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Recovering Purity with Comonads and Capabilities

ANONYMOUS AUTHOR(S)

In this paper, we take a pervasively effectful (in the style of ML) typed lambda calculus, and show how to extend
it to permit capturing pure expressions with types. Our key observation is that, just as the pure simply-typed
lambda calculus can be extended to support effects with a monadic type discipline, an impure typed lambda
calculus can be extended to support purity with a comonadic type discipline.

We establish the correctness of our type system via a simple denotational model, whichwe call the capability
space model. Our model formalizes the intuition common to systems programmers that the ability to perform
effects should be controlled via access to a permission or capability, and that a program is capability-safe if it
performs no effects that it does not have a runtime capability for. We then identify the axiomatic categorical
structure that the capability space model validates, and use these axioms to give a categorical semantics for our
comonadic type system. We then give an equational theory (substitution and the call-by-value 𝛽 and 𝜂 laws)
for the imperative lambda calculus, and show its soundness relative to this semantics.

Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic imperative cal-
culus, and show that any two terms which are 𝛽𝜂-equal in the STLC are equal in the equational theory of the
comonadic calculus, establishing that pure programs can be mapped in an equation-preserving way into our
imperative calculus.

1 INTRODUCTION

Consider the two following definitions of the familiar map functional, which applies a function to
each element of a list.

map1 : ∀ a b. (a → b) → List a → List b

map1 f [] = []

map1 f (x :: xs) = let zs = map1 f xs in
let z = f x in
z :: zs

map2 : ∀ a b. (a → b) → List a → List b

map2 f [] = []

map2 f (x :: xs) = let z = f x in
let zs = map2 f xs in
z :: zs

In a purely functional language likeHaskell, these two definitions are equivalent. But in an impure
functional language like ML. the difference between these two definitions is observable:

let xs = ["left "; "to "; "right "]

let f s = stdout.print(s); s

let ys = map1 f xs −− Prints "right to left "

let zs = map2 f xs −− Prints "left to right "
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1:2 Anon.

So something as innocuous-seeming as a print function can radically change the equational theory
of the language: no program transformation that changes the order in which sub-expressions are
evaluated is in general sound. This greatly complicates reasoning about programs, as well as hin-
dering many desirable program optimisations such as list fusion and deforestation [Wadler 1990].
Transformations that are unconditionally valid in a pure language must, in an impure language, be
gated by complex whole-program analyses tracking the purity of sub-expressions.

Contributions. It is received wisdom that much as a drop of ink cannot be removed from a glass of
water, once a language supports ambient effects, there is no way to regain the full equational theory
of a pure programming language. In this paper, we show that this folk belief is false: we extend
an ambiently effectful language to support purity. Entertainingly, it turns out that just as monads
are a good tool to extend pure languages with effects, comonads are a good tool to extend impure
languages with purity!
● We take a pervasively effectful lambda calculus in the style of ML and show how to extend it
with a comonadic type discipline modelling the intuitions underpinning the object-capability
model [Lauer andNeedham1979; Levy 1984;Miller 2006] developed in the systems community.
The object-capability model advises that the ability to perform effects should be controlled via
access to a permission or capability, and that a program is capability-safe precisely when it
can only perform effects that it possesses a runtime capability for.
● We show that the typing rules are faithful to the object-capability model by giving our lan-
guage a denotational semantics, which we call the capability space model. Capability spaces
are a simple, direct formalisation of the ideas underpinning the object-capabilitymodel, which
extends the most naive model of the lambda calculus – sets and functions – with just enough
structure to model capability-safety. In our model, a type is just a set 𝑋 (denoting a set o f val-
ues), together with a relation 𝑤𝑋 saying which capabilities each value 𝑥 may own.Morphisms
𝑓 ∶ 𝑋 → 𝑌 are capability-safe if the capabilities of 𝑓(𝑥) are bounded by the capabilities of 𝑥.
It is already known in the systems community that even effectful, untyped lambda-calculi
can bemade capability-safe by removing features exposing ambient authority. Our model and
type system demonstrates that this observation is incomplete – having a comonad witnessing
the denial of a capability is also very beneficial. In particular, this greatly simplifies the process
of capability taming, making it possible to make the standard library capability-safe in an
incremental fashion.
● We then identify the axiomatic categorical structure the capability space model validates, and
use these axioms to give a categorical semantics for our comonadic type system. We then
give an equational theory (substitution and the call-by-value 𝛽 and 𝜂 laws) for the imperative
lambda calculus, and show its soundness relative to this semantics.
● Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic

imperative calculus, and show that any two termswhich are𝛽𝜂-equal in the STLC are equal in
the equational theory of the comonadic calculus under the translation, establishing that pure
programs can be mapped in an equation-preserving way into our imperative calculus.

Detailed proofs of the lemmas and theorems, as well as additional material are given in the sup-
plementary appendices, and we refer to them in the text.

