The Inverse Method for the Logic of Bunched
Implications

Kevin Donnelly!, Tyler Gibson?, Neel Krishnaswami?, Stephen Magill?, and
Sungwoo Park3

! Department of Computer Science, Boston University, 111 Cummington Street, Boston
MA 02215, USA,
kevindebu.edu
2 Department of Philosophy, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh PA 15213, USA,
tylerg@andrew.cmu.edu
3 Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh PA 15213, USA,
{neelk, smagill,gla}ecs.cmu.edu

Abstract. The inverse method, due to Maslov, is a forward theorem prov-
ing method for cut-free sequent calculi that relies on the subformula prop-
erty. The Logic of Bunched Implications (BI), due to Pym and O’Hearn,
is a logic which freely combines the familiar connectives of intuitionis-
tic logic with multiplicative linear conjunction and its adjoint implication.
We present the first formulation of an inverse method for propositional
BI without units. We adapt the sequent calculus for BI into a forward
calculus. The soundness and completeness of the calculus are proved, and
a canonical form for bunches is given.

1 Introduction

1.1 The Logic of Bunched Implications

The study of substructural logics, beginning with linear logic [10], has shown
the usefulness of restricting the structural rules of weakening, contraction, com-
mutativity and associativity. These logics have shown promise in modeling a
variety of situations, including reasoning about computations. For example, us-
ing the resource interpretation of linear logic, we can reason about availability
and use of resources that cannot be regenerated. The example of linear logic
also shows the usefulness of making available controlled uses of the eliminated
structural rules (which in linear logic comes in the form of the ! and ? modali-
ties).

The Logic of Bunched Implications (BI) [13,15] comes from freely combin-
ing the additive conjunction of intuitionistic logic with the multiplicative con-
junction of linear logic. It is important to note that while the rules for introduc-
ing and eliminating multiplicatives are the same as those of linear logic, the
use-once resource semantics of the multiplicative connectives no longer holds

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 466480, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

The Inverse Method for the Logic of Bunched Implications 467

in BI because of the possibility of nested additives. In the presence of two con-
text forming operations, there naturally arises two different implications with
the following adjoint relationships.

A*BFC — AFrB«CandAANBFC < AF-B>C

The free combination of these conjunctions and implications leads to a logic
with tree structured contexts, and a calculus in which the multiplicative con-
junction distributes over the additive conjunction, but the inverse, factoring
multiplicatives out of additives, does not hold. This leads to a lack of a struc-
tural canonical form, which presents a challenge to the standard formulation of
the inverse method.

1.2 The Inverse Method

The inverse method [7,14] is a saturation based theorem proving technique for
sequent calculi which is related to resolution [4]. First proposed by Maslov [12],
the inverse method starts from a collection of axioms in a database and works
forward by applying rules to the sequents in the database and adding the re-
sults of these rules back into the database until the goal sequent has been de-
rived.

Proof search in the inverse method is of a very different character than
tableau search, which must deal with disjunctive non-determinism in search-
ing backward through the proof tree. In the inverse method we are concerned
with conjunctive non-determinism, as we work forward our information grows
monotonically. So the main challenge of inverse method search is to derive as
few ‘redundant’ sequents as possible while still retaining completeness. The key
property that the inverse method uses to limit conjunctive non-determinism is
that in all inference rules, each of the formulas of the premises are subformulas
of some formula in the conclusion. This implies that even if we restrict ourselves
to only apply rules when the conclusion of the rule contains only subformulas
of the goal sequent, we will still have a complete search strategy. In addition,
this lets us disprove a theorem by exhausting this search space. This makes it
also important to restrict rules like weakening, which would otherwise always
be applicable in the forward direction. This is dealt with in the intuitionistic
inverse method by eliminating weakening and changing the completeness the-
orem [7], a similar fix works for BI.

