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Abstract
Separation logic is an extension of Hoare logic which permits rea-
soning about low-level imperative programs that use shared muta-
ble heap structure. In this work, we present a version of separation
logic that permits effective, modular reasoning about typed, higher-
order functional programs that use aliased mutable heap data, in-
cluding pointers to code. Furthermore, we show how to use pred-
icates in higher-order separation logic to modularly and abstractly
specify the sharing behavior of programs.

1. Introduction
Separation logic [13, 30] is an extension of Hoare logic [12] orig-
inally developed to simplify the proofs of pointer programs. Con-
ventional Hoare logic faced severe difficulties reasoning about
pointer programs because of the problem of aliasing. Reasoning
about aliasing is problematic because the specification must track
whether or not any two pointer variables refer to the same data
structure, so that variables are correctly updated when a data struc-
ture is modified. Therefore, the number of interference conditions
(i.e., an assertion of the form x = y or x 6= y) grows quadratically
in the number of variables in the program, making verification of
nontrivial routines infeasible.

O’Hearn and Reynolds resolved this difficulty by extending the
logic with two new connectives, the separating conjunction ∗ and
the separating implication −∗ . The intuitive reading of an assertion
P ∗ Q is that P holds in one part of the heap, and Q holds in a
disjoint region of the heap. As a result, the interference conditions
become implicit – in an assertion like (x ↪→ 5)∗(y ↪→ 5), meaning
that x is a pointer pointing to the value 5, and separately y points
to 5, we do not need to explicitly assert that x and y do not alias.
Likewise, the reading of P −∗ Q is that we have a heap in which
Q would hold, if we added additional disjoint storage in which P
holds.

Initially, work on separation logic focused on low level pointer
programs, featuring explicit memory allocation and deallocation,
pointer arithmetic, and heap structures made of integers. Since then,
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separation logic has been been used to verify a variety of complex
pointer programs, including a copying garbage collector [6], the
Schorr-Waite algorithm [32], and other graph algorithms [8]. More
recently, separation logic has been extended in several directions,
to shared variable concurrency [19, 20], static modules for first and
higher-order languages [23, 7], a core subset of Java [25], and, very
recently, to a language with higher-order store [28]

The contributions of this paper are as follows.

• We describe a version of separation logic designed to permit
reasoning about higher-order programs operating on higher-
order store. Our target language is an extension of the sim-
ply typed lambda calculus with products, sums, inductive types,
references, and a monadic type constructor encapsulating heap
effects (such as reading, writing, and allocating references).
Our reference types are unrestricted, and in particular we allow
pointers to code objects (such as functions or monadic compu-
tation terms).

• Furthermore, our assertion language is a higher-order separa-
tion logic [4], where quantifiers can range not just over program
values, but also over propositions of separation logic. This per-
mits us to specify the behavior of an imperative module without
revealing its concrete representation, and so we can verify a
module and the clients that use it independently.

• Finally, we can specify the behavior of the abstract heap predi-
cates used in the abstract specification of a module using a novel
idea of static specifications, which let us characterize the shar-
ing behavior of a program as a tautology in separation logic.

We should like to stress that the combination of programming
language features that we study here is interesting not only from
the viewpoint of ML but also from the viewpoint of object-oriented
programming, since we can represent some of the core challenging
aspects of verification of object-oriented programs in our setting.
Indeed, all of our examples in this paper are essentially standard
object-oriented programs (although inheritance is not supported).
We thus think of our present language and higher-order separation
logic as a core language for reasoning about imperative modules,
be it in ML-style or in OO-style.

The remainder of this paper is organized into three sections.
First, we give several examples of how we can use higher-order
separation logic to specify programs. Second, we give the seman-
tics of this system, which stratifies into three layers, comprising the
semantics of the programming language, the semantics of separa-
tion logic assertions, and finally the specification logic describing
the behavior of programs. We conclude with a discussion of related
work, and suggest some future directions.
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2. Examples
In this section, we present three examples of specification and rea-
soning about shared mutable objects. The first example is of an iter-
ator implementation in the style of Java [11]; the second is a specifi-
cation of an implementation of a subject/observer pattern [11]; and
the third is an example of two routines operating on a shared scratch
space that sometimes ontains intermediate state. For the iterator,
we describe an interface specification, sample implementation and
sample client; for space reasons we give just the specifications for
the other two examples.

The programming and assertion language is defined formally
in the next section. To read the examples before looking at the
formal definitions of the language, observe the following: We use
ML notation for references, and thus write !e for dereferencing a
reference e. The square brackets [] are used to delineate commands
and expressions. We write list for the type of mutable lists and we
use LISP-style notation for operations on such mutable lists. We
use ML-style notation for sequences used in assertions.

2.1 Iterators
A Java-style iterator interface works as follows. First, we have a
mutable collection type. This type supports a number of operations,
some of which, like add-ing an element to a collection will modify
the collection, while others, like empty-ness checking, will not.

To access the elements of a collection, we create another muta-
ble object called an iterator. This object has a method next, which
returns a new element of the collection each time it is called, finally
failing when there are no more elements within it.

However, both the collection and the iterator are imperative
objects, so that correct usage of the iterator requires restrictions
to ensure that the state of an iterator and its underlying collection
remain in sync. Specifically, a client program:

• may create as many iterators on a single collection as they like,
• may freely call any methods on the collection that do not change

the collection’s state (such as empty)
• may freely call next on the iterators in any order, and
• may NOT call next on an iterator after calling add on the

underlying collection.

The general idea is that an iterator maintains a pointer into some
part of the collection during its traversal, and that updating the
collection can cause the iterator’s reference to point to an incorrect
part of the collection.

We give a formal version of this English specification in Fig-
ure 1. The type of mutable linked lists is ref list (of nat), and an
iterator object is a pointer to one of the tails of the list (i.e., type
ref ref list).

To describe the heap behavior, we introduce a pair of existen-
tially quantified predicates, coll and iter. These predicates permit
us to talk about the mutable state associated with collections and it-
erators, without revealing their concrete implementation. The pred-
icate coll(c, xs) asserts that the collection c represents the abstract
sequence xs, and the assertion iter(i, c, xs, P ) asserts that the it-
erator i is an iterator over the collection c with elements xs, and
further that the collection c is under some additional constraints P .

To read the specifications of the functions in the interface, read
the formula 〈P 〉 f(x) 〈a : τ . Q〉 as a Hoare triple, which says that
beginning with a heap satisfying P , any terminating execution of
f(x) will produce a heap satisfying Q, provided the bound vari-
able a of type τ is taken to be the result returned by f(x). For ex-
ample, the specification 〈>〉 new coll() 〈a : ref list. coll(a, [])〉
states that starting from any heap, calling new coll will return a

collection, stored in a modified heap, that represents the empty se-
quence.

The assertion 〈coll(c, xs) ∧ P 〉 new iter(c) 〈a. iter(a, c, xs, P )〉
says that if we start with a collection c, then we can construct an
iterator, and that if the state associated with the collection has any
other invariants P , then the iterator will maintain them.

The next function has the specification

〈iter(i, c, xs, P )〉 next(i) 〈a : 1 + nat. iter(i, c, xs, P )〉 ,

which says that if we have an iterator i, then next(i) will give
us an integer or signal a failure. In this spec, we do not model the
behavior of the iterator in any further detail — the spec could easily
be refined further, but that detail would not be relevant to the issue
of reasoning about aliasing. The detail that is relevant is the fact that
the iterator preserves the abstract collection state P , which is how
we describe the fact that the iterator does not modify the underlying
collection.

That said, a natural question is how we can create two iterators
on the same collection, because the new iter function transforms
a coll(c, xs) state to an iter(i, c, xs, P ) state, which means that
the precondition to call new iter no longer holds. This is where
the static specification comes into play: The final invariant in the
specification:

iter(i, c, xs, P ) ⊃∃Q. (coll(c, xs) ∧ P ∧Q) ∗
∀R. (coll(c, xs) ∧R ∧Q)−∗ iter(i, c, xs, R)

is a single separation logic formula (hence the name “static specifi-
cation”) that describes how to recover a collection from an iterator
state. It says that if we have an iterator state iter(i, c, xs, P ), then
that state can be viewed as two disjoint pieces, one of which is the
original collection (with the invariant P maintained), and one piece
that can be combined with the collection to restore the iterator.