2 PURITY FROMCAPABILITIES

The object-capability model is amethodology originating in the operating systems community for
building secure operating systems and hardware.The idea behind this model is that systems must
be able to control permissions to perform potentially dangerous or insecure operations, and that a
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1:3

goodway to control access is to tie the right to perform actions to values in a programming language,
dubbed capabilities. Then, the usual variable-binding and parameter-passing mechanisms of the
language can be used to grant rights to perform actions — access to a capability can be prohibited
to a client by simply not passing it the capability as an argument. To quote Miller [2006]:

Our object-capability model is essentially the untyped call-by-value lambda calculus
with applicative-order local side effects and a restricted form of eval — the model Ac-
tors and Scheme are based on. This correspondence of objects, lambda calculus, and
capabilities was noticed several times by 1973.

We use this observation to design our language – we begin with the observation that it is posses-
sion of the capability to perform effects that distinguishes impure from pure code. In the example
in section 1, the operation f that distinguished between map1 and map2 contained a reference to
stdout, and so had the intrinsic authority to print to the standard output – that is, f was not a
capability-safe function.

The 𝑐 .print(𝑠) operation takes the channel 𝑐 and prints the string 𝑠 to it. If we did not possess the
capability 𝑐, thenwe could not invoke the print operation upon this channel.This property is actually
fundamental to the object-capabilitymodel, which says that the only way to access capabilities must
be through capability values.Therefore, if we view channels as capabilities, we know that evaluating
a piece of code lacking any capabilities cannot print at all.

Naturally, there are many data types in a real programming language beyond channels, but each
value can access some set of capabilities (eg, a list of files can access any of the channels in the list,
or a closure can access any capability it receives as an argument or possesses in its environment). So
for each value, we can bound the set of possible effects it enables by the capabilities it owns.

This lets us approximate the notion of a “capability-safe program” in a simple and brutal fashion:
we can judge a term to be capability-safe if it can directly access zero capabilities. Lacking access to
any channels, it has no intrinsic ability to do I/O, and hencemust be capability-safe. Furthermore, we
introduce two kinds of variables: safe variables and arbitrary (or impure) variables. By restricting
the substitution to only permit substituting capability-safe terms for safe variables, the judgement
of safety will be stable under substitution.Then, by internalising the safety judgement as a type, we
can pass safe values – i.e., values without access to any capabilities – as first-class values.

To understand this, let us begin with a simple call-by-value higher-order functional language
extended with types for string constants, channels (or output file handles), and a single effect: out-
putting a string onto a channel with the expression chan.print(s). There is no monadic or effect
typing discipline here; the type of print is just as one might see in OCaml or Java.

print : Channel → String → Unit

For example, here is a simple function to print each element of a pair of strings to a given channel:

print_pair : String × String → Channel → Unit
print_pair = fun p chan →

chan.print(fst p);

chan.print(snd p)

Here, for clarity we use a semicolon for sequencing, and write print in method-invocation style
à la Java (to make it easy to distinguish the file handle from the string argument).

To support capability safety (and thereby obtain purity as a side-effect(!)) we extend the language
with a new type constructor Safe a, denoting the set of expressions of type awhich are capability-
safe – i.e., they own no file handles and so their execution cannot do any printing, unless a capability
is passed. We add the introduction form box(e) to introduce a value whose type is Safe a; the type
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1:4 Anon.

system accepts this if e has type a and is recognisably safe, but rejects it otherwise. Here, “recognis-
ably safe” means that the term e does not refer to any capability literals, and all of its free variables
are safe variables.

Toeliminateavalueof typeSafe a,wewillusepatternmatching,writing theeliminationformlet
box(x) = e1 in e2 to bind the pure expression in e1 to the variable x. The only difference from
ordinary pattern matching is that x is marked as a safe variable, permitting it to occur inside of safe
expressions. Intuitively, this makes sense – e1 evaluates to a safe value, and so its result should be
allowed to be used by other safe expressions.

It turns out that this discipline of trackingwhether a variable is safe or not is precisely a comonadic
type discipline, corresponding to the □ modality in S4 modal logic. Capability-safety is not exactly
the same thing as purity, but we will show how to recover purity from capability-safety later in this
section, and then prove that this encoding works later on. We illustrate the comonadic behaviour of
the Safe type constructor with the following examples.

If we know that a value is safe, we can extract it, giving up that information. Also, since Safe
is only expressing a property of the underlying value, applying it twice achieves nothing, mak-
ingduplicate an isomorphism.This expresses an idempotent comonad,which encodes theproperty
that a value of type Safe a is safe.

extract : ∀ a. Safe a → a

extract box(x) = x

duplicate : ∀ a. Safe a → Safe (Safe a)

duplicate box(x) = box(box(x))

Also, observe that we can apply safe functions to safe values to get safe results, thereby making
it almost an Applicative functor, as shown below. Syntactically, box(f x) is accepted, since both
the variables f and x are known to be safe, and so are permitted to occur inside of a safe expression.