As an example of the inverse method in IL, consider the (intuitionistically
true) goal proposition ((p D ¢) V(p D 7)) D (p D (¢ V r))). We begin by enu-
merating signed subformulas to find possible initial sequents. The subformulas
are:

+((2>¢VvP>dr)DPE>D(@Vr)) —p
~((P2>gVvpom) —q
+ (> (qVvr))) +p
e =X) -
—(p>Dr) +4q
+(qgVvr) +r

468 K. Donnelly et al.

Each pair of a positive proposition p and its negative indicates a possible use of
the axiom p F p in the proof of the goal. So we begin with a database including,
pFp, gt gand r - r. We work forward from these axioms by applying rules
of the intuitionistic forward calculus whenever the conclusion contains only
the signed subformulas above. When we reach a sequent that can be weakened
to the goal sequent, we are done. Theorem proving proceeds as follows (some
sequents irrelevent to the final proof are not shown):

l.pkp init

2.qFq init

3.rtr init

4.qFqVr VR; 2
5.rqVr VRy 3
6.pDq,ptq DL2
7.pDr,pkr OL3
8.pDqgpkqVr VR 6
9pDOr,pkqVr VRy 7
10.(pD>g)V(pDr),pkqgVvr VL 89
11.(pD>gV(pDdr)FpD(gVr) D R10

122F((pD>g)vV(pDr)D(@>D(gVvr)) DR11

One distinct advantage of inverse method theorem proving in BI is that the
resource distribution problem for multiplicative connectives disappears in the
forward direction. If we read a rule like

'ty ARy
T AFoxg R
Y SD

in the reverse direction as in tableau proof-search, it is not obvious how to split
the resources in the context between I" and A, so this must be calculated during
proof search. This can be handled in both linear logic and BI by using Boolean
constraint methods as in [11]. However, in the forward direction the distribu-
tion problem simply disappears.

Unfortunately reading the rules in the forward direction introduces a new
resource problem for the units. In particular, the for the rule

Ko Fe
I(MkEe

and similarly for I, the rule is always applicable in the forward direction and
it is not clear how many times it must be used. The solution for the similar
problem in linear logic is given in [6]. It is not clear if a similar fix would work
for BI, so we omit units from our inverse method.

In our paper we formulate a forward sequent calculus for propositional BI
without units, which is suitable for inverse method theorem proving. We prove
the soundness and completeness of our method relative to the sequent calculus
rules given in [15, Ch. 6]. We describe a canonical form for bunches suitable for

The Inverse Method for the Logic of Bunched Implications 469

use in an implementation, and describe our SML implementation of our inverse
method. The main contribution of our paper is in defining for the first time
an inverse method for BI. In particular, we overcome the lack of a structural
canonical form.

2 Propositional BI Without Units

In this section we present a sequent calculus for the propositional fragment
of BI without propositional units (L, I, and T). We leave out the units because
their inclusion in the inverse method is quite involved, see [6] for the challenges
presented by units in the inverse method for linear logic. Similar issues apply
to units in BI.

Firstly, we have two types of connectives:

Additives ANDV
Multiplicatives * -

The additive connectives are the same as those of intuitionistic logic and the
multiplicatives come from intuitionistic linear logic. The contexts of BI, re-
ferred to as bunches, are trees where the leaves are formulas or empty bunches
and the inner nodes are multiplicative (,) or additive (;) context forming opera-
tions. Note that while we leave out the propositional constants for units (L, I,
and T), contextual units (empty bunches) may still appear in bunches.

Bunches [I':= o propositional assumption
| om multiplicative unit
| I,I' multiplicative combination
| @ additive unit
| I;I additive combination

In the following we write I'(A) to mean a bunch in which A is a subbunch and
I'(A’) to mean the replacement of A by A" in I'(A). The following equivalence
on bunches is used to convert between isomorphic bunches.

Definition 1 (Coherent Equivalence). = is the least equivalence relation on
bunches satisfying:

1. Commutative monoid equations for o, and ;
2. Commutative monoid equations for a,, and ,
3. Congruence: if A = A’ then I'(A) = I'(4’)

In section 3.3 we give a canonical form for bunches which uses n-ary operations,
however all rules are given in terms of the simple binary formulation.

Judgments are of the form I" - ¢ where I" is a bunch and ¢ is a formula. The
sequent calculus rules for propositional BI without units are given in Figure 1.
The cut-rule is admissible in this system [15, Ch. 6].

