
111

Recovering Purity with Comonads and Capabilities

VIKRAMAN CHOUDHURY, Indiana University, USA and University of Cambridge, UK
NEEL KRISHNASWAMI, University of Cambridge, UK

In this paper, we take a pervasively effectful (in the style of ML) typed lambda calculus, and show how to
extend it to permit capturing pure expressions with types. Our key observation is that, just as the pure simply-
typed lambda calculus can be extended to support effects with a monadic type discipline, an impure typed
lambda calculus can be extended to support purity with a comonadic type discipline.
We establish the correctness of our type system via a simple denotational model, whichwe call the capability

space model. Our model formalises the intuition common to systems programmers that the ability to perform
effects should be controlled via access to a permission or capability, and that a program is capability-safe if it
performs no effects that it does not have a runtime capability for. We then identify the axiomatic categorical
structure that the capability space model validates, and use these axioms to give a categorical semantics for
our comonadic type system. We then give an equational theory (substitution and the call-by-value 𝛽 and 𝜂
laws) for the imperative lambda calculus, and show its soundness relative to this semantics.
Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic imperative

calculus, and show that any two terms which are 𝛽𝜂-equal in the STLC are equal in the equational theory of
the comonadic calculus, establishing that pure programs can be mapped in an equation-preserving way into
our imperative calculus.

CCS Concepts: • Theory of computation → Type theory; Modal and temporal logics; Separation
logic; Linear logic; Categorical semantics; Denotational semantics; • Software and its engineering
→ Functional languages; Syntax; Semantics.

Additional Key Words and Phrases: modal type theory, comonads, categorical semantics, capabilities, effects

ACM Reference Format:
Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering Purity with Comonads and Capabilities. Proc.
ACM Program. Lang. 4, ICFP, Article 111 (August 2020), 117 pages. https://doi.org/10.1145/3408993

1 INTRODUCTION
Consider the two following definitions of the familiar map functional, which applies a function to
each element of a list.

map1 : ∀ a b. (a → b) → List a → List b

map1 f [] = []

map1 f (x :: xs) = let zs = map1 f xs in
let z = f x in
z :: zs

Authors’ addresses: Vikraman Choudhury, Department of Computer Science, Indiana University, Bloomington, 47408, USA,
vikraman@indiana.edu, Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD,
UK, vc378@cl.cam.ac.uk; Neel Krishnaswami, Department of Computer Science and Technology, University of Cambridge,
Cambridge, CB3 0FD, UK, nk480@cl.cam.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/8-ART111
https://doi.org/10.1145/3408993

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:2 Vikraman Choudhury and Neel Krishnaswami

map2 : ∀ a b. (a → b) → List a → List b

map2 f [] = []

map2 f (x :: xs) = let z = f x in
let zs = map2 f xs in
z :: zs

In a purely functional language like Haskell, these two definitions are equivalent. But in an
impure functional language like ML, the difference between these two definitions is observable:

let xs = ["left "; "to "; "right "]

let f s = stdout.print(s); s

let ys = map1 f xs -- Prints "right to left "

let zs = map2 f xs -- Prints "left to right "

So something as innocuous-seeming as a print function can radically change the equational
theory of the language: no program transformation that changes the order inwhich sub-expressions
are evaluated is in general sound. This greatly complicates reasoning about programs, as well as
hinderingmany desirable program optimisations such as list fusion and deforestation [Wadler 1990].
Transformations that are unconditionally valid in a pure language must, in an impure language,
be gated by complex whole-program analyses tracking the purity of sub-expressions.

Contributions. It is received wisdom that much as a drop of ink cannot be removed from a glass
of water, once a language supports ambient effects, there is no way to regain the full equational
theory of a pure programming language. In this paper, we show that this folk belief is false: we
extend an ambiently effectful language to support purity. Entertainingly, it turns out that just as
monads are a good tool to extend pure languages with effects, comonads are a good tool to extend
impure languages with purity!● We take a pervasively effectful lambda calculus in the style of ML and show how to extend it

with a comonadic type discipline modelling the intuitions underpinning the object-capability
model [Lauer and Needham 1979; Levy 1984; Miller 2006] developed in the systems com-
munity. The object-capability model advises that the ability to perform effects should be
controlled via access to a permission or capability, and that a program is capability-safe
precisely when it can only perform effects that it possesses a runtime capability for.● We show that the typing rules are faithful to the object-capability model by giving our
language a denotational semantics, which we call the capability space model. Capability
spaces are a simple, direct formalisation of the ideas underpinning the object-capability
model, which extends the most naive model of the lambda calculus – sets and functions –
with just enough structure to model capability-safety. In our model, a type is just a set 𝑋
(denoting a set of values), together with a relation 𝑤𝑋 saying which capabilities each value𝑥 may own. Morphisms 𝑓 ∶ 𝑋 → 𝑌 are capability-safe if the capabilities of 𝑓(𝑥) are bounded
by the capabilities of 𝑥.
It is already known in the systems community that even effectful, untyped lambda-calculi

can bemade capability-safe by removing features exposing ambient authority. Our model and
type system demonstrates that this observation is incomplete – having a comonad witnessing
the denial of a capability is also very beneficial. In particular, this greatly simplifies the
process of capability taming, making it possible to make a standard library capability-safe in
an incremental fashion.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:3

● We then identify the axiomatic categorical structure the capability space model validates,
and use these axioms to give a categorical semantics for our comonadic type system. We then
give an equational theory (substitution and the call-by-value 𝛽 and 𝜂 laws) for the imperative
lambda calculus, and show its soundness relative to this semantics.● Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic
imperative calculus, and show that any two terms which are 𝛽𝜂-equal in the STLC are equal
in the equational theory of the comonadic calculus under the translation, establishing that
pure programs can be mapped in an equation-preserving way into our imperative calculus.

Detailed proofs of the lemmas and theorems, as well as additional material are given in the
supplementary appendices, and we refer to them in the text.

2 PURITY FROM CAPABILITIES
The object-capability model is a methodology originating in the operating systems community for
building secure operating systems and hardware.The idea behind this model is that systemsmust be
able to control permissions to perform potentially dangerous or insecure operations, and that a good
way to control access is to tie the right to perform actions to values in a programming language,
dubbed capabilities. Then, the usual variable-binding and parameter-passing mechanisms of the
language can be used to grant rights to perform actions — access to a capability can be prohibited
to a client by simply not passing it the capability as an argument. To quote Miller [2006]:

Our object-capability model is essentially the untyped call-by-value lambda calculus
with applicative-order local side effects and a restricted form of eval — the model
Actors and Scheme are based on. This correspondence of objects, lambda calculus, and
capabilities was noticed several times by 1973.

We use this observation to design our language – we begin with the observation that it is
possession of the capability to perform effects that distinguishes impure from safe code. In the
example in section 1, the operation f that distinguished between map1 and map2 contained a
reference to stdout, and so had the intrinsic authority to print to the standard output – that is, f
was not a capability-safe function.
The 𝑐 .print(𝑠) operation takes the channel 𝑐 and prints the string 𝑠 to it. If we did not possess

the capability 𝑐, then we could not invoke the print operation upon this channel. This property
is actually fundamental to the object-capability model, which says that the only way to access
capabilities must be through capability values. Therefore, if we view channels as capabilities, we
know that evaluating a piece of code lacking any capabilities cannot print at all.
Naturally, there are many data types in a real programming language beyond channels, but each

value can access some set of capabilities (eg, a list of files can access any of the channels in the list,
or a closure can access any capability it receives as an argument or possesses in its environment).
So for each value, we can bound the set of possible effects it enables by the capabilities it owns.
This lets us approximate the notion of a “capability-safe program” in a simple and brutal fashion:

we can judge a term to be capability-safe if it can directly access zero capabilities. Lacking access to
any channels, it has no intrinsic ability to do I/O, and hencemust be capability-safe. Furthermore, we
introduce two kinds of variables: safe variables and arbitrary (or impure) variables. By restricting
the substitution to only permit substituting capability-safe terms for safe variables, the judgement
of safety will be stable under substitution. Then, by internalising the safety judgement as a type,
we can pass safe values – i.e., values without access to any capabilities – as first-class values.
To understand this, let us begin with a simple call-by-value higher-order functional language

extended with types for string constants, channels (or output file handles), and a single effect:

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:4 Vikraman Choudhury and Neel Krishnaswami

outputting a string onto a channel with the expression chan.print(s). There is no monadic or
effect typing discipline here; the type of print is just as one might see in OCaml or Java.
print : Channel → String → Unit

For example, here is a simple function to print each element of a pair of strings to a given
channel:
print_pair : String × String → Channel → Unit
print_pair = fun p chan →

chan.print(fst p);

chan.print(snd p)

Here, for clarity we use a semicolon for sequencing, and write print in method-invocation style
à la Java (to make it easy to distinguish the file handle from the string argument). 1
To support capability safety (and thereby obtain purity as a side-effect(!)) we extend the language

with a new type constructor Safe a, denoting the set of expressions of type awhich are capability-
safe – i.e., they own no file handles and so their execution cannot do any printing, unless a capability
is passed. We add the introduction form box(e) to introduce a value whose type is Safe a; the
type system accepts this if e has type a and is recognisably safe, but rejects it otherwise. Here,
“recognisably safe” means that the term e does not refer to any capability literals, and all of its free
variables are safe variables.
To eliminate a value of type Safe a, we will use pattern matching, writing the elimination

form let box(x) = e1 in e2 to bind the safe expression in e1 to the variable x. The only dif-
ference from ordinary pattern matching is that the bound variable x is marked as a safe variable,
permitting it to occur inside of safe expressions. Intuitively, this makes sense – e1 evaluates to a
safe value, and so its result should be allowed to be used by other safe expressions.
It turns out that this discipline of tracking whether a variable is safe or not is precisely a

comonadic type discipline, corresponding to the □ modality in S4 modal logic. Capability-safety is
not exactly the same thing as purity, but we will show how to recover purity from capability-safety
later in this section, and then prove that this encoding works later on. We illustrate the comonadic
behaviour of the Safe type constructor with the following examples.
If we know that a value is safe, we can extract it, giving up that information. Also, since Safe

is only expressing a property of the underlying value, applying it twice achieves nothing, mak-
ing duplicate an isomorphism. This expresses an idempotent comonad, which encodes the prop-
erty that a value of type Safe a is safe.
extract : ∀ a. Safe a → a

extract box(x) = x

duplicate : ∀ a. Safe a → Safe (Safe a)

duplicate box(x) = box(box(x))

Also, observe that we can apply Safe functions to Safe values to get Safe results, thereby
making it almost an Applicative functor, as shown below. Syntactically, box(f x) is accepted,
since both the variables f and x are known to be safe, and so are permitted to occur inside of a safe
expression.
(⊛) : ∀ a b. Safe (a → b) → Safe a → Safe b

(⊛) box(f) box(x) = box(f x) -- accepted

1 We are also using a mix of ML and Haskell syntax, which is in line with the theme of this paper.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:5

However, arbitrary values are not Safe – we cannot mark any value x safe because it could own
capabilities. So this function is rejected.
pure : ∀ a. a → Safe a

pure x = box(x) -- REJECTED

Nor can we write an fmap for Safe, which applies an arbitrary function to a safe argument, and
tries to return a safe result.
fmap : ∀ a b. (a → b) → Safe a → Safe b

fmap f box(x) = box(f x) -- REJECTED

Semantically, the function f may own capabilities, and so it may have side-effects. Syntactically,
since f is an impure variable, it is simply not allowed to occur in the safe expression box(f x).
Only if we mark both the function and the argument as Safe can we apply it, as we saw in (⊛).
However, Safe is a functor in the semantic sense – the absence of an fmap action indicates that

this functor lacks tensorial strength. 2
The capability discipline permits typing functions whose behaviour is intermediate between

pure and effectful. First, suppose we see the following type signature for a print function:
safe_print : Safe (Channel → String → Unit)
-- definition not visible