(⊛) : ∀ a b. Safe (a → b) → Safe a → Safe b

(⊛) box(f) box(x) = box(f x) −− accepted

However, arbitrary values are not Safe – we cannot mark any value x safe because it could own
capabilities. So this function is rejected.

pure : ∀ a. a → Safe a

pure x = box(x) −− REJECTED

Nor can we write an fmap for Safe, which applies an arbitrary function to a pure argument, and
tries to return a pure result.

fmap : ∀ a b. (a → b) → Safe a → Safe b

fmap f box(x) = box(f x) −− REJECTED

Semantically, the function fmay own capabilities, and so it may have side-effects. Syntactically,
since f is an impure variable, it is simply not allowed to occur in the pure expression box(f x). Only
if we mark both the function and the argument as Safe can we apply it, as we saw in (⊛).

However, Safe is a functor in the semantic sense – the absence of an fmap action indicates that
this functor lacks tensorial strength. (This also means that safety is not definable in Haskell, since all
definable functors are strong.)

The capability discipline permits typing functions whose behaviour is intermediate between pure
and effectful. First, suppose we see the following type signature for a print function:
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1:5

safe_print : Safe (Channel → String → Unit)
−− definition not visible

Without looking at the definition of safe_print, we can make some inferences about its side-
effects. Since it is marked safe, we can immediately infer that if this function performs a side-effect,
it can print only on the channel that it binds. In other words, it cannot use an ambient capability to
perform side-effects.

Similarly, consider the following type declaration:

multi_print : Safe (List Channel → String → Unit)
−− definition not visible

Again, we do not know anything about the body of the definition (perhaps it prints its string
argument to all of the channels it receives, or perhaps not), but due to the typing discipline, we know
that multi_print is safe, and hence, owns no capabilities of its own. As a result, we can make some
inferences about the following two declarations:

x : Unit
x = let box(f) = multi_print in

f [stdout, stderr] "Hello world"

y : Unit
y = let box(f) = multi_print in

f [] "Hello world"

Thedefinition of x passes two channels to multi_print, and so it may have an effect (it might use
it to print on either of these channels). On the other hand, we know that the evaluation of ywill not
have an effect –we know that multi_print owned no channels, andwe did not give it any channels,
therefore it can perform no effects. The purity of this function will depends on the inputs that were
passed to it. Moreover, we know this without having to see the definition of multi_print!

Even though capability-safety is amore primitive notion than purity, it is strong enough to encode
purity. Revisiting our map example from section 1, we can now rewrite it using Safe.

map : ∀ a b. Safe (Safe a → b) → List (Safe a) → List b

map box(f) [] = []

map box(f) (x :: xs) = let z = f x in
let zs = map (box(f)) xs in
z :: zs

Intuitively, a safe function can only have an effect if its argument gives it any capabilities, andwe can
prohibit a function argument from bearing capabilities by giving it a safe type. Hence, we canmodel
the pure function space 𝐴 ⇒ 𝐵 with the impure function space, with the type Safe(Safe A → B).

An additional benefit of the comonadic type discipline is that it dramatically simplifies the process
of capability taming. A language is capability-safe when programs have no way to access to ambient
authorities. As a result, capability-safety has historically been understood not just as a property of
the language, but also of the standard library. In particular, if the standard library exposes globally-
visible channels like stdout and stderr, any program in the language can refer to them, and thereby
have write effects. As a result, a project like Joe-E [Mettler et al. 2010] involves a massive effort to
rewrite the whole standard library of Java. In constrast, a language with a safety comonad affords a
gradual approach – the bindings in the standard library can all be marked impure by default, and as
the functions are audited, they can gradually bemarked safe, allowingmore andmore capability-safe
programs can be written.This lets language implementors and programmers gradually opt-in to ca-
pability safety, making it easier to migrate language ecosystems, and also illustrates the importance
of being able to track the safety of variable bindings.
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1:6 Anon.

Types 𝐴, 𝐵 ∶∶= unit ∣ str ∣ cap
∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵 ∣ 𝐴

Terms 𝑒 ∶∶= () ∣ 𝑠 ∣ 𝑒1 .print(𝑒2)
∣ (𝑒1 , 𝑒2) ∣ fst 𝑒 ∣ snd 𝑒
∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ 𝑒1 𝑒2
∣ box 𝑒 ∣ let box 𝑥 = 𝑒1 in 𝑒2

Values 𝑣 ∶∶= () ∣ 𝑠 ∣ (𝑣1 , 𝑣2)
∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ box 𝑒

Qualifiers 𝑞, 𝑟 ∶∶= s ∣ i
Contexts Γ, Δ, Ψ ∶∶= · ∣ Γ, 𝑥 ∶ 𝐴𝑞

Substitutions 𝜃, 𝜙 ∶∶= ⟨⟩ ∣ ⟨𝜃, 𝑒𝑞
/𝑥⟩

Fig. 1. Grammar

3 TYPING

We give the grammar of our language in figure 1.
We have the usual type constructors for unit, products, and functions from the simply-typed

lambda calculus. In addition to this, we have the type str for strings, and the type cap representing
output channels (used in the imperative 𝑒1 .print(𝑒2) statement). Finally, we add the comonadic
type constructor which corresponds to the Safe type constructor we introduced in section 2.