470 K. Donnelly et al.

Identity and Structure

Fry (Fr=r")E
o U= mIN[T
rAkre - (A A) e
rA; AN R Ak
Additives
Ity AL) F ok
szi (w)xDL F,wwDR
A(A 50D 9) F x >y
I'(p;9) - 'y Al
(p;9) Fx L © wAR
IloAy) b x iAF @AY
't o, (o) Fx) F
¥ (1=1,2) VR lFx Tw)Fx,
' @1V F(¢V¢)FX
Multiplicatives
T(p,9) Fx I'te AR
—— %[, — Y xR
I(e) Fx AR pxy
'ty AA) Fx Lok
A(A' T, o +9) F x TFoxy

Fig. 1. Sequent calculus rules for core propositional BI

3 An Inverse Method for BI

3.1 The Calculus

Following the general method for producing a weakening-free forward calcu-
lus from a backward sequent calculus [7], we adapt the sequent calculus for
BI into a calculus suitable for the inverse method. The rules for our forward
sequent calculus for BI are as given in Figure 2.

We annotate the rules in the new system with superscript I to differentiate
them from the old rules, the judgment of our new system has the form I" T (.

The first step in generating a forward sequent calculus is to eliminate the
weakening rule (or reformulate the rules so weakening is not built into them,
if there is no explicit weakening rule). Since our starting point is a sequent cal-
culus with an explicit weakening rule, we remove it. In order to state the com-
pleteness theorem for the weakening-free system we need the following.

The Inverse Method for the Logic of Bunched Implications 471

Identity and Structure

F(A1; A2) FE @ (A €lubsce (A1) (A2)) # Ar; As

CI
rAr o
rt
—2 r=ryBr —— [NI7TT
It T
Additives
relo Ao Fiy Gty o
, . oL P -
A(A T D) x I't>pD9
I I I
I're AF7 Y g e
I AR 7 > R3
AR o AY I'E-¢Dy
F(‘Pi)’_IX rrto,
—I(i:1,2)AL}I7¢(i:1,2)VR}
I(p1 Ap2) F x I'=" @1V

I(e)Fl x A@)Ft x Z(p) € lubsc (I'(p)) (Ap))

(e V) F x
for new parameter p, not apprearing in I, A or X

vt

Multiplicatives
L) Frx rely Arly
.1 *L 1, *R
I(exy) F= x AR px)
el A o bty nerly Al
=k - T =
AA, Lo =) HT x I oy

Fig. 2. Forward sequent calculus rules for core propositional BI

Definition 2 (Bunch Ordering). C is the transitive, reflexive (with respect to =)
closure of I'(A) C I'(A; A)

Note that this is equivalent to saying A T A’ iff there is some derivation of
A" ¢ from A F ¢ using only rules W or E.

We next have to examine each of the rules to make sure they are still com-
plete without weakening. One rule which obviously must be changed is > R
because the original system with weakening can derive ¢ - ¢ D ¢ only because
we first weaken v into the context, then use the O R rule. To fix this we split
the rule in two: D> R{ which is the same as the old rule and > R which builds
in the weakening step. We also split rule AL into AL{ and ALZ which build in
weakening, the weakening-free original rule ALT is then derivable from AL{,
ALF and CT.

472 K. Donnelly et al.

More interesting complications arise with rules C' and VL. In the intuitionis-
tic inverse method we simply remove C' and build contraction into the rules by
unioning the contexts that would otherwise be additively combined. It is fine
to union together additively combined sequents in our BI inverse method, but
this does not remove the need for rule C. The problem is that we may be able
to use rule C only after weakening two additively joined subbunches to be the
same. An example is the derivation:

(p,1); (o, x) F
(o, (W5 x)); (0, x) F
(@, (5 X)); (0, (W3 %)) F 1
o, (sx) Fn

In fact we cannot eliminate rule C, because each pair of bunches does not have
a unique least upper bound with respect to C. For example the bunches (¢, 1)
and (¢, x) have the minimal upper bounds ¢, (¢; x) and (¢, %); (¢, x) and nei-
ther can be obtained from the other using just weakening and equivalence.
However each pair of bunches does have a finite minimal upper bound set,
defined as follows.

Definition 3 (Minimal upper bound set). S is a minimal upper bound set for A
and I iff the following hold:

VY eS ACYXAT'C XY, and
VI (ACXATICY)= (3 e S (X' CY))

We write lubsc (A) (I') for the minimal set of upper bounds of A and I'. We
write it in curried notation to avoid the confusion of overloading “,” to separate
arguments as well as multiplicatively join bunches. Given the minimal upper
bound set, we build weakening into the contraction rule (C'1) by replacing two
additively joined bunches with a common upper bound.