Without looking at the definition of safe_print, we can make some inferences about its side-
effects. Since it is marked Safe, we can immediately infer that if this function performs a side-effect,
it can print only on the channel that it binds. In other words, it cannot use an ambient capability to
perform side-effects.
Similarly, consider the following type declaration:
multi_print : Safe (List Channel → String → Unit)
-- definition not visible

Again, we do not know anything about the body of the definition (perhaps it prints its string
argument to all of the channels it receives, or perhaps not), but due to the typing discipline, we
know that multi_print is Safe, and hence, owns no capabilities of its own. As a result, we can
make some inferences about the following two declarations:

x : Unit
x = let box(f) = multi_print in

f [stdout, stderr] "Hello world"

y : Unit
y = let box(f) = multi_print in

f [] "Hello world"

The definition of x passes two channels to multi_print, and so it may have an effect (it might
use it to print on either of these channels). On the other hand, we know that the evaluation of y
will not have an effect – we know that multi_print owned no channels, and we did not give it any
channels, therefore it can perform no effects. The purity of this function depends on the inputs that
were passed to it. Moreover, we know this without having to see the definition of multi_print!
Even though capability-safety is a more primitive notion than purity, it is strong enough to

encode purity. Revisiting our map example from section 1, we can now rewrite it using the Safe
type constructor.
map : ∀ a b. Safe (Safe a → b) → List (Safe a) → List b

map box(f) [] = []

2 This also means that safety is not definable in Haskell, since all definable functors are strong.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:6 Vikraman Choudhury and Neel Krishnaswami

Types 𝐴, 𝐵 ∶∶= unit ∣ str ∣ cap∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵 ∣ 𝐴
Terms 𝑒 ∶∶= () ∣ 𝑠 ∣ 𝑒1 .print(𝑒2)∣ (𝑒1 , 𝑒2) ∣ fst 𝑒 ∣ snd 𝑒∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ 𝑒1 𝑒2∣ box 𝑒 ∣ let box 𝑥 = 𝑒1 in 𝑒2
Values 𝑣 ∶∶= () ∣ 𝑠 ∣ (𝑣1 , 𝑣2)∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ box 𝑒
Qualifiers 𝑞, 𝑟 ∶∶= s ∣ i
Contexts Γ, Δ,Ψ ∶∶= · ∣ Γ, 𝑥 ∶ 𝐴𝑞
Substitutions 𝜃, 𝜙 ∶∶= ⟨⟩ ∣ ⟨𝜃, 𝑒𝑞/𝑥⟩

Fig. 1. Grammar

map box(f) (x :: xs) = let z = f x in
let zs = map box(f) xs in
z :: zs

Intuitively, a safe function can only have an effect if its argument gives it any capabilities, and
we can prohibit a function argument from bearing capabilities by giving it a Safe type. Hence, we
can model the pure function space 𝐴 ⇒ 𝐵 using the impure function space, by giving it the type
Safe(Safe A → B).
An additional benefit of the comonadic type discipline is that it dramatically simplifies the

process of capability taming. A language is capability-safe when programs have no access to
ambient authorities. As a result, capability-safety has historically been understood not just as a
property of the language, but also of its standard library. In particular, if the standard library
exposes globally-visible channels like stdout and stderr, any program in the language can refer
to them, and thereby have write effects. As a result, a project like Joe-E [Mettler et al. 2010] involves
a massive effort to rewrite the whole standard library of Java. In constrast, a language with a safety
comonad affords a gradual approach – the bindings in the standard library can all be marked impure
by default, and as the functions are audited, they can gradually be marked safe, allowing more and
more capability-safe programs to be written. This lets language implementors and programmers
gradually opt-in to capability safety, making it easier to migrate language ecosystems, and also
illustrates the importance of being able to track the safety of variable bindings.

3 TYPING
We give the grammar of our language in figure 1. We have the usual type constructors for unit,
products, and functions from the simply-typed lambda calculus. In addition to this, we have the type
str for strings, and the type cap representing output channels (used in the imperative 𝑒1 .print(𝑒2)
statement). Finally, we add the comonadic type constructor which corresponds to the Safe type
constructor we introduced in section 2.
Despite the fact that there is a type cap of channels, and a print operation which uses them, there

are no introduction forms for them. This is intentional! The absence of this facility corresponds to
the principle of capability safety – the only capabilities a program should possess are those that

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:7

𝑥 ∶ 𝐴𝑞 ∈ Γ 𝑥 is a variable of type 𝐴 with qualifier 𝑞 in context ΓΓ ⊢ 𝑒 ∶ 𝐴 𝑒 is an expression of type 𝐴 in context ΓΓ ⊢s 𝑒 ∶ 𝐴 𝑒 is a safe expression of type 𝐴 in context Γ
(a) Typing JudgementsΓ ⊇ Δ Γ is a weakening of context ΔΓ ⊢ 𝜃 ∶ Δ 𝜃 is a well-formed substitution from context Γ to Δ

(b) Weakening and Substitution JudgementsΓ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 𝑒1 and 𝑒2 are equal expressions of type 𝐴 in context Γ
(c) Equality Judgements

Fig. 2. Judgement forms

are passed by its caller. So, a complete program will either be a function that receives a capability
token as an argument, or have free variables that the system can bind capability tokens to. 3
The expressions in our language include the usual ones from the simply-typed lambda calculus,

constants 𝑠 for strings, and print. We also have an introduction form box 𝑒 , and a let box elimina-
tion form for the 𝐴 type; we’ll explain how these work later. Values are a subset of expressions,
but box turns any expression into a value. 4
We would like a modal type system where we can distinguish between expressions with and

without side-effects. Following the style of [Pfenning and Davies 2001] for S4 modal logic, we could
build a dual-context calculus. However, such a setup makes it difficult to define substitution; we
can avoid dual contexts by tagging terms with qualifiers instead. 5 We use two qualifiers that we
can annotate terms with, in the appropriate places. We use s to tag safe terms, and i to tag impure
terms. 6
Next, we define contexts of variables. A well-formed context is either the empty context · , or

an extended context with a variable 𝑥 of type 𝐴 with qualifier 𝑞. Finally, we give a grammar for
substitutions. A substitution is either the empty substitution ⟨⟩, or an extended substitution with
an expression 𝑒 substituted for variable 𝑥 qualified by 𝑞.
3.1 Typing Judgements
In figure 2a we introduce three kinds of judgement forms, and give typing rules in figure 3. We have
the usual introduction and elimination rules for constants and products. If a variable is present in
the context, we can introduce it, using the Var rule. In the introduction rule for functions⇒ I, we
mark the hypothesis as impure when forming a 𝜆-expression, because we do not want to restrict
function arguments in general. The elimination rule⇒ E, or function application works as usual.
The print statement performs side-effects but has the type unit. We need to do more work to add
the comonadic type constructor.

3Of course, a full system should have the ability to create new private capabilities of its own. We omit this to keep the
denotational semantics simple, but we discuss more about it in section 8.
4We write sequencing as 𝑒1 ; 𝑒2, which is syntactic sugar for (𝜆𝑥 ∶ unit. 𝑒2) 𝑒1.
5Since the comonad is idempotent (see subsection 4.5), we could also use the Fitch-style syntax in [Clouston 2018]. However,
we follow our syntactic style to stress the similarity with linear logic.
6We use different colours to distinguish safe and impure syntactic objects, and we’ll follow this convention henceforth.
When we have unknown qualifiers occurring on terms, we highlight them in a different colour, and the colour changes to
the appropriate one when the qualifier is s or i.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:8 Vikraman Choudhury and Neel Krishnaswami

Γ ⊢ () ∶ unit unitI Γ ⊢ 𝑠 ∶ str strI
Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ strΓ ⊢ 𝑒1 .print(𝑒2) ∶ unit Print

Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵 ×I Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ fst 𝑒 ∶ 𝐴 ×E1 Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ snd 𝑒 ∶ 𝐵 ×E2
𝑥 ∶ 𝐴𝑞 ∈ ΓΓ ⊢ 𝑥 ∶ 𝐴 Var

Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵 ⇒I Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵 ⇒E
Γs ⊢ 𝑒 ∶ 𝐴Γ ⊢s 𝑒 ∶ 𝐴 ctx-safe

Γ ⊢s 𝑒 ∶ 𝐴Γ ⊢ box 𝑒 ∶ 𝐴 I
Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵 E

Fig. 3. Typing Rules

(·)s ≔ ·
(Γ, 𝑥 ∶ 𝐴s)s ≔ Γs, 𝑥 ∶ 𝐴s

(Γ, 𝑥 ∶ 𝐴i)s ≔ Γs

(a)

⟨⟩s ≔ ⟨⟩⟨𝜃, 𝑒s/𝑥⟩s ≔ ⟨𝜃s, 𝑒s/𝑥⟩⟨𝜃, 𝑒i/𝑥⟩s ≔ 𝜃s

(b)

Fig. 4. Purifying Contexts and Substitutions

We can mark a term as safe if it was well-typed in a safe context, where every variable has the s
annotation. So we define a syntactic purify operation, which acts on contexts; applying it drops
the terms with the impure annotation, as shown in figure 4a. This is expressed by the ctx-safe
rule, which introduces a safe expression using the safe judgement form. And then, we can put it
in a box using the I rule, to get a -typed value.
We give an elimination rule E using the let box binding form. Given an expression in the

type, we bind the underlying safe expression to the variable 𝑥. With an extended context that has
a free variable 𝑥 marked safe, if we can produce a well-typed expression in the motive type, the
elimination is complete.

3.2 Weakening and Substitution
Next, we can define syntactic weakening and substitution.

3.2.1 Membership. We give the standard rules for the context membership judgement in figure 5a,
following Barendregt’s variable convention. The only difference is that variables now have an extra
safety annotation.

3.2.2 Weakening. The context weakening relation follows the usual rules, as shown in figure 5b,
with the extra annotation on free variables in contexts. Γ ⊇ Δ indicates that Γ has more variables
than Δ, and is defined as an inductive relation in figure 5b. We can prove a syntactic weakening
lemma.