Despite the fact that there is a type cap of channels, and a print operation which uses them, there
are no introduction forms for them.This is intentional! The absence of this facility corresponds to
the principle of capability safety – the only capabilities a program should possess are those that are
passed by its caller. So, a complete programwill either be a function that receives a capability token
as an argument, or have free variables that the system can bind capability tokens to. 1

The expressions in our language include the usual ones from the simply-typed lambda calculus,
constants 𝑠 for strings, and print.We also have an introduction form box 𝑒 , and a let box elimination
form for the 𝐴 type; we’ll explain how these work later. Values are a subset of expressions, but box
turns any expression into a value. 2

We would like a modal type system where we can distinguish between expressions with and
without side-effects. Following the style of [Pfenning and Davies 2001] for S4 modal logic, we could
build a dual-context calculus. However, such a setup makes it difficult to define substitution; we
can avoid dual contexts by tagging terms with qualifiers instead. We use two qualifiers that we can
annotate termswith, in the appropriate places.We use s to tag safe terms, and i to tag impure terms. 3

Next, we define contexts of variables. A well-formed context is either the empty context · , or
an extended context with a variable 𝑥 of type 𝐴 and qualifier 𝑞. Finally, we give a grammar for
substitutions. A substitution is either the empty substitution ⟨⟩, or an extended substitution with an
expression 𝑒 substituted for variable 𝑥 qualified by 𝑞.

1Of course, a full system should have the ability to create new private capabilities of its own. We omit this to keep the
denotational semantics simple, but discuss how to add it in section 8.
2Wewrite sequencing as 𝑒1 ; 𝑒2, which is sugar for (𝜆𝑥 ∶ unit. 𝑒2) 𝑒1.
3We use different colours to distinguish safe and impure syntactic objects, and we’ll follow this convention henceforth.
When we have unknown qualifiers occurring on terms, we highlight them in a different colour, and the colour changes to
the appropriate one when the qualifier is s or i.
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1:7

𝑥 ∶ 𝐴𝑞 ∈ Γ 𝑥 is a variable of type 𝐴 with qualifier 𝑞 in context Γ
Γ ⊢ 𝑒 ∶ 𝐴 𝑒 is an expression of type 𝐴 in context Γ

Γ ⊢s 𝑒 ∶ 𝐴 𝑒 is a safe expression of type 𝐴 in context Γ

(a) Typing Judgements

Γ ⊇ Δ Γ is a weakening of context Δ
Γ ⊢ 𝜃 ∶ Δ 𝜃 is a well-formed substitution from context Γ to Δ

(b) Weakening and Substitution Judgements

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 𝑒1 and 𝑒2 are equal expressions of type 𝐴 in context Γ

(c) Equality Judgements

Fig. 2. Judgement forms

Γ ⊢ () ∶ unit
unitI

Γ ⊢ 𝑠 ∶ str
strI

Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ str

Γ ⊢ 𝑒1 .print(𝑒2) ∶ unit
Print

Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵
Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵

×I
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑒 ∶ 𝐴

×E1
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ snd 𝑒 ∶ 𝐵

×E2

𝑥 ∶ 𝐴𝑞 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

Var
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵
⇒I

Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴
Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵

⇒E

Γs ⊢ 𝑒 ∶ 𝐴
Γ ⊢s 𝑒 ∶ 𝐴

ctx-safe
Γ ⊢s 𝑒 ∶ 𝐴

Γ ⊢ box 𝑒 ∶ 𝐴
I

Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵
Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵

E

Fig. 3. Typing Rules

3.1 Typing Judgements
In figure 2a we introduce three kinds of judgement forms, and give typing rules in figure 3.

We have the usual introduction and elimination rules for constants and products. If a variable is
present in the context, we can introduce it, using the Var rule. In the introduction rule for functions
⇒ I, we mark the hypothesis as impure when forming a 𝜆-expression, because we do not want to
restrict function arguments in general.The elimination rule ⇒ E, or function application works as
usual.The print statement performs side-effects but has the type unit. We need to do more work to
add the comonadic type constructor.

We can mark a term as safe if it was well-typed in a safe context, where every variable has the
s annotation. So we define a syntactic purify operation, which acts on contexts; applying it drops
the terms with the impure annotation, as shown in figure 4a.This is expressed by the ctx-safe rule,
which introduces a safe expression using the safe judgement form. And then, we can put it in a box
using the I rule, to get a -typed value.
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1:8 Anon.