Rule VL is affected in a similar way to rule C' because the rule

I'(p)Fx T'()Fx
I'(pV)Fx

requires that a single bunch with two different formulas plugged in prove a
particular formula. However, in the inverse method we will generally have
A(p) F xand A'(9) F x in the database, and if A(¢) C I'(p) and A’ (¢) T I'(v))
we want to be able to apply the rule. So we make a new VL~ which uses the
minimal upper bound set to achieve this.

In order to state the new VLT we need to either extend the definition of
bunches to allow for parameters or we can just think of this parameter as a
new, unique atomic proposition. The reason that we need a parameter is easy
to see if we think of A(—) and A’(—) as two bunches with holes, and we want
to find a common upper bound with only a single hole, I'(—). The parameters
are just place holders for the holes.

VL

The Inverse Method for the Logic of Bunched Implications 473

We first prove the soundness of our calculus by a fairly straightforward in-
duction on the derivations.

Theorem 1 (Soundness). If I’ L o then I'+ .

Proof (By structural induction).

case :

case :

case :

case :

case :

case :

case

: Last rule is I'(p1 A p2) Fox

o INITT
Derivation is © FL o

We immediately have ¢ = o by rule INIT.

relo A9 H x

Last rule is A(A; T D) FLoy
By IH, have I' b p and A(A';4) = x.
We can use rule D L to get A(A'; ;0 D) F x.

I

DL

Loty
Last rule is rrfyoosy
By IH, have I'; ¢ = 9.
By rule > R, we have I' F ¢ D 4.

Rf

rrty
Last rule is I'tf ooy
By IH, have I" - 1.
by rule W, we have I'; o =).
by rule D R, we have I' = ¢ D 1.

> Ri

L(A;Ag) FT o (A€ lubsg (A1) (A2)) # Ar; A
Last rule is Ay H
By IH, we have I'(Ay; Az) F ¢
Since Ay © A we can derive I'(A; Ag) F
Similarly, we can derive I'(A; A) = ¢ then use rule C to get I'(A) = .

CI

L(p) T x Aw)FT x Z(p) € lubsc (I(p)) (A(p))
Last rule is Z(evy) L x
By IH, we have I'(¢) & x and A(y) - x
Since we have A(p) T X(p) and I'(p) T X(p) we know X(p) F x and
2(¢) F x so we can use rule VL to get X(p V) - x

vL<t

I(e1) FT x

ALL

By IH, we have I'(1) - x.
We can use rule W to get I'(¢1; p2) b x then rule AL to get I'(p1 A p2) F x

474 K. Donnelly et al.

We conclude the proof by observing that ALs is parallel to AL, and the rest of the
rules are identical to the corresponding backward sequent calculus rules (ET, «, and —
rules)

Because our completeness proof will say that if I" - ¢ then I T ¢ such that
I'" T I, we need a lemma about bunches that weaken to a split bunch (i.e.
we need to be able to say something about the form of I" when we know I' C
2(4)).

Lemma1 (Weakening Split). If I' T X(A) then either I' T X(p) or else I' =
X' A) such that, X' (p) T X(p) and A’ T A (where p is a new parameter).

Proof (By Structural induction).

We will do induction on the derivation of X(A) = ¢ from I' - . We may assume
WLOG that the first rule is E. In the base case, I' = X(A) so the second case of the
lemma holds.

If the last rule is rule E, then for any X' (A") = X(A) either case obviously carries
through.

If the last rule is rule W, then we must consider the location of the use of rule
W. The bunch weakened on (or removed, if we look at the reverse direction) must be
either entirely within X (p) and disjoint from A or else it must entirely contain A or
be entirely contained in A (this can easily be seen by considering the tree structure of
bunches). In the first case, either case of the IH carries through. In the second case, the
entirety of A was simply weakened on and we could have just as easily weakened on p
in its place, so the first case of the lemma holds. In the last case, the final step looks like:

STA e
S(4) = ST A F o

and since X' (A") C A, either case of the IH carries through.

Now we can prove the completeness of our calculus. We use a fairly straight-
forward structural induction on the derivation, the main complication is that
we have to distinguish cases for the possible forms of I' T Y'(A) as given in the
previous lemma.

Theorem 2 (Completeness). If I" - o then I'° =1 such that, I'° C T,

Intuitively we think of I'° as a bunch that we can weaken to get I" (these are the
types of sequents our inverse method will prove).