Lemma 3.1 (Syntactic weakening). If Γ ⊇ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then Γ ⊢ 𝑒 ∶ 𝐴.
Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:9

𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑥 ∶ 𝐴𝑞) ∈-id 𝑥 ∶ 𝐴𝑞 ∈ Γ (𝑥 ≠ 𝑦)𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑦 ∶ 𝐵𝑟) ∈-ex
(a) Context Membership Rules

· ⊇ · ⊇-id Γ ⊇ ΔΓ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ, 𝑥 ∶ 𝐴𝑞 ⊇-cong Γ ⊇ ΔΓ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ ⊇-wk
(b) Weakening Rules

Γ ⊢ ⟨⟩ ∶ · sub-id
Γ ⊢ 𝜃 ∶ Δ Γ ⊢s 𝑒 ∶ 𝐴Γ ⊢ ⟨𝜃, 𝑒s/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴s sub-safe

Γ ⊢ 𝜃 ∶ Δ Γ ⊢ 𝑣 ∶ 𝐴Γ ⊢ ⟨𝜃, 𝑣i/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴i
sub-impure

(c) Substitution Rules

Fig. 5. Membership, Weakening and Substitution Rules

3.2.3 Substitution. Substitution requires a bit more care. First, we define the judgement Γ ⊢ 𝜃 ∶ Δ,
which says that 𝜃 is a well-formed substitution from context Γ to Δ. Since our language is effectful,
we restrict the definition of substitutions, in figure 5c to substitute values for impure variables,
while permitting safe expressions for safe variables.
Furthermore, we define the syntactic substitution function, which applies a substitution on

raw terms. This is mostly standard, but when substituting under a binder, we do a renaming of
the bound variable by extending the substitution with an appropriately annotated variable. To
substitute inside a box-ed expression, we have to purify the substitution when using it. We extend
the purify operation to substitutions as well; it simply drops the impure substitutions, as shown
in figure 4b.
Definition 3.2 (Syntactic substitution on raw terms).𝜃(𝑥) ≔ 𝜃[𝑥]𝜃(()) ≔ ()𝜃(𝑠) ≔ 𝑠𝜃((𝑒1 , 𝑒2)) ≔ (𝜃(𝑒1) , 𝜃(𝑒2))𝜃(fst 𝑒) ≔ fst 𝜃(𝑒)𝜃(snd 𝑒) ≔ snd 𝜃(𝑒)𝜃(𝜆𝑥. 𝑒) ≔ 𝜆𝑦. ⟨𝜃, 𝑦i/𝑥⟩(𝑒)𝜃(𝑒1 𝑒2) ≔ 𝜃(𝑒1) 𝜃(𝑒2)𝜃(box 𝑒) ≔ box 𝜃s(𝑒)𝜃(let box 𝑥 = 𝑒1 in 𝑒2) ≔ let box 𝑦 = 𝜃(𝑒1) in ⟨𝜃, 𝑦s/𝑥⟩(𝑒2)𝜃(𝑒1 .print(𝑒2)) ≔ 𝜃(𝑒1) .print(𝜃(𝑒2))

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:10 Vikraman Choudhury and Neel Krishnaswami

Definition 3.3 (Syntactic substitution on variables).

𝜃[𝑥] ≔ ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
☇ 𝜃 = ⟨⟩𝑒 𝜃 = ⟨𝜙, 𝑒𝑞/𝑥⟩𝜙[𝑥] 𝜃 = ⟨𝜙, 𝑒𝑞/𝑦⟩, 𝑥 ≠ 𝑦

Finally, we show the type-correctness of substitution by proving a syntactic substitution theorem.

Theorem 3.4 (Syntactic substitution). If Γ ⊢ 𝜃 ∶ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then Γ ⊢ 𝜃(𝑒) ∶ 𝐴.
4 SEMANTICS
In this section, we describe a concrete denotational model of capabilities and the abstract categorical
structure it models.

4.1 Capability Spaces
Let C be a fixed set of capability names, possibly countably infinite, and with decidable equality.
The powerset 𝔓(C) denotes the set of all subsets of C, and (𝔓(C); ∅, C, ⊆,∩,∪) is the complete
lattice ordered by set inclusion.
A capability space𝑋 = (∣𝑋∣ , 𝑤𝑋) is a set ∣𝑋∣with a weight relation𝑤𝑋 ∶ ∣𝑋∣⇸ 𝔓(C) that assigns

sets of capabilities to each member in 𝑋. Intuitively, we think of the set ∣𝑋∣ as the set of values of
the type 𝑋, and we think of the weight relation 𝑤𝑋 as defining the possible sets of capabilities that
each value may own.
We require maps between capability spaces to preserve weights, i.e., a map between the under-

lying sets ∣𝑋∣ and ∣𝑌∣ is a morphism of capability spaces iff for each 𝑥 in ∣𝑋∣, all the weights in𝑌 for 𝑓(𝑥) are bounded by the weights in 𝑋 for 𝑥. If we think of a function 𝑓 ∶ 𝑋 → 𝑌 as a term
of type 𝑌 with a free variable of type 𝑋, then this condition ensures that the capabilities of the
term are limited to at most those of its free variables. In other words, weight-preserving functions
are precisely those which are capability-safe; they do not have unauthorised access to arbitrary
capabilities, and they do not have any ambient authority.
We now formally define the category of capability spaces C, with objects as capability spaces

and morphisms as weight-preserving functions.

Definition 4.1 (Category C of capability spaces).

ObjC ≔ 𝑋 = (∣𝑋∣ ∶ Set, 𝑤𝑋 ∶ ∣𝑋∣⇸ 𝔓(C))
HomC (𝑋 , 𝑌) ≔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩ 𝑓 ∈ ∣𝑋∣→ ∣𝑌∣ ������������� ∀𝑥,𝐶𝑥, 𝑤𝑋(𝑥, 𝐶𝑥)⇒∃𝐶𝑦 ⊆ 𝐶𝑥, 𝑤𝑌(𝑓(𝑥), 𝐶𝑦)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
We remark that the definition of this category is inspired by the category of length spaces defined

by Hofmann [2003], which again associates intensional information (in his work, memory usage,
and in ours, capabilities) to a set-theoretic semantics.

4.2 The Direct Semantics
Before describing the categorical structure of capability spaces, we first consider a direct set-
theoretic semantics for our language. Since the capability space model is a “structured sets” model,
where each object is a set with some additional structure (i.e., the weights), and morphisms are
ordinary set-theoretic functions (which are required to preserve this structure), we can interpret
an expression 𝑒 with typing derivation Γ ⊢ 𝑒 ∶ 𝐴, as a function Γ → 𝑇𝐴. This is an ordinary
set-theoretic function which takes an element of Γ (i.e., a substitution binding each variable to an
Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:11

� Γ ⊢ () ∶ unit �𝛾 ≔ return () � Γ ⊢ 𝑠 ∶ str �𝛾 ≔ return s

�
Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵 �𝛾 ≔ do g ← �Γ ⊢ 𝑒2 ∶ 𝐵�𝛾

f ← �Γ ⊢ 𝑒1 ∶ 𝐴�𝛾
return (f,g)

�
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ fst 𝑒 ∶ 𝐴 �𝛾 ≔ do f ← �Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵�𝛾

return (fst f)

�
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ snd 𝑒 ∶ 𝐵 �𝛾 ≔ do f ← �Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵�𝛾

return (snd f)

�
𝑥 ∶ 𝐴𝑞 ∈ ΓΓ ⊢ 𝑥 ∶ 𝐴 �𝛾 ≔ return (𝛾 x)

� Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵 �𝛾 ≔ return (fun a → �Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵� (𝛾,a))
�
Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵 �𝛾 ≔ do a ← �Γ ⊢ 𝑒2 ∶ 𝐴�𝛾

f ← �Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵�𝛾
f a

�
Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ strΓ ⊢ 𝑒1 .print(𝑒2) ∶ unit �𝛾 ≔ do s ← �Γ ⊢ 𝑒2 ∶ str�𝛾

c ← �Γ ⊢ 𝑒1 ∶ cap�𝛾
((),fun c' → if c = c'

then s else 𝜀)
�

Γs ⊢ 𝑒 ∶ 𝐴Γ ⊢ box 𝑒 ∶ 𝐴 �𝛾 ≔ return (fst (�Γs ⊢ 𝑒 ∶ 𝐴�𝛾s)) -- pure

�
Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵 �𝛾 ≔ do a ← �Γ ⊢ 𝑒1 ∶ 𝐴�𝛾

�Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵� (𝛾, a)

Fig. 6. Direct interpretation of expressions

element of its type) to a monadic computation (using a writer monad, described later in subsec-
tion 4.4) producing an element of 𝐴. To make this clear, we give an interpretation written in the
style of a monadic program in Haskell syntax in figure 6.
For example, function application 𝑒1 𝑒2 exhibits a right-to-left evaluation order: we first evaluate𝑒2 (with environment 𝛾) to an argument 𝑎, then evaluate 𝑒1 (with environment 𝛾) to a function 𝑓,

and then apply the argument to the function. The 𝑒1 .print(𝑒2) method evaluates 𝑒1 to a channel𝑐, 𝑒2 to a string 𝑠, and then represents its effect using the writer monad: it returns a map saying
that 𝑠 was printed to the channel 𝑐. The interpretation of box 𝑒 is perhaps the most interesting –
it interprets 𝑒 in a context where all capability-bearing bindings are discarded. As a result, even
though 𝑒 is a monadic term, we know that it could not have written to any channels, and so we can
then discard (using fst) the writer monad’s output component without losing any information.
However, while writing the semantics as a naive set-theoretic semantics makes it easy to read, we

still have to check that this definition actually does define a genuine weight-preserving morphism

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:12 Vikraman Choudhury and Neel Krishnaswami

between capability spaces. As the interpretation of box 𝑒 makes clear, this is not a trivial fact.
Indeed, even though this semantics is in fact capability-safe, checking that is an incredibly tedious
and error-prone affair – we have to go through every semantic clause and check not just that
each and every operation we use is weight-preserving, but that all their compositions are weight-
preserving as well.
To manage and organize this work more efficiently, we turn to a categorical semantics. In the

categorical semantics, each type is an object, and each type constructor is interpreted as a functor
with operators satisfying some universal properties. This way, we can check that the interpretation
of each type connective works the way we want in isolation, without having to worry about any
interactions with the rest of the calculus. Furthermore, the universal properties make it easy to
check that our language satisfies the equational theory that we desire.
Another important benefit is that by formulating the semantics in a categorical style, the seman-

tics and equational theory only depend upon the algebraic structure of the category of capability
spaces. That is, we use the cartesian closed structure, the monoidal idempotent comonad, the strong
monad, and the cancellation isomorphism Φ; the proofs of our theorems use the universal property
for each categorical construction. Indeed, our semantics is nearly independent of the specific set
of effects – we only use the specific definition of the monad in the interpretation of print. Since
our theorems depend only upon the algebraic structure, our results will still hold if we switched
to another category with this structure. We say more about that in section 8.
We describe this categorical structure of capability spaces in the remainder of this section,

and then give the categorical interpretation (which is actually semantically identical to the direct
interpretation) in the following section.

4.3 Cartesian Closed Structure
We observe that C inherits the cartesian closed structure of Set. The definitions are the same as in
the case of sets, but we additionally have to verify that the morphisms are weight-preserving.

Definition 4.2 (Terminal Object). ∣1∣ ≔ { ∗ }𝑤1 ≔ � (∗, ∅) �
The terminal object 1 is the usual singleton set, and it has no capabilities. For any object 𝐴, the

unique terminal map ! ∶ 𝐴 → 1 is given by !𝐴(𝑎) = ∗, which is evidently weight preserving.
Definition 4.3 (Product).

∣𝐴 × 𝐵∣ ≔ ∣𝐴∣ × ∣𝐵∣𝑤𝐴×𝐵 ≔ � ((𝑎, 𝑏), 𝐶𝑎 ∪ 𝐶𝑏) � 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝑤𝐵(𝑏, 𝐶𝑏) �
Products are formed by pairing as usual, and the set of capabilities of a pair of values is the

union of their capabilities. The projection maps 𝜋𝑖 ∶ 𝐴1 × 𝐴2 → 𝐴𝑖 are just the projections on the
underlying sets, which are weight preserving as well. We verify the universal property in lemma B.1
in the appendix.

Definition 4.4 (Exponential).

