊗ 𝐼) (note 𝐼 is semantically equivalent to 1): notice that for any set 𝑋 , we have

J𝐼 ⊕ (Id ⊗ 𝐼)K𝑋 = 1 ⊎ (𝑋 × 1) � 1 ⊎ 𝑋 = J1 ⊕ IdK𝑋 .

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:20 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

As we will discuss in Sec. 5, every polynomial endofunctor 𝐹 has a fixed point 𝜇𝐹 satisfying a

recursion principle for defining measures (on 𝜇𝐹) by folds with algebras. We define algebras in Fig.

6. An algebra 𝛼 is a list of clauses 𝑝 ⇒ 𝑡 which pattern match on algebraic structure (𝑝 , 𝑞, and 𝑜 are

patterns) and bind variables in index bodies 𝑡 . Sum algebra patterns 𝑝 consist of inj
1
𝑝 and inj

2
𝑝

(which match on sum functors ⊕). Product algebra patterns 𝑞 consist of tuples (𝑜, 𝑞) (which match

on ⊗) ending in the unit pattern () (which match on 𝐼). Base algebra patterns 𝑜 consist of wildcard

patterns ⊤ (which match on constant functors 𝑃), variable patterns 𝑎 (which match on the identity

functor Id), and pack patterns pack(𝑎, 𝑜) (which match on existential constant functors ∃𝑎 : 𝜏 . 𝑃 ,

where 𝑎 is also bound in the bodies 𝑡 of algebra clauses).

Algebras 𝛼, 𝛽 ::= · | (𝑝 ⇒ 𝑡 ||||||||𝛼)
Sum algebra patterns 𝑝 ::= inj

1
𝑝 | inj

2
𝑝 | 𝑞

Product algebra patterns 𝑞 ::= () | (𝑜, 𝑞)
Base algebra patterns 𝑜 ::= ⊤ | 𝑎 | pack(𝑎, 𝑜)

Fig. 6. Algebras

For example, given a type 𝑃 , consider the functor 𝐼 ⊕ (𝑃 ⊗ Id ⊗ 𝐼). To specify the function

length : List 𝑃 → N computing the length of a list of values of type 𝑃 , we write the algebra

inj
1
()⇒ 0 |||||||| inj

2
(⊤, (𝑎, ())) ⇒ 1 + 𝑎 with which to fold List 𝑃 .

With the pack algebra pattern, we can use indexes of an inductive type in our measures. For

example, given 𝑎 : N, and defining the singleton type Nat(𝑎) as {𝜈 : 𝜇NatF | (foldNatF ixnat) 𝜈 = 𝑎}
where NatF = 𝐼 ⊕ Id ⊗ 𝐼 and ixnat = inj

1
()⇒ 0 |||||||| inj

2
(𝑎, ()) ⇒ 1 + 𝑎, consider lists of natural

numbers, specified by 𝐼 ⊕ ∃𝑏 : N. Nat(𝑏) ⊗ Id ⊗ 𝐼 . Folding such a list with the algebra inj
1
()⇒

0 |||||||| inj
2
(pack(𝑏,⊤), 𝑎, ()) ⇒ 𝑎 + 𝑏 sums all the numbers in the list. (For clarity, we updated the

definitions in Sec. 2 to agree with our grammars as presented in Fig. 5 and Fig. 6.)

For measures relating indexes in structurally distinct positions within an inductive type, in

ongoing work we are extending our system with multi-argument measures by way of higher-order

sorts 𝜏1 ⇒ 𝜏2. Doing so would allow us to refine, for example, integer lists to lists of integers in
increasing order, because we could then compare the indexed elements of a list.

Contexts. A logical context Θ ::= · | Θ, 𝑎 : 𝜏 | Θ, 𝜙 is an ordered list of index propositions 𝜙

and (index) variable sortings 𝑎 : 𝜏 (which may be used in subsequent propositions). A program
variable context (or program context) Γ ::= · | Γ, 𝑥 : 𝑃 is a set of (program) variable typings 𝑥 : 𝑃 . A

value-determined context Ξ ::= · | Θ, 𝑎 : 𝜏 is a set of index sortings 𝑎 : 𝜏 . In any kind of context, a

variable can be declared at most once.

4.1 Index sorting and propositional validity
We have a standard index sorting judgment Θ ⊢ 𝑡 : 𝜏 (appendix Fig. 4) checking that, under context

Θ, index term 𝑡 has sort 𝜏 . For example, 𝑎 : N ⊢ ¬(𝑎 ≤ 𝑎 + 1) : B. This judgment does not depend on

propositions in Θ, which only matter when checking propositional validity (only done in subtyping

and program typing). The operation Θ merely removes all propositions 𝜙 from Θ.

Well-sorted index terms Θ ⊢ 𝑡 : 𝜏 denote functions J𝑡K :

r
Θ

z
→ J𝜏K. For each Θ, define JΘK as

the set of index-level semantic substitutions (defined in this paragraph) {𝛿 | ⊢ 𝛿 : Θ}. For example,

J4 + 𝑎K
3/𝑎 = 7 and J𝑏 = 1 + 0K

1/𝑏 = {•} (that is, true) and J𝑎 = 1K
2/𝑎 = ∅ (that is, false). An index-

level semantic substitution ⊢ 𝛿 : Θ assigns exactly one semantic index value 𝑑 to each index variable

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :21

in dom(Θ) such that every proposition 𝜙 in Θ is true (written {•}; false is ∅):

⊢ · : ·
⊢ 𝛿 : Θ 𝑑 ∈ J𝜏K 𝑎 ∉ dom(Θ)

⊢ (𝛿, 𝑑/𝑎) : (Θ, 𝑎 : 𝜏)
⊢ 𝛿 : Θ J𝜙K𝛿 = {•}

⊢ 𝛿 : (Θ, 𝜙)
A propositional validity or truth judgment Θ ⊢ 𝜙 true, which is a semantic entailment relation,

holds if 𝜙 is valid under Θ, that is, if 𝜙 is true under every interpretation of variables in Θ such that

all propositions in Θ are true. We say 𝑡 and 𝑡 ′ are logically equal under Θ if Θ ⊢ 𝑡 = 𝑡 ′ true.
An index-level syntactic substitution 𝜎 is a list of index terms to be substituted for index variables:

𝜎 ::= · | 𝜎, 𝑡/𝑎. The metaoperation [𝜎]O, where O is an index term, program term, or type, is

sequential substitution: [·]O = O and [𝜎, 𝑡/𝑎]O = [𝜎] ([𝑡/𝑎]O), where [𝑡/𝑎]O is standard capture-

avoiding (by 𝛼-renaming) substitution. Syntactic substitutions (index-level) are typed (“sorted”) in

a standard way. Because syntactic substitutions substitute terms that may have free variables, their

judgment form includes a context to the left of the turnstile, in contrast to semantic substitution:

Θ0 ⊢ · : ·
Θ0 ⊢ 𝜎 : Θ Θ0 ⊢ [𝜎]𝑡 : 𝜏 𝑎 ∉ dom(Θ)

Θ0 ⊢ (𝜎, 𝑡/𝑎) : (Θ, 𝑎 : 𝜏)

Θ0 ⊢ 𝜎 : Θ Θ0 ⊢ [𝜎]𝜙 true

Θ0 ⊢ 𝜎 : (Θ, 𝜙)
Because our substitution operation [𝜎]− applies sequentially, we type (“sort”) the application

of the rest of the substitution to the head being substituted. For example, the rule concluding

Θ0 ⊢ (𝜎, 𝑡/𝑎) : (Θ, 𝑎 : 𝜏) checks that the application [𝜎]𝑡 of 𝜎 to 𝑡 has sort 𝜏 .

The decidability of our system depends on the decidability of propositional validity. Our example

index domain is decidable [Barrett et al. 2009]. Our system is parametric in the index domain,

provided the latter has certain properties. In particular, propositional validity must satisfy the

following basic properties required of a logical theory (Θ ctx is logical context well-formedness).

• Weaken: If Θ1,Θ,Θ2 ctx and Θ1,Θ2 ⊢ 𝜙 true, then Θ1,Θ,Θ2 ⊢ 𝜙 true.
• Permute: If Θ,Θ1 ctx and Θ,Θ2 ctx and Θ,Θ1,Θ2,Θ

′ ⊢ 𝜙 true, then Θ,Θ2,Θ1,Θ
′ ⊢ 𝜙 true.

• Substitution: If Θ ⊢ 𝜙 true and Θ0 ⊢ 𝜎 : Θ, then Θ0 ⊢ [𝜎]𝜙 true.
• Equivalence: The relation Θ ⊢ 𝑡1 = 𝑡2 true is an equivalence relation.

• Assumption: If Θ1, 𝜙,Θ2 ctx, then Θ1, 𝜙,Θ2 ⊢ 𝜙 true.
• Consequence: If Θ1 ⊢ 𝜓 true and Θ1,𝜓,Θ2 ⊢ 𝜙 true, then Θ1,Θ2 ⊢ 𝜙 true.
• Consistency: It is not the case that · ⊢ ff true.

We also assume that Θ ⊢ 𝑡 : 𝜏 is decidable and satisfies weakening and substitution. Our example

index domain satisfies all these properties.

4.2 Well-formedness
Context well-formedness Θ ctx and Θ ⊢ Γ ctx (appendix Fig. 8) is straightforward. For both logical

and program context well-formedness, there can be at most one of each variable. Index terms in

well-formed logical contexts must have boolean sort:

· ctx
LogCtxEmpty

Θ ctx 𝑎 ∉ dom(Θ)
(Θ, 𝑎 : 𝜏) ctx

LogCtxVar

Θ ctx Θ ⊢ 𝜙 : B

(Θ, 𝜙) ctx
LogCtxProp

In well-formed program variable contexts Θ ⊢ Γ ctx, the types (of program variables) must be

well-formed under Θ; further, we must not be able to extract index information from these types

(in the sense of Sec. 4.4). For example, 𝑥 : 1 ∧ ff is an ill-formed program context because ff can be

extracted, but 𝑥 : ↓↑1 ∧ ff is well-formed because nothing under a shift type can be extracted.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:22 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Type well-formedness Θ ⊢ 𝐴 type[Ξ] (read “under Θ, type 𝐴 is well-formed with value-

determined indexes Ξ”) has Ξ in output mode, which tracks index variables appearing in the

type 𝐴 that are uniquely
4
determined by values of refined inductive types in 𝐴, particularly by

their folds. (See Lemma 5.4 in Sec. 5.) Consider the following type well-formedness rule:

Θ ⊢ 𝐹 functor[Ξ] ·;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 (𝑏 : 𝜏) ∈ Θ

Θ ⊢ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑏} type[Ξ ∪ 𝑏 : 𝜏]
DeclTp𝜇Var

The index 𝑏 is uniquely determined by a value of the conclusion type, so we add it to Ξ. For example,

the value one = into(inj
2
⟨into(inj

1
⟨⟩), ⟨⟩⟩) determines the variable 𝑏 appearing in the value’s

type NatF(𝑏) = {𝜈 : 𝜇NatF | (foldNatF ixnat) 𝜈 = 𝑏} to be one. (We have a similar rule where the

𝑏-position metavariable is not an index variable, adding nothing to Ξ.) We use set union (Ξ∪𝑏 : 𝜏) as

𝑏 may already be value-determined in 𝐹 (that is, (𝑏 : 𝜏) may be in Ξ). The algebra well-formedness

premise ·;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 requires the algebra 𝛼 to be closed (that is, the first context is empty, ·).
This premise ensures that existential variables never appear in algebras, which is desirable because

folds with algebras solve existential variables when typechecking a value (see Sec. 6).

Because ultimately Ξ tracks only measure-determined indexes, DeclTp𝜇Var is the only rule that

adds to Ξ. The index propositions of asserting and guarded types do not track anything beyond

what is tracked by the types to which they are connected.

Θ ⊢ 𝑃 type[Ξ] Θ ⊢ 𝜙 : B

Θ ⊢ 𝑃 ∧ 𝜙 type[Ξ]
DeclTp∧

Θ ⊢ 𝑁 type[Ξ] Θ ⊢ 𝜙 : B

Θ ⊢ 𝜙 ⊃ 𝑁 type[Ξ]
DeclTp⊃

We restrict quantification to value-determined index variables in order to guarantee we can

always solve them algorithmically. For example, in checking one against the type ∃𝑎 : N.Nat(𝑎), we
solve 𝑎 to an index semantically equal to 1 ∈ N. If Θ, 𝑎 : 𝜏 ⊢ 𝑃 type[Ξ], then ∃𝑎 : 𝜏 . 𝑃 is well-formed

if and only if (𝑎 : 𝜏) ∈ Ξ, and similarly for universal quantification (which we’ll restrict to the

argument types of function types; argument types are positive):

Θ, 𝑎 : 𝜏 ⊢ 𝑃 type[Ξ, 𝑎 : 𝜏]
Θ ⊢ ∃𝑎 : 𝜏 . 𝑃 type[Ξ]

DeclTp∃
Θ, 𝑎 : 𝜏 ⊢ 𝑁 type[Ξ, 𝑎 : 𝜏]
Θ ⊢ ∀𝑎 : 𝜏 . 𝑁 type[Ξ]

DeclTp∀

We read commas in value-determined contexts such as Ξ1,Ξ2 as set union Ξ1 ∪ Ξ2 together with

the fact that dom(Ξ1) ∩ dom(Ξ2) = ∅, so these rules can be read top-down as removing 𝑎.

A value of product type is a pair of values, so we take the union of what each component value

determines:

Θ ⊢ 𝑃1 type[Ξ1] Θ ⊢ 𝑃2 type[Ξ2]
Θ ⊢ 𝑃1 × 𝑃2 type[Ξ1 ∪ Ξ2]

DeclTp×

We also take the union for function types 𝑃 → 𝑁 , because to use a function, due to focusing, we

must provide values for all its arguments. The Ξ ofNat(𝑎) → ↑Nat(𝑎) is 𝑎 : N, so ∀𝑎 : N.Nat(𝑎) →
↑Nat(𝑎) is well-formed. In applying a head of this type to a value, we must instantiate 𝑎 to an

index semantically equal to what that value determines; for example, if the value is one, then 𝑎

gets instantiated to an index semantically equal to 1 ∈ N.
However, a value of sum type is either a left- or right-injected value, but we don’t know which,

so we take the intersection of what each injection determines:

Θ ⊢ 𝑃1 type[Ξ1] Θ ⊢ 𝑃2 type[Ξ2]
Θ ⊢ 𝑃1 + 𝑃2 type[Ξ1 ∩ Ξ2]

DeclTp+

4
Semantically speaking.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :23

The unit type 1 and void (empty) type 0 both have empty Ξ. We also empty out value-determined

indexes at shifts, preventing certain quantifications over shifts. For example, ∀𝑎 : N.↑Nat(𝑎) (which
is void anyway) is not well-formed. Crucially, we will see that this restriction, together with focusing,

guarantees indexes will be algorithmically solved by the end of certain stages.

We define functor and algebra well-formedness in Fig. 7 of the appendix.

Functor well-formedness Θ ⊢ F functor[Ξ] is similar to type well-formedness: constant functors

output the Ξ of the underlying positive type, the identity and unit functors Id and 𝐼 have empty Ξ,
the product functor 𝐵 ⊗ 𝑃 takes the union of the component Ξs, and the sum functor 𝐹1 ⊕ 𝐹2 takes

the intersection. The latter two reflect the fact that unrolling inductive types (Sec. 4.6) generates +
types from ⊕ functors and × types from ⊗ functors. That 𝐼 has empty Ξ reflects that 1 (unrolled

from 𝐼) does too, together with the fact that asserting and guarded types do not affect Ξ.
Algebra well-formedness Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 (read “under Ξ and Θ, algebra 𝛼 is well-formed

and has type 𝐹 (𝜏) ⇒ 𝜏”) has two contexts: Ξ is for 𝛼 (in particular, the index bodies of its clauses)

and Θ is for 𝐹 (in particular, the positive types of constant functors); we maintain the invariant

that Ξ ⊆ Θ. We have these separate contexts to prevent existential variables from appearing in 𝛼

(as explained with respect to DeclTp𝜇Var) while still allowing them to appear in 𝐹 . For example,

consider ∃𝑏 : N.
{
𝜈 : 𝜇𝐹 (𝑏)

�� (fold𝐹 (𝑏) 𝛼) 𝜈 = 𝑛
}
where 𝐹 (𝑏) = (Nat(𝑏) ⊗ 𝐼) ⊕ (Nat(𝑏) ⊗ Id ⊗ 𝐼)

and 𝛼 = inj
1
(⊤, ()) ⇒ 0 |||||||| inj

2
(⊤, 𝑎, ()) ⇒ 1 + 𝑎.

Refined inductive type well-formedness initializes the input Ξ to ·, but index variables can be

bound in the body of an algebra:

Ξ, 𝑎 : 𝜏 ;Θ, 𝑎 : 𝜏 ⊢ 𝑞 ⇒ 𝑡 : 𝑃 (𝜏) ⇒ 𝜏

Ξ;Θ ⊢ (𝑎, 𝑞) ⇒ 𝑡 : (Id ⊗ 𝑃) (𝜏) ⇒ 𝜏

Ξ, 𝑎 : 𝜏 ′;Θ, 𝑎 : 𝜏 ′ ⊢ (𝑜, 𝑞) ⇒ 𝑡 : (𝑄 ⊗ 𝑃) (𝜏) ⇒ 𝜏

Ξ;Θ ⊢ (pack(𝑎, 𝑜), 𝑞) ⇒ 𝑡 : (∃𝑎 : 𝜏 ′ . 𝑄 ⊗ 𝑃) (𝜏) ⇒ 𝜏

where the right rule simultaneously binds 𝑎 in both 𝑡 and 𝑄 , and the left rule only binds 𝑎 in 𝑡 (but

we add 𝑎 to both contexts to maintain the invariant Ξ ⊆ Θ for inputs Ξ and Θ). We sort algebra

bodies only when a product ends at a unit (possible by design of the functor grammar), and merely

under Ξ; constant functors depend on Θ:

Ξ ⊢ 𝑡 : 𝜏
Ξ;Θ ⊢ ()⇒ 𝑡 : 𝐼 (𝜏) ⇒ 𝜏

Ξ;Θ ⊢ 𝑞 ⇒ 𝑡 : 𝑃 (𝜏) ⇒ 𝜏 Θ ⊢ 𝑄 type[_]
Ξ;Θ ⊢ (⊤, 𝑞) ⇒ 𝑡 : (𝑄 ⊗ 𝑃) (𝜏) ⇒ 𝜏

For algebras 𝛼 of “type” (𝐹1 ⊕ 𝐹2) 𝜏 ⇒ 𝜏 , we use a straightforward judgment 𝛼 ◦ inj𝑘 ⊜ 𝛼𝑘
(appendix Fig. 5) that outputs the 𝑘th clause 𝛼𝑘 of input algebra 𝛼 :

𝛼 ◦ inj
1
⊜ 𝛼1 𝛼 ◦ inj

2
⊜ 𝛼2 Ξ;Θ ⊢ 𝛼1 : 𝐹1 (𝜏) ⇒ 𝜏 Ξ;Θ ⊢ 𝛼2 : 𝐹2 (𝜏) ⇒ 𝜏

Ξ;Θ ⊢ 𝛼 : (𝐹1 ⊕ 𝐹2) (𝜏) ⇒ 𝜏

By restricting the bodies of algebras to index terms 𝑡 and the carriers of our 𝐹 -algebras to index
sorts 𝜏 , we uphold the phase distinction: we can therefore safely refine inductive types by folding

them with algebras, and also manage decidable typing.

4.3 Equivalence
We have equivalence judgments for propositions Θ ⊢ 𝜙 ≡ 𝜓 (appendix Fig. 11), logical contexts

Θ ⊢ Θ1 ≡ Θ2 (appendix Fig. 12), functors Θ ⊢ F ≡ G (appendix Fig. 13), and types Θ ⊢ 𝐴 ≡± 𝐵

(appendix Fig. 14), which use Θ ⊢ 𝜙 true to verify logical equality of index terms. Basically, two

entities are equivalent if their respective, structural subparts are equivalent (under the logical

context). Type/functor equivalence is used in sum and refined ADT subtyping (type equivalence

implies mutual subtyping), as well as to prove algorithmic completeness (appendix Lemma B.108),

but context equivalence is only used to prove algorithmic completeness (appendix Lemma B.95).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:24 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

However, it should be possible to remove equivalence from the system itself, by using “subfunctoring”

and covariant sum subtyping. For space reasons, we do not show all their rules here (see appendix),

only the ones we think are most likely to surprise.

Refined inductive types are equivalent only if they use syntactically the same algebra (but the

algebra must be well-formed at both functors 𝐹 and 𝐺 ; this holds by inversion on the conclusion’s

presupposed type well-formedness judgments):

Θ ⊢ 𝐹 ≡ 𝐺 Θ ⊢ 𝑡 = 𝑡 ′ true

Θ ⊢ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡} ≡+ {𝜈 : 𝜇𝐺 | (fold𝐺 𝛼) 𝜈 =𝜏 𝑡
′}

Two index equality propositions (respectively, two index inequalities) are equivalent if their

respective sides are logically equal:

Θ ⊢ 𝑡1 = 𝑡 ′
1
true Θ ⊢ 𝑡2 = 𝑡 ′

2
true

Θ ⊢ (𝑡1 = 𝑡2) ≡ (𝑡 ′
1
= 𝑡 ′

2
)

Θ ⊢ 𝑡1 = 𝑡 ′
1
true Θ ⊢ 𝑡2 = 𝑡 ′

2
true

Θ ⊢ (𝑡1 ≤ 𝑡2) ≡ (𝑡 ′
1
≤ 𝑡 ′

2
)

We use logical context equivalence in proving subsumption admissibility (see Sec. 4.8) and the

completeness of algorithmic typing (see Sec. 7.3). Two logical contexts are judgmentally equivalent

under Θ if they have exactly the same variable sortings (in the same list positions) and logically

equivalent (under Θ) propositions, in the same order. The most interesting rule is the one for

propositions, where, in the second premise, we filter out propositions from Θ1 because we want

each respective proposition to be logically equivalent under the propositions (and indexes) of Θ,
but variables in Θ1 (or Θ2) may appear in 𝜙1 (or 𝜙2):

Θ ⊢ Θ1 ≡ Θ2 Θ,Θ1 ⊢ 𝜙1 ≡ 𝜙2

Θ ⊢ (Θ1, 𝜙1) ≡ (Θ2, 𝜙2)

(Note that it is equivalent to use Θ2 rather than Θ1 in the second premise above.)

All equivalence judgments satisfy reflexivity (appendix Lemmas B.75 and B.76), symmetry

(appendix Lemmas B.91 and B.92), and transitivity (appendix Lemma B.78).

4.4 Extraction
The judgment Θ ⊢ 𝐴⇝± 𝐴′ [Θ𝐴] (Fig. 7) extracts quantified variables and ∧ and ⊃ propositions

from the type 𝐴, outputting the type 𝐴′
without these, and the context Θ𝐴 with them. We call 𝐴′

and Θ𝐴 the type and context extracted from 𝐴. For negative 𝐴, everything is extracted up to an

upshift. For positive 𝐴, everything is extracted up to any connective that is not ∃, ∧, or ×. For
convenience in program typing (Sec. 4.7), Θ ⊢ 𝐴 ⇝̸ abbreviates Θ ⊢ 𝐴 ⇝ 𝐴 [·] (we sometimes

omit the polarity label from extraction judgments). If Θ ⊢ 𝐴 ⇝̸, then we say 𝐴 is simple.