The existential quantifier Q enforces the property that the itera-
tor becomes invalid if the underlying collection is mutated, because
we must have Q to recover the collection, and since this predicate
is abstract, we can’t mutate the collection and preserve its state Q.
More concretely, Q represents the invariant on which the iterator
relies for its own correct operation.

The static specification makes fundamental use of the fact we
have both standard implication and separating implication available
in the same logic. We use implication to reason that the same
piece of state can be viewed in multiple ways, and the separating
implication to reason about one isolated part of the state.

We can see an example of how a client would make use of this
specification in Figure 3. On line 1, we see that the precondition
for our program is that the variable c holds a collection. On line
4, we create an iterator i1, consuming the collection to produce an
iterator, as seen in the state on line 5. We now apply the static spec-
ification on line 6 to break the iterator state into two pieces, which
lets us create a second iterator bound to i2. (Notice that the exis-
tentially quantified assertion variable Q in the static specification
becomes a fresh variable P on line 6 of the proof outline.) The pro-
gram state on line 8 contains an iterator for i2, and some state that
will let us reconstruct i1’s iterator. On line 9 we apply the static
specification once more, to break out the collection state again, and
this lets us call empty on line 10.

From line 11 to line 12, we use (coll(c, xs) ∧ P ∧ Q) ∗
∀R. ((coll(c, xs) ∧ P ∧ R) −∗ iter(i1, c, xs, R)) to con-
clude iter(i1, c, xs, Q)). Moreover, we apply the frame rule to
maintain the starred invariant ∀R. ((coll(c, xs) ∧ Q ∧ R) −
∗ iter(i2, c, xs, R)). Thus we recover the precondition for call-
ing next(i1) on line 13, and then on lines 14-16, we apply the
static specification and combine the iterator state fragment for i2,
so that we can call next(i2) on line 17. On line 18 and 19, we once
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∃new coll, empty, add, new iter, next.
∃coll : (ref list× seq nat) ⇒ prop.
∃iter : (ref ref list× ref list× seq nat× prop) ⇒ prop.

〈>〉 new coll() 〈a : ref list. coll(a, [])〉 and

∀c, x, xs. 〈coll(c, xs)〉 add(c, x) 〈a : 1. coll(c, x :: xs)〉 and

∀P : prop, c, xs. 〈coll(c, xs) ∧ P 〉
empty(c)
〈a : bool. coll(c, xs) ∧ P ∧ a = (xs = [])〉 and

∀c, xs, P. 〈coll(c, xs) ∧ P 〉
new iter(c)
〈a : ref ref list. iter(a, c, xs, P )〉 and

∀i, c, xs, P. 〈iter(i, c, xs, P )〉 next(i) 〈a : 1 + nat. iter(i, c, xs, P )〉 and

∀i, c, xs, P. {iter(i, c, xs, P ) ⊃
∃Q. (coll(c, xs) ∧ P ∧Q) ∗

∀R. (coll(c, xs) ∧R ∧Q)−∗ iter(i, c, xs, R)}

Figure 1. Iterator Specification

again use the static specification to disassemble the iterator and get
back the collection.

Next, we want to call add(c, x) on line 21. However, the rule
for add does not allow us to preserve an arbitrary invariant over the
collection’s state (i.e., there is no frame rule for ordinary conjunc-
tion in our system since it would be unsound). Therefore, on line
20 we forget the collection invariants.

Now, calling add(c, x) on line 21 gives us a state in which
coll(c, x :: xs) holds. As a result, we can no longer apply the
separating implication law to get a full iterator state, and we can’t
call next on either i1 or i2 any longer.

So the Hoare triples and static specifications put us in a situation
where we can create multiple iterators, and can freely call methods
on the collection which don’t change its state, but which also en-
force the property that there can be no calls to next after modifying
the collection – and the client was able to do this without knowing
anything about the internal heap structure of the collection.

Finally, in Figure 2, we give example implementation for this
specification. The implementations are the witnesses to the exis-
tential type: for the abstract program variables we give monadic
programs (which manipulate imperative linked lists in the obvious
way), and for the existentially quantified predicates, we give re-
cursive functions that compute predicates from their arguments –
i.e., the inductive predicate characterizing the heap structure. The
iter predicate, for example, is an assertion stating that the iterator
points to an interior pointer of the linked list, and that the predicate
variable P is preserved for the whole list.

The static specification is a tautology given the definitions of
the predicates. In particular, the heap described by the separating
implication is the predicate i ↪→ c′, while the predicate Q is
witnessed by seg(c, c′, xs1) ∗ coll(c′, xs2) ∧ xs = xs1 · xs2.

In this example, and indeed in the whole paper, we focus on
being able to abstractly specify and reason about the imperative as-
pects of modules. Of course, one would also like the Iterator speci-
fication to be abstract in the implementation types used for collec-
tions and iterators (here ref list), i.e., to have existential quantifica-
tion over types to model abstract data types. We do not foresee any
problems in extending the system presented in this paper to include
existential types and leave it for future work.

2.2 The Subject/Observer Pattern
We also give an example specification for the subject/observer
pattern as an example of how to specify the use of higher-order

new coll () ≡ [newlistnil]

add(c, x) ≡ [letv [cell] = [!c] in
letv [t] = [newlistcell] in
c := cons(x, t)]

empty(c) ≡ [letv [cell] = [!c] in
listcase(cell, true, (h, t). false)]

new iter(c) ≡ [newref list(c)]

next(i) ≡ [letv [c] = [!i] in
letv [cell] = [!c] in
letv [ans] =listcase(cell, [None],

(h, t). [letv [ ] = [i := t] in
Some h]) in

ans]

coll(c, x :: xs) ≡ ∃c′. c ↪→ cons(x, c′) ∗ coll(c′, xs)
coll(c, []) ≡ c ↪→ nil

seg(c, c′, x :: xs) ≡ ∃c′′. c ↪→ cons(x, c′′) ∗ seg(c′′, c′, xs)
seg(c, c′, []) ≡ c = c′

iter(i, c, xs, P ) ≡ ∃c′,xs1, xs2.
(P ∧ (seg(c, c′, xs1) ∗ coll(c′, xs2))) ∗
i ↪→ c′ ∧
xs = xs1 · xs2

Figure 2. Iterator Implementation

state. In the subject/observer pattern, a number of observer objects
of type τo each register for updates from a subject object of type
τs by calling listen and passing a a notify function, which
can update the observer’s state. The subject can then broadcast
a message to all of the observers attached to it, updating their states
according to the message.

In this specification, we existentially quantify over the listen
and broadcast functions (implemented by the subject), and intro-
duce two predicates sub and obs to represent the state of the subject
and individual observers.

The predicate sub takes as arguments the subject whose state it
describes, the list of observers it will notify (seq τo), and a proposi-
tion variable P tracking the current hidden state of the subject. The
predicate obs takes as arguments the observer object whose state
it describes, and an integer representing the portion of the subject
state being listened to. We also introduce two auxilliary predicates,
observers and observers at, which say that a sequence of ob-
servers exist, and that a sequence of observers all exist with the
same value.

Note that we universally quantify over the obs predicate. This
ensures that a subject implementation must work for any possible
implementation of obs. Conversely, a client program (which sup-
plies the observed objects) will have the subject implementation as
an existential hypothesis. That is, client code can assume that an
instantiation of our subject implementation exists, but can make no
assumptions about how it is implemented. In this way, we ensure
that the state of the subject and the state of the observer are held
abstract from one another.

The first clause of the specification is simply a function to
create a new subject, and the second is a triple asserting that
broadcast on an empty list of observers has no visible effect.