∣𝐴 → 𝐵∣ ≔ ∣𝐴∣→ ∣𝐵∣
𝑤𝐴→𝐵 ≔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩ (𝑓 , 𝐶𝑓)

�������������
∀𝑎, 𝐶𝑎, 𝑤𝐴(𝑎, 𝐶𝑎)⇒∃𝐶𝑏 ⊆ 𝐶𝑓 ∪ 𝐶𝑎, 𝑤𝐵(𝑓(𝑎), 𝐶𝑏)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:13

Expression Type Weight
unit Unit ∅
stdout Channel { stdout }
fun c → unit Channel → Unit ∅
fun c → c Channel → Channel ∅
fun c → c.print("hello") Channel → Unit ∅
fun c → stdout.print("hello") Channel → Unit { stdout }
(c1,c2) Channel × Channel � c1, c2 �
[stdout,c1,c2] List Channel � stdout, c1, c2 �

Fig. 7. Expressions and their capability weights

Exponentials are given by functions on the underlying sets, but we have to assign capabilities to
the closure. We only record those capabilities which are induced by the function, for some value in
the domain. That is, for a function closure 𝑓 ∶ 𝐴 → 𝐵, if a given value 𝑎 ∈ 𝐴 has weight assignment𝐶𝑎, and if there is a weight assignment 𝐶𝑏 for 𝑓(𝑎), then the weight of the closure 𝑓 is given by all
the capabilities it had access to in its environment.
We verify that our definition satisfies the currying isomorphism in lemma B.2 in the appendix,

where we name the currying/uncurrying and evaluation maps.
This cartesian closed structure on C suffices to interpret the simply-typed lambda calculus. To

illustrate the semantics, we give some examples of closed terms with their unique capability weight-
ings in figure 7.

4.4 Monad
Our language supports printing strings along a channel, and to model this print effect, we will
structure our semantics monadically, in the style of Moggi [1991]. We define a strong monad 𝑇 on
C as follows.

Definition 4.5 (S ∶ C). S is the set of strings, with an empty string 𝜀 ∶ 1 → S , and a multiplication∙ ∶ S ×S → S given by concatenation, making it a monoid object. Strings are constants and hence
do not have any weights.

Definition 4.6 (C ∶ C). C is the object of capabilities in C such that 𝑤C = � (𝑐, { 𝑐 }) � for every𝑐 ∈ C. Note that there are no global sections for this object, because maps 1 → C are not weight-
preserving. In other words, we do not have access to arbitrary capabilities, as evident by the lack
of an introduction rule for the cap type. This indicates the lack of ambient authority.

Definition 4.7 (𝑇 ∶ C ⟶ C).

∣𝑇(𝐴)∣ ≔ ∣𝐴∣ × (C → S)𝑤𝑇(𝐴) ≔ � ((𝑎, 𝑜), 𝐶𝑎 ∪ � 𝑐 � 𝑜(𝑐) ≠ 𝜀 �) � 𝑤𝐴(𝑎, 𝐶𝑎) �
Using the monoid (S ; 𝜀, ∙), we can define 𝑇 to be the writer monad which adds an output

function that records the output produced in each channel. The weight of a monadic computation
is taken to be the weight of the returned value, unioned with all the channels that anything was
written to. This corresponds to the intuition that a computation which performs I/O on a channel
must possess the capability to do so.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:14 Vikraman Choudhury and Neel Krishnaswami

Definition 4.8 (𝑇 is a monad). The unit and multiplication of the monad are defined below. We
check that they are morphisms, and state and verify the monad laws in lemma B.3 in the appendix.𝜂𝐴 ∶ 𝐴 → 𝑇𝐴 𝜇𝐴 ∶ 𝑇𝑇𝐴 → 𝑇𝐴𝑎 ↦ (𝑎, 𝜆𝑐.𝜀) ((𝑎, 𝑜1), 𝑜2) ↦ (𝑎, 𝜆𝑐.𝑜2(𝑐) ∙ 𝑜1(𝑐))
Definition 4.9 (𝑇 is a strong monad). 𝑇 is strong with respect to products, with a natural family

of left and right strengthening maps.𝜏𝐴,𝐵 ∶ 𝐴 × 𝑇𝐵 → 𝑇(𝐴 × 𝐵) 𝜎𝐴,𝐵 ∶ 𝑇𝐴 × 𝐵 → 𝑇(𝐴 × 𝐵)
(𝑎, (𝑏, 𝑜)) ↦ ((𝑎, 𝑏), 𝑜) ((𝑎, 𝑜), 𝑏) ↦ ((𝑎, 𝑏), 𝑜)

We use this to define the natural map 𝛽𝐴,𝐵, which evaluates a pair of effects, as follows. No-
tice that it evaluates the effect on the right before the one on the left; we expand more on that
in lemma B.4 in the appendix, and verify the appropriate coherences.

𝛽𝐴,𝐵 ∶ 𝑇𝐴 × 𝑇𝐵 → 𝑇(𝐴 × 𝐵)𝛽𝐴,𝐵 ≔ 𝜏𝑇𝐴,𝐵 ; 𝑇𝜎𝐴,𝐵 ; 𝜇𝐴×𝐵
4.5 Comonad
To model the type constructor, we define an endofunctor □ on C below; it keeps values that do
not possess any capabilities, i.e., values that are safe.

Definition 4.10 (□ ∶ C ⟶ C).

∣□𝐴∣ ≔ � 𝑎 ∈ ∣𝐴∣ � ∀𝐶𝐴, 𝑤𝐴(𝑎, 𝐶𝑎)⇒ 𝐶𝑎 = ∅ �𝑤□𝐴 ≔ � (𝑎, ∅) �
On objects, we simply restrict the set to the subset of values that only have the empty set ∅

of capabilities. □ acts on morphisms by restricting the domain of the function to ∣□𝐴∣. For any
weight-preserving function 𝑓, we see that□(𝑓) is trivially weight-preserving, as a function between
sets with empty capabilities.
This type constructor is especially useful at function type □(𝐴 → 𝐵), since in general the

environment can hold capabilities, and the □ constructor lets us rule those out. We further claim
that □ is an idempotent strong monoidal comonad.
Definition 4.11 (□ is an idempotent comonad). The counit 𝜀 and comultiplication 𝛿 of the comonad

are the natural families of maps given by the inclusion and the identity maps on the underlying
set. 𝛿 is a natural isomorphism making it idempotent. We state and verify the comonad laws
in lemma B.5 in the appendix. 𝜀𝐴 ∶ □𝐴 → 𝐴 𝛿𝐴 ∶ □𝐴 ∼⟶ □□𝐴𝑎 ↦ 𝑎 𝑎 ↦ 𝑎
Definition 4.12 (□ is a strong monoidal functor). The functor is strong monoidal, in that it pre-

serves themonoidal structure of products (and tensors, see the sequel in subsection 4.7).The identity
element is preserved, and we have natural isomorphisms given by pairing on the underlying sets.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:15

𝑚1 ∶ 1 ∼⟶ □1 𝑚×𝐴,𝐵 ∶ (□𝐴 × □𝐵) ∼⟶ □(𝐴 × 𝐵)∗ ↦ ∗ (𝑎 , 𝑏) ↦ (𝑎 , 𝑏)
𝑚𝐼 ∶ 𝐼 ∼⟶ □𝐼 𝑚⊗𝐴,𝐵 ∶ (□𝐴 ⊗ □𝐵) ∼⟶ □(𝐴 ⊗ 𝐵)∗ ↦ ∗ (𝑎 , 𝑏) ↦ (𝑎 , 𝑏)

We remark that □ is not a strong comonad, i.e., it does not possess a tensorial strength. This
makes it impossible to evaluate an arbitrary function under the comonad, as we saw in section 2. 7

4.6 The Comonad Cancels the Monad
Wemake the following observation.There is an isomorphismΦ𝐴, natural in𝐴, where the comonad□ cancels the monad 𝑇. In programming terms, this says that an effectful computation with no
capabilities can perform no effects — i.e., it is safe. Note that this definition works because of the
particular definition of the monad 𝑇 we chose, in which the weight of a computation includes
all the channels it printed on. Consequently a computation of weight zero cannot print on any
channel, and so must be safe! We verify this fact in lemma B.6 in the appendix.

Definition 4.13 (Φ ∶ □𝑇 ⇒ □). Φ𝐴 ∶ □𝑇𝐴 ∼⟶ □𝐴
(𝑎, 𝑜) ↦ 𝑎

This property is crucial and we will exploit it to manage our syntax: we use it to justify treating
terms in safe contexts as safe, without needing a second grammar for safe expressions.

4.7 Remarks
While the monad and comonad, together with the cartesian closed structure, suffice to interpret our
language, it is worth noting that the category C also admits amonoidal closed structure. Particularly,
the cartesian closed structure only required a unique assignments of weights for each value, but
we chose a weight relation to make the monoidal closed structure work.

4.7.1 Monoidal Closed Structure.

Definition 4.14 (Tensor product).

∣𝐴 ⊗ 𝐵∣ ≔ ∣𝐴∣ × ∣𝐵∣𝑤𝐴⊗𝐵 ≔ � ((𝑎, 𝑏), 𝐶𝑎 ∪ 𝐶𝑏) � 𝐶𝑎 ♯ 𝐶𝑏 ∧ 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝑤𝐵(𝑏, 𝐶𝑏) �𝐼 ≔ 1
The tensor product is given by pairing, with unit 1, but it only restricts to pairs whose sets of

capabilities are disjoint. However, this tensor product also enjoys a right adjoint.

Definition 4.15 (Linear exponential).

∣𝐴 ⊸ 𝐵∣ ≔ ∣𝐴∣→ ∣𝐵∣
𝑤𝐴⊸𝐵 ≔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩ (𝑓 , 𝐶𝑓)

�������������
∀𝑎, 𝐶𝑎, 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝐶𝑓 ♯ 𝐶𝑎 ⇒∃𝐶𝑏 ⊆ 𝐶𝑓 ∪ 𝐶𝑎, 𝑤𝐵(𝑓(𝑎), 𝐶𝑏)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
7For Haskellers, the □ functor is not a Functor!

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:16 Vikraman Choudhury and Neel Krishnaswami

𝐴 𝐵 𝐶𝑓
𝑓;𝑔

𝑔
𝐴

𝐵 𝐵 × 𝐶 𝐶
⟨𝑓,𝑔⟩𝑓 𝑔

𝜋1 𝜋2

𝐴 𝐴 × 𝐶 𝐶
𝐵 𝐵 × 𝐷 𝐷
𝑓 [𝑓×𝑔]

𝜋1 𝜋2
𝜋1;𝑓 𝜋2;𝑔 𝑔
𝜋1 𝜋2

Fig. 8. Composition operations

The linear exponential works the same way as the exponential, except that we have to restrict it
to satisfy the disjointness condition for the tensor product. We verify that this definition satisfies
the tensor-hom adjunction in lemma B.7 in the appendix.
This supports an interpretation of a linear (actually, affine) type theory. The disjointness con-

ditions in the interpretation of tensor product and linear implication are essentially the same as
the disjointness conditions in the definition of the separating conjunction 𝐴 ∗ 𝐵 and magic wand𝐴 −∗ 𝐵 in separation logic [Reynolds 2002]. In separation logic, capabilities correspond to own-
ership of particular memory locations, and in our setting, capabilities correspond to the right to
access a channel.
Our model reassuringly suggests that operating systems researchers and program verification

researchers both identified the same notion of capability. However, it seems that the fact that these
are exactly the same idea was overlooked because operating systems researchers focused on the
cartesian closed structure, and semanticists focused on the monoidal closed structure!

4.7.2 Adding Other Effects. While we used the writer monad for print, we can also define other
interesting monads using the capability space model which can be used to interpret a language
with other effects. For example, we show how to define an exception monad which allows raising
a single exception, and a state monad with a global heap, in appendices B.1 and B.2. For each of
these monads, we need to choose a suitable weight assignment, all of which can be cancelled by
our safety comonad!