4.5 Subtyping
Declarative subtyping Θ ⊢ 𝐴 ≤± 𝐵 is defined in Fig. 8.

Subtyping is polarized into mutually recursive positive Θ ⊢ 𝑃 ≤+ 𝑄 and negative Θ ⊢ 𝑁 ≤− 𝑀

relations. The design of inference rules for subtyping is guided by sequent calculi, perhaps most

clearly seen in the left and right rules pertaining to quantifiers (∃, ∀), asserting types (∧), and
guarded types (⊃). This is helpful to establish key properties such as reflexivity and transitivity
(viewing subtyping as a sequent system, we might instead say that the structural identity and cut
rules, respectively, are admissible

5
). We interpret types as sets with some additional structure (Sec.

5), but considering only the sets, we prove that a subtype denotes a subset of the set denoted by any

5
A proposed inference rule is admissible with respect to a system if, whenever the premises of the proposed rule are

derivable, we can derive the proposed rule’s conclusion using the system’s inference rules.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :25

Θ ⊢ 𝐴⇝± 𝐴′ [Θ𝐴] Under Θ, type 𝐴 extracts to 𝐴′
and Θ𝐴

𝑃 ≠ ∃,∧, or ×
Θ ⊢ 𝑃 ⇝+ 𝑃 [·]

⇝+≠
Θ ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃]

Θ ⊢ 𝑃 ∧ 𝜙 ⇝+ 𝑃 ′ [𝜙,Θ𝑃]
⇝+∧

Θ, 𝑎 : 𝜏 ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃]
Θ ⊢ ∃𝑎 : 𝜏 . 𝑃 ⇝+ 𝑃 ′ [𝑎 : 𝜏,Θ𝑃]

⇝+∃
Θ ⊢ 𝑃1 ⇝+ 𝑃 ′

1
[Θ𝑃1] Θ ⊢ 𝑃2 ⇝+ 𝑃 ′

2
[Θ𝑃2]

Θ ⊢ 𝑃1 × 𝑃2 ⇝
+ 𝑃 ′

1
× 𝑃 ′

2
[Θ𝑃1 ,Θ𝑃2]

⇝+×

Θ ⊢ ↑𝑃 ⇝− ↑𝑃 [·]
⇝–≠

Θ ⊢ 𝑁 ⇝− 𝑁 ′ [Θ𝑁]
Θ ⊢ 𝜙 ⊃ 𝑁 ⇝− 𝑁 ′ [𝜙,Θ𝑁]

⇝–⊃

Θ, 𝑎 : 𝜏 ⊢ 𝑁 ⇝− 𝑁 ′ [Θ𝑁]
Θ ⊢ ∀𝑎 : 𝜏 . 𝑁 ⇝− 𝑁 ′ [𝑎 : 𝜏,Θ𝑁]

⇝–∀
Θ ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃] Θ ⊢ 𝑁 ⇝− 𝑁 ′ [Θ𝑁]

Θ ⊢ 𝑃 → 𝑁 ⇝− 𝑃 ′ → 𝑁 ′ [Θ𝑃 ,Θ𝑁]
⇝–→

Fig. 7. Declarative extraction

Θ ⊢ 𝐴 ≤± 𝐵 Under Θ, type 𝐴 is a subtype of 𝐵

Θ ⊢ 1 ≤+
1

≤+
1

Θ ⊢ 0 ≤+
0

≤+
0

Θ ⊢ 𝑃1 ≤+ 𝑄1 Θ ⊢ 𝑃2 ≤+ 𝑄2

Θ ⊢ 𝑃1 × 𝑃2 ≤+ 𝑄1 ×𝑄2

≤+×
Θ ⊢ 𝑃1 ≡+ 𝑄1 Θ ⊢ 𝑃2 ≡+ 𝑄2

Θ ⊢ 𝑃1 + 𝑃2 ≤+ 𝑄1 +𝑄2

≤++

Θ ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃] Θ𝑃 ≠ · Θ,Θ𝑃 ⊢ 𝑃 ′ ≤+ 𝑄

Θ ⊢ 𝑃 ≤+ 𝑄
≤+⇝L

Θ ⊢ 𝑃 ≤+ 𝑄 Θ ⊢ 𝜙 true

Θ ⊢ 𝑃 ≤+ 𝑄 ∧ 𝜙
≤+∧R

Θ ⊢ 𝑃 ≤+ [𝑡/𝑎]𝑄 Θ ⊢ 𝑡 : 𝜏
Θ ⊢ 𝑃 ≤+ ∃𝑎 : 𝜏 . 𝑄

≤+∃R

Θ ⊢ 𝐹 ≡ 𝐺 Θ ⊢ 𝑡 = 𝑡 ′ true

Θ ⊢ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡} ≤+ {𝜈 : 𝜇𝐺 | (fold𝐺 𝛼) 𝜈 =𝜏 𝑡
′}

≤+𝜇

Θ ⊢ 𝑁 ≤− 𝑀

Θ ⊢ ↓𝑁 ≤+ ↓𝑀
≤+↓

Θ ⊢ 𝑃 ≤+ 𝑄

Θ ⊢ ↑𝑃 ≤− ↑𝑄
≤–↑

Θ ⊢ 𝑁 ≤− 𝑀 Θ ⊢ 𝜙 true

Θ ⊢ 𝜙 ⊃ 𝑁 ≤− 𝑀
≤–⊃L

Θ ⊢ [𝑡/𝑎]𝑁 ≤− 𝑀 Θ ⊢ 𝑡 : 𝜏
Θ ⊢ ∀𝑎 : 𝜏 . 𝑁 ≤− 𝑀

≤–∀L

Θ ⊢ 𝑀 ⇝− 𝑀 ′ [Θ𝑀] Θ𝑀 ≠ · Θ,Θ𝑀 ⊢ 𝑁 ≤− 𝑀 ′

Θ ⊢ 𝑁 ≤− 𝑀
≤–⇝R

Θ ⊢ 𝑄 ≤+ 𝑃 Θ ⊢ 𝑁 ≤− 𝑀

Θ ⊢ 𝑃 → 𝑁 ≤− 𝑄 → 𝑀
≤–→

Fig. 8. Declarative subtyping

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:26 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

of its supertypes. That is, membership of a (semantic) value in the subtype implies its membership

in any supertype of the subtype. We may also view subtyping as implication.

Instead of ≤+⇝L, one might reasonably expect these two rules (the brackets around the rule

names indicate that these rules are not in our system):

Θ, 𝜙 ⊢ 𝑃 ≤+ 𝑄

Θ ⊢ 𝑃 ∧ 𝜙 ≤+ 𝑄
[≤+∧L]

Θ, 𝑎 : 𝜏 ⊢ 𝑃 ≤+ 𝑄

Θ ⊢ ∃𝑎 : 𝜏 . 𝑃 ≤+ 𝑄
[≤+∃L]

Similarly, one might expect to have [≤–⊃R] and [≤–∀R], dual to the above rules, instead of the

dual rule ≤–⇝R. Reading, for example, the above rule [≤+∧L] logically and top-down, if Θ and

𝜙 implies that 𝑃 implies 𝑄 , then we can infer that Θ implies that 𝑃 and 𝜙 implies 𝑄 . We can also

read rules as a bottom-up decision procedure: given 𝑃 ∧ 𝜙 , we know 𝜙 , so we can assume it;

given ∃𝑎 : 𝜏 . 𝑃 , we know there exists an index of sort 𝜏 such that 𝑃 , but we don’t have a specific

index term. However, these rules are not powerful enough to derive reasonable judgments such

as 𝑎 : N ⊢ 1 × (1 ∧ 𝑎 = 3) ≤+ (1 ∧ 𝑎 ≥ 3) × 1: subtyping for the first component requires verifying

𝑎 ≥ 3, which is impossible under no logical assumptions. But from a logical perspective, 1×(1∧𝑎 = 3)
implies 𝑎 ≥ 3. Reading ≤+⇝L bottom-up, in this case, we extract 𝑎 = 3 from the subtype, which

we later use to verify that 𝑎 ≥ 3. The idea is that, for a type in an assumptive position, it does not

matter which product component (products are viewed conjunctively) or function argument (in

our system, functions must be fully applied to values) to which index data is attached. Moreover, as

we’ll explain at the end of Sec. 6, the weaker rules by themselves are incompatible with algorithmic

completeness. We emphasize that we do not include [≤+∧L], [≤+∃L], [≤–⊃R] or [≤–∀R] in the

system.

For the unit type and the void type, rules ≤+
1 and void ≤+

0 are simply reflexivity. Product

subtyping ≤+× is covariant subtyping of component types: a product type is a subtype of another

if each component of the former is a subtype of the respective component of the latter. We have

covariant shift rules ≤+↓ and ≤–↑. Function subtyping ≤–→ is standard: contravariant (from

conclusion to premise, the subtyping direction flips) in the function type’s domain and covariant in

the function type’s codomain.

Rule ≤+∧R and its dual rule ≤–⊃L verify the validity of the attached proposition. In rule ≤+∃R
and its dual rule ≤–∀L, we assume that we can conjure a suitable index term 𝑡 ; in practice (that is,

algorithmically), we must introduce an existential variable 𝑎 and then solve it.

Rule ≤++ says a sum is a subtype of another sum if their respective subparts are (judgmentally)

equivalent. Judgmental equivalence does not use judgmental extraction. The logical reading of

subtyping begins to clarify why we don’t extract anything under a sum connective: (1 ∧ ff) + 1

does not imply ff. However, using equivalence here is a conservative restriction: for example,

(1 ∧ ff) + (1 ∧ ff) does imply ff. Regardless, we don’t expect this to be very restrictive in practice

because programmers tend not to work with sum types themselves, but rather algebraic inductive

types (like 𝜇𝐹), and don’t need to directly compare, via subtyping, (the unrolling of) different such

types (such as the type of lists and the type of natural numbers).

In rule ≤+𝜇, just as in the refined inductive type equivalence rule (Sec. 4.3), a refined inductive type

is a subtype of another type if they have judgmentally equivalent functors, they use syntactically

the same algebra (that agrees with both subtype and supertype functors), and the index terms on

the right-hand side of their measurements are equal under the logical context. As we discuss in

Sec. 9, adding polymorphism to the language (future work) might necessitate replacing type and

functor equivalence in subtyping with subtyping and “subfunctoring”.

In the appendix, we prove that subtyping is reflexive (Lemma B.77) and transitive (Lemma B.83).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :27

Subtyping and type equivalence. We prove that type equivalence implies subtyping (appendix

Lemma B.96). To prove that, we use the fact that if Θ1 is logically equivalent to Θ2 under their prefix

context Θ (judgment Θ ⊢ Θ1 ≡ Θ2) then we can replace Θ1 with Θ2 (and vice versa) in derivations

(appendix Lemma B.95). We use appendix Lemma B.96 to prove subsumption admissibility (Sec.

4.8) and a subtyping constraint verification transport lemma (mentioned in Sec. 7.2). Conversely,

mutual subtyping does not imply type equivalence: ⊢ 1 ∧ tt ≤ 1 and ⊢ 1 ≤ 1 ∧ tt but ⊢ 1 . 1 ∧ tt
because the unit type is structurally distinct from an asserting type.

4.6 Unrolling
Given 𝑎 : N, in our system, the type List 𝑃 𝑎 of 𝑎-length lists of elements of type 𝑃 is de-

fined as

{
𝜈 : 𝜇ListF𝑃

�� (foldListF𝑃 lenalg) 𝜈 = 𝑎
}
where ListF𝑃 = 𝐼 ⊕ (𝑃 ⊗ Id ⊗ 𝐼) and lenalg =

inj
1
()⇒ 0 |||||||| inj

2
(⊤, (𝑏, ())) ⇒ 1 + 𝑏. Assuming we have succ : ∀𝑎 : N.Nat(𝑎) → ↑Nat(1 + 𝑎) for

incrementing a (program-level) natural number by one, we define length in our system as follows:

rec length : (∀𝑎 : N. List(𝑃) (𝑎) → ↑Nat(𝑎)) . 𝜆𝑥 . match 𝑥 . {
into(𝑥 ′) ⇒ match 𝑥 ′ {

inj
1
⟨⟩ ⇒ -- 𝑎 = 0

return into(inj
1
⟨⟩)

| inj
2
⟨⊤, ⟨𝑦, ⟨⟩⟩⟩ ⇒ -- 𝑎 = 1 + 𝑎′ such that 𝑎′ is the length of 𝑦

let 𝑧′ = length(𝑦);
let 𝑧 = succ(𝑧′);
return 𝑧

}
}

Checking length against its type annotation, the lambda rule assumes 𝑥 : List(𝑃) (𝑎) for an
arbitrary 𝑎 : N. Upon matching 𝑥 against the pattern into(𝑥 ′), we know 𝑥 ′ should have the unrolled
type of List(𝑃) (𝑎). Ignoring refinements, we know that the erasure of this unrolling should be a

sum type where the left component represents the empty list and the right component represents a

head element together with a tail list. However, in order to verify the refinement that length does

what we intend, we need to know more about the length index associated with 𝑥—that is, 𝑎—in

the case where 𝑥 is nil and in the case where 𝑥 is a cons cell. Namely, the unrolling of List(𝑃) (𝑎)
should know that 𝑎 = 0 when 𝑥 is the empty list, and that 𝑎 = 1 + 𝑎′ where 𝑎′ is the length of the

tail of 𝑥 when 𝑥 is a nonempty list. This is the role of the unrolling judgment, to output just what

we need here:

·; · ⊢
{
𝜈 : ListF𝑃 [𝜇ListF𝑃] | lenalg

(
ListF𝑃 (foldListF𝑃 lenalg) 𝜈

)
=N 𝑎

}
⊜ (1 ∧ 𝑎 = 0) +

(
𝑃 × (∃𝑎′ : N.

{
𝜈 : 𝜇ListF𝑃

�� (foldListF𝑃 lenalg) 𝜈 =N 𝑎′
}
× (1 ∧ 𝑎 = 1 + 𝑎′))

)
That is, the type of 𝑃-lists of length 𝑎 unrolls to either the unit type 1 (representing the empty list)

together with the fact that 𝑎 is 0, or the product of 𝑃 (the type of the head element) and 𝑃-lists

(representing the tail) of length 𝑎′ such that 𝑎′ is 𝑎 minus one.

Refined inductive type unrolling Ξ;Θ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃 , inspired by

work in fibrational dependent type theory [Atkey et al. 2012], is defined in Fig. 9. There are two

contexts: Ξ is for 𝛽 and Θ is for 𝐺 , 𝐹 , and 𝑡 . Similarly to algebra well-formedness, we maintain the

invariant in unrolling that Ξ ⊆ Θ. The (non-contextual) input metavariables are𝐺 , 𝐹 , 𝛽 , 𝛼 , 𝜏 , and

𝑡 . The type 𝑃 , called the unrolled type, is an output. As in the list example above, inductive type

unrolling is always initiated with Ξ = · and 𝐺 = 𝐹 and 𝛽 = 𝛼 .

Unroll⊕ unrolls each branch and then sums the resulting types. UnrollId outputs the product

of the original inductive type but with a measurement given by the recursive result of the fold

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:28 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Ξ;Θ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃
Abbreviated

Ξ;Θ ⊢ unroll𝐹 ;𝛼 (𝐺 ; 𝛽 ;𝜏 ; 𝑡) ⊜ 𝑃

𝛽 ◦ inj
1
⊜ 𝛽1

𝛽 ◦ inj
2
⊜ 𝛽2

Ξ;Θ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽1 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃

Ξ;Θ ⊢ {𝜈 : 𝐻 [𝜇𝐹] | 𝛽2 (𝐻 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑄

Ξ;Θ ⊢ {𝜈 : (𝐺 ⊕ 𝐻) [𝜇𝐹] | 𝛽 ((𝐺 ⊕ 𝐻) (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃 +𝑄
Unroll⊕

Ξ, 𝑎 : 𝜏 ;Θ, 𝑎 : 𝜏 ⊢
{
𝜈 : 𝑃 [𝜇𝐹] | (𝑞 ⇒ 𝑡 ′)

(
𝑃 (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ 𝑄

Ξ;Θ ⊢
{
𝜈 : (Id ⊗ 𝑃) [𝜇𝐹] | ((𝑎, 𝑞) ⇒ 𝑡 ′)

(
(Id ⊗ 𝑃) (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ ∃𝑎 : 𝜏 . {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑎} ×𝑄

UnrollId

Ξ, 𝑎 : 𝜏 ′;Θ, 𝑎 : 𝜏 ′ ⊢
{
𝜈 : (𝑄 ⊗ 𝑃) [𝜇𝐹] | ((𝑜, 𝑞) ⇒ 𝑡 ′)

(
(𝑄 ⊗ 𝑃) (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ 𝑄 ′

Ξ;Θ ⊢
{
𝜈 : (∃𝑎 : 𝜏 ′ . 𝑄 ⊗ 𝑃) [𝜇𝐹] | ((pack(𝑎, 𝑜), 𝑞) ⇒ 𝑡 ′)

(
(∃𝑎 : 𝜏 ′ . 𝑄 ⊗ 𝑃) (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ ∃𝑎 : 𝜏 ′ . 𝑄 ′

Unroll∃

Ξ;Θ ⊢
{
𝜈 : 𝑃 [𝜇𝐹] | (𝑞 ⇒ 𝑡 ′)

(
𝑃 (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ 𝑄 ′

Ξ;Θ ⊢
{
𝜈 : (𝑄 ⊗ 𝑃) [𝜇𝐹] | ((⊤, 𝑞) ⇒ 𝑡 ′)

(
(𝑄 ⊗ 𝑃) (fold𝐹 𝛼) 𝜈

)
=𝜏 𝑡

}
⊜ 𝑄 ×𝑄 ′

UnrollConst

Ξ;Θ ⊢ {𝜈 : 𝐼 [𝜇𝐹] | (()⇒ 𝑡 ′) (𝐼 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 1 ∧ (𝑡 = 𝑡 ′)
Unroll𝐼

Fig. 9. Unrolling

(over which we existentially quantify), together with the rest of the unrolling. Unroll∃ pushes the

packed index variable 𝑎 onto the context and continues unrolling, existentially quantifying over

the result; in the conclusion, 𝑎 is simultaneously bound in 𝑄 and 𝑡 ′. UnrollConst outputs a product
of the type of the constant functor and the rest of the unrolling. Unroll𝐼 simply outputs the unit

type together with the index term equality given by the (unrolled) measurement.

If our functor and algebra grammars were instead more direct, like those implicitly used in the

introduction (Sec. 1) and overview (Sec. 2), and explicitly discussed in Sec. 4.0.1, then we would

have to modify the unrolling judgment, and it would need two more rules. We expect everything

would still work, but we prefer having to consider fewer rules when proving metatheory.

Unrolling, equivalence and subtyping. Substituting judgmentally equivalent types, functors and

indexes for the inputs of unrolling generates an output type that is both a subtype and supertype

of the original unrolling output:

Lemma 4.1 (Unroll to Mutual Subtypes). (Lemma B.97 in appendix)
If Ξ;Θ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃

and Θ ⊢ 𝐺 ≡ 𝐺 ′ and Θ ⊢ 𝐹 ≡ 𝐹 ′ and Θ ⊢ 𝑡 = 𝑡 ′ true,
then there exists 𝑄 such that Ξ;Θ ⊢ {𝜈 : 𝐺 ′ [𝜇𝐹 ′] | 𝛽 (𝐺 ′ (fold𝐹 ′ 𝛼) 𝜈) =𝜏 𝑡 ′} ⊜ 𝑄

and Θ ⊢ 𝑃 ≤+ 𝑄 and Θ ⊢ 𝑄 ≤+ 𝑃 .

Weuse this to prove subsumption admissibility (see Sec. 4.8) for the cases that involve constructing

and pattern matching inductive values.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :29

4.7 Typing
Declarative bidirectional typing rules are given in Figures 10, 11, and 12. By careful design, guided

by logical principles, all typing rules are syntax-directed. That is, when deriving a conclusion, at

most one rule is compatible with the syntax of the input program term and the principal input type.

To manage the interaction between subtyping and program typing, types in a well-formed

(under Θ) program context Γ must be invariant under extraction: for all (𝑥 : 𝑃) ∈ Γ, we have

Θ ⊢ 𝑃 ⇝+ 𝑃 [·] (that is, Θ ⊢ 𝑃 ⇝̸). We maintain this invariant in program typing by extracting

before adding any variable typings to the context.

Θ; Γ ⊢ ℎ ⇒ 𝑃 Under Θ and Γ, head ℎ synthesizes type 𝑃

(𝑥 : 𝑃) ∈ Γ

Θ; Γ ⊢ 𝑥 ⇒ 𝑃
Decl⇒Var

Θ ⊢ 𝑃 type[Ξ] Θ; Γ ⊢ 𝑣 ⇐ 𝑃

Θ; Γ ⊢ (𝑣 : 𝑃) ⇒ 𝑃
Decl⇒ValAnnot

Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 Under Θ and Γ, bound expression 𝑔 synthesizes type ↑𝑃

Θ; Γ ⊢ ℎ ⇒ ↓𝑁 Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃
Θ; Γ ⊢ ℎ(𝑠) ⇒ ↑𝑃

Decl⇒App

Θ ⊢ 𝑃 type[Ξ] Θ; Γ ⊢ 𝑒 ⇐ ↑𝑃
Θ; Γ ⊢ (𝑒 : ↑𝑃) ⇒ ↑𝑃

Decl⇒ExpAnnot

Fig. 10. Declarative head and bound expression type synthesis

The judgment Θ; Γ ⊢ ℎ ⇒ 𝑃 (Fig. 10) synthesizes the type 𝑃 from the head ℎ. This judgment is

synthesizing, because it is used in what are, from a Curry–Howard perspective, kinds of cut rules:

Decl⇒App and Decl⇐match, discussed later. The synthesized type is the cut type, which does

not appear in the conclusion of Decl⇒App or Decl⇐match. For head variables, we look up the

variable’s type in the context Γ (Decl⇒Var). For annotated values, we synthesize the annotation

(Decl⇒ValAnnot).

The judgment Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 (Fig. 10) synthesizes the type ↑𝑃 from the bound expression 𝑔.