The third clause, as an implication over triples, is the most
complex part of this specification. It asserts that if a notify
function updates the state of an observer o, and if broadcast
correctly updates the state of a list of observers os, then calling
listen(s, o) will attach the observer o to the list of observers, and
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1 {coll(c, xs)}
2 letv [b] = empty(c) in
3 {coll(c, xs)}
4 letv [i1] = new iter(c) in
5 {iter(i1, c, xs,>)}
6 {(coll(c, xs) ∧ P ) ∗ ∀R. (coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)}
7 letv [i2] = new iter(c) in
8 {iter(i2, c, xs, P ) ∗ ∀R. (coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)}
9 {(coll(c, xs) ∧ P ∧Q) ∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)) ∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

10 letv [b′] = empty(c) in
11 {(coll(c, xs) ∧ P ∧Q)∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)) ∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

12 {iter(i1, c, xs, Q))∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

13 letv [v] = next(i1) in
14 {iter(i1, c, xs, Q))∗

∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}
15 {(coll(c, xs) ∧ P ∧Q)∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)) ∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

16 {iter(i2, c, xs, P ))∗
∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i2, c, xs, R))}

17 letv [v] = next(i2) in
18 {iter(i2, c, xs, P ))∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i2, c, xs, R))}
19 {(coll(c, xs) ∧ P ∧Q)∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)) ∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

20 {coll(c, xs)∗
∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R))∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

21 letv [ ] = add(c, x) in
22 {coll(c, x :: xs)∗

∀R. ((coll(c, xs) ∧ P ∧R)−∗ iter(i1, c, xs, R)) ∗
∀R. ((coll(c, xs) ∧Q ∧R)−∗ iter(i2, c, xs, R))}

Figure 3. Iterator Client

broadcast(s, n) will update all of the listeners o :: os with the
new value n.

This is an example of the general pattern for specifying higher-
order programs with our specification logic; to specify the behavior
of a function that takes a function as an argument, we write a
formula that specifies the behavior of the function argument as a
hypothesis of the application argument. An order-n function will
need a specification of at least order n.

We also demonstrate another technique in this specification. Af-
ter a call to listen, the effect of the broadcast function changes,
and we use the existential variable Q to tie these two functions to-
gether – we assert that calling listen changes the state of the subject
from P to Q, and then give a triple describing how broadcast
behaves on a subject in state Q.

2.3 Shared Buffer
In this example, we demonstrate how our separation logic can sup-
port abstract ownership transfer, which is useful in, e.g., the spec-
ification of a library of sparse matrix routines that use a common
buffer, and where it is unsafe to call one operation until a sequence
of calls implementing another is complete (as indicated by a return
value of true).

Our shared buffer specification is shown in Figure 5. For sim-
plicity, we just include two routines op1 and op2 operating on a
shared buffer, described by buf ; we assume init initializes the
system so that op1 can be called. The routine op1 operates on a

∃new subject, listen, broadcast.
∃sub : τs × seq τo × prop ⇒ prop.
∀obs : τo × N ⇒ prop.

〈>〉 new subject() 〈a : τs. sub(a, [],>)〉 and

∀s, P. 〈sub(s, [], P )〉 broadcast(s, n) 〈a : 1. sub(s, [], P )〉 and

∀s, os, o, notify, P.
((∀n. 〈obs(o,−)〉 notify(n) 〈a : 1. obs(o, n)〉)
and
∀n. 〈sub(s, os, P ) ∗ observers(os)〉

broadcast(s, n)
〈a : 1. sub(s, os, P ) ∗ observers at(os, n)〉)

implies
(∃Q. 〈sub(s, os, P ) ∗ observers(os) ∗ obs(o,−)〉

listen(s, notify)
〈a : 1. sub(s, o :: os, Q) ∗ observers(o :: os)〉
and
〈sub(s, o :: os, Q) ∗ observers(o :: os)〉
broadcast(s, n)
〈a : 1. sub(s, o :: os, Q) ∗ observers at(o :: os, n)〉) and

observers([]) = >
observers(o :: os) = obs(o,−) ∗ observers(os)

observers at([], n) = >
observers at(o :: os, n) = obs(o, n) ∗ observers at(os, n)

Figure 4. Subject Observer Specification

∃m1 : τ1 × bool ⇒ prop.
∃m2 : τ2 × bool ⇒ prop.
∃buf : prop.

〈>〉 init() 〈(x1, x2). m1(x1, false) ∗ (buf −∗ m2(x2, true))〉 and

∀x1, b. 〈m1(x1, b)〉 op1(x1) 〈r : bool. m1(x1, r)〉 and

∀x2, b. 〈m2(x2, b)〉 op2(x2) 〈r : bool. m2(x2, r)〉 and

∀x1. {m1(x1, true) ⊃ (buf ∗ (buf −∗ m1(x1, true)))} and

∀x2. {m2(x2, true) ⊃ (buf ∗ (buf −∗ m2(x2, true)))}

Figure 5. Shared Buffer Specification

state m1(x, b), consisting of the data associated with x and the
shared buffer buf , and likewise for op2. The static specifications
assert that only when m1(x, true) holds, can the state can be split
into the buffer and the remaining data buf −∗ m1(x1, true), and
similarly for m2.

The static specifications permit us to transfer ownership of buf ,
from m1 to m2 and vice versa, in precisely the states when the
boolean field is true, and not otherwise, without knowing anything
about the internal representation of the buffer.

3. Semantics
3.1 The Monadic Language
The programming language we work with is a monadic call-by-
value lambda calculus. Following [10, 9], we stratify the language
into two syntactic categories, pure expressions and effectful compu-
tations, which are described in Figure 6 (the ω used in the definition
of contexts ranges over assertion types, to be defined in Figure 11
below).
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Expressions are the purely functional fragment of the language,
where evaluation always terminates and corresponds to the beta-
rule of the lambda calculus. We type expressions using the typing
judgement Γ ` e : τ , described in Figure 7. Expressions include
the usual introduction and elimination forms for sum, product, and
function types. Additionally, we have reference types and monadic
types.

The type ref τ classifies references that point to a value of type
τ . Departing slightly from the usual presentation, pointer values
take on the form lτ — that is, a pointer is tagged with the type of
the value it points to. This simplifies the semantics of the separation
logic assertions, which will be described in the next section. A
computation c that produces a value of type τ , can be suspended
and turned into a first-class value [c] of the monadic type ©τ .
A value of monadic type is a frozen computation and does not
evaluate any further, which keeps side-effects from infecting the
pure part of the language.

Neither reference values nor frozen computations have any
elimination rules in the expression language, which ensures that
no expression can have a side-effect. We make this syntactically
apparent in the dynamic semantics of expressions, given in Fig-
ure 9, by simply leaving out the store altogether from its reduction
relation (e e′).

We have a judgement Γ ` c ÷ τ , given in Figure 8, which
characterizes well-formed computations. A computation is either
an expression (which becomes a computation without side-effects);
reading (!e), writing (e := e′), or creating (newτe) a reference;
or sequencing two computations via monadic sequencing with the
form letv [x] = e in c.1 Sequencing takes an expression of type
©τ , evaluates it to a value [c′], and then executes c′ and passes the
result (a value plus side-effects) to c.

As an example, consider the following program, which is a
computation of type nat.

letv [r] = [newnatz] in
letv [dummy] = [r := s s z] in
letv [n] = [!r] in

s n

Here, we have a computation which creates a new pointer, point-
ing to zero, and then updates it to point to two, and then deref-
erences the pointer and returns the successor of the dereferenced
value, for a final result of 3. We freeze basic commands and turn
them into monadic values when we put them in brackets (e.g., [!r]),
and then we can run them in sequential order using the monadic
let-binding construct.

Although we have no explicit operator for term-level recursion,
nontermination is possible in the computation language, because
we have higher-order store – that is, pointers to functions. We can
code an imperative fixed point if we update a function pointer so
that a function body contains a pointer to itself (this is Landin’s
technique of “tying a knot in the heap” to construct a recursive
function; see [15] for a concrete example). Thus the language
includes non-termination. In this paper, however, we will not deal
with reasoning about recursion.

We also have a judgement σ ok in Figure 8 to characterize well-
typed heaps. Unlike the usual presentation of adding references to
the lambda calculus [26], this judgement explicitly does not check
whether or not there are dangling pointers in the heap – it permits
dangling pointers as long as the pointers are themselves well-typed.

The reduction relation for commands, 〈c ; σ〉  〈c′; σ′〉, is
given in Figure 10 and takes a program state, i.e., a pair of a
computation and a heap, into another program state. If evaluation

1 This is equivalent to the bind operation in Haskell.

would read or write a pointer not in the heap, then we transition
into the abort state 〈c ; σ〉 abort.