5 INTERPRETATION
We now interpret the syntax of our language. We adopt some standard notation to work with our
categorical combinators. 8 The sequential composition of two arrows, in the diagrammatic order,
is 𝑓 ; 𝑔. The product of morphisms 𝑓 and 𝑔 is ⟨𝑓 , 𝑔⟩ (also called a fork operation in the algebra of
programming community [Gibbons 2000]), and [𝑓 × 𝑔] is parallel composition with products. We
define these using the universal property of products and composition, as shown in figure 8.

5.1 Types and Contexts
We interpret types as objects in C, as shown in figure 9a. Note that we use the monad in the inter-
pretation of functions, following the call-by-value computational lambda-calculus interpretation
in [Moggi 1989]. We use the comonad to interpret the modality. We use the particular objects S
and C to interpret strings and capabilities respectively.

8We sometimes drop the denotation symbol for brevity, i.e., we write !Γ instead of !�Γ �, or 𝛿Γs instead of 𝛿�Γs �.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:17

�unit� ≔ 1 �𝐴 × 𝐵� ≔ �𝐴� × �𝐵�
�str� ≔ S �𝐴 ⇒ 𝐵� ≔ �𝐴� → 𝑇�𝐵�

�cap� ≔ C � 𝐴� ≔ □�𝐴�

(a) �𝐴� ∶ ObjC

� ·� ≔ 1
�Γ, 𝑥 ∶ 𝐴s � ≔ �Γ� × □�𝐴�
�Γ, 𝑥 ∶ 𝐴i � ≔ �Γ� × �𝐴�

(b) �Γ� ∶ ObjC

Fig. 9. Interpretation of types and contexts

We interpret contexts as finite products of objects, in figure 9b. The comonad is used to interpret
the safe variables in the context, while the impure variables are just arbitrary objects in C.
The judgement 𝑥 ∶ 𝐴𝑞 ∈ Γ is interpreted as a morphism inHomC (�Γ� , �𝐴�), which we give

later in figure 12a. It projects out the appropriately typed and annotated variable from the product
in the context. For safe variables, we need to use the counit 𝜀 to get out of the comonad. 9
5.2 Expressions
We now give an interpretation for expressions Γ ⊢ 𝑒 ∶ 𝐴, and an interpretation for safe expressionsΓ ⊢s 𝑒 ∶ 𝐴 , in figure 10.
To interpret unitI, we use the terminal map ! to simply get to the terminal object 1, then lift it

into the monad using 𝜂, without performing any effects. We do the same for strI, where we use⌜𝑠⌝ ∶ HomC (1 , S), which is the global element that picks the literal 𝑠 in S .
For pair introduction ×I, we evaluate both components of the pair, and compose, then use the

strength of the monad 𝑇 with the 𝛽 combinator to form the product. 10
We eliminate products using the ×E1 and ×E2 rules. These are interpreted using the correspond-

ing product projection maps, under the functorial action of 𝑇.
Variables are introduced using the Var rule, which is interpreted by looking up in the context,

for which we use the interpretation of our context membership judgement. This is followed by a
trivial lifting into the monad.
To interpret functions using the ⇒ I rule, we simply use the currying map, since our context

extension is interpreted as a product. Then we lift it into the monad using 𝜂.
To eliminate functions using the⇒ E rule, we evaluate the operator and operand in an applica-

tion, followed by a use of the monad strength 𝛽 to turn it into a pair. Then we use the evaluation
map under the functor 𝑇 to apply the argument. Since the function is effectful, we have to collapse
the effects using a 𝜇.
To interpret the I rule, we need to interpret the safe judgement (defined later), which gives a

value of type □𝐴, and then we lift it into the monad.
To eliminate a box-ed value using the E rule, we first evaluate 𝑓, which gives a value of type□𝐴, but under the monad 𝑇. We can use it to introduce a safe variable in the context, but we use the

strength of the monad to shift the product under the 𝑇 and get an extended context. We evaluate 𝑔
under this extended context, and then use a 𝜇 to collapse the effects.
9When interpreting judgements and inference rules, we write �

𝒥1…𝒥𝑛𝒥 � to mean the interpretation of 𝒥, i.e., we recur-
sively define �𝒥� under the assumption that we have an interpretation for 𝒥𝑖, i.e., �𝒥1 �,…, �𝒥𝑛 �.
10The vigilant reader will have noticed that𝛽 evaluates the pair from right to left, so the action on the right will be performed
first, like OCaml! This is also useful when interpreting function application, because we evaluate the argument first.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:18 Vikraman Choudhury and Neel Krishnaswami

� Γ ⊢ () ∶ unit � ≔ !Γ ; 𝜂1 � Γ ⊢ 𝑠 ∶ str � ≔ !Γ ; ⌜𝑠⌝ ; 𝜂S

�
Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵 � ≔ 𝑙𝑒𝑡 ⎧⎪⎪⎨⎪⎪⎩ 𝑓 ≔ �Γ ⊢ 𝑒1 ∶ 𝐴�𝑔 ≔ �Γ ⊢ 𝑒2 ∶ 𝐵�𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴,𝐵

�
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ fst 𝑒 ∶ 𝐴 � ≔ �Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵� ; 𝑇𝜋1 �

Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵Γ ⊢ snd 𝑒 ∶ 𝐵 � ≔ �Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵� ; 𝑇𝜋2
�
𝑥 ∶ 𝐴𝑞 ∈ ΓΓ ⊢ 𝑥 ∶ 𝐴 � ≔ � 𝑥 ∶ 𝐴𝑞 ∈ Γ� ; 𝜂𝐴

� Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵 � ≔ curry (�Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵�) ; 𝜂𝐴→𝑇𝐵
�
Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵 � ≔ 𝑙𝑒𝑡 ⎧⎪⎪⎨⎪⎪⎩ 𝑓 ≔ �Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵�𝑔 ≔ �Γ ⊢ 𝑒2 ∶ 𝐴�𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴→𝑇𝐵,𝐴 ; 𝑇 ev𝐴,𝑇𝐵 ; 𝜇𝐵
�
Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ strΓ ⊢ 𝑒1 .print(𝑒2) ∶ unit � ≔ 𝑙𝑒𝑡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓 ≔ �Γ ⊢ 𝑒1 ∶ cap�𝑔 ≔ �Γ ⊢ 𝑒2 ∶ str�𝑝 ∶ C × S → 𝑇1
(𝑐, 𝑠) ↦ ⎛⎜⎝∗ , 𝜆𝑐′.⎧⎪⎪⎨⎪⎪⎩𝑠 if 𝑐 = 𝑐′𝜀 otherwise

⎞⎟⎠𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽C,S ; 𝑇𝑝 ; 𝜇1
�

Γ ⊢s 𝑒 ∶ 𝐴Γ ⊢ box 𝑒 ∶ 𝐴 � ≔ � Γ ⊢s 𝑒 ∶ 𝐴 �𝑝 ; 𝜂□𝐴
�
Γs ⊢ 𝑒 ∶ 𝐴Γ ⊢s 𝑒 ∶ 𝐴 �𝑝 ≔ ρ(Γ) ; M(Γ) ; □�Γs ⊢ 𝑒 ∶ 𝐴� ; Φ𝐴

�
Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵 � ≔ 𝑙𝑒𝑡 ⎧⎪⎪⎨⎪⎪⎩ 𝑓 ≔ �Γ ⊢ 𝑒1 ∶ 𝐴�𝑔 ≔ �Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵�𝑖𝑛 ⟨𝑖𝑑Γ , 𝑓⟩ ; 𝜏Γ,□𝐴 ; 𝑇𝑔 ; 𝜇𝐵

Fig. 10. Interpretation of expressions, �Γ ⊢ 𝑒 ∶ 𝐴� ∶ HomC (�Γ� , 𝑇�𝐴�), � Γ ⊢s 𝑒 ∶ 𝐴 �𝑝 ∶ HomC (�Γ� , □�𝐴�)

Finally, to interpret the Print rule, we need to perform a non-trivial effect. We define the
function 𝑝which builds an output function that records the output on channels. Given any channel𝑐 and string 𝑠, it returns a value of type 𝑇1 containing the trivial value ∗ ; the output function
instantiates a channel 𝑐′ and tests equality with 𝑐 – if it equals 𝑐, we record the string 𝑠, otherwise
we just choose the empty string 𝜀. We interpret the arguments of print and apply them to 𝑝 to
evaluate it. The rest of the interpretation is similar to the one for⇒ E, with output type 1.
We used a different interpretation function for safe expressions, which we define below.
We first need to interpret the purify operation s on contexts, for which we define the map

ρ(Γ) in figure 11a. We also need another combinatorM(Γ), defined in figure 11b, which uses the
Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:19

ρ(·) ≔ 𝑖𝑑1
ρ(Γ, 𝑥 ∶ 𝐴s) ≔ [ρ(Γ) × 𝑖𝑑□𝐴]
ρ(Γ, 𝑥 ∶ 𝐴i) ≔ 𝜋1 ; ρ(Γ)
(a) ρ(Γ) ∶ HomC (�Γ� , �Γs �)

M(·) ≔ 𝑖𝑑1
M(Γ, 𝑥 ∶ 𝐴s) ≔ [M(Γ) × 𝛿𝐴] ; 𝑚×Γs,□𝐴
M(Γ, 𝑥 ∶ 𝐴i) ≔ M(Γ)

(b) M(Γ) ∶ HomC (�Γs � , □�Γs �)
Fig. 11. ρ(Γ) and M(Γ)

� 𝑥 ∶ 𝐴i ∈ (Γ, 𝑥 ∶ 𝐴i) � ≔ 𝜋2
� 𝑥 ∶ 𝐴s ∈ (Γ, 𝑥 ∶ 𝐴s) � ≔ 𝜋2 ; 𝜀𝐴

�
𝑥 ∶ 𝐴𝑞 ∈ Γ (𝑥 ≠ 𝑦)𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑦 ∶ 𝐵𝑟) � ≔ 𝜋1 ; � 𝑥 ∶ 𝐴𝑞 ∈ Γ�

(a) � 𝑥 ∶ 𝐴𝑞 ∈ Γ� ∶ HomC (�Γ� , �𝐴�)

� · ⊇ · � ≔ 𝑖𝑑1
�

Γ ⊇ ΔΓ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ � ≔ 𝜋1 ; �Γ ⊇ Δ�

�
Γ ⊇ ΔΓ, 𝑥 ∶ 𝐴s ⊇ Δ, 𝑥 ∶ 𝐴s � ≔ [�Γ ⊇ Δ� × 𝑖𝑑□𝐴]

�
Γ ⊇ ΔΓ, 𝑥 ∶ 𝐴i ⊇ Δ, 𝑥 ∶ 𝐴i � ≔ [�Γ ⊇ Δ� × 𝑖𝑑𝐴]

(b) Wk(Γ ⊇ Δ) ≔ �Γ ⊇ Δ� ∶ HomC (�Γ� , �Δ�)
Fig. 12. Interpretation of Membership and Weakening

monoidal action and the comultiplication of the comonad □ to distribute the □ over the products
in Γ. Note thatM(Γ) is an isomorphism because 𝑚 and 𝛿 are.
Now, the interpretation function for safe expressions Γ ⊢s 𝑒 ∶ 𝐴 uses the ctx-safe rule, and is

defined as a morphism in HomC (�Γ� , □�𝐴�). We purify the context to a safe one, so that we
can evaluate the expression. However, we need a value in □𝐴, but the expression interpretation
would produce something in 𝑇𝐴. We can only cancel the monad under the comonad, so we use
theM(Γ) map which uses the comultiplication of □ to do a readjustment. We then evaluate the
expression under the □ in the safe context, which gives a monadic value of type 𝑇𝐴 under the
comonad □. We finally useΦ to cancel the monad 𝑇 under the □.
5.3 Weakening and Substitution
We now give semantics for the syntactic weakening and substitution operations.