Similarly to the synthesizing judgment for heads, this judgment is synthesizing because it is used in

a cut rule Decl⇐let (the synthesized type is again the cut type). Bound expressions only synthesize

an upshift because of their (lone) role in rule Decl⇐let, discussed later. For an application of a

head to a spine (Decl⇒App, an auxiliary cut rule), we first synthesize the head’s type (which must

be a downshift), and then check the spine against the thunked computation type, synthesizing the

latter’s return type. (Function applications must always be fully applied, but we can simulate partial

application via 𝜂-expansion. For example, given 𝑥 : 𝑃1 and ℎ ⇒ ↓(𝑃1 → 𝑃2 → ↑𝑄), to partially

apply ℎ to 𝑥 we can write 𝜆𝑦. let 𝑧 =ℎ(𝑥,𝑦); · · ·.) For annotated expressions, we synthesize the

annotation (Decl⇒ExpAnnot), which must be an upshift. If the programmer wants, say, to verify

guard constraints in 𝑁 of an expression 𝑒 of type 𝑁 whenever it is run, then they must annotate

it: (return {𝑒} : ↑↓𝑁). If an 𝑒 of type 𝑁 is intended to be a function to be applied (as a head to a

spine; Decl⇒App) only if the guards of 𝑁 can be verified and the universally quantified indexes

of 𝑁 can be instantiated, then the programmer must thunk and annotate it: ({𝑒} : ↓𝑁). The two
annotation rules have explicit type well-formedness premises to emphasize that type annotations

are provided by the programmer.

The judgmentΘ; Γ ⊢ 𝑣 ⇐ 𝑃 (Fig. 11) checks the value 𝑣 against the type 𝑃 . From a Curry–Howard

perspective, this judgment corresponds to a right-focusing stage. According to rule Decl⇐∃, a value

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:30 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Θ; Γ ⊢ 𝑣 ⇐ 𝑃 Under Θ and Γ, value 𝑣 checks against type 𝑃

𝑃 ≠ ∃,∧ (𝑥 : 𝑄) ∈ Γ Θ ⊢ 𝑄 ≤+ 𝑃

Θ; Γ ⊢ 𝑥 ⇐ 𝑃
Decl⇐Var

Θ; Γ ⊢ ⟨⟩ ⇐ 1

Decl⇐1

Θ; Γ ⊢ 𝑣1 ⇐ 𝑃1 Θ; Γ ⊢ 𝑣2 ⇐ 𝑃2

Θ; Γ ⊢ ⟨𝑣1, 𝑣2⟩ ⇐ 𝑃1 × 𝑃2
Decl⇐×

Θ; Γ ⊢ 𝑣 ⇐ 𝑃𝑘

Θ; Γ ⊢ inj𝑘 𝑣 ⇐ 𝑃1 + 𝑃2
Decl⇐+𝑘

Θ; Γ ⊢ 𝑣 ⇐ [𝑡/𝑎]𝑃 Θ ⊢ 𝑡 : 𝜏
Θ; Γ ⊢ 𝑣 ⇐ (∃𝑎 : 𝜏 . 𝑃)

Decl⇐∃
Θ; Γ ⊢ 𝑣 ⇐ 𝑃 Θ ⊢ 𝜙 true

Θ; Γ ⊢ 𝑣 ⇐ 𝑃 ∧ 𝜙
Decl⇐∧

·;Θ ⊢ {𝜈 : 𝐹 [𝜇𝐹] | 𝛼 (𝐹 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃 Θ; Γ ⊢ 𝑣 ⇐ 𝑃

Θ; Γ ⊢ into(𝑣) ⇐ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}
Decl⇐𝜇

Θ; Γ ⊢ 𝑒 ⇐ 𝑁

Θ; Γ ⊢ {𝑒} ⇐ ↓𝑁
Decl⇐↓

Θ; Γ ⊢ 𝑒 ⇐ 𝑁 Under Θ and Γ, expression 𝑒 checks against type 𝑁

Θ; Γ ⊢ 𝑣 ⇐ 𝑃

Θ; Γ ⊢ return 𝑣 ⇐ ↑𝑃
Decl⇐↑

Θ ⊢ 𝑁 ⇝̸ Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 Θ ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃] Θ,Θ𝑃 ; Γ, 𝑥 : 𝑃 ′ ⊢ 𝑒 ⇐ 𝑁

Θ; Γ ⊢ let 𝑥 =𝑔; 𝑒 ⇐ 𝑁
Decl⇐let

Θ ⊢ 𝑁 ⇝̸ Θ; Γ ⊢ ℎ ⇒ 𝑃 Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁

Θ; Γ ⊢ match ℎ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁
Decl⇐match

Θ ⊢ 𝑃 → 𝑁 ⇝̸ Θ; Γ, 𝑥 : 𝑃 ⊢ 𝑒 ⇐ 𝑁

Θ; Γ ⊢ 𝜆𝑥 . 𝑒 ⇐ 𝑃 → 𝑁
Decl⇐𝜆

Θ ⊢ 𝑁 ⇝̸ Θ ⊢ ff true

Θ; Γ ⊢ unreachable ⇐ 𝑁
Decl⇐Unreachable

Θ ⊢ 𝑁 ⇝̸
Θ ⊢ ∀𝑎 : N. 𝑀 ≤− 𝑁 Θ, 𝑎 : N; Γ, 𝑥 : ↓

(
∀𝑎′ : N. (𝑎′ < 𝑎) ⊃ [𝑎′/𝑎]𝑀

)
⊢ 𝑒 ⇐ 𝑀

Θ; Γ ⊢ rec 𝑥 : (∀𝑎 : N. 𝑀). 𝑒 ⇐ 𝑁
Decl⇐rec

Θ ⊢ 𝑁 ⇝ 𝑁 ′ [Θ𝑁] Θ𝑁 ≠ · Θ,Θ𝑁 ; Γ ⊢ 𝑒 ⇐ 𝑁 ′

Θ; Γ ⊢ 𝑒 ⇐ 𝑁
Decl⇐⇝

Fig. 11. Declarative value and expression type checking

checks against an existential type if there is an index instantiation it checks against (declaratively,

an index is conjured, but algorithmically we will have to solve for one). For example, as discussed

in Sec. 4.2, checking the program value one representing 1 against type ∃𝑎 : N. Nat(𝑎) solves 𝑎 to

an index semantically equal to 1. According to rule Decl⇐∧, a value checks against an asserting

type if it the asserted proposition 𝜙 holds (and the value checks against the type to which 𝜙 is

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :31

Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖}𝑖∈𝐼 ⇐ 𝑁
Under Θ and Γ, patterns 𝑟𝑖 match against (input) type 𝑃

and branch expressions 𝑒𝑖 check against type 𝑁

Θ, 𝑎 : 𝜏 ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁

Θ; Γ; [∃𝑎 : 𝜏 . 𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁
DeclMatch∃

Θ, 𝜙 ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁

Θ; Γ; [𝑃 ∧ 𝜙] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁
DeclMatch∧

Θ; Γ ⊢ 𝑒 ⇐ 𝑁

Θ; Γ; [1] ⊢ {⟨⟩ ⇒ 𝑒} ⇐ 𝑁
DeclMatch1

Θ ⊢ 𝑃1 ⇝ 𝑃 ′
1
[Θ1]

Θ ⊢ 𝑃2 ⇝ 𝑃 ′
2
[Θ2] Θ,Θ1,Θ2; Γ, 𝑥1 : 𝑃

′
1
, 𝑥2 : 𝑃

′
2
⊢ 𝑒 ⇐ 𝑁

Θ; Γ; [𝑃1 × 𝑃2] ⊢ {⟨𝑥1, 𝑥2⟩ ⇒ 𝑒} ⇐ 𝑁
DeclMatch×

Θ ⊢ 𝑃1 ⇝ 𝑃 ′
1
[Θ1]

Θ ⊢ 𝑃2 ⇝ 𝑃 ′
2
[Θ2]

Θ,Θ1; Γ, 𝑥1 : 𝑃
′
1
⊢ 𝑒1 ⇐ 𝑁

Θ,Θ2; Γ, 𝑥2 : 𝑃
′
2
⊢ 𝑒2 ⇐ 𝑁

Θ; Γ; [𝑃1 + 𝑃2] ⊢
{
inj

1
𝑥1 ⇒ 𝑒1 | inj

2
𝑥2 ⇒ 𝑒2

}
⇐ 𝑁

DeclMatch+

Θ; Γ; [0] ⊢ {} ⇐ 𝑁
DeclMatch0

·;Θ ⊢ {𝜈 : 𝐹 [𝜇𝐹] | 𝛼 (𝐹 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑄

Θ ⊢ 𝑄 ⇝ 𝑄 ′ [Θ𝑄] Θ,Θ𝑄 ; Γ, 𝑥 : 𝑄 ′ ⊢ 𝑒 ⇐ 𝑁

Θ; Γ; [{𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}] ⊢ {into(𝑥) ⇒ 𝑒} ⇐ 𝑁
DeclMatch𝜇

Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 Under Θ and Γ, if a head of type ↓𝑁 is applied to the spine 𝑠 ,

then it will return a result of type ↑𝑃
Θ ⊢ 𝑡 : 𝜏 Θ; Γ; [[𝑡/𝑎]𝑁] ⊢ 𝑠 ≫ ↑𝑃

Θ; Γ; [∀𝑎 : 𝜏 . 𝑁] ⊢ 𝑠 ≫ ↑𝑃
DeclSpine∀

Θ ⊢ 𝜙 true Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃
Θ; Γ; [𝜙 ⊃ 𝑁] ⊢ 𝑠 ≫ ↑𝑃

DeclSpine⊃

Θ; Γ ⊢ 𝑣 ⇐ 𝑄 Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃
Θ; Γ; [𝑄 → 𝑁] ⊢ 𝑣, 𝑠 ≫ ↑𝑃

DeclSpineApp

Θ; Γ; [↑𝑃] ⊢ · ≫ ↑𝑃
DeclSpineNil

Fig. 12. Declarative pattern matching and spine typing

connected). Instead of a general value type subsumption rule like

Θ; Γ ⊢ 𝑣 ⇐ 𝑄 Θ ⊢ 𝑄 ≤+ 𝑃

Θ; Γ ⊢ 𝑣 ⇐ 𝑃

we restrict subsumption to (value) variables, and prove that subsumption is admissible (see Sec-

tion 4.8). This is easier to implement efficiently because the type checker would otherwise have

to guess 𝑄 (and possibly need to backtrack), whereas Decl⇐Var need only look up the variable.

Further, the 𝑃 ≠ ∃,∧ constraint on Decl⇐Var means that any top-level ∃ or ∧ constraints must be

verified before subtyping, eliminating nondeterminism of verifying these in subtyping or typing.

Rule Decl⇐𝜇 checks the unrolled value against the unrolled inductive type. Rule Decl⇐1 says ⟨⟩
checks against 1. Rule Decl⇐× says a pair checks against a product if each pair component checks

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:32 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

against its corresponding factor. Rule Decl⇐+𝑘 says a value injected into the 𝑘th position checks

against a sum if it can be checked against the 𝑘th summand. Rule Decl⇐↓ checks the thunked
expression against the computation type 𝑁 under the given thunk type ↓ 𝑁 .

The judgment Θ; Γ ⊢ 𝑒 ⇐ 𝑁 (Fig. 11) checks the expression 𝑒 against the type 𝑁 . From a

Curry–Howard perspective, this judgment is a right-inversion stage with stablemoments (Decl⇐let
and Decl⇐match, which enter left- or right-focusing stages, respectively). Instead of Decl⇐⇝,

one might expect two rules (one for ∀ and one for ⊃) that simply put the universal index variable or

proposition into logical context, but these alone are less compatible with subsumption admissibility

(see Sec. 4.8) due to the use of extraction in subtyping rule ≤–⇝R. However, the idea is still the

same: here we are using indexes, not verifying them as in the dual left-focusing stage. To reduce

Decl⇐⇝ nondeterminism, and to enable a formal correspondence between our system and (a

variant of) CBPV (which has a general ↓ elimination rule), the other (expression) rules must check

against a simple type. In practice, we eagerly apply (if possible) Decl⇐⇝ immediately when type

checking an expression; extracted types are invariant under extraction.

All applications ℎ(𝑠) must be named and sequenced via Decl⇐let, which we may think of

as monadic binding, and is a key cut rule. Other computations—annotated returner expressions

(𝑒 : ↑𝑃)—must also be named and sequenced via Decl⇐let. It would not make sense to allow

arbitrary negative annotations because that would require verifying constraints and instantiating

indexes that should only be done when the annotated expression is applied, which does not occur

in Decl⇐let itself.
Heads, that is, head variables and annotated values, can be pattern matched via Decl⇐match.

From a Curry–Howard perspective, the rule Decl⇐match is a cut rule dual to the cut rule Decl⇐let:
the latter binds the result of a computation to a (sequenced) computation, whereas the former

binds the deconstruction of a value to, and directs control flow of, a computation. Rule Decl⇐𝜆 is

standard (besides the check that 𝑃 → 𝑁 is simple). Rule Decl⇐rec requires an annotation that

universally quantifies over the argument 𝑎 that must be smaller at each recursive call, as dictated

by its annotation in the last premise: 𝑥 : ↓
(
∀𝑎′ : N. (𝑎′ < 𝑎) ⊃ [𝑎′/𝑎]𝑀

)
only allows 𝑥 to be used

for 𝑎′ < 𝑎, ensuring that refined recursive functions are well-founded (according to < on naturals).

Rule Decl⇐↑ checks that the value being returned has the positive type under the given returner

type (↑); this may be thought of as a monadic return operation. Rule Decl⇐Unreachable says that

unreachable checks against any type, provided the logical context is inconsistent; for example, an

impossible pattern in pattern matching extracts to an inconsistent context.

Rule Decl⇐rec only handles one termination metric, namely < on natural numbers. This is

only to simplify our presentation, and is not a fundamental limitation of the system. We can, for

example, add a rule that encodes a termination metric < on the sum of two natural numbers:

Θ ⊢ 𝑁 ⇝̸ Θ ⊢ ∀𝑎 : N. ∀𝑏 : N. 𝑀 ≤− 𝑁

Θ, 𝑎 : N, 𝑏 : N; Γ, 𝑥 : ↓
(
∀𝑎′ : N. ∀𝑏′ : N. (𝑎′ + 𝑏′ < 𝑎 + 𝑏) ⊃ [𝑎′/𝑎] [𝑏′/𝑏]𝑀

)
⊢ 𝑒 ⇐ 𝑀

Θ; Γ ⊢ rec 𝑥 : (∀𝑎 : N. ∀𝑏 : N. 𝑀). 𝑒 ⇐ 𝑁

It is somewhat straightforward to update the metatheory for the system with this rule added. This

rule obviates, for example, the ghost parameter used in the mergesort example of Sec. 3. Similarly,

one could add rules for other termination metrics, such as lexicographic induction.

The judgment Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 (Fig. 12) decomposes 𝑃 , according to patterns 𝑟𝑖
(if 𝑃 ≠ ∧ or ∃, which have no computational content; if 𝑃 = ∧ or ∃, the index is put in logical

context for use), and checks that each branch 𝑒𝑖 has type 𝑁 . The rules are straightforward. Indexes

from matching on existential and asserting types are used, not verified (as in value typechecking);

we deconstruct heads, and to synthesize a type for a head, its indexes must hold, so within the

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :33

pattern matching stage itself, we may assume and use them. From a Curry–Howard perspective,

this judgment corresponds to a left-inversion stage. However, it is not strongly focused, that is, it

does not decompose 𝑃 eagerly and as far as possible; therefore, “stage” might be slightly misleading.

If our system were more strongly focused, we would have nested patterns, at least for all positive

types except inductive types; it’s unclear how strong focusing on inductive types would work.

The judgment Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 (Fig. 12) checks the spine 𝑠 against 𝑁 , synthesizing the return

type ↑𝑃 . From a Curry–Howard perspective, this judgment corresponds to a left-focusing stage.

The rules are straightforward: decompose the given 𝑁 , checking index constraints (DeclSpine∀
and DeclSpine⊃) and values (DeclSpineApp) until an upshift, the return type, is synthesized

(DeclSpineNil). Similarly to dual rule Decl⇐∃, the declarative rule DeclSpine∀ conjures an index

measuring a value, but in this case an argument value in a spine. For example, in applying a head

of type ∀𝑎 : N. Nat(𝑎) → ↑Nat(𝑎) to the spine with program value one representing 1, we must

instantiate 𝑎 to an index semantically equal to 1; we show how this works algorithmically in Sec.

6.4. All universal quantifiers (in the input type of a spine judgment) are solvable algorithmically,

because in a well-formed return type, the set of value-determined indexes Ξ is empty.

4.8 Substitution
A key correctness result that we prove is a substitution lemma: substitution (of index terms for

index variables and program values for program variables) preserves typing. We now extend the

index-level syntactic substitutions (and the sequential substitution operation) introduced in Sec.

4.1. A syntactic substitution 𝜎 ::= · | 𝜎, 𝑡/𝑎 | 𝜎, 𝑣 : 𝑃/𝑥 is essentially a list of terms to be substituted

for variables. Substitution application [𝜎]− is a sequential substitution metaoperation on types and

terms. On program terms, it is a kind of hereditary substitution6 [Watkins et al. 2004; Pfenning 2008]

in the sense that, at head variables (note the h superscript in the Fig. 13 definition; we elide h when

clear from context), an annotation is produced if the value and the head variable being replaced by

it are not equal—thereby modifying the syntax tree of the substitutee. Otherwise, substitution is

standard (homomorphic application) and does not use the value’s associated type given in 𝜎 : see

Fig. 13.

In the definition given in Fig. 13, an annotation is not produced if 𝑣 = 𝑥 so that 𝑥 : 𝑃/𝑥 is always

an identity substitution: that is, [𝑥 : 𝑃/𝑥]h𝑥 = 𝑥 . As usual, we assume variables are 𝛼-renamed to

avoid capture by substitution.

The judgment Θ0; Γ0 ⊢ 𝜎 : Θ; Γ (appendix Fig. 9) means that, under Θ0 and Γ0, we know 𝜎 is a

substitution of index terms and program values for variables in Θ and Γ, respectively. The key rule

of this judgment is for program value entries (the three elided rules are similar to the three rules

for syntactic substitution typing at index level, found near the start of Sec. 4.1, but adds program

contexts Γ where appropriate):

Θ0; Γ0 ⊢ 𝜎 : Θ; Γ Θ0; Γ0 ⊢ [𝜎]𝑣 ⇐ [⌊𝜎⌋]𝑃 𝑥 ∉ dom(Γ)
Θ0; Γ0 ⊢ (𝜎, 𝑣 : 𝑃/𝑥) : Θ; Γ, 𝑥 : 𝑃

We apply the rest of the syntactic substitution—that is, the 𝜎 in the rule—to 𝑣 and 𝑃 because the

substitution operation is sequential; 𝑣 may mention variables in Γ and Θ, and 𝑃 may mention

variables in Θ. The metaoperation ⌊−⌋ filters out program variable entries (program variables

cannot appear in types, functors, algebras or indexes).

That substitution respects typing is an important correctness property of the type system. We

state only two parts here, but those of the remaining program typing judgments are similar; all six

parts are mutually recursive.

6
Typically, hereditary substitution reduces terms after substitution, modifying the syntax tree.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:34 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

[𝑣 : 𝑃/𝑥]h𝑦 = 𝑦 (if 𝑦 ≠ 𝑥)

[𝑣 : 𝑃/𝑥]h𝑥 =

{
𝑥 if 𝑣 = 𝑥

(𝑣 : 𝑃) else

[𝑣 : 𝑃/𝑥]h(𝑣0 : 𝑃0) = ([𝑣 : 𝑃/𝑥]𝑣0 : 𝑃0)

[𝑣 : 𝑃/𝑥] (ℎ(𝑠)) = ([𝑣 : 𝑃/𝑥]hℎ) ([𝑣 : 𝑃/𝑥]𝑠)
[𝑣 : 𝑃/𝑥](𝑒 : ↑𝑄) = ([𝑣 : 𝑃/𝑥]𝑒 : ↑𝑄)

[𝑣 : 𝑃/𝑥]𝑦 = 𝑦 (if 𝑦 ≠ 𝑥)
[𝑣 : 𝑃/𝑥]𝑥 = 𝑣

[𝑣 : 𝑃/𝑥]⟨𝑣1, 𝑣2⟩ = ⟨[𝑣 : 𝑃/𝑥]𝑣1, [𝑣 : 𝑃/𝑥]𝑣2⟩
...

[𝑣 : 𝑃/𝑥] (match ℎ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼) = match
(
[𝑣 : 𝑃/𝑥]hℎ

)
([𝑣 : 𝑃/𝑥]{𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼)

...

Fig. 13. Definition of syntactic substitution on program terms

Lemma 4.2 (Syntactic Substitution). (Lemma B.107 in appendix)
Assume Θ0; Γ0 ⊢ 𝜎 : Θ; Γ.
(1) If Θ; Γ ⊢ ℎ ⇒ 𝑃 , then there exists 𝑄 such that Θ0 ⊢ 𝑄 ≤+ [⌊𝜎⌋]𝑃 and Θ0; Γ0 ⊢ [𝜎]ℎ ⇒ 𝑄 .
(2) If Θ; Γ ⊢ 𝑒 ⇐ 𝑁 , then Θ0; Γ0 ⊢ [𝜎]𝑒 ⇐ [⌊𝜎⌋]𝑁 .

In part (1), if substitution creates a head variable with stronger type, then the stronger type 𝑄 is

synthesized. The proof relies on other structural properties such as weakening. It also relies on

subsumption admissibility, which captures what we mean by “stronger type”. We show only one

part; the mutually recursive parts for the other five program typing judgments are similar.

Lemma 4.3 (Subsumption Admissibility). (Lemma B.106 in appendix)
Assume Θ ⊢ Γ′ ≤ Γ (pointwise subtyping).
(1) If Θ; Γ ⊢ 𝑣 ⇐ 𝑃 and Θ ⊢ 𝑃 ≤+ 𝑄 , then Θ; Γ′ ⊢ 𝑣 ⇐ 𝑄 .

Subtypes are stronger than supertypes. That is, if we can check a value against a type, then we

know that it also checks against any of the type’s supertypes; similarly for expressions. Pattern

matching is similar, but it also says we can match on a stronger type. A head or bound expression

can synthesize a stronger type under a stronger context. Similarly, with a stronger input type, a

spine can synthesize a stronger return type.

5 TYPE SOUNDNESS
We prove type (and substitution) soundness of the declarative system with respect to an elementary

domain-theoretic denotational semantics. Refined type soundness implies the refined system’s

totality and logical consistency.

Refinement type systems refine already-given type systems, and the soundness of the former

depends on that of the latter [Melliès and Zeilberger 2015]. Thus, the semantics of our refined

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :35

system is defined in terms of that of its underlying, unrefined system, which we discuss in Section

5.1.

Notation: We define the disjoint union 𝑋 ⊎ 𝑌 of sets 𝑋 and 𝑌 by 𝑋 ⊎ 𝑌 = ({1} × 𝑋) ∪ ({2} × 𝑌)
and define inj𝑘 : 𝑋𝑘 → 𝑋1 ⊎𝑋2 by inj𝑘 (𝑑) = (𝑘,𝑑). Semantic values are usually named 𝑑 , 𝑓 , 𝑔, or𝑉 .

5.1 Unrefined System
For space reasons, we do not fully present the unrefined system and its semantics here (see appendix

Sec. A.4). The unrefined system is basically just the refined system with everything pertaining to

indexes erased. The program terms of the unrefined system have almost the same syntax as those of

the refined system, but an unrefined, recursive expression has no type annotation, and we replace

the expression unreachable by diverge, which stands for an inexhaustive pattern-matching error.