Proof (By structural induction).

case :

case :

case :

case :

case

case :

case :

The Inverse Method for the Logic of Bunched Implications 475

Derivation is ok INTT
. . INITI
We have immediately o -1 o .
Ity
Last rule is I(A4; A

By IH, have (I'(A))° o with (I'(A))° C I'(A) and since A T A; A,
(I'(A)° CI(A;A) as reqmred

I(A4)Fe
Last rule is Ak
By IH, we have (I'(A; A))° +1
Either (I'(A; A))° C I'(p) or (I'(4; A))° = I'°((4; A)°) with (A; A)° C
A; A by previous lemma.
In the first case, clearly if (I'(A; A))° C I'(p) then (I'(A; A))° C I'(AQ), so
we are done.
In the second case, either (A; A)° T A or (A;A)° = Ay; As such that
A CAG=1,2).
In the first case we are done.
In the second case we have A; T A(i = 1,2) so we have some X € lubsc (A1)
(Ay) such that 5 € A, so we use rule CT to get I°(2) H1 .

I'Hy¢
Last rule is AF o
Again, this is zmmedzate from IH because A =T

I'-p A(A59)Fx

(A=DE

DL

By IH have I'° F1 and (A(A';4))°

Either (A(A';4))° C A(p) or (A(A';4))° = A°((A’;9)°) such that A°(p)
C A(p) and (A'1)° € A3,

In the first case we are done.

In the second case, either (A’;)° T A’ or (A';¢)° = A’°;4 such that
AP C A

In the first case we are done.

In the second case we can apply rule > LT to get A°(I"°; A5 0 D) HT

by
Last rule is I'p>y
By IH have (I'; ¢)° F 2.
Either (I';p)° =T°CTor (I';p)° =1°;psuchthat ['°C T
In the first case we use rule > Rg and in the second > Ri toget I'° =1 o > ¢

I'le)Fx I'(y)Fx I
Last rule is I'(pVvy)x v
By IH have (I'(p))° b x and (I'(¢))°) F x.
Either (I'(¢))° € I'(p) or (I'(v))° = IY(p) such that I'Y(p) C I'(p).

. Last rule is A A0 D0 F x

DR

476

case :

note :

K. Donnelly et al.

In the first case we are done.

In the second case, either (I'(1))° T I'(p) or (I'(¢))° = I3 (¢) such that
I3(p) C I'(p).

In the first case we are done.

In the second case, since I'Y(p) T I'(p)(i = 1,2), we have X°(p) € lubsc
(IP(p)) (I (p)) such that £°(o v 4p) E I'(¢ \V 4). So we apply rule VLT and
we are done.

I(p39) F x
Last rule is I'(pANY) Fx
By IH, we have (I'(; 1))° FL x such that (I'(¢;))° E I'(ip;).
By the lemma, either (I'(p;%))° T I'(p) or (I'(p34))° = I'*((3%)°) with
I°(p) E I'(p) and (¢;1)° T (5 ¢))-
In the first case we are done.
In the second case we need to consider (¢;1))°. It cannot be empty or we would
be in the first case.
If (;1))° = o then we use rule AL{ to get T°(p A) FT x.
If (@;1)° = ¢ then we use rule ALZ to get T°(p A1p) FT x.
If (p;9)° = (¢; 1)) then we use rule /\LlI to get I'°(p A ;1) HL y then rule
AL to get (e Ay AY) FL x then rule C T to get I'°(o A) F .

AL

The remaining cases are similar.

3.2 An Example

Inverse method theorem proving in BI proceeds in the same way as in intu-
itionistic logic. Consider the (true) goal sequent @,, - (p* (g A 7)) = ((p A q) *
(p A T)). We start by enumerating the signed subformulas and identifying the
initial sequents.

+(px(gAr)=((pAg)*x(pAT)) +(PAT)

-(px(gAT)) -q
+((pAg)*x(pAT)) -
-(gAr) +p
-p +q
+(pAq) +r

From this we can see that the initial sequents we need are p FL p, ¢ HL gand
r 1 7. Theorem proving proceeds in rounds as follows (some unnecessary
sequents are omitted).