5.3.1 Weakening. For contexts Γ and Δ, we interpret the weakening judgement Γ ⊇ Δ as a mor-
phism in HomC (�Γ� , �Δ�), as shown in figure 12b. We also refer to it as the weakening
map Wk(Γ ⊇ Δ). We prove a semantic weakening lemma, analogous to the syntactic weaken-
ing lemma 3.1.

Lemma 5.1 (Semantic weakening). If Γ ⊇ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then
�Γ ⊢ 𝑒 ∶ 𝐴� =Wk(Γ ⊇ Δ) ; �Δ ⊢ 𝑒 ∶ 𝐴�.

5.3.2 Substitution. We now interpret a substitution Γ ⊢ 𝜃 ∶ Δ as a morphism inHomC (�Γ� , �Δ�),
as shown in figure 13b. However, this is not a trivial iteration of the expression interpretation. The
reason is that the interpretation of contexts in figure 9b interprets a variable 𝑥 ∶ 𝐴i in the context

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:20 Vikraman Choudhury and Neel Krishnaswami

� Γ ⊢ () ∶ unit �𝑣 ≔ !Γ
�
Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵Γ ⊢ (𝑣1 , 𝑣2) ∶ 𝐴 × 𝐵 �𝑣 ≔ ⟨�Γ ⊢ 𝑣1 ∶ 𝐴�𝑣 , �Γ ⊢ 𝑣2 ∶ 𝐵�𝑣⟩

�
𝑥 ∶ 𝐴𝑞 ∈ ΓΓ ⊢ 𝑥 ∶ 𝐴 �𝑣 ≔ � 𝑥 ∶ 𝐴𝑞 ∈ Γ�

� Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵 �𝑣 ≔ curry (�Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵�)
�

Γ ⊢s 𝑒 ∶ 𝐴Γ ⊢ box 𝑒 ∶ 𝐴 �𝑣 ≔ � Γ ⊢s 𝑒 ∶ 𝐴 �𝑝
(a) �Γ ⊢ 𝑣 ∶ 𝐴�𝑣 ∶ HomC (�Γ� , �𝐴�)

� Γ ⊢ ⟨⟩ ∶ · � ≔ !Γ
�
Γ ⊢ 𝜃 ∶ Δ Γ ⊢s 𝑒 ∶ 𝐴Γ ⊢ ⟨𝜃, 𝑒s/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴s � ≔ ⟨�Γ ⊢ 𝜃 ∶ Δ� , � Γ ⊢s 𝑒 ∶ 𝐴 �𝑝⟩

�
Γ ⊢ 𝜃 ∶ Δ Γ ⊢ 𝑣 ∶ 𝐴Γ ⊢ ⟨𝜃, 𝑣i/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴i � ≔ ⟨�Γ ⊢ 𝜃 ∶ Δ� , �Γ ⊢ 𝑣 ∶ 𝐴�𝑣⟩

(b) �Γ ⊢ 𝜃 ∶ Δ� ∶ HomC (�Γ� , �Δ�)
Fig. 13. Interpretation of values and substitution

as an element of the type �𝐴�, and a variable 𝑥 ∶ 𝐴s as an element of the type □�𝐴�. However,
an expression Γ ⊢ 𝑒 ∶ 𝐴 will be interpreted as a morphism inHomC (�Γ� , 𝑇�𝐴�). Operationally,
we resolve this mismatch by only substituting values for variables in call-by-value languages, and
indeed, our definition of substitutions in figure 5c restricts the definition of substitution to range
over values in the rule sub-impure.
Therefore, wemimic this syntactic restriction in the semantics, by giving a separate interpretation

only for values, interpreting the judgement Γ ⊢ 𝑣 ∶ 𝐴 as a morphism in HomC (�Γ� , �𝐴�),
in figure 13a. Note in particular that the value interpretation yields an element of �𝐴�, as the
context interpretation requires, rather than an element of 𝑇�𝐴�. This value interpretation makes
use of the expression interpretation in the interpretation of 𝜆-expressions, but the expression
interpretation does not directly refer to the value interpretation.There are alternative presentations
such as fine-grain call-by-value [Levy et al. 2003], which have a separate syntactic class of values
and value judgements, and hence make the value and expression interpretations mutually recursive.
However, we choose not to do that in order to remain close to the usual presentation.
Note that box 𝑒 expressions are also values, and our safe interpretation does the right thing for

box values, since the interpretation of 𝐴 uses the comonad, □�𝐴�. With the interpretation of
values in hand, we can define the substitution interpretation as follows.
We use the safe expression interpretation to interpret the sub-safe rule, and the impure value

interpretation for the sub-impure rule.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:21

C ∶∶= [·] ∣ 𝑒 C ∣ C 𝑒 ∣ 𝜆𝑥 ∶ 𝐴. C∣ fst C ∣ snd C ∣ (𝑒 , C) ∣ (C , 𝑒)∣ box C ∣ let box 𝑥 = C in 𝑒 ∣ let box 𝑥 = 𝑒 in C
E ∶∶= [·] ∣ 𝑒 E ∣ E 𝑣∣ fst E ∣ snd E ∣ (𝑒 , E) ∣ (E , 𝑣)∣ let box 𝑥 = E in 𝑒 ∣ let box 𝑥 = 𝑣 in E

Fig. 14. Grammar extended with Evaluation Contexts

Finally, we prove the semantic analogue of the syntactic substitution theorem 3.4. We prove two
auxiliary lemmas 5.2 and 5.3, characterising the expression interpretation of safe expressions and
impure values. The lemmas show that the interpretation for each ends in a trivial lifting into the
monad 𝑇 using 𝜂. This makes the proof of the semantic substitution theorem 5.4 possible.
Lemma 5.2 (Safe interpretation). If Γ ⊢s 𝑒 ∶ 𝐴 , then

�Γ ⊢ 𝑒 ∶ 𝐴� = � Γ ⊢s 𝑒 ∶ 𝐴 �𝑝 ; 𝜀𝐴 ; 𝜂𝐴.
Lemma 5.3 (Value interpretation). If Γ ⊢ 𝑣 ∶ 𝐴, then

�Γ ⊢ 𝑣 ∶ 𝐴� = �Γ ⊢ 𝑣 ∶ 𝐴�𝑣 ; 𝜂𝐴.
Theorem 5.4 (Semantic substitution). If Γ ⊢ 𝜃 ∶ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then

�Γ ⊢ 𝜃(𝑒) ∶ 𝐴� = �Γ ⊢ 𝜃 ∶ Δ� ; �Δ ⊢ 𝑒 ∶ 𝐴�.
6 EQUATIONAL THEORY
We have an extension of the call-by-value simply-typed lambda calculus, so we want the usual𝛽𝜂-equations to hold in our theory. However, we also added new expression forms for the type.
We want computation and extensionality rules for the box form and the let box binding form. To
handle the commuting conversions [Girard et al. 1989], we use evaluation contexts.
We extend our grammar with two kinds of evaluation contexts — a safe evaluation context C,

and an impure evaluation context E , as shown in figure 14. The intuition is that E allows safe
reductions for impure expressions, i.e., it picks out the contexts consistent with the evaluation
order of the call-by-value simply-typed lambda calculus. The safe evaluation context C allows
redexes in every sub-expression; but it is restricted only to safe expressions. The hole [·] is the
empty evaluation context. We use the notation C⟪𝑒⟫ or E⟪𝑒⟫ to indicate that we’re replacing the
hole in the respective evaluation context with 𝑒.
We define a judgement form for equality of terms, as shown in figure 2c, and state the rules for

the equational theory in figures 15 and 16. We have the usual refl, sym, and trans rules which
give the reflexive, symmetric, and transitive closure, so that the equality relation is an equivalence,
and the cong rules for each term former, which make the relation a congruence closure.
We have the computation rules ×1𝛽 and ×2𝛽 for pairs; we only allow values for these rules. The×𝜂 rule is the extensionality rule for pairs, but again, restricted to values.
The⇒ 𝛽 rule is the usual call-by-value computation rule for an application of a 𝜆-expression to

an argument. 11 Since the calculus has effects, we only allow the operand to be a value. For example,
consider the function 𝑓 ≔ 𝜆𝑥 ∶ unit. 𝑥 ; 𝑥. We can safely 𝛽-reduce 𝑓 () to () ; (), but allowing a𝛽-reduction for 𝑓 (𝑐 .print(𝑠)) would duplicate the effect!
11The notation [𝑣/𝑥]𝑒 is shorthand for ⟨⟨Γ⟩, 𝑣i/𝑥⟩(𝑒) where ⟨Γ⟩ is the identity substitution Γ ⊢ ⟨Γ⟩ ∶ Γ.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:22 Vikraman Choudhury and Neel Krishnaswami

Γ ⊢ 𝑒 ∶ 𝐴Γ ⊢ 𝑒 ≈ 𝑒 ∶ 𝐴 refl
Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴Γ ⊢ 𝑒2 ≈ 𝑒1 ∶ 𝐴 sym

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢ 𝑒2 ≈ 𝑒3 ∶ 𝐴Γ ⊢ 𝑒1 ≈ 𝑒3 ∶ 𝐴 trans

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 × 𝐵Γ ⊢ fst 𝑒1 ≈ fst 𝑒2 ∶ 𝐴 fst -cong
Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 × 𝐵Γ ⊢ snd 𝑒1 ≈ snd 𝑒2 ∶ 𝐵 snd -cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐵Γ ⊢ (𝑒1 , 𝑒3)≈ (𝑒2 , 𝑒4) ∶ 𝐴 × 𝐵 pair-cong
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐵Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒1 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒2 ∶ 𝐴 ⇒ 𝐵 𝜆-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐴Γ ⊢ 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 ∶ 𝐵 app-cong
Γs ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴Γ ⊢ box 𝑒1 ≈ box 𝑒2 ∶ 𝐴 box-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐵Γ ⊢ (let box 𝑥 = 𝑒1 in 𝑒3)≈ (let box 𝑥 = 𝑒2 in 𝑒4) ∶ 𝐵 let box-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ cap Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ strΓ ⊢ 𝑒1 .print(𝑒3)≈ 𝑒2 .print(𝑒4) ∶ unit print-cong

Fig. 15. Equivalence and Congruence rules for the Equational Theory

We add 𝜂 rules for functions, but we need to be careful because we have effects. For example,
consider the expression 𝑓 ≔ 𝑐.print(𝑠) ; 𝜆𝑥. 𝑥. On 𝜂-expansion, we get 𝑔 ≔ 𝜆𝑦. 𝑓 𝑦, but now the
print operation is suspended in the closure, and doesn’t evaluate when we apply 𝑔. Hence, we add
two forms of 𝜂 rules for functions — the⇒ 𝜂-impure rule only allows 𝜂-expansion for values, and
the⇒ 𝜂-safe rule allows 𝜂-expansion also for expressions that are safe.
The computation rule 𝛽 for the type allows computation under the let box binder. If we

bind a box-ed expression under the let box binder, we can substitute the underlying expression in
the motive. This is safe because 𝑒1 is forced to be a safe expression.
Finally, we have the 𝜂 expansion rules for the type, which pushes an expression in an evalu-

ation context under a let box binder. The 𝜂−𝑠𝑎𝑓 𝑒 rule uses the safe evaluation context C, while
the 𝜂−𝑖𝑚𝑝𝑢𝑟𝑒 rule uses the impure evaluation context E . The only difference in the rules is that
the C evaluation context can be plugged with safe expressions only.
We prove that our equality rules are sound with respect to our categorical semantics. If two

expressions are equal in the equational theory, they have equal interpretations in the semantics.