The unrefined system satisfies a substitution lemma (appendix Lemma C.1) similar to that of the

refined system, but its proof is simpler and does not rely on subsumption admissibility, because the

unrefined system has no subtyping.

In CBPV, nontermination is regarded as an effect, so value and computation types denote different

kinds of mathematical things: predomains and domains, respectively [Levy 2004], which are both

sets with some structure. Because we have recursive expressions, we must model nontermination,

an effect. We use elementary domain theory. For our (unrefined) system, we interpret (unrefined)

positive types as predomains and (unrefined) negative types as domains. The only effect we consider

in this paper is nontermination (though we simulate inexhaustive pattern-matching errors with it);

we take (chain-)complete partial orders (cpo) as predomains, and pointed (chain-)complete partial

orders (cppo) as domains.

Positive types and functors. The grammar for unrefined positive types is similar to that for refined

positive types, but lacks asserting and existential types, and unrefined inductive types 𝜇𝐹 are not

refined by predicates. Unrefined inductive types use the unrefined functor grammar, which is the

same as the refined functor grammar but uses unrefined types in constant functors.

𝑃,𝑄 ::= 1 | 𝑃 ×𝑄 | 0 | 𝑃 +𝑄 | ↓𝑁 | 𝜇𝐹
The denotations of unrefined positive types are standard. We briefly describe their partial orders,

then describe the meaning of functors, and lastly return to the meaning of inductive types (which

involve functors).

We give (the denotation of) 1 (denoting the distinguished terminal object {•}) the discrete order
{(•, •)}. For 𝑃 × 𝑄 (denoting product) we use component-wise order ((𝑑1, 𝑑2) ⊑𝐷1×𝐷2

(𝑑 ′
1
, 𝑑 ′

2
) if

𝑑1 ⊑𝐷1
𝑑 ′
1
and 𝑑2 ⊑𝐷2

𝑑 ′
2
), for 0 (denoting the initial object) we use the empty order, and for 𝑃 +𝑄

(denoting coproduct, that is, disjoint union ⊎) we use injection-wise order (inj 𝑗 𝑑 ⊑𝐷1⊎𝐷2
inj𝑘 𝑑 ′

if 𝑗 = 𝑘 and 𝑑 ⊑𝐷 𝑗
𝑑 ′). We give ↓𝑁 the order of 𝑁 , that is, ↓ denotes the forgetful functor from

the category Cppo of cppos and continuous functions to the category Cpo of cpos and continuous

functions. Finally, 𝑉1 ⊑J𝜇𝐹K 𝑉2 if 𝑉1 ⊑J𝐹K𝑘+1∅ 𝑉2 for some 𝑘 ∈ N, inheriting the type denotation

orders as the functor is applied.

The denotations of unrefined functors are standard Cpo endofunctors. We briefly describe them

here, but full definitions are in appendix Sec. A.4. The sum functor ⊕ denotes a functor that sends

a cpo to the disjoint union ⊎ of its component applications (with usual injection-wise order), and

its functorial action is injection-wise. The product functor ⊗ denotes a functor that sends a cpo to

the product × of its component applications (with usual component-wise order), and its functorial

action is component-wise. The unit functor 𝐼 denotes a functor sending any cpo to 1 = {•} (discrete
order), and its functorial action sends all morphisms to id {•} . The constant (type) functor 𝑃 denotes

a functor sending any cpo to the cpo J𝑃K, and its functorial action sends all morphisms to the

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:36 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

identity idJ𝑃K on J𝑃K. The identity functor Id denotes the identity endofunctor on Cpo. (Forgetting
the order structure, functors also denote endofunctors on the category Set of sets and functions.)

We now explain the denotational semantics of our inductive types. Semantically, we build an

inductive type (such as JList 𝐴K), by repeatedly applying (the denotation of) its functor specification
(such as JListF𝐴K) to the initial object J0K = ∅. For example,

JList 𝐴K =
⋃
𝑘∈N

J1 ⊕ (𝐴 ⊗ Id)K𝑘 ∅ = 1 ⊎
(
J𝐴K ×

(
1 ⊎

(
J𝐴K × · · ·

)))
where 1 = {•} (using the relatively direct functors with more complicated unrolling, discussed

in Sec. 4.0.1). We denote the nil list [] by inj
1
•, a list 𝑥 :: [] with one term 𝑥 by inj

2
(J𝑥K , inj

1
•),

and so on. In general, given a (polynomial) Set (category of sets and functions) endofunctor 𝐹

(which, for this paper, will always be the denotation of a well-formed (syntactic) functor, refined

or otherwise), we define 𝜇𝐹 = ∪𝑘∈N𝐹
𝑘∅. We then define J𝜇𝐹K = 𝜇 J𝐹K. In our system, for every

well-formed (unrefined) functor 𝐹 , the set 𝜇 J𝐹K is a fixed point of J𝐹K (appendix Lemma C.7): that

is, J𝐹K (𝜇 J𝐹K) = 𝜇 J𝐹K (and similarly for refined functors: appendix Lemma D.11).

Negative types. The grammar for unrefined negative types has unrefined function types 𝑃 → 𝑁

and unrefined upshifts ↑𝑃 , with no guarded or universal types. Unrefined negative types denote

cppos.

𝑁 ::= 𝑃 → 𝑁 | ↑𝑃
Function types 𝑃 → 𝑁 denote continuous functions from J𝑃K to J𝑁 K (which we sometimes write

as J𝑃K ⇒ J𝑁 K), where its order is defined pointwise, together with the bottom element (the “point”

of “pointed cpo”) ⊥J𝑃→𝑁 K that maps every 𝑉 ∈ J𝑃K to the bottom element ⊥J𝑁 K of J𝑁 K (that is, ↑
denotes the lift functor from Cpo to Cppo). For our purposes, this is equivalent to lifting J𝑃K ∈ Cpo
to Cppo and denoting arrow types by strict (⊥ goes to ⊥) continuous functions so that function

types denote Cppo exponentials.
Upshifts ↑𝑃 denote J𝑃K ⊎ {⊥↑} with the lift order

⊑J↑𝑃K=
{
(inj

1
𝑑, inj

1
𝑑 ′)

�� 𝑑 ⊑J𝑃K 𝑑
′} ∪ {

(inj
2
⊥↑, 𝑑)

�� 𝑑 ∈ J↑𝑃K
}

and bottom element ⊥J↑𝑃K = inj
2
⊥↑. We could put, say, • rather than ⊥↑, but we think the latter is

clearer in associating it with the bottom element of upshifts; or ⊥ rather than ⊥↑ but we often elide

the “J𝐴K” subscript in ⊥J𝐴K when clear from context.

Appendix Fig. 27 has the full definition of (unrefined) type and functor denotations.

Well-typed program terms. We write Γ ⊢ O · · ·𝐴 and Γ; [𝐵] ⊢ O · · ·𝐴 to stand for all six unrefined

program typing judgments: Γ ⊢ ℎ ⇒ 𝑃 and Γ ⊢ 𝑔 ⇒ ↑𝑃 and Γ ⊢ 𝑣 ⇐ 𝑃 and Γ ⊢ 𝑒 ⇐ 𝑁 and

Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 and Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 .
The denotational semantics of well-typed, unrefined program terms of judgmental form Γ ⊢

O · · ·𝐴 or Γ; [𝐵] ⊢ O · · ·𝐴 are continuous functions JΓK → J𝐴K and JΓK → J𝐵K → J𝐴K respectively,
where JΓK is the set of all semantic substitutions ⊢ 𝛿 : Γ together with component-wise order.

Similarly to function type denotations, the bottom element of a JΓK → J𝑁 K sends every 𝛿 ∈ JΓK to

⊥J𝑁 K (equivalently for our purposes, we can lift source predomains and consider strict continuous

functions). We only interpret typing derivations, but we often only mention the program term in

semantic brackets J−K. For example, if Γ ⊢ 𝑥 ⇒ 𝑃 , then J𝑥K = (𝛿 ∈ JΓK) ↦→ 𝛿 (𝑥). We write the

application of the denotation J𝐸K of a program term 𝐸 (typed under Γ) to a semantic substitution

𝛿 ∈ JΓK as J𝐸K𝛿 . We only mention a few of the more interesting cases of the definition of typing

denotations; for the full definition, see appendix Figures 28, 29, and 30. If Γ; [𝑁] ⊢ 𝑣, 𝑠 ≫ 𝑀 , then

J𝑣, 𝑠K = (𝛿 ∈ JΓK) ↦→ (𝑓 ↦→ J𝑠K𝛿 (𝑓 (J𝑣K𝛿)))

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :37

Returner expressions denote monadic returns:

Jreturn 𝑣K𝛿 = inj
1
J𝑣K𝛿

Let-binding denotes monadic binding:

Jlet 𝑥 =𝑔; 𝑒K𝛿 =

{
J𝑒K(𝛿,𝑉 /𝑥) if J𝑔K𝛿 = inj

1
𝑉

⊥J𝑁 K if J𝑔K𝛿 = inj
2
⊥↑

A recursive expression denotes a fixed point obtained by taking the least upper bound (⊔) of all its
successive approximations:

JΓ ⊢ rec 𝑥 . 𝑒 ⇐ 𝑁 K𝛿 =
⊔
𝑘∈N

(
𝑉 ↦→ JΓ, 𝑥 : ↓𝑁 ⊢ 𝑒 ⇐ 𝑁 K𝛿,𝑉 /𝑥

)𝑘
⊥J𝑁 K

In the unrefined system, we include diverge, to which unreachable erases (that is, |unreachable| =
diverge). We intend diverge to stand for an undefined body of a pattern-matching clause, but we

interpret this error as divergence to simplify the semantics:

JΓ ⊢ diverge ⇐ 𝑁 K𝛿 = ⊥J𝑁 K

The point is that the refined system prevents the error.

We will say more about the semantics of folds in Sec. 5.2, but note that the action of rolling and

unrolling syntactic values is essentially denoted by 𝑑 ↦→ 𝑑 :

Jinto(𝑣)K𝛿 = J𝑣K𝛿
J{into(𝑥) ⇒ 𝑒}K𝛿 = 𝑉 ↦→ J𝑒K𝛿,𝑉 /𝑥

This works due to the fact that unrolling is sound (roughly, the denotations of each side of “⊜”
in the unrolling judgment are equal) and the fact that J𝐹K (𝜇 J𝐹K) = 𝜇 J𝐹K (and similarly for the

refined system).

Unrefined soundness. Our proofs of (appendix) Lemma C.28 (Unrefined Type Soundness) and

(appendix) Lemma C.30 (Unrefined Substitution Soundness) use standard techniques in domain

theory [Gunter 1993].

Unrefined type soundness says that a term typed 𝐴 under Γ denotes a continuous function

JΓK → J𝐴K. We (partly) state (3 out of 6 parts) this in two mutually recursive lemmas as follows:

Lemma 5.1 (Continuous Maps). (Lemma C.27 in appendix)
Suppose ⊢ 𝛿1 : Γ1 and ⊢ 𝛿2 : Γ2 and ⊢ Γ1, 𝑦 : 𝑄, Γ2 ctx.
(1) If Γ1, 𝑦 : 𝑄, Γ2 ⊢ ℎ ⇒ 𝑃 , then the function J𝑄K → J𝑃K defined by 𝑑 ↦→ JℎK𝛿1,𝑑/𝑦,𝛿2 is continuous.
(2) If Γ1, 𝑦 : 𝑄, Γ2 ⊢ 𝑒 ⇐ 𝑁 , then the function J𝑄K → J𝑁 K defined by 𝑑 ↦→ J𝑒K𝛿1,𝑑/𝑦,𝛿2 is continuous.
(3) If Γ1, 𝑦 : 𝑄, Γ2; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 , then the function J𝑄K → J𝑁 K → J↑𝑃K defined by𝑑 ↦→ J𝑠K𝛿1,𝑑/𝑦,𝛿2

is continuous.

Lemma 5.2 (Unrefined Type Soundness). (Lemma C.28 in appendix)
Assume ⊢ 𝛿 : Γ.
(1) If Γ ⊢ ℎ ⇒ 𝑃 , then JΓ ⊢ ℎ ⇒ 𝑃K𝛿 ∈ J𝑃K.
(2) If Γ ⊢ 𝑒 ⇐ 𝑁 , then JΓ ⊢ 𝑒 ⇐ 𝑁 K𝛿 ∈ J𝑁 K.
(3) If Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 , then JΓ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃K𝛿 ∈ J𝑁 K ⇒ J↑𝑃K.

The proof of unrefined type soundness is standard, and uses the well-known fact that a continuous

function in Cppo has a least fixed point. Among other things, we also use the fact that 𝜇 J𝐹K is a
fixed point of J𝐹K (appendix Lemma C.7). We also use the soundness of unrefined unrolling, which

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:38 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

we didn’t mention here because it’s similar to refined unrolling and its soundness, discussed in the

next section.

We interpret an unrefined syntactic substitution (typing derivation) Γ0 ⊢ 𝜎 : Γ as a contin-

uous function JΓ0K → JΓK that takes a 𝛿 ∈ JΓ0K and uses 𝛿 to interpret each of the entries in

𝜎 (remembering to apply the rest of the syntactic substitution, because substitution is defined

sequentially):

JΓ0 ⊢ · : ·K = (𝛿 ∈ JΓ0K) ↦→ ·
q
Γ0 ⊢

(
𝜎, (𝑣 : 𝑃/𝑥)

)
:

(
Γ, 𝑥 : 𝑃

)y
= (𝛿 ∈ JΓ0K) ↦→

(
(J𝜎K𝛿), J[𝜎]𝑣K𝛿 /𝑥

)
Similarly to typing derivations, we only consider denotations of typing derivations Γ0 ⊢ 𝜎 : Γ of

substitutions, but often simply write J𝜎K.
Unrefined substitution soundness says that semantic and syntactic substitution commute: if 𝐸 is

a program term typed under Γ and Γ0 ⊢ 𝜎 : Γ is a substitution, then J[𝜎]𝐸K = J𝐸K ◦ J𝜎K. Here, we
partly show how it is stated in the appendix (1 out of 6 parts):

Lemma 5.3 (Unrefined Substitution Soundness). (Lemma C.30 in appendix)
Assume Γ0 ⊢ 𝜎 : Γ and ⊢ 𝛿 : Γ0.
(1) If Γ ⊢ 𝑒 ⇐ 𝑁 , then JΓ0 ⊢ [𝜎]𝑒 ⇐ 𝑁 K𝛿 = JΓ ⊢ 𝑒 ⇐ 𝑁 KJ𝜎K𝛿

.

We use unrefined type/substitution soundness to prove refined type/substitution soundness,

discussed next.

5.2 Refined System
Indexes. For any sort 𝜏 , we give its denotation J𝜏K the discrete order ⊑J𝜏K =

{
(𝑑,𝑑)

�� 𝑑 ∈ J𝜏K
}
,

making it a cpo.

Semantic Substitution. We introduced semantic substitutions 𝛿 (at the index level) when discussing

propositional validity (Sec. 4.1). Here, they are extended to semantic program values:

⊢ 𝛿 : Θ; Γ 𝑉 ∈ J𝑃K⌊𝛿 ⌋ 𝑥 ∉ dom(Γ)
⊢ (𝛿,𝑉 /𝑥) : Θ; Γ, 𝑥 : 𝑃

where ⌊−⌋ filters out program entries. Notation: we define JΘ; ΓK = {𝛿 | ⊢ 𝛿 : Θ; Γ}.

Erasure. The erasure metaoperation |−| (appendix Sec. A.5) erases all indexes from (refined)

types, program terms (which can have type annotations, but those do not affect program meaning),

and syntactic and semantic substitutions. For example, |{𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}| = 𝜇 |𝐹 | and
|∀𝑎 : 𝜏 . 𝑁 | = |𝑁 | and |𝑃 ×𝑄 | = |𝑃 | × |𝑄 | and so on.

We use many facts about erasure to prove refined type/substitution soundness (appendix lemmas):

• Refined types denote subsets of what their erasures denote: Lemma C.31 (Type Subset of

Erasure). Similarly for refined functors and refined inductive types: Lemma C.32 (Functor

Application Subset of Erasure) and Lemma C.33 (Mu Subset of Erasure).

• The erasure of both types appearing in extraction, equivalence, and subtyping judgments

results in equal (unrefined) types: Lemma C.36 (Extraction Erases to Equality), Lemma C.37

(Equivalence Erases to Equality), and Lemma C.38 (Subtyping Erases to Equality).

• Refined unrolling and typing are sound with respect to their erasure: Lemma C.39 (Erasure

Respects Unrolling), Lemma C.40 (Erasure Respects Typing), and Lemma C.42 (Erasure

Respects Substitution Typing).

• Erasure commutes with syntactic and semantic substitution: Lemma C.41 (Erasure Respects

Substitution) and Lemma C.43 (Erasure Respects Semantic Substitution).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :39

Types, functors, algebras, and folds. The denotations of refined types and functors are defined

as logical subsets of the denotations of their erasures (together with their erasure denotations

themselves). They are defined mutually with the denotations of well-formed algebras.

In appendix Fig. 36, we inductively define the denotations of well-formed types Θ ⊢ 𝐴 type[_].
We briefly discuss a few of the cases. The meaning of an asserting type is the set of refined values

such that the asserted index proposition holds (read {•} as true and ∅ as false):

J𝑃 ∧ 𝜙K𝛿 =
{
𝑉 ∈ J|𝑃 |K

�� 𝑉 ∈ J𝑃K𝛿 and J𝜙K𝛿 = {•}
}

Existential and universal types denote elements of their erasure such that the relevant index

quantification holds:

J∃𝑎 : 𝜏 . 𝑃K𝛿 =

{
𝑉 ∈ J|𝑃 |K

��� ∃𝑑 ∈ J𝜏K . 𝑉 ∈ J𝑃K𝛿,𝑑/𝑎
}

J∀𝑎 : 𝜏 . 𝑁 K𝛿 =

{
𝑓 ∈ J|𝑁 |K

��� ∀𝑑 ∈ J𝜏K. 𝑓 ∈ J𝑁 K𝛿,𝑑/𝑎
}

Guarded types denote elements of their erasure such that they are also in the refined type being

guarded if the guard holds ({•} means true):

J𝜙 ⊃ 𝑁 K𝛿 =
{
𝑓 ∈ J|𝑁 |K

��
if J𝜙K𝛿 = {•} then 𝑓 ∈ J𝑁 K𝛿

}
The denotation of refined function types J𝑃 → 𝑁 K𝛿 is not the set J𝑃K𝛿 ⇒ J𝑁 K𝛿 of (continuous)

functions from refined 𝑃-values to refined 𝑁 -values; if it were, then type soundness would break:

J·; · ⊢ 𝜆𝑥 . return𝑥 ⇐ (1 ∧ ff) → ↑1K· = (• ↦→ inj
1
•)

which is not in (∅ ⇒ {•}⊎{⊥↑}). Instead, the meaning of a refined function type is a set (resembling

a unary logical relation) {
𝑓 ∈ J|𝑃 → 𝑁 |K

�� ∀𝑉 ∈ J𝑃K𝛿 . 𝑓 (𝑉) ∈ J𝑁 K𝛿
}

of unrefined (continuous) functions that take refined values to refined values. The meaning of

refined upshifts enforces termination (if refined type soundness holds, and we will see it does):

J↑𝑃K𝛿 =
{
inj

1
𝑉

�� 𝑉 ∈ J𝑃K𝛿
}

Note that divergence inj
2
⊥↑ is not in the set J↑𝑃K𝛿 .

In appendix Fig. 37, we inductively define the denotations of well-formed refined functors 𝐹

and algebras 𝛼 . The main difference between refined and unrefined functors is that in refined

functors, constant functors produce subsets of their erasure. All functors, refined or otherwise, also

(forgetting the partial order structure) denote endofunctors on the category of sets and functions.

As with our unrefined functors, our refined functors denote functors with a fixed point (appendix

Lemma D.11): J𝐹K𝛿 (𝜇 J𝐹K𝛿) = 𝜇 J𝐹K𝛿 . Moreover, 𝜇 J𝐹K𝛿 satisfies a recursion principle such that we

can inductively define measures on 𝜇 J𝐹K𝛿 via J𝐹K𝛿 -algebras (discussed next).

Categorically, given an endofunctor 𝐹 , an 𝐹 -algebra is an evaluator map 𝛼 : 𝐹 (𝜏) → 𝜏 for some

carrier set 𝜏 . We may think of this in terms of elementary algebra: we form algebraic expressions

with 𝐹 and evaluate themwith𝛼 . Amorphism 𝑓 from algebra𝛼 : 𝐹 (𝜏) → 𝜏 to algebra 𝛽 : 𝐹 (𝜏 ′) → 𝜏 ′

is a morphism 𝑓 : 𝜏 → 𝜏 ′ such that 𝑓 ◦ 𝛼 = 𝛽 ◦ (𝐹 (𝑓)). If an endofunctor 𝐹 has an initial7 algebra
into : 𝐹 (𝜇𝐹) → 𝜇𝐹 , then it has a recursion principle. By the recursion principle for 𝜇𝐹 , we can

define a recursive function from 𝜇𝐹 to 𝜏 by folding 𝜇𝐹 with an 𝐹 -algebra 𝛼 : 𝐹 (𝜏) → 𝜏 like so:

(fold𝐹 𝛼) : 𝜇𝐹 → 𝜏

(fold𝐹 𝛼) 𝑣 = 𝛼

((
fmap 𝐹 (fold𝐹 𝛼)

) (
out (𝑣)

))
7
An object 𝑋 in a category C is initial if for every object 𝑌 in C, there exists a unique morphism 𝑋 → 𝑌 in C.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:40 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

where out : 𝜇𝐹 → 𝐹 (𝜇𝐹), which by Lambek’s lemma exists and is inverse to into, embeds (seman-

tic) inductive values into the unrolling of the (semantic) inductive type (we usually elide fmap).
Conveniently, in our system and semantics, out is always 𝑑 ↦→ 𝑑 , and we almost never explicitly

mention it. Syntactic values 𝑣 in our system must be rolled into inductive types—into(𝑣)—and
this is also how (syntactic) inductive values are pattern-matched (“applying out” to into(𝑣)), but
into(−) conveniently denotes 𝑑 ↦→ 𝑑 .

We specify inductive types abstractly as sums of products so that they denote polynomial

endofunctors more directly. Polynomial endofunctors always have a “least” (initial) fixed point
8
,

and hence specify inductive types, which have a recursion principle. For example, we specify

(modulo the unrolling simplification) len : ListF𝐴 (N) ⇒ N (Sec. 1) by the (syntactic) algebra

𝛼 = inj
1
()⇒ 0 |||||||| inj

2
(⊤, 𝑎) ⇒ 1 + 𝑎

which denotes the (semantic) algebra

J𝛼K : JListF𝐴K (N)︸ ︷︷ ︸
1⊎(J𝐴K×N)

→ N

defined by J𝛼K = [• ↦→ 0, (𝑎, 𝑛) ↦→ 1 + 𝑛]. By initiality (the recursion principle), there is a unique

function

foldJListF𝐴K J𝛼K : 𝜇 JListF𝐴K → N
such that foldJListF𝐴K J𝛼K = J𝛼K ◦ (J𝐹K (foldJListF𝐴K J𝛼K)), which semantically captures len (Sec. 1).