The decision to explicitly model what would happen with dan-
gling pointers ends up substantially simplifying the semantics of
the new connectives of the assertion language of separation logic,
as we will see in the sequel. Informally, we use separation logic to
reason about heap fragments, and the abort state lets the reduction
relation “tell us” when a partial heap did not contain enough data
for evaluation to proceed.

Also, one standard choice still worth drawing attention to is that
dynamic allocation via newτv is nondeterministic. The evaluation
rule for allocation promises to return a new pointer not in the
domain of the heap, but does not say what value that pointer will
take on. This is important, because it is necessary in order for the
frame property discussed below to hold.

The metatheory of this language is fairly standard. The only
wrinkle is that we have to prove soundness twice, one for each
of the two judgements for expressions and computations. We have
the usual proof of type soundness for the expression language via
progress and type preservation lemmas.

PROPOSITION 1 (Expression Progress). If · ` e : τ , then either e
is a value or there exists an e′ such that e e′.

PROPOSITION 2 (Expression Subject Reduction). If · ` e : τ and
e e′, then · ` e′ : τ .

These are proved by structural induction on typing derivations
and evaluation derivations, respectively.

Additionally, we also show that expressions always reduce to a
value. We take e  ∗ v to be the transitive closure of the one-step
evaluation relation.

PROPOSITION 3 (Termination). If · ` e : τ , then there exists a v
such that e ∗ v.

We prove this using a straightforward logical relations argument.
The only interesting case is for nat, where we need a nested induc-
tion to show termination. Once we have soundness for our expres-
sion language, we can use it to prove soundness for computation
terms.

PROPOSITION 4 (Partial Computation Progress). If · ` c ÷ τ and
σ ok, then either c is a value v, or there exists a c′ and σ′ such that
〈c ; σ〉 〈c′; σ′〉, or 〈c ; σ〉 abort.

PROPOSITION 5 (Computation Subject Reduction). If · ` c ÷ τ
and σ ok and 〈c ; σ〉 〈c′; σ′〉, then · ` c′ ÷ τ and σ′ok.

The progress lemma includes the possibility of the computation
aborting if it tries to access a dangling pointer. We can restore the
full safety of the conventional type-safety theorem if we introduce
the notion of a closed state . We say a state 〈c; σ〉 is closed if all
of the pointers in c and in each of the values in the range of σ are
members of the domain of σ.

PROPOSITION 6 (Full Computation Progress). If · ` c ÷ τ , σ ok,
and 〈c; σ〉 is closed, then either c is a value v, or there exists a c′

and σ′ such that 〈c ; σ〉 〈c′; σ′〉 and 〈c′; σ′〉 is closed.

Finally, we give an equality judgement for our programming
language. This is beta-eta equality at function and product types
and beta equality for sums, lists and natural numbers. The equality
judgement for monadic terms is restricted so that no unrestricted
computation or heap effects are needed; only the monad laws are
included. The equality judgment is described in Figure 12, although
the structural congruence rules and the rules for sums are elided for
space reasons. This judgment can be extended to heaps, as well, as
in Figure 13. Note that Propositions 1–3 together with the following
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Program Types τ ::= 1 | τ × τ ′ | τ + τ ′ | τ → τ ′ | ref τ | © τ
| nat | list

Expressions e ::= () | (e1, e2) | fst e | snd e
| inl e | inr e | case(e, x′. e′, x′′. e′′)
| λx : τ. e | x | e1 e2 | lτ | [c]
| z | s e | iternat(e, ez , x. es)
| nil | cons(e, e′) | listcase(e, e1, (h, t). e2)

Computations c ::= e | letv [x] = e in c | !e | e := e′

| newτ e

Values v ::= () | (v1, v2) | inl e | inr e
| z | s v | nil | cons(v, llist)
| λx : τ. e | lτ | [c]

Contexts Γ ::= · | Γ, x : τ | Γ, x : ω

Heaps σ ::= · | σ, lτ : v

Figure 6. The Basic Syntactic Categories

Γ ` e : τ

Γ, x : τ ′ ` e : τ

Γ ` λx : τ ′. e : τ ′ → τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

Γ ` nil : list

Γ ` e : nat Γ ` e′ : ref list

Γ ` cons(e, e′) : list

Γ ` e : list Γ ` e1 : τ Γ, h : nat, t : ref list ` e2 : τ

Γ ` listcase(e, e1, (h, t). e2) : τ

Γ ` z : nat
Γ ` e : nat

Γ ` s e : nat

Γ ` e : nat Γ ` ez : τ Γ, x : τ ` es : τ

Γ ` iternat(e, ez , x. es) : τ

Γ ` lτ : ref τ

Γ ` c÷ τ

Γ ` [c] : ©τ

Figure 7. Expression Typing

Proposition 7 express that expressions modulo equality provide an
adequate model of the operational semantics (if ` e : 1 + 1
and ` e ≡ inl () : 1, then e evaluates to inl ()). The equational
theory can be derived from a standard denotational semantics for
the programming language (omitted here); the latter can also be
used to show that the equational theory is consistent.

PROPOSITION 7 (Evaluation Preserves Equality). If · ` e : τ and
e e′, then · ` e ≡ e′ : τ .

PROPOSITION 8 (Computation Preserves Equality). If · ` c1 ≡
c2 ÷ τ , and ` σ1 ≡ σ2, then

1. if 〈c1 ; σ1〉  〈c′1; σ′
1〉, then 〈c2; σ2〉  ∗ 〈c′2; σ′

2〉 and
· ` c′1 ≡ c′2 ÷ τ and ` σ′

1 ≡ σ′
2,

2. if 〈c1 ; σ1〉 abort, then 〈c2; σ2〉 ∗ abort

Γ ` c÷ τ

` σ ok

Γ ` e : τ
Γ ` e÷ τ

Γ ` e : τ
Γ ` newτ e÷ ref τ

Γ ` e : ref τ
Γ `!e÷ τ

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1 := e2 ÷ 1

Γ ` e : ©τ ′ Γ, x : τ ′ ` c÷ τ

Γ ` letv [x] = e in c÷ τ

` · ok
` σ ok · ` v : τ
` σ, lτ : v ok

Figure 8. Computation and Heap Typing

e e′

e1  e′1

(e1, e2) (e′1, e2)

e2  e′2

(v, e2) (v, e′2)

e e′

fst e fst e′
e e′

snd e snd e′

fst (v1, v2) v1 snd (v1, v2) v2

eh  e′h

cons(eh, et) cons(e′h, et)

et  e′t

cons(v, et) cons(v, e′t)

e1  e′1

e1 e2  e′1 e2

e2  e′2

v e2  v e′2

(λx : τ. e)v  [v/x]e

e e′

s e s e′

iternat(0, ez , x. en) ez

iternat(s v, ez , x. en) [iternat(v, ez , x. en)/x]en

e e′

iternat(e, ez , x. en) iternat(e
′, ez , x. en)

e e′

listcase(e, e1, (h, t). e2) listcase(e′, e1, (h, t). e2)

listcase(nil, e1, (h, t). e2) e1

listcase(cons(vh, llist), e1, (h, t). e2) [vh/h][llist/t]e2

Figure 9. Small-step Dynamic Semantics of Expressions
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〈c ; σ〉 〈c′; σ′〉

〈c ; σ〉 abort

e e′

〈letv [x] = e in c ; σ〉 〈letv [x] = e′ in c; σ〉

〈c1 ; σ〉 
˙
c′1; σ′

¸
〈letv [x] = [c1] in c ; σ〉 

˙
letv [x] = [c′1] in c; σ′

¸
〈letv [x] = [v] in c ; σ〉 〈[v/x]c; σ〉

e e′

〈e ; σ〉 〈e′; σ〉

e e′

〈!e ; σ〉 〈!e′; σ〉
e e′

〈newτ e ; σ〉 〈newτ e′; σ〉

lτ : v ∈ σ

〈!lτ ; σ〉 〈v; σ〉
lτ 6∈ dom(σ) σ′ = σ, lτ : v

〈newτ v ; σ〉 〈lτ ; σ′〉

lτ ∈ dom(σ) σ′ = [σ|lτ : v]

〈lτ := v ; σ〉 〈(); σ′〉

e2  e′2

〈lτ := e2 ; σ〉 
˙
lτ := e′2; σ

¸
e1  e′1

〈e1 := e2 ; σ〉 
˙
e′1 := e2; σ

¸
lτ 6∈ dom(σ)

〈lτ := v ; σ〉 abort

lτ 6∈ dom(σ)

〈!lτ ; σ〉 abort

〈c1 ; σ〉 abort

〈letv [x] = [c1] in c ; σ〉 abort

Figure 10. Dynamic Semantics of Computations

3.2 The Assertion Language
3.2.1 The Syntax of Assertions
The syntax of our assertion language is given in Figure 11. The
types we can quantify over are the ordinary types of our program-
ming language τ , and additionally we introduce a type of propo-
sitions prop, and a type constructor ⇒. We stratify the assertion
language so that program expressions can appear in assertions, but
assertions cannot appear in program terms. This stratification per-
mits us to give the assertion language a denotational, set-theoretic
semantics (particularly for the function space ⇒), while letting us
continue to reason about the programming language in operational
terms.