Theorem 6.1 (Soundness of ≈). If Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴, then �Γ ⊢ 𝑒1 ∶ 𝐴� = �Γ ⊢ 𝑒2 ∶ 𝐴�.

7 EMBEDDING
Our language is an extension of the call-by-value simply-typed lambda calculus. But how could we
claim that it is really an extension? In this section, we show that we can embed the simply-typed
lambda calculus into our calculus, in an equation preserving way. We state the full simply-typed
lambda calculus including its 𝛽𝜂-equational theory in figure 17.
We give the grammar and judgements in figures 17a and 17b, typing rules in figure 17c, and the𝛽𝜂-equational theory in figure 17d. Note that we choose to use the base type unit, and we leave

out products because their embedding is trivial and uninteresting for our purpose.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:23

Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵Γ ⊢ fst (𝑣1 , 𝑣2)≈ 𝑣1 ∶ 𝐴 ×1𝛽 Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵Γ ⊢ snd (𝑣1 , 𝑣2)≈ 𝑣2 ∶ 𝐵 ×2𝛽
Γ ⊢ 𝑣 ∶ 𝐴 × 𝐵Γ ⊢ 𝑣 ≈ (fst 𝑣 , snd 𝑣) ∶ 𝐴 × 𝐵 ×𝜂

Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵 Γ ⊢ 𝑣 ∶ 𝐴Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑒) 𝑣 ≈ [𝑣/𝑥]𝑒 ∶ 𝐵 ⇒ 𝛽
Γ ⊢ 𝑣 ∶ 𝐴 ⇒ 𝐵Γ ⊢ 𝑣 ≈ 𝜆𝑥 ∶ 𝐴. 𝑣 𝑥 ∶ 𝐴 ⇒ 𝐵 ⇒ 𝜂-impure Γ ⊢s 𝑒 ∶ 𝐴 ⇒ 𝐵Γ ⊢ 𝑒 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒 𝑥 ∶ 𝐴 ⇒ 𝐵 ⇒ 𝜂-safe

Γs ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵Γ ⊢ let box 𝑥 = box 𝑒1 in 𝑒2 ≈ [𝑒1/𝑥]𝑒2 ∶ 𝐵 𝛽
Γ ⊢s 𝑒 ∶ 𝐴 Γ ⊢ C⟪𝑒⟫ ∶ 𝐵 Γ ⊢ let box 𝑥 = 𝑒 in C⟪box 𝑥 ⟫ ∶ 𝐵Γ ⊢ C⟪𝑒⟫ ≈ let box 𝑥 = 𝑒 in C⟪box 𝑥 ⟫ ∶ 𝐵 𝜂-safe

Γ ⊢ 𝑒 ∶ 𝐴 Γ ⊢ E⟪𝑒⟫ ∶ 𝐵 Γ ⊢ let box 𝑥 = 𝑒 in E⟪box 𝑥 ⟫ ∶ 𝐵Γ ⊢ E⟪𝑒⟫ ≈ let box 𝑥 = 𝑒 in E⟪box 𝑥 ⟫ ∶ 𝐵 𝜂-impure
Fig. 16. Equational Theory

We define an embedding function from the simply-typed lambda calculus to our calculus. We
use the notation 𝑋�� to denote the embedding of a syntactic object 𝑋 from STLC into our calculus.
The syntactic translation of types, contexts, and raw terms is given in figure 18.
To embed the function type, we embed the domain and codomain, but we apply our comonadic

type constructor to restrict the domain to a safe type. Remarkably, this embedding is quite like
the Gödel-McKinsey-Tarski embedding of the intuitionistic propositional calculus into classical S4
modal logic, as outlined in [McKinsey and Tarski 1948], but we do not need to apply the type
constructor on the codomain, because our functions are capability-safe. We note that this is also
similar to the embedding of lax logic into S4 modal logic described in [Pfenning and Davies 2001],
as well as the embedding of intuitionistic logic into linear logic [Girard 1987].
When embedding contexts, we mark the variables as safe using the s annotation. To embed

functions and applications, we need to use the introduction and elimination forms for . When
embedding a 𝜆-expression, the bound variable is embedded as a term of type, so we eliminate
the underlying variable using the let box binding form before using it in the body. To embed an
application, we simply put the argument in a box.
We first show that this translation preserves typing, i.e., well-typed expressions embed to well-

typed expressions. Then, we show that the 𝛽𝜂-equational theory of the pure call-by-value simply-
typed lambda calculus is preserved under the translation. If two expressions are equal in the
simply-typed lambda calculus, they remain equal after embedding into our imperative calculus.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:24 Vikraman Choudhury and Neel Krishnaswami

Types 𝐴, 𝐵 ∶∶= unit ∣ 𝐴 ⇒ 𝐵
Terms 𝑒 ∶∶= () ∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ 𝑒1 𝑒2
Values 𝑣 ∶∶= () ∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒
Contexts Γ, Δ,Ψ ∶∶= · ∣ Γ, 𝑥 ∶ 𝐴

(a) Grammar for STLC𝑥 ∶ 𝐴 ∈ Γ 𝑥 is a variable of type 𝐴 in context ΓΓ ⊢𝜆 𝑒 ∶ 𝐴 𝑒 is an expression of type 𝐴 in context ΓΓ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 𝑒1 and 𝑒2 are equal expressions of type 𝐴 in context Γ
(b) Judgements for STLC

Γ ⊢𝜆 () ∶ unit unitI
𝑥 ∶ 𝐴 ∈ ΓΓ ⊢𝜆 𝑥 ∶ 𝐴 Var

Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒 ∶ 𝐵Γ ⊢𝜆 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵 ⇒I Γ ⊢𝜆 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢𝜆 𝑒2 ∶ 𝐴Γ ⊢𝜆 𝑒1 𝑒2 ∶ 𝐵 ⇒E
(c) Typing rules for STLCΓ ⊢𝜆 𝑒 ∶ 𝐴Γ ⊢𝜆 𝑒 ≈ 𝑒 ∶ 𝐴 refl

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴Γ ⊢𝜆 𝑒2 ≈ 𝑒1 ∶ 𝐴 sym

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢𝜆 𝑒2 ≈ 𝑒3 ∶ 𝐴Γ ⊢𝜆 𝑒1 ≈ 𝑒3 ∶ 𝐴 trans
Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐵Γ ⊢𝜆 𝜆𝑥 ∶ 𝐴. 𝑒1 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒2 ∶ 𝐴 ⇒ 𝐵 𝜆-cong

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 ⇒ 𝐵 Γ ⊢𝜆 𝑒3 ≈ 𝑒4 ∶ 𝐴Γ ⊢𝜆 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 ∶ 𝐵 app-cong

Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒1 ∶ 𝐵 Γ ⊢𝜆 𝑒2 ∶ 𝐴Γ ⊢𝜆 (𝜆𝑥 ∶ 𝐴. 𝑒1) 𝑒2 ≈ [𝑒2/𝑥]𝑒1 ∶ 𝐵 ⇒ 𝛽 Γ ⊢𝜆 𝑒 ∶ 𝐴 ⇒ 𝐵Γ ⊢𝜆 𝑒 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒 𝑥 ∶ 𝐴 ⇒ 𝐵 ⇒ 𝜂
(d) Equational Theory for STLC

Fig. 17. The pure call-by-value simply-typed lambda calculus

Types unit�������� �������� ≔ unit𝐴 ⇒ 𝐵������������������� ������������������ ≔ 𝐴��⇒ 𝐵��
Contexts ·�� ≔ ·Γ, 𝑥 ∶ 𝐴�������������������� �������������������� ≔ Γ��, 𝑥 ∶ 𝐴��s

Terms ()�� ≔ ()𝑥�� ≔ 𝑥𝜆𝑥 ∶ 𝐴. 𝑒������������������������� ������������������������ ≔ 𝜆𝑧 ∶ 𝐴��. let box 𝑥 = 𝑧 in 𝑒��𝑒1 𝑒2���������� ���������� ≔ 𝑒1�� box 𝑒2��
Fig. 18. Embedding STLC

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:25

Theorem 7.1 (Preservation of typing). If Γ ⊢𝜆 𝑒 ∶ 𝐴, then Γ�� ⊢ 𝑒�� ∶ 𝐴��.
Theorem 7.2 (Preservation of eqality). If Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴, then Γ�� ⊢ 𝑒1��≈ 𝑒2�� ∶ 𝐴��.
Finally, we show that our imperative calculus is a conservative extension of the simply-typed

lambda calculus. To do so, we claim that if two embedded terms are equal in the extended theory,
then they must have been equal in the smaller theory. This shows that the equational theory of the
imperative calculus does not introduce any extra equations that would destroy the computational
properties of the pure simply-typed lambda calculus.

Theorem 7.3 (Conservative Extension). If Γ ⊢𝜆 𝑒1 ∶ 𝐴, Γ ⊢𝜆 𝑒2 ∶ 𝐴, and Γ�� ⊢ 𝑒1��≈ 𝑒2�� ∶ 𝐴��,
then Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴.
8 DISCUSSION AND FUTUREWORK
There has been a vast amount of work on integrating effects into purely functional languages.
Ironically though, even the very definition of what a purely functional language is has historically
been a contested one. Sabry [1998] proposed that a functional language is pure when its behaviour
under different evaluation strategies is “morally” the same, in the sense of Danielsson et al. [2006].
That is, if changing the evaluation strategy from call-by-value to (say) call-by-need could only
change the divergence/error behaviour of programs in a language, then the language is pure.
In contrast, the definition we use in this paper is less sophisticated: we take purity to be the
preservation of the 𝛽𝜂 equational theory of the simply-typed lambda calculus. However, it lets us
prove the correctness of our embedding in an appealingly simple way, by translating derivations of
equality. Sabry [1998] also notes that a purely functional language must be a conservative extension
of the simply-typed lambda calculus. Using the results of the previous section, our impure calculus
also satisfies this requirement, just by extending it with the purity comonad.
The use of substructural type systems to control access to mutable data is also a long-running

theme in the development of programming languages. It is so long-running, in fact, that it actually
predates linear logic [Girard 1987] by nearly a decade! Reynolds’ Syntactic Control of Interfer-
ence [Reynolds 1978] proposed using a substructural type discipline to prevent aliased access to
data structures. The intuition that substructural logic corresponds to ownership of capabilities is
also a very old one – O’Hearn [1993] uses it to explain his model of SCI, and Crary et al. [1999]
compare their static capabilities to the capabilities in the HYDRA system of Wulf et al. [1974].
However, these comparisons remained informal, due to the fact that semanticists tended to use

capabilities in a substructural fashion (e.g., see [Crary et al. 1999; Terauchi and Aiken 2006]), but
from the very outset ([Dennis and Horn 1966]) to modern day applications like capability-safe
Javascript [Maffeis et al. 2010], systems designers have tended to use capabilities non-linearly. In
particular, they thought it was desirable for a principal to hand a capability to two different deputies,
which is a design principle obviously incompatible with linearity.
The idea that the linear implication and intuitionistic implication could coexist, without one

reducing to the other, first arose in the logic of bunched implications [O’Hearn and Pym 1999].
This led to separation logic [Reynolds 2002], which has been very successful at verifying programs
with aliasable state. However, even though the semantics of separation logic supports BI, the bulk
of the tooling infrastructure for separation logic (such as Smallfoot [Berdine et al. 2006]) have
focused on the substructural fragment, often even omitting anything not in the linear fragment.
However, one observation very important to our work did arise from work on separation logic.