In our system, a refined inductive type is written {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}, which looks quite

similar to its own semantics:

J{𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}K𝛿 =

{
𝑉 ∈ 𝜇 J𝐹K𝛿

��� (foldJ𝐹K𝛿
J𝛼K𝛿) 𝑉 = J𝑡K𝛿

}
The type List(𝐴) (𝑛) of 𝐴-lists having length 𝑛 : N, for example, is defined in our system as:

List(𝐴) (𝑛) =
{
𝜈 : 𝜇ListF𝐴

�� (foldListF𝐴 lenalg) 𝜈 =N 𝑛
}

Syntactic types, functors, and algebras in our system look very similar to their own semantics.

A well-typed algebra Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 denotes a dependent function

∏
𝛿∈JΘK J𝐹K𝛿 J𝜏K → J𝜏K.

The definition (appendix Fig. 37) is mostly standard, but the unit and pack cases could use some

explanation. Because Θ is for 𝐹 and Ξ (⊆ Θ) is for 𝛼 , we restrict 𝛿 to Ξ at algebra bodies:

JΞ;Θ ⊢ ()⇒ 𝑡 : 𝐼 (𝜏) ⇒ 𝜏K𝛿 • = JΞ ⊢ 𝑡 : 𝜏K𝛿↾Ξ
The most interesting part of the definition concerns index packing:

r
Ξ;Θ ⊢ (pack(𝑎, 𝑜), 𝑞) ⇒ 𝑡 : (∃𝑎 : 𝜏 ′ . 𝑄 ⊗ 𝑃) (𝜏) ⇒ 𝜏

z

𝛿
(𝑉1,𝑉2) =

r
Ξ, 𝑎 : 𝜏 ′;Θ, 𝑎 : 𝜏 ′ ⊢ (𝑜, 𝑞) ⇒ 𝑡 : (𝑄 ⊗ 𝑃) (𝜏) ⇒ 𝜏

z

(𝛿,𝑑/𝑎)
(𝑉1,𝑉2)

where 𝑑 ∈ J𝜏 ′K is such that 𝑉1 ∈ J𝑄K𝛿,𝑑/𝑎
The pack clause lets us bind the witness 𝑑 of 𝜏 ′ in the existential type ∃𝑎 : 𝜏 ′ . 𝑄 to 𝑎 in the body

𝑡 of the algebra. We know 𝑑 exists since 𝑉1 ∈ J∃𝑎 : 𝜏 ′ . 𝑄K𝛿 , but it is not immediate that it is

unique. However, we prove 𝑑 is uniquely determined by 𝑉1; we call this property the soundness of
value-determined indexes (all parts are mutually recursive):

Lemma 5.4 (Soundness of Value-Determined Indexes). (Lemma D.14 in appendix)
Assume ⊢ 𝛿1 : Θ and 𝛿2 : Θ.
8
This is not the case for all endofunctors. Therefore, not all endofunctors can be said to specify an inductive type. For

example, consider the powerset functor.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :41

(1) If Θ ⊢ 𝑃 type[Ξ] and 𝑉 ∈ J𝑃K𝛿1 and 𝑉 ∈ J𝑃K𝛿2 , then 𝛿1↾Ξ = 𝛿2↾Ξ.
(2) If Θ ⊢ F functor[Ξ] and 𝑋1, 𝑋2 ∈ Set and 𝑉 ∈ JF K𝛿1 𝑋1 and 𝑉 ∈ JF K𝛿2 𝑋2, then 𝛿1↾Ξ = 𝛿2↾Ξ.
(3) If Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 and Ξ ⊆ Θ and 𝛿1↾Ξ = 𝛿2↾Ξ, then J𝛼K𝛿1 = J𝛼K𝛿2 on J𝐹K𝛿1 J𝜏K∩J𝐹K𝛿2 J𝜏K.

Therefore, the Ξ in type and functor well-formedness really does track index variables that are

uniquely determined by values, semantically speaking.

Well-typed program terms. Appendix Fig. 38 specifies the denotations of well-typed refined

program terms in terms of the denotations of their erasure. The denotation of a refined program

term 𝐸 typed under (Θ; Γ), at refined semantic substitution 𝛿 ∈ JΘ; ΓK, is the denotation J|𝐸 |K |𝛿 | of
the (derivation of the) term’s erasure |𝐸 | at the erased substitution |𝛿 |. For example,

JΘ; Γ ⊢ 𝑒 ⇐ 𝑁 K = (𝛿 ∈ JΘ; ΓK) ↦→ J|Γ | ⊢ |𝑒 | ⇐ |𝑁 |K |𝛿 |
Unrolling. We prove (appendix Lemma D.15) that unrolling is sound:

Lemma 5.5 (Unrolling Soundness). (Lemma D.15 in appendix)
Assume ⊢ 𝛿 : Θ and Ξ ⊆ Θ. If Ξ;Θ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃 ,
then

{
𝑉 ∈ J𝐺K𝛿 (𝜇 J𝐹K𝛿)

��� J𝛽K𝛿 (J𝐺K𝛿 (foldJ𝐹K𝛿
J𝛼K𝛿) 𝑉) = J𝑡K𝛿

}
= J𝑃K𝛿 .

Due to our definition of algebra denotations (specifically, for the pack pattern), we use the

soundness of value-determined indexes in the pack case of the proof.

Subtyping. We prove (appendix Lemma D.19) that subtyping is sound:

Lemma 5.6 (Soundness of Subtyping). (Lemma D.19 in appendix)
Assume ⊢ 𝛿 : Θ. If Θ ⊢ 𝐴 ≤± 𝐵, then J𝐴K𝛿 ⊆ J𝐵K𝛿 .

Type soundness. Denotational-semantic type soundness says that if a program term has type

𝐴 under Θ and Γ, then the mathematical meaning of that program term at any interpretation

of (that is, semantic environment for) Θ and Γ is an element of the mathematical meaning of 𝐴

at that interpretation, that is, the program term denotes a dependent function

∏
𝛿∈JΘ;ΓK J𝐴K⌊𝛿 ⌋ .

This more or less corresponds to proving (operational) type soundness with respect to a big-step

operational semantics. Refined types pick out subsets of values of unrefined types. Therefore, by

type soundness, if a program has a refined type, then we have learned something more about that

program than the unrefined system can verify for us.

Theorem 5.7 (Type Soundness). (Thm. D.25 in appendix)
Assume ⊢ 𝛿 : Θ; Γ. Then:
(1) If Θ; Γ ⊢ ℎ ⇒ 𝑃 , then JℎK𝛿 ∈ J𝑃K⌊𝛿 ⌋ .
(2) If Θ; Γ ⊢ 𝑔 ⇒ 𝑁 , then J𝑔K𝛿 ∈ J𝑁 K⌊𝛿 ⌋ .
(3) If Θ; Γ ⊢ 𝑣 ⇐ 𝑃 , then J𝑣K𝛿 ∈ J𝑃K⌊𝛿 ⌋ .
(4) If Θ; Γ ⊢ 𝑒 ⇐ 𝑁 , then J𝑒K𝛿 ∈ J𝑁 K⌊𝛿 ⌋ .
(5) If Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 , then J{𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 K𝛿 ∈ J𝑃K⌊𝛿 ⌋ ⇒ J𝑁 K⌊𝛿 ⌋ .
(6) If Θ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 , then J𝑠K𝛿 ∈ J𝑁 K⌊𝛿 ⌋ ⇒ J↑𝑃K⌊𝛿 ⌋ .

(All parts are mutually recursive.) The proof (appendix Thm. D.25) uses the soundness of unrolling

and subtyping. The proof is mostly straightforward. The hardest case is the one for recursive

expressions in part (4), where we use an upward closure lemma—in particular, part (3) below—to

show that the fixed point is in the appropriately refined set:

Lemma 5.8 (Upward Closure). (Lemma D.22 in appendix)
Assume ⊢ 𝛿 : Θ.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:42 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

(1) If Ξ;Θ ⊢ 𝛼 : 𝐹 (𝜏) ⇒ 𝜏 and Ξ ⊆ Θ then J𝛼K𝛿 is monotone.
(2) If Θ ⊢ G functor[_] and Θ ⊢ 𝐹 functor[_] and 𝑘 ∈ N

and 𝑉 ∈ JGK𝛿 (J𝐹K𝑘𝛿 ∅) and 𝑉 ⊑J | G |K (J |𝐹 |K𝑘 ∅) 𝑉
′,

then 𝑉 ′ ∈ JGK𝛿 (J𝐹K𝑘𝛿 ∅).
(3) If Θ ⊢ 𝐴 type[_] and 𝑉 ∈ J𝐴K𝛿 and 𝑉 ⊑J |𝐴 |K 𝑉

′, then 𝑉 ′ ∈ J𝐴K𝛿 .

Out of all proofs in this paper, the proof of upward closure (appendix Lemma D.22) is a top

contender for the most interesting induction metric:

Proof. By lexicographic induction on, first, sz(𝐴)/sz(𝐹) (parts (1), (2) and (3), mutually), and,

second, ⟨𝑘,G structure⟩ (part (2)), where ⟨. . . ⟩ denotes lexicographic order. □

We define the simple size function sz(−), which is basically a standard structural notion of size,

in appendix Fig. 57. This is also the only place, other than unrolling soundness, where we use the

soundness of value-determined indexes (again for a pack case, in part (1)).

Substitution soundness. We interpret a syntactic substitution (typing derivation) Θ0; Γ0 ⊢ 𝜎 : Θ; Γ
as a function J𝜎K : JΘ0; Γ0K → JΘ; ΓK on semantic substitutions (appendix Def. B.1). Similarly to

the interpretation of unrefined substitution typing derivations, the interpretation of the head term

being substituted (its typing/sorting subderivation) pre-applies the rest of the substitution:

J·K𝛿 = ·
J𝜎, 𝑡/𝑎K𝛿 = J𝜎K𝛿 , J[𝜎]𝑡K⌊𝛿 ⌋ /𝑎

J𝜎, 𝑣 : 𝑃/𝑥K𝛿 = J𝜎K𝛿 , J[𝜎]𝑣K𝛿 /𝑥
Substitution soundness holds (appendix Thm. D.28): if 𝐸 is a program term typed underΘ and Γ, and
Θ0; Γ0 ⊢ 𝜎 : Θ; Γ, then J[𝜎]𝐸K = J𝐸K ◦ J𝜎K. (Recall we prove a syntactic substitution lemma: Lemma

4.2.) That is, substitution and denotation commute, or (in other words) syntactic substitution and

semantic substitution are compatible.

Logical consistency, total correctness, and partial correctness. Our semantic type soundness result
implies that our system is logically consistent and totally correct.

A logically inconsistent type (for example, 0 or ↑0 or ↑ (1 ∧ ff)) denotes the empty set, which is

uninhabited.

Corollary 5.9 (Logical Consistency). If ·; · ⊢ 𝑒 ⇐ 𝑁 , then 𝑁 is logically consistent, that is,
J𝑁 K· ≠ ∅. Similarly, if ·; · ⊢ 𝑣 ⇐ 𝑃 , then 𝑃 is logically consistent, and so on for the other typing
judgments.

Proving logical consistency syntactically, say, via progress and preservation lemmas, would

require also proving that every reduction sequence eventually terminates (that is, strong normal-

ization), which might need a relatively complicated proof using logical relations [Tait 1967].

Total correctness means that every closed computation (that is specified as total) returns a value

of the specified type:

Corollary 5.10 (Total Correctness). If ·; · ⊢ 𝑒 ⇐ ↑𝑃 , then J𝑒K· ≠ ⊥J↑𝑃K· , that is, 𝑒 does not
diverge.

Proof.

⊢ · : ·; · By Empty𝛿

J𝑒K· ∈ J↑𝑃K⌊ ·⌋ By Theorem 5.7 (Type Soundness)

= J↑𝑃K· By definition of ⌊−⌋
=
{
inj

1
𝑉

�� 𝑉 ∈ J𝑃K·
}

By definition of J−K·

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :43

Therefore, J𝑒K· ≠ inj
2
⊥↑ = ⊥J↑𝑃K· , that is, 𝑒 terminates (and returns a value). □

Our system can be extended to include partiality, simply by adding a partial upshift type con-
nective ↿𝑃 (“partial upshift of 𝑃”), with type well-formedness, subtyping and type equivalence

rules similar to those of ↑𝑃 , and the following two expression typechecking rules. The first rule

introduces the new connective ↿𝑃 ; the second rule lacks a termination refinement such as that in

Decl⇐rec, so it may yield divergence.

Θ; Γ ⊢ 𝑣 ⇐ 𝑃

Θ; Γ ⊢ return 𝑣 ⇐ ↿𝑃
Θ; Γ, 𝑥 : ↓𝑁 ⊢ 𝑒 ⇐ 𝑁

Θ; Γ ⊢ rec 𝑥 . 𝑒 ⇐ 𝑁

The meaning of the partial upshift is defined as follows:

JΘ ⊢ ↿𝑃 type[_]K𝛿 =
{
𝑑 ∈ J↑ |𝑃 |K

��
if 𝑑 ≠ ⊥J↑|𝑃 |K then 𝑑 = inj

1
𝑉 for some 𝑉 ∈ J𝑃K𝛿

}
It is straightforward to update the metatheory to prove partial correctness: If a closed computation

(that is specified as partial) terminates, then it returns a value of the specified type. Partial correctness

is a corollary of the updated type soundness result: if ·; · ⊢ 𝑒 ⇐ ↿𝑃 and J𝑒K· ≠ ⊥J↑𝑃K· then

J𝑒K· = inj
1
𝑉 and 𝑉 ∈ J𝑃K· .

Adding partiality introduces logical inconsistency, so we must restate logical consistency for

expression typing: If ·; · ⊢ 𝑒 ⇐ ↑𝑃 , then ↑𝑃 is logically consistent.

6 ALGORITHMIC SYSTEM
We design our algorithmic system in the spirit of those of Dunfield and Krishnaswami [2013,

2019], but those systems do not delay constraint verification until all existentials are solved. The

algorithmic rules closely mirror the declarative rules, except for a few key differences:

• Whenever a declarative rule conjures an index term, the corresponding algorithmic rule adds,

to a separate (input) algorithmic context Δ, an existential variable (written with a hat: 𝑎) to

be solved.

• As the typing algorithm proceeds, we add index term solutions of the existential variables to

the output algorithmic context, increasing knowledge (see Sec. 6.2). We eagerly apply index

solutions to input types and output constraints, and pop them off the output context when

out of scope.

• Whenever a declarative rule checks propositional validity or equivalence (Θ ⊢ 𝜙 true or
Θ ⊢ 𝜙 ≡ 𝜓), the algorithm delays checking the constraint until all existential variables in the

propositions are solved (at the end of a focusing stage). Similarly, subtyping, type equivalence,

and expression typechecking constraints are delayed until all existential variables are solved.

When an entity has no existential variables, we say that it is ground.
• In subtyping, we eagerly extract from assumptive positions immediately under polarity shifts.

Syntactically, objects in the algorithmic system are not much different from corresponding

objects of the declarative system. We extend the grammar for index terms with a production of

existential variables, which we write as an index variable with a hat 𝑎, ˆ𝑏, or 𝑐:

𝑡 ::= · · · | 𝑎

We use this (algorithmic) index grammar everywhere in the algorithmic system, using the same

declarative metavariables. However, we write algorithmic logical contexts with a hat: Θ̂. Algorith-
mic logical contexts Θ̂ only appear in output mode, and are like (input) logical contexts Θ, but
propositions listed in them may have existential variables (its index variable sortings 𝑎 : 𝜏 are

universal).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:44 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Constraints are added to the algorithmic system. Figure 14 gives grammars for subtyping and

typing constraints. In contrast to DML, the grammar does not include existential constraints.

Subtyping constraints 𝑊 ::= 𝜙 | 𝜙 ≡ 𝜓 | 𝜙 ⊃𝑊 | 𝑊 ∧𝑊 | ∀𝑎 : 𝜏 .𝑊

| 𝑃 <:+ 𝑄 | 𝑁 <:− 𝑀 | 𝑃 ≡+ 𝑄 | 𝑁 ≡− 𝑀

Typing constraints 𝜒 ::= · | (𝑒 ⇐ 𝑁), 𝜒 | 𝑊, 𝜒

Fig. 14. Typing and subtyping constraints

Checking constraints boils down to checking propositional validity, Θ ⊢ 𝜙 true, which is

analogous to checking verification conditions in the tradition of imperative program verification

initiated by Floyd [1967] and Hoare [1969] (where programs annotated with Floyd–Hoare assertions

are analyzed, generating verification conditions whose validity implies program correctness). These

propositional validity constraints are the constraints that can be automatically verified by a theorem

prover such as an SMT solver. The (algorithmic)𝑊 constraint verification judgment is written

Θ |= 𝑊 and means that𝑊 algorithmically holds under Θ. Notice that the only context in the

judgment is Θ, which has no existential variables: this reflects the fact that we delay verifying

𝑊 until𝑊 has no existential variables (in which case we say𝑊 is ground). Similarly, Θ; Γ ◁ 𝜒 is

the (algorithmic) 𝜒 verification judgment, meaning all of the constraints in 𝜒 algorithmically hold

under Θ and Γ, and here 𝜒 is also ground (by focusing).

6.1 Contexts and Substitution
Algorithmic contexts Δ are lists of solved or unsolved existential variables, and are said to be

complete, and are written as Ω, if they are all solved:

Δ ::= · | Δ, 𝑎 : 𝜏 | Δ, 𝑎 : 𝜏=𝑡

Ω ::= · | Ω, 𝑎 : 𝜏=𝑡

We require solutions 𝑡 of existential variables 𝑎 to be well-sorted under (input) logical contexts Θ,
which have no existential variables. To maintain this invariant that every solution in Δ is ground,
that is, has no existential variables, we exploit type polarity in algorithmic subtyping, and prevent

existential variables from ever appearing in refinement algebras.

We will often treat algorithmic contexts Δ as substitutions of ground index terms for existential

variables 𝑎 in index terms 𝑡 (including propositions 𝜙), types 𝐴, functors F , constraints𝑊 and 𝜒 ,

and output logical contexts Θ̂ (whose propositions may have existential variables). The definition

is straightforward: homomorphically apply the context to the object O, and further define [Δ]O by

induction on Δ.

[·]O = O
[Δ, 𝑎 : 𝜏]O = [Δ]O

[Δ, 𝑎 : 𝜏=𝑡]O = [Δ] ([𝑡/𝑎]O)
The order of substitutions in the definition of context application above does not matter because

solutions are ground (we may view [Δ]O as simultaneous substitution). If O only has existential

variables from dom(Ω), then [Ω]O is ground.

6.2 Context Extension
The algorithmic context extension judgment Θ ⊢ Δ −→ Δ′

says that dom(Δ) = dom(Δ′) and Δ′
has

the same solutions as Δ, but possibly solves more (that are unsolved in Δ). All typing and subtyping

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :45

judgments (under Θ) that have input and output algorithmic contexts Δ and Δ′
(respectively) enjoy

the property that they increase index information, that is, Θ ⊢ Δ −→ Δ′
. If Θ ⊢ Δ −→ Ω, then Ω

completes Δ: it has Δ’s solutions, but also solutions to all of Δ’s unsolved variables.

Θ ⊢ · −→ ·
Θ ⊢ Δ −→ Δ′

Θ ⊢ Δ, 𝑎 : 𝜏 −→ Δ′, 𝑎 : 𝜏

Θ ⊢ Δ −→ Δ′

Θ ⊢ Δ, 𝑎 : 𝜏=𝑡 −→ Δ′, 𝑎 : 𝜏=𝑡

Θ ⊢ Δ −→ Δ′

Θ ⊢ Δ, 𝑎 : 𝜏 −→ Δ′, 𝑎 : 𝜏=𝑡

6.3 Subtyping
Algorithmic subtyping Θ;Δ ⊢ 𝐴 <:± 𝐵 /𝑊 ⊣ Δ′

says that, under logical context Θ and algorithmic

context Δ, the type 𝐴 is algorithmically a subtype of 𝐵 if and only if output constraint𝑊 holds

algorithmically (under suitable solutions including those of Δ′
), outputting index solutions Δ′

. In

subtyping and type equivalence, the delayed output constraints𝑊 must remember their logical

context via ⊃ and ∀. For example, in checking that ∃𝑎 : N. Nat(𝑎) ∧ (𝑎 < 5) is a subtype of

∃𝑎 : N. Nat(𝑎) ∧ (𝑎 < 10), the output constraint𝑊 is ∀𝑎 : N. (𝑎 < 5) ⊃ (𝑎 < 10).
For space reasons, we don’t present all algorithmic subtyping rules here (see appendix Fig. 48),

but only enough rules to discuss the key design issues. Further, we don’t present algorithmic

equivalence here (see appendix Figures 44 and 46), which is similar to and simpler than algorithmic

subtyping.

In algorithmic subtyping, we maintain the invariant that positive subtypes and negative super-

types are ground. The rules

Θ;Δ, 𝑎 : 𝜏 ⊢ 𝑃 <:+ [𝑎/𝑎]𝑄 /𝑊 ⊣ Δ′, 𝑎 : 𝜏=𝑡

Θ;Δ ⊢ 𝑃 <:+ ∃𝑎 : 𝜏 . 𝑄 /𝑊 ⊣ Δ′
Θ;Δ, 𝑎 : 𝜏 ⊢ [𝑎/𝑎]𝑁 <:− 𝑀 /𝑊 ⊣ Δ′, 𝑎 : 𝜏=𝑡

Θ;Δ ⊢ ∀𝑎 : 𝜏 . 𝑁 <:− 𝑀 /𝑊 ⊣ Δ′

are the only subtyping rules which add existential variables (to the side not necessarily ground) to

be solved (whereas the declarative system conjures a solution). We pop off the solution as we have

the invariant that output contexts are eagerly applied to output constraints and input types.

The rule

𝑡 ground Θ;Δ ⊢ 𝐹 ≡ 𝐺 /𝑊 ⊣ Δ′
1
, 𝑎 : 𝜏,Δ′

2
Δ′ = Δ′

1
, 𝑎 : 𝜏=𝑡,Δ′

2

Θ;Δ ⊢ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡} <:+ {𝜈 : 𝜇𝐺 | (fold𝐺 𝛼) 𝜈 =𝜏 𝑎} /𝑊 ∧ (𝑡 = 𝑡) ⊣ Δ′ <:+/⊣𝜇Inst

runs the functor equivalence algorithm (which outputs constraint𝑊 and solutions Δ′
1
, 𝑎 : 𝜏,Δ′

2
),

checks that 𝑎 does not get solved there, and then solves 𝑎 to 𝑡 (yielding Δ′
) after checking that the

latter (which is a subterm of a positive subtype) is ground, outputting the constraint generated

by functor equivalence together with the equation 𝑡 = 𝑡 (the declarative system can conjure a

different but logically equal term for the right-hand side of this equation), and Δ′
. Alternatively,

there is a rule for when 𝑎 gets solved by functor equivalence, and a rule where a term that is not an

existential variable is in place of 𝑎.