The term language is given by the ordinary term constructors
of the programming language, extended to range over the propo-
sitional constants such as >, ⊥, p ∗ p′ and so on. The fact that
inductive types are available in the pure sublanguage means that
we can define inductive predicates by iteration on some data. For
example, the observers function in Figure 4 could be defined as:

λos : seq τo. iterseq τo(os,
>,
(o, t). ∃m : N.obs(o, m) ∗ t)

In the examples, we gave an inductive definition by cases, but
this is sugar for a definition internal to our assertion language.

3.2.2 The Semantics of Assertions
To give the meaning of a proposition, we will make use of a BI-
algebra[21, 27], which is a structure modelling logical entailment
in the logic of bunched implications. A BI algebra is a lattice with
Heyting algebra structure (operations >, ⊥, ∧, ∨, and →) that
model the intuitionistic connectives of BI, and closed monoidal
operations (I , ∗, and −∗ ) to model the separating conjunction and
separating implication.

First, we define an ordering on heaps such that one heap is above
another if it is an extension of the other: σ′ v σ if and only if
∃σ′′. ` σ ≡ σ′, σ′′. Next, we take the set H to be the set of well-
typed heaps H = {σ | ` σ ok} / ≡σ quotiented by equality of
heaps.2

We then define the lattice ↑ H to be the set of upward closed
subsets of H , with the lattice ordering being subset inclusion.

↑H =
˘
h ∈ P(H) | ∀σ, σ′. if σ ∈ h ∧ σ v σ′ then σ′ ∈ h

¯
Within this lattice, the lattice ordering defines logical entailment,
and the BI-algebra operations are defined by:

> = H

⊥ = ∅
h1 ∧ h2 = h1 ∩ h2

h1 ∨ h2 = h1 ∪ h2

h1 ⊃ h2 =
˘
σ ∈ H | ∀σ′ w σ. if σ′ ∈ h1 then σ′ ∈ h2

¯
I = H

h1 ∗ h2 = {σ ∈ H | ∃σ1, σ2. σ = σ1 ] σ2 ∧ σ1#σ2∧
σ1 ∈ h1 ∧ σ2 ∈ h2}

h1 −∗ h2 = {σ ∈ H | ∀σ1.if σ1 ∈ h1 ∧ σ1#σ then σ1, σ ∈ h2}

Verifying that these definitions satisfy the equations of Heyting
and monoidal structure is a routine calculation.

We will take the meaning a closed proposition to be an element
of this lattice, which means that a proposition is interpreted as the
set of heaps in which it is true. The restriction to downward-closed
subsets of H means that a proposition which is true at a heap will
be true in all extensions of it, which is precisely what intuitionistic
separation logic requires [13]. As a result of this requirement, truth
> and the monoidal unit I coincide, unlike in classical separation
logic, where I asserts the heap is empty.

Now, this structure is not sufficient to model full separation
logic, because we can write propositions that include terms (such
as Γ ` e = e′ : prop), and we do not yet have an interpretation
of terms. To do this, we will make use of the notion of a BI-
hyperdoctrine, originated by Biering, Birkedal and Torp-Smith [4].
A BI hyperdoctrine is a categorical structure which can interpret
higher-order separation logic, but here we will sweep the abstract
category theory under the carpet and work explicitly in a particular
BI hyperdoctrine over sets and total functions.

Our interpretation consists of two parts. First, we give an in-
tepretation for each of the types ω. The type prop is interpreted as
↑ H , and arrow (⇒) types are interpreted by the function space.
The recursive type of sequences seq ω is interpreted as the set of
sequences of elements of ω. The base types — which include all
of the types of the programming language — are interpreted as the
set of closed terms of the appropriate type, quotiented by equality.3

The full definition can be seen in Figure 14.

2 Hereafter we will abuse notation and write σ ∈ H when we mean the
equivalence class of heaps indexed by σ.
3 Again, we will abuse notation and write e ∈ [[ω]] to mean that the
equivalence class identified by e is a member of [[ω]].
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Assertion Types ω ::= τ | ω ⇒ ω | seq ω | prop

Expressions p ::= e | > | ⊥ | p ∨ p′ | p ∧ p′

| p ⊃ p′ | p ∗ p′ | p−∗ p′

| ∀x : τ. p | ∃x : τ. p
| e =ω e′ | e ↪→τ e′

| λx : ω. p | p p′ | x
| [] | p :: ps | iterseq ω(p, p′, (x, xs). p′′)
| iternat(e, pz, x. ps)

Γ, x : ω ` p : prop Q ∈ {∀, ∃}
Γ ` Qx : ω. p : prop

c ∈ {>,⊥}
Γ ` c : prop

Γ ` pi : prop op ∈ {∧,∨,⊃,−∗ , ∗}
Γ ` p1 op p2 : prop

Γ ` p : ω Γ ` p′ : ω

Γ ` p =ω p′ : prop

Γ ` e : ref τ Γ ` e′ : τ

Γ ` e ↪→τ e′ : prop Γ ` [] : seq ω

Γ ` p : ω Γ ` p′ : seq ω

Γ ` p :: p′ : seq ω

x : ω ∈ Γ

Γ ` x : ω

Γ ` p : ω′ ⇒ ω Γ ` p′ : ω′

Γ ` p p′ : ω

Γ, x : ω′ ` p : ω

Γ ` λx : ω′. p : ω′ ⇒ ω

Γ ` p : seq ω′ Γ ` p1 : ω Γ, h : ω′, t : ω ` p2 : ω

Γ ` iterseq ω′ (p, p1, (h, t). p2) : ω

Γ ` e : nat Γ ` pz : ω Γ, x : ω ` ps : ω

Γ ` iternat(e, pz , x. ps) : ω

Figure 11. Assertion Syntax

Next, we interpret terms in context (i.e., Γ ` e : ω) as functions
from the interpretation of the context to the interpretation of the
expression [[Γ]] → [[ω]], where a context Γ = x1 : τ1, . . . xn : τn

is interpreted by the set of substitutions γ = [v1/x1, . . . , vn/xn],
with v1 ∈ [[τ1]], . . . vn ∈ [[τn]]. The interpretation function is de-
scribed in Figure 15. The definition makes use of the standard fold
functions for natural numbers and sequences (primitive recursion).

Finally, we write logical entailment pBΓq to mean that p entails
q. That is, for all substitutions γ, if σ ∈ [[Γ ` p : prop]]γ then
σ ∈ [[Γ ` q : prop]]γ.