The Inverse Method for the Logic of Bunched Implications 477

L.prLp init
2.q+L g init
3.r-Ly init
4_p,q|—Ip*q «RI 12
5.p,r L pxr *RT 13
6.g AT HL g /\LlI2
7.qAr L /\L213
8.(p,q); (p.r) FE (P @) A (p*7) AR 45
9.p,(gAr)FL pxg «RI16
10.p, (1) FT (pxq) A (p) cts
1.p,(gAr)FL (pxq) A (pxr) ALY 10
12.px(gAr)EY (prg) A(pxr) «RT 11
13. 0, (px (g A7) FT (prg) A (px7) B 12

4.0, FL (px(gAr) *((pxq) Alpxr)) -+ RT13

3.3 An = Canonical Form for Bunches

While there is no canonical form which equates bunches modulo =, weaken-
ing and contraction, there is a canonical form modulo = alone. Although this is
fairly obvious, we have not seen it published anywhere. In [2], Armelin gives
a similar canonical form which does not equate bunches modulo units as ours
does. Use of this canonical form during proof-search lets us drop rule E* alto-
gether.

It is helpful, both in guiding an actual implementation and in understand-
ing the structure of bunches, to have a canonical representative of [I']= for any
bunch I'. To do so we define the following grammar.

Bunches I' = | IT | X
Multiplicative Bunches IT = ¢ | {Z*},,
Additive Bunches X ::= ¢ | {IT*},

where {A*} denotes a multiset with elements from A.

We maintain the invariant that the multisets {A*} are never singletons
(empty sets are fine, they are the units). If a subbunch which is supposed to
be a multiset is a singleton, then we simply promote it in the tree and union it
on to its parent. It is easy to see that ¢’s can always be promoted. Since the lev-
els of the tree alternate between {X*},, and {II*},, if e.g. {Z*},, = {X},, and
XY # ¢ then ¥ = {II*}, so we can union that into the context of which {X*},,
was a member. We also maintain the invariant that a subbunch only appears
once in any additive context, so we treat {II*}, as a set rather than a multiset.

This gives us an =-canonical form. To see if two bunches are equivalent we
convert to canonical form by these steps: first, flatten binary connectives into
n-ary connectives (justified by associativity of , and ;), then forget about order-
ing by making them multiset operators (justified by commutativity of , and ;)
then eliminate singletons by propagating them upwards. This last step is justi-
fied by the unit laws (we think of {X'} as X, ,,,) which let us promote and the

478 K. Donnelly et al.

associativity and commutativity laws which let us fold in (union) multisets that
we promote. Lastly, we forget about the number of occurrences in the additive
levels of the tree (justified by contraction for additive conjunction).

3.4 Implementation

We have implemented our inverse method for propositional BI without units
in SML. We use the above canonical form for our bunches and generate proof-
terms which are checked at the end.

Proof-terms for BI are terms of the aA-calculus [15]. We store proof-terms
with each derived sequent in the database, so when we finish with a positive
answer we have also a proof that the theorem is in fact true. We then check the
proof in a straightforward way. This gives us a certifying theorem prover. Since
the proof-checking code is much shorter and simpler than the proof-search
code, we can have much higher confidence in a certified result than one that
lacks proof-terms and checking.

In order to accommodate proof-terms in the inverse method, it is helpful to
define a new intermediate proof-term let x = e; in e; which we convert
to [e1/z]eq before type-checking. This is used in elimination rules so we do not
have to do proof substitution on-line.

At present, we only have a very simple prototype implementation without
any of the customary optimizations applied in the inverse method. Nonethe-
less, we have found it useful for validating our ideas. In the conclusion we
mention some planned improvements.

4 Related Work and Conclusions

Separation Logic [16] is a logic for reasoning about programs similar to Hoare
Logic. Instead of standard intuitionistic logic, Separation Logic uses the connec-
tives of BI, along with some other primitives, to express properties about data
structures with shared mutable state. Therefore, automated theorem provers
for BI are likely to eventually have practical uses in reasoning about programs.
In particular, it is quite tedious to write out proofs of each inference step in Sep-
aration Logic and a good theorem prover for BI could go a long way towards
automating the process of checking Separation Logic assertions.

There has been some work on a semantic tableau proof-search by Galmiche
and Méry in BI [9,5] which has so far produced the BILL theorem prover for
propositional BI without L, a later paper [8] extends this work to include L.
Our work presents an alternative method for theorem proving in BI. We be-
lieve it is useful to investigate thoroughly both backward and forward search
procedures for BI as work in other logics has shown that these methods have
different properties and find different theorems easily.