The rule

Θ;Δ ⊢ 𝑀 ⇝ 𝑀 ′ [Θ̂]
Θ;Δ ⊢ ↓𝑁 <:+ ↓𝑀 /

(
Θ̂ ⊃∗ 𝑁 <:− 𝑀 ′) ⊣ Δ

extracts 𝑀 ′
and Θ̂ from 𝑀 and delays the resulting negative subtyping constraint 𝑁 <:− 𝑀 ′

,

to be verified under its logical setting Θ̂ (whose propositions, which were extracted from the

side not necessarily ground, may have existential variables only solved in value typechecking).

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:46 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

The metaoperation ⊃∗
traverses Θ̂, creating universal quantifiers from universal variables and

implications from propositions:

· ⊃∗ 𝑊 = 𝑊

(Θ̂, 𝜙) ⊃∗ 𝑊 = Θ̂ ⊃∗ (𝜙 ⊃𝑊)
(Θ̂, 𝑎 : 𝜏) ⊃∗ 𝑊 = Θ̂ ⊃∗ (∀𝑎 : 𝜏 .𝑊)

The dual shift rule is similar. In the declarative system, ≤+⇝L and ≤–⇝R are invertible, which

means that they can be eagerly applied without getting stuck; algorithmically, we apply them

immediately at polarity shifts, so the above rule corresponds to an algorithmic combination of the

declarative rules ≤–⇝R and ≤+↓ (and similarly for its dual rule for ↑).
For rules with multiple nontrivial premises, such as product subtyping

Θ;Δ ⊢ 𝑃1 <:+ 𝑄1 /𝑊1 ⊣ Δ′′ Θ;Δ′′ ⊢ 𝑃2 <:+ [Δ′′]𝑄2 /𝑊2 ⊣ Δ′

Θ;Δ ⊢ (𝑃1 × 𝑃2) <:+ (𝑄1 ×𝑄2) / [Δ′]𝑊1 ∧𝑊2 ⊣ Δ′

we thread solutions through inputs, applying them to the non-ground side ([Δ]− treats Δ as

a substitution of index solutions for existential variables), ultimately outputting both delayed

constraints. We maintain the invariant that existential variables in output constraints are eagerly

solved, which is why, for example, Δ′
is applied to𝑊1 in the conclusion of the above rule, but not

to𝑊2 (that would be redundant).

6.4 Typing
We now discuss issues specific to algorithmic program typing.

Exploiting polarity, we can restrict the flow of index information to the right- and left-focusing

stages: in particular, Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′
and Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′

, the algorithmic

value and spine typechecking judgments. The input types of these judgments can have existential

variables, and these judgments synthesize constraints and index solutions, but the algorithmic

versions of the other judgments do not; we judgmentally distinguish the latter by replacing the

“⊢” in the declarative judgments with “▷” (for example, Θ; Γ ▷ 𝑔 ⇒ ↑𝑃). Delayed constraints are

verified only and immediately after completing a focusing stage, when all their existential variables

are necessarily solved.

Consequently, the algorithmic typing judgments for heads, bound expressions, pattern matching,

and expressions are essentially the same as their declarative versions, but with a key difference.

Namely, in Alg⇒ValAnnot, Alg⇒App, and Alg⇐↑ (below, respectively), focusing stages start with
an empty algorithmic context, outputting ground constraints (and an empty output context because

solutions are eagerly applied), and a premise is added to verify these constraints:

Θ; ·; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ · Θ; Γ ◁ 𝜒

Θ; Γ ▷ (𝑣 : 𝑃) ⇒ 𝑃

Θ; Γ ▷ ℎ ⇒ ↓𝑁 Θ; ·; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ · Θ; Γ ◁ 𝜒

Θ; Γ ▷ ℎ(𝑠) ⇒ ↑𝑃

Θ; ·; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ · Θ; Γ ◁ 𝜒

Θ; Γ ▷ return 𝑣 ⇐ ↑𝑃

Algorithmic typechecking for recursive expressions uses algorithmic subtyping, which outputs a

ground constraint𝑊 . Because this𝑊 is ground, we can verify it (Θ |=𝑊) immediately:

Θ ⊢ 𝑁 ⇝̸ Θ; · ⊢ ∀𝑎 : N. 𝑀 <:− 𝑁 /𝑊 ⊣ · Θ |=𝑊

Θ, 𝑎 : N; Γ, 𝑥 : ↓
(
∀𝑎′ : N. (𝑎′ < 𝑎) ⊃ [𝑎′/𝑎]𝑀

)
▷ 𝑒 ⇐ 𝑀

Θ; Γ ▷ rec 𝑥 : (∀𝑎 : N. 𝑀). 𝑒 ⇐ 𝑁

For the full definition of algorithmic typing, see appendix Figures 51, 52, and 53.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :47

Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′ Under inputs contexts Θ, Δ, and Γ, the value 𝑣 checks against type 𝑃 ,
with output computation constraints 𝜒 and output context Δ′

𝑃 ≠ ∃,∧ (𝑥 : 𝑄) ∈ Γ Θ;Δ ⊢ 𝑄 <:+ 𝑃 /𝑊 ⊣ Δ′

Θ;Δ; Γ ⊢ 𝑥 ⇐ 𝑃 /𝑊 ⊣ Δ′ Alg⇐Var

Θ;Δ; Γ ⊢ ⟨⟩ ⇐ 1 / · ⊣ Δ
Alg⇐1

Θ;Δ; Γ ⊢ 𝑣1 ⇐ 𝑃1 / 𝜒1 ⊣ Δ′′ Θ;Δ′′
; Γ ⊢ 𝑣2 ⇐ [Δ′′]𝑃2 / 𝜒2 ⊣ Δ′

Θ;Δ; Γ ⊢ ⟨𝑣1, 𝑣2⟩ ⇐ (𝑃1 × 𝑃2) / [Δ′]𝜒1, 𝜒2 ⊣ Δ′ Alg⇐×

Θ;Δ; Γ ⊢ 𝑣𝑘 ⇐ 𝑃𝑘 / 𝜒 ⊣ Δ′

Θ;Δ; Γ ⊢ inj𝑘 𝑣𝑘 ⇐ (𝑃1 + 𝑃2) / 𝜒 ⊣ Δ′ Alg⇐+𝑘

Θ;Δ, 𝑎 : 𝜏 ; Γ ⊢ 𝑣 ⇐ [𝑎/𝑎]𝑃 / 𝜒 ⊣ Δ′, 𝑎 : 𝜏=𝑡

Θ;Δ; Γ ⊢ 𝑣 ⇐ (∃𝑎 : 𝜏 . 𝑃) / 𝜒 ⊣ Δ′ Alg⇐∃

Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′′ Θ;Δ′′ ⊢ [Δ′′]𝜙 inst ⊣ Δ′

Θ;Δ; Γ ⊢ 𝑣 ⇐ (𝑃 ∧ 𝜙) / ([Δ′]𝜙, [Δ′]𝜒) ⊣ Δ′ Alg⇐∧

·;Θ;Δ ⊢ {𝜈 : 𝐹 [𝜇𝐹] | 𝛼 (𝐹 (fold𝐹 𝛼) 𝜈) =𝜏 𝑡} ⊜ 𝑃 Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′

Θ;Δ; Γ ⊢ into(𝑣) ⇐ {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡} / 𝜒 ⊣ Δ′ Alg⇐𝜇

Θ;Δ; Γ ⊢ {𝑒} ⇐ ↓𝑁 / (𝑒 ⇐ 𝑁) ⊣ Δ
Alg⇐↓

Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′ Under Θ, Δ, and Γ, passing spine 𝑠 to a head of type ↓𝑁
synthesizes ↑𝑃 , with output constraints 𝜒 and context Δ′

Θ;Δ, 𝑎 : 𝜏 ; Γ; [[𝑎/𝑎]𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′, 𝑎 : 𝜏=𝑡

Θ;Δ; Γ; [∀𝑎 : 𝜏 . 𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′ AlgSpine∀

Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′

Θ;Δ; Γ; [𝜙 ⊃ 𝑁] ⊢ 𝑠 ≫ ↑𝑃 / [Δ′]𝜙, 𝜒 ⊣ Δ′ AlgSpine⊃

Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑄 / 𝜒 ⊣ Δ′′ Θ;Δ′′
; Γ; [[Δ′′]𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ′ ⊣ Δ′

Θ;Δ; Γ; [𝑄 → 𝑁] ⊢ 𝑣, 𝑠 ≫ ↑𝑃 / [Δ′]𝜒, 𝜒 ′ ⊣ Δ′ AlgSpineApp

Θ;Δ; Γ; [↑𝑃] ⊢ · ≫ ↑𝑃 / tt ⊣ Δ
AlgSpineNil

Fig. 15. Algorithmic value and spine typing

Besides the instantiation rules (such as <:+/⊣𝜇Inst) for inductive types in algorithmic subtyping

and type equivalence, there are exactly two judgments (Θ;Δ ⊢ 𝜙 inst ⊣ Δ′
and Θ;Δ ⊢ 𝜙 ≡ 𝜓 inst ⊣

Δ′
) responsible for inferring index solutions, both dealing with the output of algorithmic unrolling.

Algorithmic unrolling can output indexes of the form 𝑎 = 𝑡 with 𝑡 ground, and these equations

are solved in either value typechecking, subtyping, or type equivalence. In the former two cases,

we can solve 𝑎 as the algebra body 𝑡 which is necessarily ground (as discussed in Sec. 4.2). The

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:48 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

judgment Θ;Δ ⊢ 𝜙 inst ⊣ Δ′
(appendix Fig. 45), used in Alg⇐∧, checks whether 𝜙 has form 𝑎 = 𝑡

where 𝑡 is ground. If so, then it solves 𝑎 to 𝑡 in Δ; otherwise, it does not touch Δ.

Θ ⊢ 𝑡 : 𝜏
Θ;Δ1, 𝑎 : 𝜏,Δ2 ⊢ 𝑎 = 𝑡 inst ⊣ Δ1, 𝑎 : 𝜏=𝑡,Δ2

Inst

𝜙 not of form 𝑎 = 𝑡 where Θ ⊢ 𝑡 : 𝜏
Θ;Δ ⊢ 𝜙 inst ⊣ Δ

NoInst

For example, suppose a head synthesizes ∀𝑎 : N. Nat(𝑎) → ↑Nat(𝑎) and we wish to apply

this head to the spine (containing exactly one argument value) into(inj
2
⟨into(inj

1
⟨⟩), ⟨⟩⟩). We

generate a fresh existential variable 𝑎 for 𝑎 (rule AlgSpine∀) and then check the value against

Nat(𝑎) (rule AlgSpineApp). (Checking the same value against type ∃𝑎 : N. Nat(𝑎) yields the same

problem, by dual rule Alg⇐∃, and the following solution also works in this case.) The type Nat(𝑎)
has value-determined index 𝑎 (its Ξ is 𝑎 : N), so it is solvable. We unroll (rule Alg⇐𝜇) Nat(𝑎) to(
1∧ (𝑎 = 0)

)
+
(
∃𝑎′ : N.Nat(𝑎′) ×

(
1∧ (𝑎 = 1 + 𝑎′)

))
and check inj

2
⟨into(inj

1
⟨⟩), ⟨⟩⟩ against that

(0 and 1 + 𝑎′ are the bodies of the two branches of Nat’s algebra). In this unrolled type, 𝑎 is no

longer tracked by its Ξ, but we can still solve it.

The value now in question is a right injection, so we must check ⟨into(inj
1
⟨⟩), ⟨⟩⟩ against

∃𝑎′ : N. Nat(𝑎′) ×
(
1 ∧ (𝑎 = 1 + 𝑎′)

)
(rule Alg⇐+2). We generate another fresh existential variable

𝑎′ in place of 𝑎′. We now check the pair using rule Alg⇐×. For the first component, we check

inj
1
⟨⟩ against the unrolled Nat(𝑎′), which is 1∧ (𝑎′ = 0) + · · · . Now we solve 𝑎′ = 0 (rules Alg⇐+1,

Alg⇐∧, Inst, and Alg⇐1). This information flows to the type 1 ∧ (𝑎 = 1 + 𝑎′) against which we

need to check the second value component (⟨⟩). By “this information flows,” we mean that we apply

the context output by type checking the first component, namely 𝑎 : N, 𝑎′ : N=0 (notice 𝑎 is not yet

solved), as a substitution to obtain 1∧ (𝑎 = 1+ 0) for the second premise of Alg⇐×. The right-hand
side of the equation now has no existential variables, and we solve 𝑎 = 1 + 0 = 1 (again using

Alg⇐∧), as expected. It is worth noting that this solving happens entirely within focusing stages.

Values of inductive type may involve program variables, so existential variables may not be

solved by Alg⇐∧ (and Inst), but in algorithmic subtyping, using the same instantiation judgment:

Θ;Δ ⊢ 𝑃 <:+ 𝑄 /𝑊 ⊣ Δ′′ Θ;Δ′′ ⊢ [Δ′′]𝜙 inst ⊣ Δ′

Θ;Δ ⊢ 𝑃 <:+ 𝑄 ∧ 𝜙 / [Δ′]𝑊 ∧ [Δ′]𝜙 ⊣ Δ′ <:+/⊣∧R

Finally, if an equation of the form 𝑎 = 𝑡 makes its way into type equivalence (by checking a variable

value against a sum type), then 𝑎 gets solved, not as 𝑡 , but rather as the index in the same structural

position (including logical structure) of the necessarily ground positive type on the left of the

equivalence (see judgment Θ;Δ ⊢ 𝜙 ≡ 𝜓 inst ⊣ Δ′
in appendix Fig. 45, used in appendix Fig. 46).

For example, 𝑏 : N;𝑎 : N;𝑥 : (1 ∧ (𝑏 = 0 + 0)) + ∃𝑏′ : N. Nat(𝑏′) ∧ (𝑏 = 𝑏′ + 0 + 1) ⊢ 𝑥 ⇐ 𝑃 / _ ⊣
𝑎 : N=𝑏 where 𝑃 = (1 ∧ (𝑎 = 0)) + ∃𝑎′ : N. Nat(𝑎′) ∧ (𝑎 = 𝑎′ + 1).

Next, we cover the algorithmic value and spine typing rules (Fig. 15) in detail.

Typechecking values. Because there is no stand-alone algorithmic version of ≤+⇝L (recall that,

in algorithmic subtyping, we eagerly extract immediately under polarity shifts), the rule Alg⇐Var

clarifies why we require types in contexts to have already been subjected to extraction. With

eager extraction in subtyping under polarity shifts, but without eager type extraction for program

variables, we would not be able to extract any assumptions from 𝑄 in the (algorithmic) subtyping

premise.

Rule Alg⇐∃ generates a fresh existential variable which ultimately gets solved within the same

stage. Its solution is eagerly applied to the input type and output constraints, so we pop it off of the

output context (as it is no longer needed).

Rule Alg⇐𝜇 unrolls the inductive type, checks the inductive type’s injected value against the

unrolled type, and passes along the constraints and solutions.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :49

Rule Alg⇐∧ delays verifying the validity of the conjoined proposition 𝜙 until it is grounded. As

explained in the example above, existential variables can be solved via propositions generated by

algorithmic type unrolling. This is the role of the propositional instantiation judgment used in the

second premise: it simply checks whether the proposition is of the form 𝑎 = 𝑡 where 𝑡 is ground, in

which case it solves 𝑎 as 𝑡 (rule Inst), and otherwise it does nothing (rule NoInst). If the proposition

does solve an existential variable, then the [Δ′]𝜙 part of the constraint is a trivial equation, but 𝜙

could be a non-ground proposition unrelated to unrolling, in which case Δ′ = Δ′′
, whose solutions

have not yet been applied to the input 𝜙 .

Rule Alg⇐↓ does not have a premise for typechecking the thunked expression (unlike Decl⇐↓).
Instead, the rule delays this typechecking constraint until its existential variables are solved. For

example, in

·; ·; · ⊢ ⟨{return ⟨⟩}, into(inj
1
⟨⟩)⟩ ⇐ ∃𝑎 : N. (↓↑

(
1 ∧ (𝑎 = 0)

)
) × Nat(𝑎) / 𝜒 ⊣ ·

the output constraint 𝜒 has [0/𝑎] (return ⟨⟩ ⇐ ↑
(
1 ∧ (𝑎 = 0)

)
), where the index solution 0 to the

𝑎 introduced by Alg⇐∃ is found only in typechecking the second component of the pair.

Rule Alg⇐1 says that ⟨⟩ checks against 1, which solves nothing, and there are no further

constraints to check.

In rule Alg⇐×, we check the first component 𝑣1, threading through solutions found there in

checking the second component 𝑣2. Checking the second component can solve further existential

variables in the first component’s constraints 𝜒1, but solutions are eagerly applied, so in the

conclusion we apply all the solutions only to 𝜒1.

Rule Alg⇐+𝑘 checks the 𝑘-injected value 𝑣𝑘 against the sum’s 𝑘th component type, and passes

along the constraints and solutions.

Typechecking spines. Rule AlgSpine∀, similarly to Alg⇐∃, generates a fresh existential variable

that ultimately gets solved in typechecking a value (in this case the spine’s corresponding value).

As usual, we pop off the solution because solutions are eagerly applied.

In rule AlgSpineApp, we typecheck the value 𝑣 , outputting constraints 𝜒 and solutions Δ′′
.

We thread these solutions through when checking 𝑠 , the rest of the spine, ultimately outputting

constraints 𝜒 ′ and solutions Δ′
. The context Δ′

may have more solutions than Δ′′
, and we eagerly

apply solutions, so we need only apply Δ′
to the first value’s constraints 𝜒 .

In AlgSpine⊃, we check the spine 𝑠 but add the guarding proposition 𝜙 to the list of constraints

to verify later (applying the solutions Δ′
found when checking the spine).

In AlgSpineNil, nothing gets solved, so we output the input algorithmic context Δ. Nothing
needs to be verified, so we output the trivial constraint tt.

7 ALGORITHMIC METATHEORY
We prove that the algorithmic system (Sec. 6) is decidable, as well as sound and complete with

respect to the declarative system (Sec. 4).

7.1 Decidability
We have proved that all algorithmic judgments are decidable (appendix Sec. G). Algorithmic

constraint verificationΘ |=𝑊 andΘ; Γ◁𝜒 boils down to verifying propositional validityΘ ⊢ 𝜙 true,
which is known to be decidable [Barrett et al. 2009]. Besides that, our decidability proofs rely on

fairly simple metrics for the various algorithmic judgments, which involve a simple size function

(appendix Figs. 57 and 58) and counting the number of subtyping constraints𝑊 in typing constraint

lists 𝜒 . We show that, for each algorithmic rule, every premise is smaller than the conclusion,

according to the metrics. The most interesting lemmas we use state that the constraints output by

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:50 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

algorithmic equivalence, subtyping and program typing decrease in size (appendix Lemmas G.9,

G.10, and G.12). For example:

Lemma 7.1 (Program Typing Shrinks Constraints). (Lemma G.12 in appendix)
(1) If Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′, then sz(𝜒) ≤ sz(𝑣).
(2) If Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′, then sz(𝜒) ≤ sz(𝑠).

7.2 Algorithmic Soundness
We show that the algorithmic system is sound with respect to the declarative system. Since

the algorithmic system is designed to mimic the judgmental structure of the declarative system,

soundness (and completeness) of the algorithmic system is relatively straightforward to prove (the

real difficulty lies in designing the overall system to make this the case).

Soundness of algorithmic subtyping says that, if the subtyping algorithm solves indexes under

which its verification conditions hold, then subtyping holds declaratively under the same solutions:

Theorem 7.2 (Soundness of Algorithmic Subtyping). (Thm. I.4 in appendix)
(1) If Θ;Δ ⊢ 𝑃 <:+ 𝑄 / 𝑊 ⊣ Δ′ and Θ;Δ ⊢ 𝑄 type[Ξ] and 𝑃 ground and Θ ⊢ Δ′ −→ Ω and

Θ |= [Ω]𝑊 , then Θ ⊢ 𝑃 ≤+ [Ω]𝑄 .
(2) If Θ;Δ ⊢ 𝑁 <:− 𝑀 /𝑊 ⊣ Δ′ and Θ;Δ ⊢ 𝑁 type[Ξ] and 𝑀 ground and Θ ⊢ Δ′ −→ Ω and

Θ |= [Ω]𝑊 , then Θ ⊢ [Ω]𝑁 ≤− 𝑀 .

We prove (appendix Thm. I.4) the soundness of algorithmic subtyping by way of two interme-

diate (sound) subtyping systems: a declarative system that eagerly extracts under shifts, and a

semideclarative system that also eagerly extracts under shifts, but outputs constraints𝑊 in the

same way as algorithmic subtyping, to be checked by the semideclarative judgment Θ ▷𝑊 (that

we prove sound with respect to the algorithmic Θ |=𝑊). We define a straightforward subtyping

constraint equivalence judgment Θ ▷𝑊 ↔𝑊 ′
, that uses the proposition and type equivalence

mentioned in Sec. 4.3, to transport semideclarative to algorithmic subtyping constraint verification

(and the other way around for algorithmic subtyping completeness): if Θ ▷𝑊 and Θ ▷𝑊 ↔𝑊 ′
,

then Θ ▷𝑊 ′
(appendix Lemma H.24).

As a consequence of polarization, the soundness of head, bound expression, expression, and

match typing can be stated relatively simply. The typing soundness of values and spines says that

if Ω completes the algorithm’s solutions such that the algorithm’s constraints hold, then the typing

of the value or spine holds declaratively with Ω’s solutions.

Theorem 7.3 (Alg. Typing Sound). (Thm. I.5 in appendix)
(1) If Θ; Γ ▷ ℎ ⇒ 𝑃 , then Θ; Γ ⊢ ℎ ⇒ 𝑃 .
(2) If Θ; Γ ▷ 𝑔 ⇒ ↑𝑃 , then Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 .
(3) If Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′ and Θ;Δ ⊢ 𝑃 type[Ξ] and Θ ⊢ Δ′ −→ Ω and Θ; Γ ◁ [Ω]𝜒 ,

then Θ; Γ ⊢ [Ω]𝑣 ⇐ [Ω]𝑃 .
(4) If Θ; Γ ▷ 𝑒 ⇐ 𝑁 , then Θ; Γ ⊢ 𝑒 ⇐ 𝑁 .
(5) If Θ; Γ; [𝑃] ▷ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 , then Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 .
(6) If Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′ and Θ;Δ ⊢ 𝑁 type[Ξ] and Θ ⊢ Δ′ −→ Ω and Θ; Γ ◁ [Ω]𝜒 ,

then Θ; Γ; [[Ω]𝑁] ⊢ [Ω]𝑠 ≫ [Ω]↑𝑃 .