We verify that our semantics satisfies some basic properties:

PROPOSITION 9 (Substitution). If Γ, x : ω′ ` p : ω, Γ ` p′ : ω′

and γ ∈ [[Γ]], then

[[Γ ` [p′/x]p : ω]]γ = [[Γ, x : ω′ ` p : ω]](γ, [[Γ ` p′ : ω′]]γ)

PROPOSITION 10 (Properties of Logical Entailment). We have that

BΓ I ⊃ T BΓ T ⊃ I

BΓ p ⊃ p ∗ I BΓ p ∗ I ⊃ p

(p ∗ q) ∗ r BΓ p ∗ (q ∗ r) p ∗ (q ∗ r)BΓ (p ∗ q) ∗ r

p ∗ q BΓ q ∗ p

pBΓ q r BΓ s
p ∗ r BΓ q ∗ s

p ∗ q BΓ r

pBΓ q −∗ r

3.3 Semantics of Specifications
With a semantics for the assertion language in hand, we now con-
sider how to construct a specification language from it. Our gen-

Γ ` e ≡ e′ : τ

Γ ` c ≡ c′ ÷ τ

Γ ` e : τ
Γ ` e ≡ e : τ

Γ ` e′ ≡ e : τ

Γ ` e ≡ e′ : τ

Γ ` e ≡ e′ : τ Γ ` e′ ≡ e′′ : τ

Γ ` e ≡ e′′ : τ Γ ` () ≡ () : 1

Γ ` λx : τ ′. e : τ ′ → τ Γ ` e′ : τ ′

Γ ` (λx : τ ′. e) e′ ≡ [e′/x]e : τ

Γ ` e : τ ′ → τ

Γ ` e ≡ λx : τ ′. e x : τ ′ → τ

Γ ` (e1, e2) : τ1 × τ2

Γ ` fst (e1, e2) ≡ e1 : τ1

Γ ` (e1, e2) : τ1 × τ2

Γ ` snd (e1, e2) ≡ e2 : τ2

Γ ` e : τ1 × τ2

Γ ` (fst e, snd e) ≡ e : τ1 × τ2

Γ ` e ≡ e′ : nat

Γ ` s e ≡ s e′ : nat

Γ ` iternat(z, ez , x. es) : τ

Γ ` iternat(z, ez , x. es) ≡ ez : τ

Γ ` c ≡ c′ ÷ τ

Γ ` [c] ≡ [c′] : ©τ

Γ ` listcase(nil, e1, (h, t). e2) : τ

Γ ` listcase(nil, e1, (h, t). e2) ≡ e1 : τ

Γ ` listcase(cons(eh, et), e1, (h, t). e2) : τ

Γ ` listcase(cons(eh, et), e1, (h, t). e2) ≡ [eh/h][et/t]e2 : τ

Γ ` iternat(s e, ez , x. es) : τ

Γ ` iternat(s e, ez , x. es) ≡ [iternat(e, ez , x. es)/x]es : τ

Γ ` e ≡ e′ : τ

Γ ` e ≡ e′ ÷ τ

Γ ` c÷ τ

Γ ` letv [x] = [c] in x ≡ c÷ τ

Γ ` letv [x] = [e] in c′ ÷ τ

Γ ` letv [x] = [e] in c′ ≡ [e/x]c′ ÷ τ

y 6∈ FV(c′′) Γ ` letv [x] = [letv [y] = e in c′] in c′′ ÷ τ

Γ ` letv [x] = [letv [y] = e in c′] in c′′ ≡
letv [y] = e in letv [x] = c′ in c′′ ÷ τ

Figure 12. Equational Theory

` σ ≡ σ′

` · ≡ ·
· ` v ≡ v′ : τ ` σ1, σ2 ≡ σ′1, σ′2

` σ1, lτ : v, σ2 ≡ σ′1, lτ : v′, σ′2

Figure 13. Heap Equality

[[τ ]] = {e | · ` e : τ} / ≡τ

[[ω1 ⇒ ω2]] = [[ω2]][[ω1]]

[[seq ω]] = [[ω]]∗

[[prop]] =↑H

Figure 14. Semantics of Types
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[[Γ ` e : τ ]]γ = {e′ | ∀xi ∈ dom(Γ), ei ∈ [γ]xi.

e′ = [~ei/~xi]e}/ ≡τ

[[Γ ` λx : ω′. e : ω′ ⇒ ω]]γ = λv : [[ω′]]. [[Γ, x : ω′ ` e : ω]](γ, v/x)

[[Γ ` e e′ : ω]]γ = [[Γ ` e : ω′ → ω]](γ)([[Γ ` e′ : ω′]](γ))

[[Γ ` xi : ωi]]γ = [γ]xi

[[Γ ` [] : seq τ ]]γ = ε

[[Γ ` e :: e′ : seq τ ]]γ = ([[Γ ` e : τ ]]γ) · ([[Γ ` e′ : seq τ ]]γ)

[[Γ ` > : prop]]γ = H

[[Γ ` ⊥ : prop]]γ = ∅
[[Γ ` p1 ∧ p2 : prop]]γ = [[Γ ` p1 : prop]]γ ∩ [[Γ ` p2 : prop]]γ

[[Γ ` p1 ∨ p2 : prop]]γ = [[Γ ` p1 : prop]]γ ∪ [[Γ ` p2 : prop]]γ

[[Γ ` p1 ⊃ p2 : prop]]γ = [[Γ ` p1 : prop]]γ ⊃ [[Γ ` p2 : prop]]γ

[[Γ ` p1 ∗ p2 : prop]]γ = [[Γ ` p1 : prop]]γ ∗ [[Γ ` p2 : prop]]γ

[[Γ ` p1 −∗ p2 : prop]]γ = [[Γ ` p1 : prop]]γ −∗ [[Γ ` p2 : prop]]γ

[[Γ ` ∀x : τ. p : prop]]γ =
\

v∈[[τ ]]

[[Γ, x : τ ` p : prop]](γ, v/x)

[[Γ ` ∃x : τ. p : prop]]γ =
[

v∈[[τ ]]

[[Γ, x : τ ` p : prop]](γ, v/x)

[[Γ ` p =ω p′ : prop]]γ = [[Γ ` p : ω]]γ = [[Γ ` p′ : ω]]γ

[[Γ ` e ↪→τ e′ : prop]]γ = {h ∈↑H | ∀σ ∈ h. ∃lτ , v.

lτ ∈ [[Γ ` e : ref τ ]]γ ∧
v ∈ [[Γ ` e′ : τ ]]γ ∧
lτ : v ∈ σ}

[[Γ ` iternat(e, pz , x. ps) : ω]]γ = foldN

[[Γ ` pz : ω]]γ

λv : [[ω]].

[[Γ, x : ω ` ps : ω]](γ, v/x)

[[Γ ` e : nat]]γ

[[Γ ` iterseq τ ′ (e, e1, (h, t). e2) : τ ]]γ =
foldseq τ ′ [[Γ ` e1 : τ ]]γ

λvh : [[τ ′]]. λvt : [[τ ]].
[[Γ, h : τ ′, t : τ ` e2 : τ ]](γ, vh/h, vt/t)

[[Γ ` e : seq τ ′]]γ

Figure 15. Assertion Semantics

eral approach closely mirrors specification logic [29] for Algol, in
which Reynolds took a Hoare logic for commands and integrated
it with a call-by-name functional programming language. Our lan-
guage is call-by-value, but the critical property we retain is that the
full beta rule is a valid notion of equality (intuitively, the monadic
type discipline ensures that function application won’t have side
effects).

To begin, we analyze Hoare triples and see what changes we
will need to make. First, and most simply, a computation in our
language will return a value in addition to having side effects. That
is why the syntax for triples in our specification language is of
the form {p} c {x : τ . q} – the x is a binder for the value the
computation will return, and should not shadow any variables in p
or c.

Secondly, it’s not sufficient to give a semantics for triples as
a relation between states, because free variables in a higher-order

program might be bound to functions or suspended computations,
which both contain code. Consider the following small program:

{>}
letv [n] = fact(k) in (k + 1)× n
{a : N. a = (k + 1)!}

Whether this triple is true for this program depends on what
value fact is bound to. So, we begin by giving the semantics of a
triple as a function of its free variables. If Γ ` {p} c {x : τ . q} :
spec, then we give meaning to the triple as a function of type-
correct substitution γ:

[[Γ ` {p} c {x : τ . q} : spec]]γ =
∀σ, σ′, v.

if σ ∈ [[Γ ` p : prop]]γ then
〈[γ]c; σ〉 6 ∗ abort
and if 〈[γ]c; σ〉 ∗ 〈v; σ′〉 then

σ′ ∈ [[Γ, x : τ ` q : prop]](γ, v/x)

Note that it is a partial correctness criterion.4 Likewise, we give
a semantics for triples over suspended monadic computations as
follows:

[[Γ ` 〈p〉 e 〈x : τ . q〉 : spec]]γ =
∀σ, σ′, c, v.

if σ ∈ [[Γ ` p : prop]]γ
and [c] ∈ [[Γ ` e : ©τ ]]γ then
〈c; σ〉 6 ∗ abort
and if 〈c; σ〉 ∗ 〈v; σ′〉 then

σ′ ∈ [[Γ, x : τ ` q : prop]](γ, v/x)

This is essentially a duplicate of the previous semantic equa-
tion, but is needed for two reasons. First, a let-binding letv [x] =
[c] in c′ in the monadic language will evaluate the expression of
monadic type [c] before substituting the value, so it is convenient to
have a primitive triple that can be used directly with monadic ex-
pressions when giving an inference rule for sequencing. Secondly,
all of the variables in our monadic language are expression vari-
ables; there are no variables that range over computations.