Dodds et al. [2009] made the critical observation that in addition to being able to assert ownership,

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:26 Vikraman Choudhury and Neel Krishnaswami

it is extremely useful to be able to deny the ownership of a capability. Basically, knowing that a
client program lacks any capabilities can make it safe to invoke it in a secure context.
The comonadic structure behind denial was also known informally: it arises in the work of Mor-

risett et al. [2005], where the exponential comonad in linear logic is modelled as the lack of any
heap ownership; and in an intuitionistic context, the work on functional reactive programming [Kr-
ishnaswami 2013] used a capability to create temporal values, and a comonad denying ownership
of it permitted writing space-leak-free reactive programs. However, both of these papers used
operational unary logical relations models, and so did not prove anything about the equational
theory.
Equational theories are easier to get with denotational models, and our model derives from

the work of Hofmann [2003]. In his work, he developed a denotational model of space-bounded
computation, by taking a naive set-theoretic semantics, and then augmenting it with intensional
information. His sets were augmented with a length function saying how much memory each value
used, and in ours, we use a weight function saying how many capabilities each value holds. (In
fact, he even notes that his category also forms a model of bunched implications!) We think his
approach has a high power-to-weight ratio, and hope we have shown that it has broad applicability
as well.
However, this semantics is certainly not the last word: e.g., the semantics in this paper does not

model the allocation of new capabilities as a program executes. In the categorical semantics of
bunched logics, it is common to use functor categories, such as functors from the category of finite
sets and injections I , to Set, or presheaves over some other monoidal category.The functor category
forms a model of BI, inheriting the cartesian closed structure where the limits are computed Kripke-
style in Set, and also a monoidal closed structure using the tensor product from the monoidal
category and Day convolution. In addition, the ability to move to a bigger set permits modelling
allocation of new names and channels (e.g., as is done in models of the 𝜈-calculus [Stark 1996]).
Our category of capability spaces uses the co-Heyting structure of the powerset lattice, i.e., we
use sets weighted in the complete Heyting algebra using ⊇ as implication. This is a subcategory
of presheaves on this lattice (seen as a thin category or a poset), and the doubly closed structure
is inherited from there. Of course, this category has more structure, which we did not use – for
example, it has coproducts and natural numbers, and the comonad commutes with each type
constructor, which we can use to extend our calculus to support our initial map example. Another
natural question is how we might handle recursion, as our explicit description of the category of
capability spaces C in section 4 seems quite tied to Set. By replaying this in a category like CPO
rather than Set, we may be able to derive a domain-theoretic analogue of capability spaces.
Another direction for future work lies in the observation that our □ comonad in subsection 4.5

takes away all capabilities, yielding a system with a syntax like that of Pfenning and Davies [2001]
with an interpretation close to the axiomatic categorical semantics proposed by Alechina et al.
[2001] and Kobayashi [1997]. However, we could consider a graded or indexed version of the same,
i.e., □𝐶, which only takes away a set of capabilities 𝐶 ∈ 𝔓(C) from a value. Our hope would be
that this could form a model of systems like bounded linear logic [Dal Lago and Hofmann 2009;
Orchard et al. 2019], or other systems of coeffects [Petricek et al. 2014]. This use of qualifiers on
contexts to encode linear resource behaviour appeared first in [Terui 2007], and was also used in
the quantitative coeffect calculus in [Brunel et al. 2014]. One issue we foresee with indexing is that,
while this indexed comonad would still be a strong monoidal functor, it loses the idempotence
property, which we used in our interpretation and proofs.
There has also been a great deal of work on using monads and effect systems [Gifford and

Lucassen 1986; Moggi 1989; Nielson and Nielson 1999; Wadler 1998] to control the usage of effects.
However, the general idea of using a static tag which broadcasts that an effect may occur seems

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

Recovering Purity with Comonads and Capabilities 111:27

somewhat the reverse of the idea of object capabilities, where access to a dynamically-passed value
determines whether an effect can occur. The key feature of our system is that the comonad does
not say what effects are possible, but rather asserts that effects are absent. This manifests in the
cancellation law (in subsection 4.6) of the comonad and the monad. Still, the very phrases “may
perform” and “does not possess” hint that some sort of duality ought to exist.

ACKNOWLEDGMENTS
We would like to acknowledge Marcelo Fiore for stimulating discussions about the ideas in this
paper. We are also thankful to the anonymous referees, and the non-anonymous readers of earlier
drafts of this paper, for their valuable comments and feedback. The first author is grateful to the
Rigbys who provided a welcoming and homely environment during his stay in Cambridge.

REFERENCES
Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. 2001. Categorical and Kripke Semantics for Con-
structive S4 Modal Logic. In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of
the EACSL, Paris, France, September 10-13, 2001, Proceedings (Lecture Notes in Computer Science), Laurent Fribourg (Ed.),
Vol. 2142. Springer, 292–307. https://doi.org/10.1007/3-540-44802-0_21

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2006. Smallfoot: Modular Automatic Assertion Checking with
Separation Logic. In Formal Methods for Components and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 115–137.

Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A Core Quantitative Coeffect Calculus. In
Programming Languages and Systems. Springer BerlinHeidelberg, 351–370. https://doi.org/10.1007/978-3-642-54833-8_19

Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Lecture Notes in Computer Science. Springer International
Publishing, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14

Karl Crary, DavidWalker, and J. Gregory Morrisett. 1999. TypedMemoryManagement in a Calculus of Capabilities. In POPL
’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX,
USA, January 20-22, 1999, AndrewW. Appel and Alex Aiken (Eds.). ACM, 262–275. https://doi.org/10.1145/292540.292564

Ugo Dal Lago and Martin Hofmann. 2009. Bounded Linear Logic, Revisited. In Typed Lambda Calculi and Applications,
Pierre-Louis Curien (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–94.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. 2006. Fast and Loose Reasoning is Morally
Correct. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’06). ACM, 206–217. https://doi.org/10.1145/1111037.1111056 Charleston, South Carolina, USA.

Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for multiprogrammed computations. Commun. ACM
9, 3 (1966), 143–155. https://doi.org/10.1145/365230.365252

Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. 2009. Deny-Guarantee Reasoning. In Programming
Languages and Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 363–377.

JeremyGibbons. 2000. Calculating Functional Programs. InAlgebraic and Coalgebraic Methods in the Mathematics of Program
Construction, International Summer School and Workshop, Oxford, UK, April 10-14, 2000, Revised Lectures (Lecture Notes
in Computer Science), Roland Carl Backhouse, Roy L. Crole, and Jeremy Gibbons (Eds.), Vol. 2297. Springer, 149–202.
https://doi.org/10.1007/3-540-47797-7_5

David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Programming. In Proceedings of
the 1986 ACM Conference on LISP and Functional Programming (LFP ’86). ACM, New York, NY, USA, 28–38. https:
//doi.org/10.1145/319838.319848

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (Jan 1987), 1–101. https://doi.org/10.1016/0304-
3975(87)90045-4

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press, New York, NY, USA.
217–241 pages. https://doi.org/10.1007/978-1-4612-2822-6_8

Martin Hofmann. 2003. Linear types and non-size-increasing polynomial time computation. Information and Computation
183, 1 (may 2003), 57–85. https://doi.org/10.1016/s0890-5401(03)00009-9

Satoshi Kobayashi. 1997. Monad as modality. Theoretical Computer Science 175, 1 (1997), 29 – 74. https://doi.org/10.1016/
S0304-3975(96)00169-7

Neelakantan R. Krishnaswami. 2013. Higher-Order Reactive Programming without Spacetime Leaks. In International
Conference on Functional Programming (ICFP).

Hugh C. Lauer and Roger M. Needham. 1979. On the Duality of Operating System Structures. ACM SIGOPS Operating
Systems Review 13, 2 (apr 1979), 3–19. https://doi.org/10.1145/850657.850658

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

111:28 Vikraman Choudhury and Neel Krishnaswami

Henry M Levy. 1984. Capability-based computer systems. Digital Press.
Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Information and Computation 185, 2 (Sep 2003), 182–210. https://doi.org/10.1016/S0890-5401(03)00088-9
S. Maffeis, J. C. Mitchell, and A. Taly. 2010. Object Capabilities and Isolation of Untrusted Web Applications. In 2010 IEEE

Symposium on Security and Privacy. 125–140. https://doi.org/10.1109/SP.2010.16
J. C. C. McKinsey and Alfred Tarski. 1948. SomeTheorems About the Sentential Calculi of Lewis and Heyting. J. Symb. Log.
13, 1 (1948), 1–15. https://doi.org/10.2307/2268135

Adrian Mettler, David A. Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of Java. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2010, San Diego, California, USA, 28th February - 3rd March
2010. The Internet Society. https://www.ndss-symposium.org/ndss2010/joe-e-security-oriented-subset-java

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph.D.
Dissertation. USA. Advisor(s) Shapiro, Jonathan S. AAI3245526.

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 14–23.
https://doi.org/10.1109/LICS.1989.39155

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-
5401(91)90052-4

Greg Morrisett, Amal Ahmed, and Matthew Fluet. 2005. L3: A Linear Language with Locations. In Typed Lambda Calculi
and Applications, Paweł Urzyczyn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 293–307.

Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. Springer Berlin Heidelberg, Berlin, Heidelberg,
114–136. https://doi.org/10.1007/3-540-48092-7_6

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. Bulleting Symbolic Logic 5, 2 (06 1999),
215–244. https://projecteuclid.org:443/euclid.bsl/1182353620

Dominic A. Orchard, Vilem Liepelt, and Harley Eades. 2019. Quantitative program reasoning with graded modal types.
Proceedings of the ACM on Programming Languages (June 2019). https://kar.kent.ac.uk/74450/

P. W. O’Hearn. 1993. A model for syntactic control of interference. Mathematical Structures in Computer Science 3, 4 (Dec
1993), 435–465. https://doi.org/10.1017/S0960129500000311

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014. Coeffects: a calculus of context-dependent computation. In
Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September
1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 123–135. https://doi.org/10.1145/2628136.2628160

Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science 11, 4 (2001), 511–540. https://doi.org/10.1017/S0960129501003322

John C. Reynolds. 1978. Syntactic Control of Interference. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’78). ACM, 39–46. https://doi.org/10.1145/512760.512766 event-place:
Tucson, Arizona.

J. C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium
on Logic in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817

Amr Sabry. 1998. What is a purely functional language? Journal of Functional Programming 8, 1 (Jan 1998), 1–22. https:
//doi.org/10.1017/S0956796897002943

Ian Stark. 1996. Categorical models for local names. LISP and Symbolic Computation 9, 1 (01 Feb 1996), 77–107. https:
//doi.org/10.1007/BF01806033

Tachio Terauchi and Alex Aiken. 2006. A Capability Calculus for Concurrency and Determinism. In CONCUR 2006 -
ConcurrencyTheory, 17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings (Lecture
Notes in Computer Science), Christel Baier and Holger Hermanns (Eds.), Vol. 4137. Springer, 218–232. https://doi.org/10.
1007/11817949_15

Kazushige Terui. 2007. Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical
Logic 46, 3-4 (feb 2007), 253–280. https://doi.org/10.1007/s00153-007-0042-6

Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science 73, 2 (jun 1990),
231–248. https://doi.org/10.1016/0304-3975(90)90147-a

Philip Wadler. 1998. The Marriage of Effects and Monads. In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming (ICFP ’98). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/289423.289429

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. 1974. HYDRA: The Kernel of a Multiprocessor
Operating System. Commun. ACM 17, 6 (Jun 1974), 337–345. https://doi.org/10.1145/355616.364017

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 111. Publication date: August 2020.