(·)s ≔ ·
(Γ, 𝑥 ∶ 𝐴s

)
s ≔ Γs, 𝑥 ∶ 𝐴s

(Γ, 𝑥 ∶ 𝐴i
)
s ≔ Γs

(a)

⟨⟩s ≔ ⟨⟩
⟨𝜃, 𝑒s/𝑥⟩s ≔ ⟨𝜃s, 𝑒s/𝑥⟩
⟨𝜃, 𝑒i/𝑥⟩s ≔ 𝜃s

(b)

Fig. 4. Purifying Contexts and Substitutions

𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑥 ∶ 𝐴𝑞
)

∈-id
𝑥 ∶ 𝐴𝑞 ∈ Γ (𝑥 ≠ 𝑦)

𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑦 ∶ 𝐵𝑟
)

∈-ex

(a) Context Membership Rules

· ⊇ ·
⊇-id

Γ ⊇ Δ
Γ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ, 𝑥 ∶ 𝐴𝑞 ⊇-cong

Γ ⊇ Δ
Γ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ

⊇-wk

(b) Weakening Rules

Γ ⊢ ⟨⟩ ∶ ·
sub-id

Γ ⊢ 𝜃 ∶ Δ Γ ⊢s 𝑒 ∶ 𝐴
Γ ⊢ ⟨𝜃, 𝑒s/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴s sub-safe

Γ ⊢ 𝜃 ∶ Δ Γ ⊢ 𝑣 ∶ 𝐴

Γ ⊢ ⟨𝜃, 𝑣i/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴i
sub-impure

(c) Substitution Rules

Fig. 5. Membership, Weakening and Substitution Rules

Wegive an elimination rule E using the let box binding form. Given an expression in the type,
we bind the underlying safe expression to the variable 𝑥. With an extended context that has a free
variable 𝑥 marked safe, if we can produce a well-typed expression in the motive, the elimination is
complete.

3.2 Weakening and Substitution
Next, we can define syntactic weakening and substitution.

3.2.1 Membership. We give the standard rules for the context membership judgement in figure 5a,
following Barendregt’s variable convention.The only difference is that variables now have an extra
safety annotation.

3.2.2 Weakening. Thecontextweakeningrelation follows theusual rules, as showninfigure5b,with
the extra safety annotation on free variables in contexts. Γ ⊇ Δ indicates that Γ has more variables
thanΔ, and is definedas an inductive relation infigure5b.Wecanprovea syntacticweakening lemma.

Lemma 3.1 Syntactic weakening. If Γ ⊇ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then Γ ⊢ 𝑒 ∶ 𝐴.

3.2.3 Substitution. Substitution requires a bit more care. First, we define the judgement Γ ⊢ 𝜃 ∶ Δ,
which says that 𝜃 is a well-formed substitution from context Γ to Δ. Since our language is effectful,
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we restrict the definition of substitutions, in figure 5c to substitute values for impure variables, while
permitting safe expressions for safe variables.

Furthermore, we define the syntactic substitution function, which applies a substitution on raw
terms.This is mostly standard, but when substituting under a binder, we do a renaming of the bound
variable by extending the substitutionwith an appropriately annotated variable. To substitute inside
abox-ed expression,wehave to purify the substitutionwhenusing it.We extend the purify operation
to substitutions as well; it simply drops the impure substitutions, as shown in figure 4b.

Definition 3.2 (Syntactic substitution on variables).

𝜃[𝑥] ≔

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

☇ 𝜃 = ⟨⟩
𝑒 𝜃 = ⟨𝜙, 𝑒𝑞

/𝑥⟩
𝜙[𝑥] 𝜃 = ⟨𝜙, 𝑒𝑞

/𝑦⟩, 𝑥 ≠ 𝑦
Definition 3.3 (Syntactic substitution on raw terms).

𝜃(𝑥) ≔ 𝜃[𝑥]
𝜃(()) ≔ ()
𝜃(𝑠) ≔ 𝑠

𝜃((𝑒1 , 𝑒2)) ≔ (𝜃(𝑒1) , 𝜃(𝑒2))

𝜃(fst 𝑒) ≔ fst 𝜃(𝑒)
𝜃(snd 𝑒) ≔ snd 𝜃(𝑒)
𝜃(𝜆𝑥. 𝑒) ≔ 𝜆𝑦. ⟨𝜃, 𝑦i/𝑥⟩(𝑒)
𝜃(𝑒1 𝑒2) ≔ 𝜃(𝑒1) 𝜃(𝑒2)

𝜃(box 𝑒 ) ≔ box 𝜃s(𝑒)
𝜃(let box 𝑥 = 𝑒1 in 𝑒2) ≔ let box 𝑦 = 𝜃(𝑒1) in ⟨𝜃, 𝑦s/𝑥⟩(𝑒2)

𝜃(𝑒1 .print(𝑒2)) ≔ 𝜃(𝑒1) .print(𝜃(𝑒2))

Then, we can prove the type-correctness of substitution:

Theorem 3.4 Syntactic substitution. If Γ ⊢ 𝜃 ∶ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then Γ ⊢ 𝜃(𝑒) ∶ 𝐴.