Finally, we define that a specification {p} that just consists of
an assertion p is true when it holds for all heaps.

[[Γ ` {p} : spec]]γ = ∀σ. σ ∈ [[Γ ` p : prop]]γ

Once we have these basic triples, we can compose the triples
themselves with logical connectives to construct more complex
specifications, and inductively build up a meaning for the compos-
ite formulas:

[[Γ ` S1 and S2 : spec]]γ = [[Γ ` S1 : spec]]γ and
[[Γ ` S2 : spec]]γ

[[Γ ` S1 or S2 : spec]]γ = [[Γ ` S1 : spec]]γ or
[[Γ ` S2 : spec]]γ

[[Γ ` S1 implies S2 : spec]]γ = if [[Γ ` S1 : spec]]γ
then [[Γ ` S2 : spec]]γ

[[Γ ` ∀x : ω. S : spec]]γ = ∀v ∈ [[ω]].
[[Γ, x : ω ` S : spec]](γ, v/x)

[[Γ ` ∃x : ω. S : spec]]γ = ∃v ∈ [[ω]].
[[Γ, x : ω ` S : spec]](γ, v/x)

4 Technically elements of [[prop]] are sets of equivalence classes of heaps,
but we disregard that to avoid cluttering this definition.

9 2006/7/6



Thus, we have turned triples into the atomic propositions of yet
another logic. This means that we have a two-level logic, in which
we have propositions of separation logic appearing in triples, and
the triples themselves are propositions in another logic. This per-
mits us to characterize the behavior of free variables in a specifica-
tion. For example, revisiting the factorial example, we might write:

(∀m : N. 〈>〉 fact(m) 〈a : N. a = m!〉)
implies {>}

letv [n] = fact(k) in (k + 1)× n
{a : N. a = (k + 1)!}

We can read this specification as saying, “If fact computes
the factorial function, then the consequent will compute (k + 1)!.”
However, we still have free variables in this spec, and we must
ask under what circumstances we can use such a specification –
are there implementations of fact or values of k for which the
specification will be falsified?

The approach we will take towards answering this question is
to come up with inference rules for deriving specifications which
remain true in all type-correct substitutions. Such specifications are
said to be valid (called “universal” by Reynolds [29]). For a well-
formed specification Γ ` S : spec, we say:

Γ ` S : spec is valid iff ∀γ.[[Γ ` S : spec]]γ

In Figures 17 and 18, we give a collection of deduction rules
for inferring valid specifications. The rules are written in a se-
quent style, but semantically a sequent of the form Γ;∆ `
S, where ∆ = S1, . . . Sn, is interpreted as the specification
(S1 and . . . and Sn) implies S with free variables in Γ.

PROPOSITION 11 (Soundness of Specification Logic). Every deriva-
tion Γ;∆ ` S using the rules in Figures 17 and 18 derives a valid
specification.

We prove this with an induction on the derivation. Most of the
cases are routine, except for the base cases, the rule Frame, and the
Substitution rule.

The base cases can all be proven with a straightforward appeal
to the semantics, but are noteworthy because they are all “small” or
“tight”. In O’Hearn’s terminology [22], they enable local reasoning
because the preconditions and postconditions refer to no other
pointers than the ones that are accessed. To prove the Frame rule,
we must show that the operational semantics validates the safety
monotonicity and frame properties [23].

PROPOSITION 12. The safety monotonicity and frame properties
are:

1. If · ` c ÷ τ and ` σ ok, then if 〈c; σ〉 6 ∗ abort, then if
σ v σ′ and ` σ′ ok, then 〈c; σ′〉 6 ∗ abort.

2. For all · ` c ÷ τ and ` σ0, σ1 ok, if 〈c; σ0〉 6 ∗ abort,
and 〈c ; σ0, σ1〉  〈v; σ′〉, then there exists a σ′

0 such that
σ′ ≡ σ′

0, σ1 and 〈c ; σ0〉 〈v; σ′
0〉.

Informally, safety monotonicity is the property that if a particu-
lar program and heap do not evaluate to an abort, then that program
will not abort with any extension of the heap, and the frame prop-
erty is the local reasoning property – a program will not modify any
state outside of its footprint.

The Substitution rule arises from the basic substitution principle
that if Γ, x : τ ′ ` e : τ and Γ ` e′ : τ ′, then Γ ` [e′/x]e : τ , lifted
first through the syntax of assertions and then lifted again to spec-
ifications. This rule is significant, because it is the combination of
the frame rule and the substitution property that enables genuinely
modular reasoning about imperative programs.

S ::= {p} c {x : τ. q} | 〈p〉 e 〈x : τ. q〉 | {p}
| S and S | S or S′ | S implies S′

| ∀x : τ. S | ∃x : τ. S

∆ ::= � | ∆, S

Γ ` p : prop Γ ` c÷ τ Γ, x : τ ` q : prop

Γ ` {p} c {x : τ. q} : spec

Γ ` p : prop Γ ` e : ©τ Γ, x : τ ` q : prop

Γ ` 〈p〉 e 〈x : τ. q〉 : spec

Γ ` S : spec Γ ` S′ : spec op ∈ {and, or, implies}
Γ ` S op S′ : spec

Γ, x : τ ` S : spec Q ∈ {∀, ∃}
Γ ` Qx : τ. S : spec

Γ ` p : prop

Γ ` {p} : spec

Figure 16. Well-Formedness of Specifications

As seen in the examples, we prove client programs that use
an imperative module by taking a hypothetical specification of the
form Γ, x1 : τ1, . . . , xn : τn;∆, Si ` Sc. Here, we take Si to be
the signature of the module, naming the data and operations in its
interface with the variables. Si does not have to mention any of the
client’s data – whenever Sc uses an operation from Si, it can use
the Frame rule to assert that its data is untouched.

Then, we can derive a concrete implementation of that mod-
ule, if we prove a program with a specification Γ;∆ ` ∃x1 :
τ1, . . . ,∃xn : τn. Si, using the local reasoning property to con-
sider only the module’s data. Then, we can compose those pieces
using the existential elimination rule.

The existential introduction and elimination rules are only prov-
able because the programming language is consistent with the beta-
reduction rule of the lambda calculus, and so permits us to freely
substitute expressions for variables without changing the meaning
of a program.

As a result, a crucial part of the success of this methodology
arises from the clear separation of the language into pure and im-
perative parts via a monad. This is what lets us use the obvious
substitution principle, which allows our simple method of combin-
ing specifications to work correctly.

Having a completely pure and total sublanguage also greatly
simplifies the assertion language: there is no need for definedness
predicates to assert that a term terminates, nor for nested specifica-
tions within assertions, to cope with possibly effectful expressions
within an assertion. That is what permits us to stratify the specifi-
cation language, which drastically simplifies its formulation.

In fact, we conjecture that when adapting this methodology
to impure languages like SML or Java, it will be greatly helpful
to use a Moggi-style monadic translation [17] to create such a
stratification.