There is also work on the inverse method in intuitionistic logic [18] and lin-
ear logic [17] which have resulted in inverse method provers for full first-order

The Inverse Method for the Logic of Bunched Implications 479

intuitionistic and linear logics. Most of the improved strategies and optimiza-
tions used in these works (some described in the previous section) would most
probably be applicable to inverse method theorem proving in BI.

Work by Armelin and Pym [3] develops a logic programming language,
BLP, based on the hereditary Harrop fragment of BI with additive predication.
Their work devlops a bottom-up proof search as its basis. By extending our
inverse method to this fragment, it should be possible to develop an alternative,
top-down basis for bunched logic programming.

In this paper, we have demonstrated that the inverse method is applicable
to the core of propositional BI. Standard efficiency improvements [7] and the
addition of units [6] should be relatively straightforward and lead to a theorem
prover for full propositional BI. Additionally, formulation of a full first-order
focusing prover for BI is likely to be fruitful for a number of reasons. Firstly,
many investigations in proof-search, particularly an analysis of focusing [1] in
BI, may lead to deeper understandings of its proof theory. And secondly, effi-
cient provers for BI will likely become practically useful for program analysis
as this is the logic that underlies Separation Logic.

5 Acknowledgments

We are grateful to Frank Pfenning for teaching us about the inverse method,
offering some insightful suggestions and providing helpful feedback, and also
to the anonymous reviewers for their comments.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):197-347, 1992.

2. Pablo Armelin. Logic programming with bunched logic. PhD thesis, University of Lon-
don, 2002.

3. Pablo A. Armelin and David J. Pym. Bunched logic programming. In IJCAR 01:
Proceedings of the First International Joint Conference on Automated Reasoning, pages
289-304. Springer-Verlag, 2001.

4. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages
19-100. North Holland, 2001.

5. Frederic Beal, Daniel Méry, and Didier Galmiche. Bill: A theorem prover for propo-
sitional bi logic.

6. Kaustuv Chaudhuri and Frank Pfenning. Resource management for the inverse
method in linear logic. Carnegie Mellon University, Unpublished Maniscript, Jan-
uary 2003.

7. Anatoli Degtyarev and Andrei Voronkov. The inverse method. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, pages 179-272.
Elsevier Science and MIT Press, 2001.

8. Didier Galmiche, Daniel Méry, and David J. Pym. Resource tableaux. In CSL
"02: Proceedings of the 16th International Workshop and 11th Annual Conference of the
EACSL on Computer Science Logic, pages 183-199. Springer-Verlag, 2002.

480

10.
11.

12.

13.

14.

15.

16.

17.

18.

K. Donnelly et al.

Didier Galmiche and Daniel Méry. Semantic labelled tableaux for propositional bi
(without bottom). Journal of Logic and Computation, 13(5), October 2003.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

James Harland and David Pym. Resource-distribution via boolean constraints. ACM
Trans. Comput. Logic, 4(1):56-90, 2003.

S. Maslov. The inverse method of establishing deducibility in classical predicate
calculus. Soviet Mathematical Doklady, 5:1420-1424, 1964.

P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215-244, June 1999.

Frank Pfenning. The inverse method. Carnegie Mellon University, Lecture Notes,
Ch. 5, February 2004.

D.J. Pym. The Semantics and Proof Theory of the Logic of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002. Errata and
Remarks maintained at:

http://www.cs.bath.ac.uk/ “pym/BI-monograph-errata.pdf.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages
55-74. IEEE Computer Society, 2002.

T. Tammet. Proof strategies in linear logic. Journal of Automated Reasoning, 12(3):273-
304, 1994.

Tanel Tammet. A resolution theorem prover for intuitionistic logic. In M. A. McRob-
bie and]. K. Slaney, editors, Proceedings 13th Intl. Conf. on Automated Deduction,
CADE’96, New Brunswick, NJ, USA, 30 July — 3 Aug 1996, volume 1104, pages 2-16.
Springer-Verlag, Berlin, 1996.

http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf

	Introduction
	The Logic of Bunched Implications
	The Inverse Method

	Propositional BI Without Units
	An Inverse Method for BI
	The Calculus
	An Example
	An ≡Canonical Form for Bunches
	Implementation

	Related Work and Conclusions
	Acknowledgments