4 SEMANTICS

In this section, we describe a concrete denotational model of capabilities and the abstract categor-
ical structure it models.

4.1 Capability Spaces
Let C be a fixed set of capability names, possibly countably infinite.The powerset 𝔓(C) denotes the
set of all subsets of C, and (𝔓(C); ∅, C, ⊆) is the complete lattice ordered by set inclusion.

A capability space 𝑋 = (∣𝑋∣ , 𝑤𝑋) is a set ∣𝑋∣with a weight relation 𝑤𝑋 ∶ ∣𝑋∣⇸ 𝔓(C) that assigns
sets of capabilities to each member in 𝑋. Intuitively, we think of the set ∣𝑋∣ as the set of values of the
type 𝑋, and we think of the weight relation 𝑤𝑋 as defining the possible sets of capabilities that each
value may own.

We require maps between capability spaces to preserve weights, i.e., a map between the underly-
ing sets ∣𝑋∣ and ∣𝑌∣ is a morphism of capability spaces iff for each 𝑥 in ∣𝑋∣, all the weights in 𝑌 for 𝑓(𝑥)
are bounded by the weights in 𝑋 for 𝑥. If we think of a function 𝑓 ∶ 𝑋 → 𝑌 as a term of type 𝑌 with
a free variable of type 𝑋, then this condition ensures that the capabilities of the term are limited to
at most those of its free variables. In other words, weight-preserving functions are precisely those
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1:10 Anon.

which are capability-safe; they do not have unauthorised access to arbitrary capabilities, and they
do not have any ambient authority.

We now formally define the category of capability spaces C, with objects as capability spaces and
morphisms as weight-preserving functions.

Definition 4.1 (Category C of capability spaces).
ObjC ≔ 𝑋 = (∣𝑋∣ ∶ Set, 𝑤𝑋 ∶ ∣𝑋∣⇸ 𝔓(C))

HomC (𝑋 , 𝑌) ≔
⎧
⎪⎪
⎨
⎪⎪
⎩

𝑓 ∈ ∣𝑋∣ → ∣𝑌∣
RRRRRRRRRRRR

∀𝑥, 𝐶𝑥, 𝑤𝑋(𝑥, 𝐶𝑥) ⇒
∃𝐶𝑦 ⊆ 𝐶𝑥, 𝑤𝑌(𝑓(𝑥), 𝐶𝑦)

⎫
⎪⎪
⎬
⎪⎪
⎭

We remark that the definition of this category is inspired by the category of length spaces defined
by Hofmann [2003], which again associates intensional information (in his work, memory usage,
and in ours, capabilities) to a set-theoretic semantics.

4.2 The Direct Semantics
We now actually have specified enough of the semantic model to interpret our language.

Because the capability space model is a “structured sets” model, in which each object is a set with
some additional structure (i.e., the weights), and morphisms are ordinary set-theoretic functions
(which are required to preserve this structure), we can interpret an expression 𝑒 with typing deriva-
tion Γ ⊢ 𝑒 ∶ 𝐴, as a function Γ → 𝑇𝐴. This is an ordinary set-theoretic function which takes an
element of Γ (i.e., a substitution binding each variable to an element of its type) to a monadic compu-
tation (awritermonad) producing an element of𝐴. Tomake this clear, we first give an interpretation
written in the style of a monadic program in Haskell syntax in figure 6.

For example, function application 𝑒1 𝑒2 exhibits a right-to-left evaluation order: we first evaluate
𝑒2 (with environment 𝛾) to an argument 𝑎, then evaluate 𝑒1 (with environment 𝛾) to a function 𝑓, and
then apply the argument to the function.The 𝑒1 .print(𝑒2)method evaluates 𝑒1 to a channel 𝑐, 𝑒2 to
a string 𝑠, and then represents its effect using the writer monad: it returns a map saying that 𝑠 was
printed to the channel 𝑐. The interpretation of box 𝑒 is perhaps the most interesting – it interprets
𝑒 in a context where all capability-bearing bindings are discarded. As a result, even though 𝑒 is a
monadic term, we know that it could not have written to any channels, and so we can then discard
(using fst) the writer monad’s output component without losing any information.

However, while writing the semantics as a naive set-theoretic semantics makes it easy to read, we
still have to check that this definition actually does define a genuine weight-preserving morphism
between capability spaces.As the interpretation ofbox 𝑒 makes clear, this is not a trivial fact. Indeed,
even though this semantics is in fact capability-safe, checking that is an incredibly tedious and error-
prone affair – we have to go through every semantic clause and check not just that each and every
operationwe use is weight-preserving, but that all their compositions are weight-preserving as well.