4. Related and Future Work
In spirit, this work is a direct descendent of Reynolds’ work on
specification logic for Idealized Algol [29]. It was the two obser-
vations that the full beta-rule is a valid reasoning principle in Ide-
alized Algol, and that Algol’s command type completely separates
the imperative and functional parts of the language, that spawned
the hypothesis that the same idea could apply to a monadic lan-
guage. This combination turned out to be especially pleasant to
work with, because the decision to remove assignable variables
and put all aliasing into the heap, meant that we could simply
dispense with the complex interference conditions of specification
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Γ;∆ ` S

Γ ` newτ e÷ ref τ

Γ;∆ ` {>} newτ e {x : ref τ. x ↪→ e} New

Γ `!e÷ τ Γ ` e′ : τ

Γ;∆ ` {P ∧ e ↪→τ e′} !e {x : τ. P ∧ e ↪→τ e′ ∧ x = e′}
Deref

Γ ` e := e′′ ÷ 1

Γ;∆ ` {e ↪→ −} e := e′′ {x : 1. e ↪→ e′′}
Assign

Γ;∆ ` 〈p〉 e 〈x : τ. q〉
Γ, x : τ ;∆ ` {q} c {y : τ ′. r} x 6∈ FV(r, ∆)

Γ;∆ ` {p} letv [x] = e in c {y : τ ′. r}
Seq

Γ ` e : τ

Γ;∆ ` {>} e {x : τ. x = e} Pure

Γ;∆ ` {p} c {x : τ. q}
Γ;∆ ` 〈p〉 [c] 〈x : τ. q〉 Monad

Γ;∆ ` {p} c′ {x : τ. q} Γ ` c ≡ c′ ÷ τ

Γ;∆ ` {p} c {x : τ. q}
CompEq

Γ;∆ ` 〈p〉 e′ 〈x : τ. q〉 Γ ` e ≡ e′ : ©τ

Γ;∆ ` 〈p〉 e 〈x : τ. q〉
MonadEq

Γ;∆ ` {p} c {x : τ. q} Γ ` r : prop

Γ;∆ ` {p ∗ r} c {x : τ. q ∗ r} Frame1

Γ;∆ ` 〈p〉 e 〈x : τ. q〉 Γ ` r : prop

Γ;∆ ` 〈p ∗ r〉 e 〈x : τ. q ∗ r〉 Frame2

p BΓ p′ Γ;∆ ` {p′} c {x : τ. q′} q′ BΓ,x:τ q

Γ;∆ ` {p} c {x : τ. q}
Consequence

Figure 17. Valid Specification Inference Rules

logic, which described whether variables in two expressions might
interfere with one another. Instead, we could use separation logic
to reason about aliasing.

Birkedal, Torp-Smith, and Yang [7] developed a version of sep-
aration logic for a version of Algol with immutable variables (as
we also have here), where the heap is only a first-order map of inte-
gers (unlike here, where any value can be stored in the heap). This
system doesn’t distinguish the type system from the specification
language: command types can contain preconditions and postcon-
ditions written in separation logic in a fashion similar to refinement
types. Thus they only give semantics to well-specified programs.
The assertion language they support is first-order (no quantification
over assertions), but they support a very powerful kind of hypothet-
ical frame rule in their language, extending the second-order frame
rule of [23] to higher-order. Future work includes combining the
higher-order frame rules of loc. cit. with the separation logic for
higher-order store that we have presented here.

In [18], Nanevski et al. develop a Polymorphic Hoare Type The-
ory, which integrates the type system and the specification lan-
guage, as in [7], but for an ML language with higher-order store
and polymorphism. Nanevski et al. also make use of a monadic
presentation of the language to separate the imperative and func-
tional parts of the language. The assertion language of loc. cit.
is first-order, which makes it difficult to express specifications of
imperative modules such as those presented here in Section 2. It
remains to be seen whether the pure type-theoretic approach in-

Γ;∆ ` S

Γ;∆, S ` S
Hyp

Γ;∆ ` S′ Γ;∆, S′ ` S

Γ;∆ ` S
Cut

Γ, x : ω;∆ ` S Γ ` p : ω

Γ; [p/x]∆ ` [p/x]S
Substitution

Γ;∆ ` S Γ;∆ ` S′

Γ;∆ ` S and S′ AndIntro

Γ;∆, S1 and S2 ` S

Γ;∆, S1, S2 ` S
AndElim

Γ;∆ ` S1 Γ ` S2 : spec

Γ;∆ ` S1 or S2
OrIntro1

Γ;∆ ` S2 Γ ` S1 : spec

Γ;∆ ` S1 or S2
OrIntro2

Γ;∆, S1 ` S Γ;∆, S2 ` S

Γ;∆, S1 or S2 ` S
OrElim

Γ;∆, S′ ` S

Γ;∆ ` S′ implies S
ImpIntro

Γ;∆, S1 implies S2 ` S1 Γ;∆, S1 implies S2, S2 ` S

Γ;∆, S1 implies S2 ` S
ImpElim

Γ, x : ω;∆ ` S x 6∈ FV(∆)

Γ;∆ ` ∀x : ω. S
UnivIntro

Γ, x : ω;∆, ∀x : ω. S′, S′ ` S x 6∈ FV(∆, S)

Γ, ∆, ∀x : ω. S′ ` S
UnivElim

Γ;∆ ` [p/x]S Γ ` p : ω

Γ;∆ ` ∃x : ω. S
ExistIntro

Γ, x : ω;∆, ∃x : ω. S′, S′ ` S x 6∈ FV(∆, S)

Γ;∆, ∃x : ω. S′ ` S
ExistElim

Γ;∆ ` [z/x]S Γ, x : nat;∆, S ` [s x/x]S x 6∈ FV(∆)

Γ;∆ ` ∀x : nat. S
NatInd

Γ;∆ ` [nil/x]S
Γ, h : ω, x : seq ω;∆, S ` [cons(h, x)/x]S h, x 6∈ FV(∆)

Γ;∆ ` ∀x : seq ω. S
SeqInd

Figure 18. Universal Specifications, Continued
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tegrating types and specifications is more suitable in practice than
the more traditional approach taken here where types and specifica-
tions are kept separate. Future work further includes investigating
how to extend [18] with a higher-order assertion language, and how
to extend the present language with polymorphism.

In [31], Mandelbaum et al. develop a refinement type system
to track imperative effects. Their system also distinguishes expres-
sions and computations (though they don’t internalize the distinc-
tion with a monad), and they use a fragment of linear logic to de-
scribe program effects. As a consequence, they cannot reason about
sharing, though they do have tractable typechecking. The refine-
ment type methodology bears some similarity to the way we layer
separation logic over a typed base language, so this work may offer
some guidance relating the current work to Hoare Type Theory.

Parkinson [24] has built a version of separation logic for a
programming language embodying a core subset of Java. As in this
work, he used an intuitionistic variant of separation logic. However,
the lack of pure higher-order functions sharply limits the program
expressions that can appear in assertions. Parkinson and Biermann
introduces the notion of an abstract predicate, in which a kind of
assertion variable is used to conceal the concrete predicate used
to implement an object’s state[25]. Our version of separation logic
supports information hiding by means of existentially quantified
assertions, as proposed in [5]. The latter paper also develops a
specification logic using valid specifications for a simple first-order
programming language.

Reus and Schwinghammer [28] describe an interesting deno-
tational semantics of first-order separation logic for higher-order
store. Since their language does not include pure higher-order func-
tions in expressions and their assertion logic is only first-order, the
resulting system is however not as expressive as the one presented
here.

Berger, Honda and Yoshida recently described a new logic for
analysing aliasing in imperative functional programs [3]. Like sep-
aration logic, they added connectives to a first-order logic, but their
new additions are modal operators that can be interpreted as quan-
tification over the possible content of a pointer. Also, they work in
a setting where effects are not confined to a monad, and their opera-
tors require explicitly require tracking the write set of a procedure.
They noted that one of the difficulties that hindered comparison
with separation logic is that the languages the two approaches tar-
getted were so different; we hope the current work will enable a
better point of comparison.

Barnett and Naumann [2] propose to use a friendship system for
verification of ownership-based invariants in object-oriented pro-
grams. Their method builds on the Boogie methodology, which
combines ownership-based invariants [1] with auxiliary owner
fields [16]. The friendship discipline supports modular verification
of cooperating classes. The auxiliary fields used in the friendship
discipline appear to correspond very closely to (some of) the ar-
guments of our existentially quantified propositions, for example,
the boolean arguments of the m1 and m2 predicates in our shared
buffer example. We have used our higher-order separation logic
to specify some of the examples from [2] (including the Master-
Clock example with Reset) and it seems that our higher-order sepa-
ration logic can express the invariants expressible in the friendship
discipline. Indeed we conjecture that variants of our higher-order
separation logic may be used as a general logical tool for specifici-
cation and verification of imperative modules consisting of shared
mutable objects. Future work includes testing this hypothesis more
extensively, e.g., by verifying parts of the C5 collection library [14],
and extending the higher-order separation logic to accomodate sub-
typing and other features from object-oriented programming.
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