We prove (appendix Thm. I.5) algorithmic typing is sound by a straightforward lexicographic

induction on, first, program term structure, and, second, input type size. We happen not to use an

intermediate system for this proof, but an intermediate system is very helpful if not indispensable

for proving algorithmic typing completeness, discussed next.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :51

7.3 Algorithmic Completeness
We show that the algorithmic system is complete with respect to the declarative system. The

declarative system can conjure index solutions that are different from the algorithm’s solutions, but

they must be equal according to the logical context. We capture this with relaxed context extension

Θ ⊢ Δ ˜−→ Δ′
, similar to (non-relaxed) context extension (Θ ⊢ Δ −→ Δ′

) but solutions in Δ may

change to equal (under Θ) solutions in Δ′
:

Θ ⊢ Δ ˜−→ Δ′ Θ ⊢ 𝑡 = 𝑡 ′ true

Θ ⊢ Δ, 𝑎 : 𝜏=𝑡 ˜−→ Δ′, 𝑎 : 𝜏=𝑡 ′

Algorithmic completeness says our subtyping algorithm verifies any declarative subtyping. Since

declarative subtyping does not eagerly extract from types inside shifts in assumptive positions, but

algorithmic subtyping does, the conclusion involves extraction from the given ground type. For

example, the equivalence of the algorithmic solutions Δ′
to the indexes in Ω for which subtyping

declaratively holds may depend on extracted assumptions like Θ𝑃 in part (1) just below.

Theorem 7.4 (Completeness of Algorithmic Subtyping). (Thm. J.14 in appendix)
(1) If Θ ⊢ 𝑃 ≤+ [Ω]𝑄 and Θ;Δ ⊢ 𝑄 type[Ξ] and 𝑃 ground and [Δ]𝑄 = 𝑄 and Θ ⊢ Δ ˜−→ Ω,

then there exist 𝑃 ′, Θ𝑃 ,𝑊 , and Δ′ such that Θ,Θ𝑃 ;Δ ⊢ 𝑃 ′ <:+ 𝑄 /𝑊 ⊣ Δ′

and Θ,Θ𝑃 ⊢ Δ′
˜−→ Ω and Θ,Θ𝑃 |= [Ω]𝑊 and Θ ⊢ 𝑃 ⇝+ 𝑃 ′ [Θ𝑃].

(2) If Θ ⊢ [Ω]𝑁 ≤− 𝑀 and Θ;Δ ⊢ 𝑁 type[Ξ] and𝑀 ground and [Δ]𝑁 = 𝑁 and Θ ⊢ Δ ˜−→ Ω,
then there exist𝑀 ′, Θ𝑀 ,𝑊 , and Δ′ such that Θ,Θ𝑀 ;Δ ⊢ 𝑁 <:− 𝑀 ′ /𝑊 ⊣ Δ′

and Θ,Θ𝑀 ⊢ Δ′
˜−→ Ω and Θ,Θ𝑀 |= [Ω]𝑊 and Θ ⊢ 𝑀 ⇝− 𝑀 ′ [Θ𝑀].

We prove (appendix Thm. J.14) completeness of algorithmic subtyping by using, in a similar way,

the same intermediate systems used to prove soundness. However, it’s more complicated. Indexes

in semideclarative and algorithmic constraints may be syntactically different but logically and

semantically equal. More crucially, to prove the completeness of algorithmic typing with respect to

semideclarative typing, we need to prove that algorithmic subtyping solves all value-determined

indexes of input types that are not necessarily ground:

Lemma 7.5 (Sub. Solves Val-det.). (Lemma J.5 in appendix)
(1) If Θ;Δ ⊢ 𝑃 <:+ 𝑄 /𝑊 ⊣ Δ′ and 𝑃 ground and Θ;Δ ⊢ 𝑄 type[Ξ],

then for all (𝑎 : 𝜏) ∈ Ξ, there exists 𝑡 such that Θ ⊢ 𝑡 : 𝜏 and (𝑎 : 𝜏=𝑡) ∈ Δ′.
(2) If Θ;Δ ⊢ 𝑀 <:− 𝑁 /𝑊 ⊣ Δ′ and 𝑁 ground and Θ;Δ ⊢ 𝑀 type[Ξ],

then for all (𝑎 : 𝜏) ∈ Ξ, there exists 𝑡 such that Θ ⊢ 𝑡 : 𝜏 and (𝑎 : 𝜏=𝑡) ∈ Δ′.

We prove (appendix Lemma J.5) this by straightforward induction on the given subtyping

derivation, using a similar lemma for type equivalence (appendix Lemma J.4).

We use extraction to achieve a complete subtyping algorithm. For example, the following holds

declaratively without extraction but instead using ≤+∧L (this rule is not in our system; see Sec. 4.5):

𝑎 : N, 𝑏 : N ⊢ [𝑐 : N=𝑏]
(
Nat(𝑐) → (𝑐 = 𝑏) ⊃ ↑1

)︸ ︷︷ ︸
Nat(𝑏) → (𝑏 = 𝑏) ⊃ ↑1

≤− (
Nat(𝑎) ∧ (𝑎 = 𝑏)

)
→ ↑1

However, checking function argument subtyping first, the non-extractive algorithm solves 𝑐 to 𝑎

(not 𝑏) and outputs a verification condition needing 𝑎 = 𝑏 to hold under no logical assumptions,

which is invalid. Our system instead extracts 𝑎 = 𝑏 from the supertype; the algorithmic solution 𝑎

for 𝑐 and the declarative choice 𝑏 for 𝑐 are equal under this assumption (𝑎 = 𝑏).

Finally, we prove the completeness of algorithmic typing. Like algorithmic typing soundness,

again due to focusing, the head, bound expression, expression, and pattern matching parts are

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:52 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

straightforward to state. But, because algorithmic function application may instantiate indexes

different but logically equal to those conjured (semi)declaratively, bound expressions may algorith-

mically synthesize a type (judgmentally) equivalent to the type it synthesizes declaratively.

We introduced logical context equivalence in Sec. 4.3. Other than in proving that type equivalence

implies subtyping, logical context equivalence is used in proving the completeness of algorithmic

typing (in particular, we effectively use appendix Lemma B.95 to swap logically equivalent logical

contexts in (semi)declarative typing derivations). The type 𝑃 ′
in the output of the algorithm in part

(6) below can have different index solutions (output Δ′
) that are logically equal (under Θ) to the

solutions in Ω which appear in the declaratively synthesized 𝑃 . However, 𝑃 and 𝑃 ′
necessarily have

the same structure, so Θ ⊢ 𝑃 ≡+ [Ω]𝑃 ′
. Therefore, a bound expression may (semi)declaratively

synthesize a type that is judgmentally equivalent to the type synthesized algorithmically. We then

extract different but logically equivalent logical contexts from the (equivalent) types synthesized

by a bound expression.

As such, algorithmic typing completeness is stated as follows:

Theorem 7.6 (Alg. Typing Complete). (Thm. J.21 in appendix)
(1) If Θ; Γ ⊢ ℎ ⇒ 𝑃 , then Θ; Γ ▷ ℎ ⇒ 𝑃 .
(2) If Θ; Γ ⊢ 𝑔 ⇒ ↑𝑃 , then there exists 𝑃 ′ such that Θ; Γ ▷ 𝑔 ⇒ ↑𝑃 ′ and Θ ⊢ 𝑃 ≡+ 𝑃 ′.
(3) If Θ; Γ ⊢ 𝑣 ⇐ [Ω]𝑃 and Θ;Δ ⊢ 𝑃 type[Ξ] and [Δ]𝑃 = 𝑃 and Θ ⊢ Δ ˜−→ Ω,

then there exist 𝜒 and Δ′ such that Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′

and Θ ⊢ Δ′
˜−→ Ω and Θ; Γ ◁ [Ω]𝜒 .

(4) If Θ; Γ ⊢ 𝑒 ⇐ 𝑁 , then Θ; Γ ▷ 𝑒 ⇐ 𝑁 .
(5) If Θ; Γ; [𝑃] ⊢ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 , then Θ; Γ; [𝑃] ▷ {𝑟𝑖 ⇒ 𝑒𝑖 }𝑖∈𝐼 ⇐ 𝑁 .
(6) If Θ; Γ; [[Ω]𝑁] ⊢ 𝑠 ≫ ↑𝑃 and Θ;Δ ⊢ 𝑁 type[Ξ] and [Δ]𝑁 = 𝑁 and Θ ⊢ Δ ˜−→ Ω,

then there exist 𝑃 ′, 𝜒 , and Δ′ such that Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 ′ / 𝜒 ⊣ Δ′

and Θ ⊢ Δ′
˜−→ Ω and Θ; Γ ◁ [Ω]𝜒 and Θ ⊢ 𝑃 ≡+ [Ω]𝑃 ′.

We prove (appendix Thm. J.21) algorithmic typing completeness by way of an intermediate,

semideclarative typing system, that is essentially the same as declarative typing in that it conjures

indexes, but differs in a way similar to algorithmic typing: it outputs constraints 𝜒 and only

verifies them (via semideclarative Θ; Γ ◁̃ 𝜒 as opposed to algorithmic Θ; Γ ◁ 𝜒) immediately upon

completion of focusing stages. Similarly to the proof of algorithmic subtyping completeness, we

transport (appendix Lemma J.18) the semideclarative verification of typing constraints over a

straightforward typing constraint equivalence judgment Θ; Γ ◁ 𝜒 ↔ 𝜒 ′ that uses the subtyping
constraint equivalence (Θ ▷𝑊 ↔𝑊 ′

) and type equivalence judgments.

To prove that algorithmic typing is complete with respect to semideclarative typing, we use the

fact that typing solves all value-determined indexes in input types of focusing stages. This fact is

similar to the fact that subtyping solves the value-determined indexes of non-ground types (used

in the algorithmic subtyping completeness proof), but the interaction between value-determined

indexes and unrolling introduces some complexity: unrolling a refined inductive type does not

preserve the type’s Ξ. Therefore, we had to split the value typechecking part into the mutually

recursive parts (1) and (2); part (3) depends on parts (1) and (2) but not vice versa.

Lemma 7.7 (Typing Solves Val-det.). (Lemma J.19 in appendix)
(1) Suppose Δ = Δ1, 𝑎 : 𝜏,Δ2. If Ξ;Θ;Δ ⊢ {𝜈 : 𝐺 [𝜇𝐹] | 𝛽 (𝐺 (fold𝐹 𝛼) 𝜈) =𝜏 𝑎} ⊜ 𝑄

and Θ;Δ ⊢ 𝐺 functor[Ξ𝐺] and (𝑎 : 𝜏) ∉ Ξ𝐺

and Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑄 / 𝜒 ⊣ Δ′

and [Δ]𝑄 = 𝑄 and Θ ⊢ Δ′
˜−→ Ω and Θ; Γ ◁̃ [Ω]𝜒 ,

then there exists 𝑡 such that Θ ⊢ 𝑡 : 𝜏 and (𝑎 : 𝜏=𝑡) ∈ Δ′.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :53

(2) If Θ;Δ; Γ ⊢ 𝑣 ⇐ 𝑃 / 𝜒 ⊣ Δ′

and Θ;Δ ⊢ 𝑃 type[Ξ𝑃] and [Δ]𝑃 = 𝑃 and Θ ⊢ Δ′
˜−→ Ω and Θ; Γ ◁̃ [Ω]𝜒 ,

then for all (𝑎 : 𝜏) ∈ Ξ𝑃 , there exists 𝑡 such that Θ ⊢ 𝑡 : 𝜏 and (𝑎 : 𝜏=𝑡) ∈ Δ′.
(3) If Θ;Δ; Γ; [𝑁] ⊢ 𝑠 ≫ ↑𝑃 / 𝜒 ⊣ Δ′

and Θ;Δ ⊢ 𝑁 type[Ξ𝑁] and [Δ]𝑁 = 𝑁 and Θ ⊢ Δ′
˜−→ Ω and Θ; Γ ◁̃ [Ω]𝜒 ,

then for all (𝑎 : 𝜏) ∈ Ξ𝑁 , there exists 𝑡 such that Θ ⊢ 𝑡 : 𝜏 and (𝑎 : 𝜏=𝑡) ∈ Δ′.

The proof (appendix Lemma J.19) of part (1) boils down to inversion on the propositional

instantiation judgment Θ;Δ ⊢ 𝜙 inst ⊣ Δ′
in the unit case of unrolling where 𝜙 necessarily has the

form 𝑎 = 𝑡 with 𝑡 ground, due to the invariant that algebras are ground.

8 RELATEDWORK
Typing refinement. As far as we know, Constable [1983] was first to introduce the concept of

refinement types (though not by that name) as logical subsets of types, writing {x:A|B} for the

subset type classifying terms x of type A that satisfy proposition B. Freeman and Pfenning [1991]

introduced type refinement to the programming language ML via datasort refinements—inclusion

hierarchies of ML-style (algebraic, inductive) datatypes—and intersection types for Standard ML:

they showed that full type inference is decidable under a refinement restriction, and provided an

algorithm based on abstract interpretation. The dangerous interaction of datasort refinements,

intersection types, side effects, and call-by-value evaluation was first dealt with by Davies and

Pfenning [2000] by way of a value restriction on intersection introduction; they also presented a

bidirectional typing algorithm.

Dependent ML (DML) [Xi 1998; Xi and Pfenning 1999] extended the ML type discipline parametri-

cally by index domains. DML is only decidable modulo decidability of index constraint satisfiability.

DML uses a bidirectional type system with index refinements for a variant of ML, capable of check-

ing properties ranging from in-bound array access [Xi and Pfenning 1998] to program termination

[Xi 2002]. DML, similarly to our system, collects constraints from the program and passes them

to a constraint solver, but does not guarantee that they are SMT solvable (unlike our system).

This is also the approach of systems like Stardust [Dunfield 2007a] (which combines datasort and

index refinement, and supports index refinements that are not value-determined, that is, invaluable
refinements, which we do not consider) and those with liquid types [Rondon et al. 2008]. The latter

are based on a Hindley–Milner approach; typically, Hindley–Damas–Milner inference algorithms

[Hindley 1969; Milner 1978; Damas and Milner 1982] generate typing constraints to be verified

[Heeren et al. 2002].

Due to issues with existential index instantiation, the approach of Xi [1998] (incompletely)

translated programs into a let-normal form [Sabry and Felleisen 1993] before typing them, and

Dunfield [2007b] provided a complete let-normal translation for similar issues. The system in this

paper is already let-normal.

Liquid types. Rondon et al. [2008] introduced logically qualified data types, that is, liquid types,
in a system that extends Hindley–Milner to infer (by abstract interpretation) refinements based

on built-in or programmer-provided refinement templates or qualifiers. Kawaguchi et al. [2009]

introduced recursive refinement via sound and terminating measures on algebraic data types; they

also introduced polymorphic refinement. Vazou et al. [2013] generalize recursive and polymor-

phic refinement into a single, more expressive mechanism: abstract refinement. Our system lacks

polymorphism, which we plan to study in future work. Abstract refinements go together with

multi-argument measures because abstract refinements may be thought of as predicates of higher-

order sort and we can encode multi-argument measures using higher-order sorts. Extending our

system with higher-order sorts and abstract refinements is ongoing work. In future work, it would

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:54 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

be interesting to study other features of liquid typing in our setting. Extending our system with

liquid inference of refinements, for example, would require adding Hindley–Milner type inference

that creates templates, as well as mechanisms to solve these templates, possibly in an initial phase

using abstract interpretation.

Unlike DML (and our system), liquid type systems do not distinguish index terms from programs.

While this provides simplicity and convenience to the user (from their perspective, there is just one

language), it makes it relatively difficult to provide liquid type systems a denotational semantics

and to prove soundness results denotationally (rather than operationally), in contrast to our system

(we should be able to recover some of this convenience, by requiring users, for example, to make

measure annotations like Liquid Haskell). It creates other subtleties such as the fact that annotations

for termination metrics in Liquid Haskell must be internally translated to ghost parameters similar

to that used in Sec. 3. By contrast, if we extend our system with additional termination metrics,

because these metrics are at the index level, we can obviate such ghost parameters. Liquid types’

lack of index distinction also makes it trickier to support computational effects and evaluation

orders.

Initial work on liquid types [Rondon et al. 2008; Kawaguchi et al. 2009] used call-by-value

languages, but Haskell uses lazy evaluation so Liquid Haskell was discovered to be unsound

[Vazou et al. 2014]. Vazou et al. [2014] regained type soundness by imposing operational-semantic

restrictions on subtyping and let-binding. In their algorithmic subtyping, there is exactly one rule,

⪯-Base-D, which pertains to refinements of base types (integers, booleans and so on) and inductive

data types; however, these types have a well-formedness restriction, namely, that the refinement

predicates have the type of boolean expressions that reduce to finite values. But this restriction

alone does not suffice for soundness under laziness and divergence. As such, their algorithmic

typing rule T-Case-D, which combines let-binding and pattern matching, uses an operational

semantics to approximate whether or not the bound expression terminates. If the bound expression

might diverge, then so might the entire case expression; otherwise, it checks each branch in a

context that assumes the expression reduces to a (potentially infinite Haskell) value.

We also have a type well-formedness restriction, but it is purely syntactic, and only on index

quantification, requiring them to be associated with a fold that is necessarily decidable by virtue

of a systematic phase distinction between the index level and the program level. Further, via type

polarization, our let-binding rule requires the bound expression to return a value, we only allow

value types in our program contexts, and we cannot extract index information across polarity shifts

(such as in a suspended computation). Therefore, in our system, there is no need to stratify our

types according to an approximate criterion; rather, we exploit the systemic distinction between

positive (value) types and negative (computation) types, that Levy [2004] designed or discovered

to be semantically well-behaved. We suspect that liquid types’ divergence-based stratification is

indirectly grappling with logical polarity. Because divergence-based stratification is peculiar to

the specific effect of nontermination, it is unclear how their approach may extend to other effects.

By way of a standard embedding of CBN or CBV into (our focalized variant of) CBPV we can

obtain CBN or CBV subtyping and typing relations automatically respecting any necessary value

or covalue restrictions [Zeilberger 2009]. Further, our system is already in a good position to handle

the addition of effects other than nontermination.

Contract calculi. Software contracts express program properties in the same language as the

programs themselves; Findler and Felleisen [2002] introduced contracts for run-time verification of

higher-order functional programs. These latent contracts are not types, but manifest contracts are
[Greenberg et al. 2010]. Manifest contracts are akin to refinement types. Indeed, Vazou et al. [2013]

sketch a proof of type soundness for a liquid type system by translation from liquid types to the

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :55

manifest contract calculus FH of Belo et al. [2011]. However, there is no explicit translation back,

from FH to liquid typing. They mention that the translated terms in FH do not have upcasts because
the latter in FH are logically related to identity functions if they correspond to static subtyping (as

they do in the liquid type system): an upcast lemma. Presumably, this facilitates a translation from

FH back to liquid types. However, there are technical problems in FH that break type soundness and

the logical consistency of the FH contract system; Sekiyama et al. [2017] fix these issues, resulting

in the system F
𝜎
H
, but do not consider subtyping and subsumption, and do not prove an upcast

lemma.

Bidirectional typing. Bidirectional typing [Pierce and Turner 2000] is a popular way to implement

a wide variety of systems, including dependent types [Coquand 1996; Abel et al. 2008], contextual

types [Pientka 2008], and object-oriented languages [Odersky et al. 2001]. The bidirectional system

of Peyton Jones et al. [2007] supports higher-rank polymorphism. Dunfield and Krishnaswami [2013]

also present a bidirectional type system for higher-rank polymorphism, but framed more proof

theoretically; Dunfield and Krishnaswami [2019] extend it to a richer language with existentials,

indexed types, sums, products, equations over type variables, pattern matching, polarized subtyping,

and principality tracking. The bidirectional system of this paper uses logical techniques similar to

the systems of Dunfield and Krishnaswami, but it does not consider polymorphism. A survey paper

[Dunfield and Krishnaswami 2021] includes some discussion of bidirectional typing’s connections

to proof theory. Basically, good bidirectional systems tend to distinguish checking and synthesizing

terms or proofs according to their form, such as normal or neutral.

Proof theory, polarization, focusing and analyticity. The concept of polarity most prominent in

this paper dates back to Andreoli’s work on focusing for tractable proof search [Andreoli 1992] and

Girard’s work on unifying classical, intuitionistic, and linear logic [Girard 1993]. Logical polarity

and focusing have been used to explain many common phenomena in programming languages.

We mentioned in the overview that Zeilberger [2009] explains the value and evaluation context

restrictions in terms of focusing; and Krishnaswami [2009] explains pattern matching as (proof

terms of) the left-inversion stage of focused systems (also, that system is bidirectional). More

broadly, Downen [2017] discusses many logical dualities common in programming languages.

Brock-Nannestad et al. [2015] study the relation between polarized intuitionistic logic and CBPV.

They obtain a bidirectionally typed system of natural deduction related to a variant of the focused

sequent calculus LJF [Liang and Miller 2009] by 𝜂-expansion (for inversion stages). Espírito Santo

[2017] does a similar study, but starts with a focused sequent calculus for intuitionistic logic much

like the system of Simmons [2014] (but without positive products), proves it equivalent to a natural

deduction system (we think the lack of positive products helps establish this equivalence), and

defines, also via 𝜂-expansion, a variant of CBPV in terms of the natural deduction system. Our

system is not in the style of natural deduction, but rather sequent calculus. We think our system

relates to CBPV in a similar way—via 𝜂-expansion—but we do not prove it in this paper, because

we focus on proving type soundness and algorithmic decidability, soundness and completeness.

Barendregt et al. [1983] discovered that a program that typechecks (in a system with intersection

types) using subtyping, can also be checked without using subtyping, if the program is sufficiently

𝜂-expanded. An analogous phenomenon involving identity coercion was studied by Zeilberger

[2009] in a focused setting. Similarly, our ability to place subtyping solely in (value) variable

typechecking is achievable due to the focusing (and let-normality) of our system.

Interpreting Kant, Martin-Löf [1994] considers an analytic judgment to be one that is derivable

using information found only in its inputs (in the sense of the bidirectional modes, input and

output). A synthetic judgment, in contrast, requires us to look beyond the inputs of the judgment in

order to find a derivation. The metatheoretic results for our algorithmic system demonstrate that

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:56 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

our judgments are analytic, except the judgment Θ ⊢ 𝜙 true, which is verified by an external SMT

solver. As such, our system may be said to be analytic modulo an external SMT solver. Focusing, in

proper combination with bidirectional typing (which clarifies where to put type annotations), let-

normality and value-determinedness, guarantees that all information needed to generate verification

conditions suitable for an SMT solver may be found in the inputs to judgments. In our system, cut

formulas can always be inferred from a type annotation or by looking up a variable in the program

context, making all our cuts analytic in the sense of Smullyan [1969].

Dependent types. Dependent types, introduced by Martin-Löf [1971, 1975], are a key conceptual

and historical precursor to index refinement types. Dependent types may depend on arbitrary

program terms, not only terms restricted to indexes. This is highly expressive, but undecidable

in languages with divergence. The main difference between refinement and dependent typing is

that refinement typing attempts to increase the expressivity of a highly automatic type system,

whereas dependent typing attempts to increase the automation of a highly expressive type system.

Semantically, refinement type systems differ from dependent type systems in that they refine a

pre-existing type system, so that erasure of refinements always preserves typing.

Many dependent type systems impose their own restrictions for the sake of decidability. In

Cayenne [Augustsson 1998], typing can only proceed a given number of steps. All well-typed

programs in Epigram [McBride and McKinna 2004] are required to terminate so that its type

equivalence is decidable. Epigram, and other systems [Chen and Xi 2005; Licata and Harper 2005],

allow programmers to write explicit proofs of type equivalence.