To manage and organize this work more efficiently, we turn to a categorical semantics. In the
categorical semantics, each type is an object, and each type constructor is interpreted as a functor
with operators satisfying some universal properties.This way, we can check that the interpretation
of each type connective works the way we want in isolation, without having to worry about any
interactionswith the rest of the calculus. Furthermore, the universal propertiesmake it easy to check
that our language satisfies the equational theory that we desire.

Another important benefit is that by formulating the semantics in a categorical style, the seman-
tics and equational theory only depends upon the algebraic structure of the category of capability
spaces. That is, we use the cartesian closed structure, themonoidal idempotent comonad, the strong
monad, and the cancellation isomorphism Φ; the proofs of our theorems use the universal property
for each categorical construction. Indeed, our semantics is nearly independent of the specific set
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J
Γ ⊢ () ∶ unit

K𝛾 ≔ return () J
Γ ⊢ 𝑠 ∶ str

K𝛾 ≔ return s

J
Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵

Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵
K𝛾 ≔

do g ← JΓ ⊢ 𝑒2 ∶ 𝐵K𝛾
f ← JΓ ⊢ 𝑒1 ∶ 𝐴K𝛾
return (f,g)

J
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑒 ∶ 𝐴

K𝛾 ≔ do f ← JΓ ⊢ 𝑒 ∶ 𝐴 × 𝐵K𝛾
return (fst f)

J
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ snd 𝑒 ∶ 𝐵

K𝛾 ≔ do f ← JΓ ⊢ 𝑒 ∶ 𝐴 × 𝐵K𝛾
return (snd f)

J
𝑥 ∶ 𝐴𝑞 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

K𝛾 ≔ return (𝛾 x)

J
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵
K𝛾 ≔ return (fun a → JΓ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵K (𝛾,a))

J
Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴

Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵
K𝛾 ≔

do a ← JΓ ⊢ 𝑒2 ∶ 𝐴K𝛾
f ← JΓ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵K𝛾
f a

J
Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ str

Γ ⊢ 𝑒1 .print(𝑒2) ∶ unit
K𝛾 ≔

do s ← JΓ ⊢ 𝑒2 ∶ strK𝛾
c ← JΓ ⊢ 𝑒1 ∶ capK𝛾
((),fun c ' → if c = c '

then s else 𝜀)

J
Γs ⊢ 𝑒 ∶ 𝐴

Γ ⊢ box 𝑒 ∶ 𝐴
K𝛾 ≔ return (fst (JΓs ⊢ 𝑒 ∶ 𝐴K𝛾s))

J
Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵

Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵
K𝛾 ≔

do a ← JΓ ⊢ 𝑒1 ∶ 𝐴K𝛾
JΓ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵K (𝛾, a)

Fig. 6. Direct interpretation of expressions

of effects – we only use the specific definition of the monad in the interpretation of print. Since
our theorems depend only upon the algebraic structure, our results will still hold if we switched to
another category with this structure. We say more about that in section 8.

We give the categorical structure of the category of capability spaces in the remainder of this
section, and then give the categorical intepretation (which is actually semantically identical to the
direct interpretation) in the following section.

4.3 Cartesian Closed Structure
We now observe that C inherits the cartesian closed structure of Set.The definitions are the same as
in the case of sets, but we additionally have to verify that the morphisms are weight-preserving.
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1:12 Anon.

Expression Type Weight
unit Unit ∅
stdout Channel { stdout }
fun c → unit Channel → Unit ∅
fun c → c Channel → Channel ∅
fun c → c.print("hello") Channel → Unit ∅
fun c → stdout.print("hello") Channel → Unit { stdout }
(c1,c2) Channel × Channel { c1, c2 }

[stdout,c1,c2] List Channel { stdout, c1, c2 }

Fig. 7. Expressions and their capability weights

Definition 4.2 (Terminal Object).
∣1∣ ≔ { ∗ }
𝑤1 ≔ { (∗, ∅) }

The terminal object 1 is the usual singleton set, and it has no capabilities. For any object 𝐴, the
unique terminal map ! ∶ 𝐴 → 1 is given by !𝐴(𝑎) = ∗, which is evidently weight preserving.

Definition 4.3 (Product).
∣𝐴 × 𝐵∣ ≔ ∣𝐴∣ × ∣𝐵∣
𝑤𝐴×𝐵 ≔ { ((𝑎, 𝑏), 𝐶𝑎 ∪ 𝐶𝑏) ∣ 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝑤𝐵(𝑏, 𝐶𝑏) }

Products are formed by pairing as usual, and the set of capabilities of a pair of values is the union of
their capabilities.The projectionmaps 𝜋𝑖 ∶ 𝐴1 × 𝐴2 → 𝐴𝑖 are just the projections on the underlying
sets, which are weight preserving as well. We verify the universal property in⁇ in the appendix.