Systems like ATS [Xi 2004] and F
★
[Swamy et al. 2016] can be thought of as combining refinement

and dependent types. These systems aim to bring the best of both refinement and dependent types,

but ATS is more geared to practical, effectful functional programming (hence refinement types),

while F
★
is more geared to formal verification and dependent types. Unlike our system, they allow

the programmer to provide proofs. The overall design of ATS is closer to our system than that of F
★
,

due to its phase distinction between statics and dynamics; but it allows the programmer to write (in

the language itself) proofs in order to simplify or eliminate constraints for the (external) constraint

solver: Xi calls this internalized constraint solving. It should be possible to internalize constraint

solving to some extent in our system. Liquid Haskell has a similar mechanism called refinement
reflection [Vazou et al. 2017] in which programmers can write manual proofs (in Haskell) in cases

where automatic Proof by Logical Evaluation and SMT solving fail.

Both ATS and F
★
have a CBV semantics, which is inherently monadic [Moggi 1989b]. Our system

is a variant of CBPV, which subsumes both CBV and CBN. These systems consider effects other

than divergence, like exceptions, mutable state and input/output, which we hope to add to our

system in future work; this should go relatively smoothly because CBPV is inherently monadic.

The system F
★
allows for termination metrics other than strong induction on naturals, such as

lexicographic induction, but we think it would be straightforward to add such metrics to our system,

in the way discussed in Sec. 4.7.

Data abstraction and category theory. Categorically, inductive types are initial algebras of endo-
functors. We only consider certain polynomial endofunctors, which specify tree-shaped or algebraic

data structures. Objects (in the sense of object-oriented programming) or coinductive types are

dual to inductive types in that, categorically, they are final coalgebras of endofunctors [Cook 2009].

A consideration of categorical duality leads us to a natural (perhaps naïve) question: if we can build

a well-behaved system that refines algebraic data types by algebras, could it mean anything to

refine objects by coalgebras? We would expect the most direct model of coinductive types would

be via negative types, but working out the details is potential future work.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

Focusing on Refinement Typing :57

Our rolled refinement types refine type constructors 𝜇𝐹 . Sekiyama et al. [2015], again in work on

manifest contracts, compare this to refining (types of) data constructors, and provide a translation

from type constructor to data constructor refinements. According to Sekiyama et al. [2015] type

constructor refinements (such as our {𝜈 : 𝜇𝐹 | (fold𝐹 𝛼) 𝜈 =𝜏 𝑡}) are easier for the programmer to
specify, but data constructor refinements (such as the output types of our unrolling judgment) are

easier to verify automatically. Sekiyama et al. [2015] say that their translation from type to data

constructor refinements is closely related to the work of Atkey et al. [2012] on refining inductive

data in (a fibrational interpretation of) dependently typed languages. Atkey et al. [2012] provide

“explicit formulas” computing inductive characterizations of type constructor refinements. These

semantic formulas resemble our syntactic unrolling judgment, which may be viewed as a translation

from type refinements to data constructor refinements.

Ornaments [McBride 2011] describe how inductive types with different logical or ornamental

properties can be systematically related using their algebraic and structural commonalities. Practical

work in ornaments seems mostly geared toward code reuse [Dagand and McBride 2012], code

refactoring [Williams and Rémy 2017] and such. In contrast, this paper focuses on incorporating

similar ideas in a foundational index refinement typing algorithm.

Melliès and Zeilberger [2015] provide a categorical theory of type refinement in general, where

functors are considered to be type refinement systems. This framework is based on Reynolds’s

distinction between intrinsic (or Church) and extrinsic (or Curry) views of typing [Reynolds 1998].

We think that our system fits into this framework, but haven’t confirmed it formally. This is most

readily seen in the fact that the semantics of our refined system is simply the semantics (intrinsic
to unrefined typing derivations) of its erasure of indexes, which express extrinsic properties of
(erased) programs.

9 CONCLUSION AND FUTUREWORK
We have presented a declarative system for index-based recursive refinement typing (with nullary

measures) that is logically designed, semantically sound, and theoretically implementable. We

have proved that our declarative system is sound with respect to an elementary domain-theoretic

denotational semantics, which implies that our system is logically consistent and totally correct.

We have also presented an algorithmic system and proved it is decidable, as well as sound and

complete with respect to the declarative system. Focusing yields CBPV, which already has a clear

denotational semantics, and refining it by an index domain (and by measures in it) facilitates a

semantics in line with the perspective of Melliès and Zeilberger [2015]. But focusing (in combination

with value-determinedness) also allows for an easy proof of the completeness of a decidable typing

algorithm. The relative ease with which we demonstrate (denotational-semantic) soundness and

(completeness of) decidable typing for a realistic language follows from a single, proof-theoretic

technique: focusing.

Researchers of liquid typing have laid out an impressive and extensive research program providing

many useful features which would be very interesting to study in our setting. We plan to add

parametric polymorphism in future work, which goes along with refinement abstraction [Vazou

et al. 2013]. Refinement abstraction may be thought of as predicates of higher-order sort, which

can also accommodate multi-argument measures (such as whether a list of naturals is in increasing

order). We are adding multi-argument measures and refinement abstraction in ongoing work. It

is also of great interest to study other features of liquid typing, like refinement inference with

templates and refinement reflection, though arguably the latter is more closely related to dependent

typing.

We also plan to allow the use of multiple measures on inductive types (so we can specify, for

example, the type of length-𝑛 lists of naturals in increasing order). It would also be interesting to

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

:58 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

experiment with our value-determinedness technique. By allowing quantification over indexes in

propositions whose only variable dependencies are value-determined, we think we can simulate

termination metrics by other ones (such as < on sums of natural numbers by < on natural numbers

as such).

In future work, we hope to apply our type refinement system (or future extensions of it) to various

domains, from static time complexity analysis [Wang et al. 2017] to resource analysis [Handley et al.

2019]. Eventually, we hope to be able to express, for example, that a program terminates within

a worst-case amount of time. Our system is parametric in the index domain, provided it satisfies

some basic properties. Different index domains may be suitable for different applications. We also

hope to add more effects, such as input/output and mutable reference cells. CBPV is built for effects,

but our refinement layer may result in interesting interactions between effects and indexes.

Our systemmay at first seem complicated, but its metatheoretic proofs are largely straightforward,

if lengthy (at least as presented). A primary source of this complexity is the proliferation of

judgments. However, having various judgments helps us organize different forms of knowledge

[Martin-Löf 1996] or (from a Curry–Howard perspective) stages or parts of an implementation

(such as pattern-matching, processing an argument list, and so on).

Our system focuses on the feature of nullary measures of algebraic data types, and does not

include key typing features expected of a realistic programming language (such as additional effects

and polymorphism, which we hope to add in future work). Adding such expressive features tends

to significantly affect the metatheory and the techniques used to prove it. We hope to reflect on

the development of our proofs (including those for systems with polymorphism [Dunfield and

Krishnaswami 2013]) in search of abstractions which may help designers of practical, general-

purpose functional languages to establish crucial metatheoretic properties.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thorough reading and recommendations, which

helped to improve our paper. We also thank Ondrej Baranovič [2023] for implementing the system

presented in this paper. This work was supported in part by the Natural Sciences and Engineering

Research Council of Canada through Discovery Grant RGPIN–2018–04352, and also in part by

European Research Council (ERC) Consolidator Grant for the project “TypeFoundry”, funded under

the European Union’s Horizon 2020 Framework Programme (grant agreement no. 101002277).

REFERENCES
Andreas Abel, Thierry Coquand, and Peter Dybjer. 2008. Verifying a Semantic 𝛽𝜂-Conversion Test for Martin-Löf Type

Theory. In Mathematics of Program Construction (MPC’08) (LNCS), Vol. 5133. Springer, 29–56.
Jean-Marc Andreoli. 1992. Logic programming with focusing proofs in linear logic. J. Logic and Computation 2, 3 (1992),

297–347.

Robert Atkey, Patricia Johann, and Neil Ghani. 2012. Refining Inductive Types. Logical Methods in Computer Science Volume

8, Issue 2 (June 2012). https://doi.org/10.2168/LMCS-8(2:9)2012

Lennart Augustsson. 1998. Cayenne—a Language with Dependent Types. In ICFP. 239–250.
Ondrej Baranovič. 2023. LTR. (2023). https://github.com/nulano/LTR.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. J. Symbolic Logic 48, 4 (1983), 931–940.
Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009. Satisfiability modulo theories (1 ed.). Number 1 in

Frontiers in Artificial Intelligence and Applications. IOS Press, 825–885. https://doi.org/10.3233/978-1-58603-929-5-825

João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce. 2011. Polymorphic Contracts. In Proceedings
of the 20th European Symposium on Programming (Lecture Notes in Computer Science), Gilles Barthe (Ed.), Vol. 6602.
Springer International Publishing, 18–37. https://doi.org/10.1007/978-3-642-19718-5_2

Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. 2015. Computation in Focused Intuitionistic Logic. In 17th
International Symposium on Principles and Practice of Declarative Programming (PPDP ’15). ACM Press, New York, NY,

USA, 43–54. https://doi.org/10.1145/2790449.2790528

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

https://doi.org/10.2168/LMCS-8(2:9)2012
https://github.com/nulano/LTR
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-642-19718-5_2
https://doi.org/10.1145/2790449.2790528

Focusing on Refinement Typing :59

Iliano Cervesato and Frank Pfenning. 2003. A Linear Spine Calculus. J. Logic and Computation 13, 5 (2003), 639–688.

Chiyan Chen and Hongwei Xi. 2005. Combining programming with theorem proving. In ICFP. 66–77.
James Cheney and Ralf Hinze. 2003. First-class phantom types. Technical Report CUCIS TR2003-1901. Cornell University.

https://hdl.handle.net/1813/5614

Robert L. Constable. 1983. Mathematics as Programming. In Logics of Programs, Workshop, Carnegie Mellon University,
Pittsburgh, PA, USA, June 6-8, 1983, Proceedings (Lecture Notes in Computer Science), Edmund M. Clarke and Dexter Kozen

(Eds.), Vol. 164. Springer, 116–128. https://doi.org/10.1007/3-540-12896-4_359

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA ’09). ACM Press, New York, NY, USA,

557–572. https://doi.org/10.1145/1640089.1640133

Thierry Coquand. 1996. An Algorithm for Type-Checking Dependent Types. Science of Computer Programming 26, 1–3

(1996), 167–177.

Pierre-Evariste Dagand and Conor McBride. 2012. Transporting Functions across Ornaments. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’12). ACM Press, New York, NY, USA, 103–114.

https://doi.org/10.1145/2364527.2364544

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In POPL. ACM Press, 207–212.

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In ICFP. ACM Press, 198–208.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (Lecture Notes in Computer Science),
Vol. 4963. Springer, 337–340.

Paul Downen. 2017. Sequent Calculus: A Logic and a Language for Computation and Duality. Ph.D. Dissertation. University
of Oregon. https://www.cs.uoregon.edu/Reports/PHD-201706-Downen.pdf.

Jana Dunfield. 2007a. Refined typechecking with Stardust. In Programming Languages meets Programming Verification (PLPV
’07). ACM Press, 21–32.

Jana Dunfield. 2007b. A Unified System of Type Refinements. Ph.D. Dissertation. Carnegie Mellon University. CMU-CS-07-129.

Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-Rank

Polymorphism. In ICFP. ACM Press, 429–442. arXiv:1306.6032 [cs.PL].
Jana Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and complete bidirectional typechecking for higher-

rank polymorphism with existentials and indexed types. Proc. ACM Program. Lang. 3, POPL (2019), 9:1–9:28. https:

//doi.org/10.1145/3290322

Jana Dunfield and Neelakantan R. Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2021). https:

//doi.org/10.1145/3450952

Jana Dunfield and Frank Pfenning. 2003. Type Assignment for Intersections and Unions in Call-by-Value Languages. In

FoSSaCS. Springer, 250–266.
José Espírito Santo. 2017. The Polarized 𝜆-calculus. Electronic Notes in Theoretical Computer Science 332 (2017), 149–168.

https://doi.org/10.1016/j.entcs.2017.04.010 LSFA 2016 - 11th Workshop on Logical and Semantic Frameworks with

Applications (LSFA).

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP. 48–59.
Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The essence of compiling with continuations. In

PLDI. 237–247.
Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967),

19–32.

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In PLDI. ACM Press, 268–277.

Jean-Yves Girard. 1993. On the Unity of Logic. Annals of Pure and Applied Logic 59, 3 (1993), 201–217. https://doi.org/10.

1016/0168-0072(93)90093-s

Jean-Yves Girard. 1992. A Fixpoint Theorem in Linear Logic. (1992). Post to Linear Logic mailing list, http://www.seas.

upenn.edu/~sweirich/types/archive/1992/msg00030.html.

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010. Contracts Made Manifest. In Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). ACM Press, New York,

NY, USA, 353–364. https://doi.org/10.1145/1706299.1706341

Carl A. Gunter. 1993. Semantics of programming languages - structures and techniques. MIT Press.

Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2019. Liquidate Your Assets: Reasoning about Resource Usage in

Liquid Haskell. Proc. ACM Program. Lang. 4, POPL, Article 24 (dec 2019), 27 pages. https://doi.org/10.1145/3371092

Bob Harper and Mark Lillibridge. 1991. ML with callcc is unsound. Post to TYPES mailing list, 8 July 1991, archived at

https://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html. (1991).

Robert Harper, John C. Mitchell, and Eugenio Moggi. 1990. Higher-Order Modules and the Phase Distinction. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, San Francisco,

California, USA, 341–354. https://doi.org/10.1145/96709.96744

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

https://hdl.handle.net/1813/5614
https://doi.org/10.1007/3-540-12896-4_359
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/2364527.2364544
https://www.cs.uoregon.edu/Reports/PHD-201706-Downen.pdf
http://arxiv.org/abs/1306.6032
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1016/j.entcs.2017.04.010
https://doi.org/10.1016/0168-0072(93)90093-s
https://doi.org/10.1016/0168-0072(93)90093-s
http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://doi.org/10.1145/1706299.1706341
https://doi.org/10.1145/3371092
https://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html
https://doi.org/10.1145/96709.96744

:60 Dimitrios J. Economou, Neel Krishnaswami, and Jana Dunfield

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. 2002. Generalizing Hindley-Milner Type Inference Algorithms.
Technical Report UU-CS-2002-031. Department of Information and Computing Sciences, Utrecht University. http:

//www.cs.uu.nl/research/techreps/repo/CS-2002/2002-031.pdf

R. Hindley. 1969. The principal type-scheme of an object in combinatory logic. Trans. Amer. Math. Soc. 146 (1969), 29–60.
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.

https://doi.org/10.1145/363235.363259

Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. 2009. Type-Based Data Structure Verification. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’09). ACM Press, New York, NY,

USA, 304–315. https://doi.org/10.1145/1542476.1542510

Andrew Kennedy. 1994. Dimension Types. In European Symposium on Programming (ESOP ’94), Vol. 788. Springer, 348–362.
Neelakantan R. Krishnaswami. 2009. Focusing on Pattern Matching. In POPL. ACM Press, 366–378.

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liquid Types for Rust. Proc. ACM Program. Lang. 7,
PLDI, Article 169 (jun 2023), 25 pages. https://doi.org/10.1145/3591283

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computation, V. 2).
Kluwer Academic Publishers, Norwell, MA, US.

Chuck Liang and Dale Miller. 2009. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical
Computer Science 410, 46 (2009), 4747–4768. https://doi.org/10.1016/j.tcs.2009.07.041 Abstract Interpretation and Logic

Programming: In honor of professor Giorgio Levi.

Daniel R. Licata and Robert Harper. 2005. A formulation of Dependent ML with explicit equality proofs. Technical Report
CMU-CS-05-178. Carnegie Mellon University. https://doi.org/10.1184/R1/6587429.v1

Per Martin-Löf. 1971. A Theory of Types. (1971). Manuscript, Stockholm University. https://raw.githubusercontent.com/

michaelt/martin-lof/master/pdfs/martin-loef1971%20-%20A%20Theory%20of%20Types.pdf.

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H. E. Rose and

J. C. Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73–118. https:

//doi.org/10.1016/S0049-237X(08)71945-1

Per Martin-Löf. 1984. Intuitionistic type theory. Studies in Proof Theory, Vol. 1. Bibliopolis. iv+91 pages.

Per Martin-Löf. 1994. Analytic and Synthetic Judgements in Type Theory. In Kant and Contemporary Epistemology, Paolo
Parrini (Ed.). Springer Netherlands, 87–99.

Per Martin-Löf. 1996. On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of
Philosophical Logic 1, 1 (1996), 11–60.

Conor McBride. 2011. Ornamental Algebras, Algebraic Ornaments. https://personal.cis.strath.ac.uk/conor.mcbride/pub/

OAAO/LitOrn.pdf

Conor McBride and James McKinna. 2004. The view from the left. J. Functional Programming 14, 1 (2004), 69–111.

Paul-André Melliès and Noam Zeilberger. 2015. Functors Are Type Refinement Systems. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM Press, New York, NY, USA,

3–16. https://doi.org/10.1145/2676726.2676970

Robin Milner. 1978. A theory of type polymorphism in programming. J. Computer and System Sciences 17, 3 (1978), 348–375.
Eugenio Moggi. 1989a. A Category-Theoretic Account of Program Modules. In Category Theory and Computer Science.

Springer-Verlag, Berlin, Heidelberg, 101–117.

Eugenio Moggi. 1989b. Computational Lambda-Calculus and Monads. In Logic in Computer Science (LICS ’89). 14–23.
Martin Odersky, Matthias Zenger, and Christoph Zenger. 2001. Colored Local Type Inference. In POPL. ACM Press, 41–53.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. J. Functional Programming 17, 1 (2007), 1–82.

Frank Pfenning. 2008. Church and Curry: Combining intrinsic and extrinsic typing. In Reasoning in Simple Type Theory:
Festschrift in Honor of Peter B. Andrews on His 70th Birthday. College Publications. http://www.cs.cmu.edu/~fp/papers/

andrews08.pdf

Brigitte Pientka. 2008. A type-theoretic foundation for programming with higher-order abstract syntax and first-class

substitutions. In POPL. ACM Press, 371–382.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Prog. Lang. Sys. 22 (2000), 1–44.
John C. Reynolds. 1998. Theories of programming languages. Cambridge University Press.

Nick Rioux and Steve Zdancewic. 2020. Computation Focusing. Proc. ACM Program. Lang. 4, ICFP, Article 95 (aug 2020),
27 pages. https://doi.org/10.1145/3408977

Patrick Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In PLDI. ACM Press, 159–169.

Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in Continuation-Passing Style. Lisp Symb. Comput. 6,
3–4 (Nov. 1993), 289–360. https://doi.org/10.1007/BF01019462

Peter Schroeder-Heister. 1994. Definitional reflection and the completion. In Extensions of Logic Programming (LNCS).
Springer, 333–347.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

http://www.cs.uu.nl/research/techreps/repo/CS-2002/2002-031.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2002/2002-031.pdf
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1145/3591283
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1184/R1/6587429.v1
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/martin-loef1971%20-%20A%20Theory%20of%20Types.pdf
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/martin-loef1971%20-%20A%20Theory%20of%20Types.pdf
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
https://doi.org/10.1145/2676726.2676970
http://www.cs.cmu.edu/~fp/papers/andrews08.pdf
http://www.cs.cmu.edu/~fp/papers/andrews08.pdf
https://doi.org/10.1145/3408977
https://doi.org/10.1007/BF01019462

Focusing on Refinement Typing :61

Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic Manifest Contracts, Revised and Resolved.

ACM Trans. Program. Lang. Syst. 39, 1, Article 3 (Feb. 2017), 36 pages. https://doi.org/10.1145/2994594

Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. 2015. Manifest Contracts for Datatypes. In Proceedings of the 42nd
Symposium on Principles of Programming Languages. ACM, 195–207. https://doi.org/10.1145/2676726.2676996

Robert J. Simmons. 2014. Structural Focalization. ACM Trans. Comput. Logic 15, 3, Article 21 (Sept. 2014). https:

//doi.org/10.1145/2629678

Raymond M. Smullyan. 1969. Analytic cut. Journal of Symbolic Logic 33 (1969), 560 – 564.

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-

Béguelin. 2016. Dependent Types and Multi-Monadic Effects in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM Press, New York, NY, USA, 256–270.

https://doi.org/10.1145/2837614.2837655

W. W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symbolic Logic 32, 2 (1967), 198–212.

http://www.jstor.org/stable/2271658

Alan M. Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society 2, 42 (1936), 230–265.

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science),
Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer, 209–228. https://doi.org/10.1007/978-3-642-37036-

6_13

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM Press, New

York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.

2017. Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article 53 (dec 2017),
31 pages. https://doi.org/10.1145/3158141

Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional Language for Practical Complexity Analysis with

Invariants. Proc. ACM Program. Lang. 1, OOPSLA, Article 79 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133903

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. 2004. A Concurrent Logical Framework: The Proposi-

tional Fragment. In Types for Proofs and Programs (TYPES 2003). Springer LNCS 3085, 355–377.
Thomas Williams and Didier Rémy. 2017. A Principled Approach to Ornamentation in ML. Proc. ACM Program. Lang. 2,

POPL, Article 21 (Dec. 2017). https://doi.org/10.1145/3158109

Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and Symbolic Computation 8, 4 (1995), 343–355.

Hongwei Xi. 1998. Dependent Types in Practical Programming. Ph.D. Dissertation. Carnegie Mellon University. https:

//www.cs.cmu.edu/~rwh/students/xi.pdf

Hongwei Xi. 2002. Dependent Types for ProgramTermination Verification. Journal of Higher-Order and Symbolic Computation
15 (Oct. 2002), 91–131.

Hongwei Xi. 2004. Applied Type System (extended abstract). In TYPES 2003 (LNCS). Springer, 394–408.
Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In POPL. ACM Press, 224–235.

Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In PLDI. 249–257.
Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In POPL. ACM Press, 214–227.

Noam Zeilberger. 2009. Refinement Types and Computational Duality. In Programming Languages meets Programming
Verification (PLPV ’09). ACM Press, 15–26.

ACM Trans. Program. Lang. Syst., Vol. , No. , Article . Publication date: August 2023.

https://doi.org/10.1145/2994594
https://doi.org/10.1145/2676726.2676996
https://doi.org/10.1145/2629678
https://doi.org/10.1145/2629678
https://doi.org/10.1145/2837614.2837655
http://www.jstor.org/stable/2271658
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3133903
https://doi.org/10.1145/3158109
https://www.cs.cmu.edu/~rwh/students/xi.pdf
https://www.cs.cmu.edu/~rwh/students/xi.pdf

	Abstract
	1 Introduction
	2 Overview
	3 Example: Verifying Mergesort
	4 Declarative System
	4.1 Index sorting and propositional validity
	4.2 Well-formedness
	4.3 Equivalence
	4.4 Extraction
	4.5 Subtyping
	4.6 Unrolling
	4.7 Typing
	4.8 Substitution

	5 Type Soundness
	5.1 Unrefined System
	5.2 Refined System

	6 Algorithmic System
	6.1 Contexts and Substitution
	6.2 Context Extension
	6.3 Subtyping
	6.4 Typing

	7 Algorithmic Metatheory
	7.1 Decidability
	7.2 Algorithmic Soundness
	7.3 Algorithmic Completeness

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