Definition 4.4 (Exponential).
∣𝐴 → 𝐵∣ ≔ ∣𝐴∣ → ∣𝐵∣

𝑤𝐴→𝐵 ≔
⎧
⎪⎪
⎨
⎪⎪
⎩

(𝑓 , 𝐶𝑓)

RRRRRRRRRRRR

∀𝑎, 𝐶𝑎, 𝑤𝐴(𝑎, 𝐶𝑎) ⇒
∃𝐶𝑏 ⊆ 𝐶𝑓 ∪ 𝐶𝑎, 𝑤𝐵(𝑓(𝑎), 𝐶𝑏)

⎫
⎪⎪
⎬
⎪⎪
⎭

Exponentials are given by functions on the underlying sets, but we have to assign capabilities to
the closure. We only record those capabilities which are induced by the function, for some value in
the domain.That is, for a function closure 𝑓 ∶ 𝐴 → 𝐵, if a given value 𝑎 ∈ 𝐴 has weight assignment
𝐶𝑎, and if there is a weight assignment 𝐶𝑏 for 𝑓(𝑎), then the weight of the closure 𝑓 is given by the
all the capabilities it had access to its environment.

We verify that our definition satisfies the currying isomorphism in⁇ in the appendix, where we
name the currying/uncurrying and evaluation maps.

This cartesian closed structure onC suffices to interpret the simply-typed lambda calculus. To illus-
trate the semantics, we give some examples of closed terms with their unique capability weightings
in figure 7.

4.4 Monad
Our language supports printing strings along a channel, and to model this print effect, we will struc-
ture our semantics monadically, in the style of Moggi [1991]. We define a strong monad 𝑇 on C as
follows.
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Definition 4.5 (Σ∗ ∶ C). Σ∗ is the set of strings, with an empty string 𝜀 ∶ 1 → Σ∗, and a multipli-
cation ∙ ∶ Σ∗ × Σ∗ → Σ∗ given by concatenation, making it a monoid object. Strings are constants
and hence do not have any weights.

Definition 4.6 (C ∶ C). C is the object of capabilities in C such that 𝑤C = { (𝑐, { 𝑐 }) } for every
𝑐 ∈ C. Note that there are no global sections for this object, because the map 1 → C is not weight-
preserving. In other words, we do not have access to arbitrary capabilities, as evident by the lack of
an introduction rule for the cap type.This indicates the lack of ambient authority.

Definition 4.7 (𝑇 ∶ C ⟶ C).
∣𝑇(𝐴)∣ ≔ ∣𝐴∣ × (C → Σ∗)
𝑤𝑇(𝐴) ≔ { ((𝑎, 𝑜), 𝐶𝑎 ∪ { 𝑐 ∣ 𝑜(𝑐) ≠ 𝜀 }) ∣ 𝑤𝐴(𝑎, 𝐶𝑎) }

Using the monoid ( Σ∗; 𝜀, ∙ ), we can define 𝑇 to be the writer monad which adds an output
function that records the output produced in each channel. The weight of a monadic computation
is taken to be the weight of the returned value, unioned with all the channels that anything was
written to. This corresponds to the intuition that a computation which performs I/O on a channel
must possess the capability to do so.

Definition 4.8 (𝑇 is a monad). The unit and multiplication of the monad are defined below. We
check that they are morphisms, and state and verify the monad laws in⁇ in the appendix.

𝜂𝐴 ∶ 𝐴 → 𝑇𝐴 𝜇𝐴 ∶ 𝑇𝑇𝐴 → 𝑇𝐴
𝑎 ↦ (𝑎, 𝜆𝑐.𝜀) ((𝑎, 𝑜1), 𝑜2) ↦ (𝑎, 𝜆𝑐.𝑜2(𝑐) ∙ 𝑜1(𝑐))

Definition 4.9 (𝑇 is a strong monad). 𝑇 is strong with respect to products, with a natural family of
left and right strengthening maps.

𝜏𝐴,𝐵 ∶ 𝐴 × 𝑇𝐵 → 𝑇(𝐴 × 𝐵) 𝜎𝐴,𝐵 ∶ 𝑇𝐴 × 𝐵 → 𝑇(𝐴 × 𝐵)
(𝑎, (𝑏, 𝑜)) ↦ ((𝑎, 𝑏), 𝑜) ((𝑎, 𝑜), 𝑏) ↦ ((𝑎, 𝑏), 𝑜)

We use this to define the natural map 𝛽𝐴,𝐵, which evaluates a pair of effects, as follows. Notice
that it evaluates the effect on the right before the one on the left; we expandmore on that in⁇ in the
appendix, and verify the appropriate coherences.

𝛽𝐴,𝐵 ∶ 𝑇𝐴 × 𝑇𝐵 → 𝑇(𝐴 × 𝐵)
𝛽𝐴,𝐵 ≔ 𝜏𝑇𝐴,𝐵 ; 𝑇𝜎𝐴,𝐵 ; 𝜇𝐴×𝐵

4.5 Comonad

Tomodel the type constructor, we define an endofunctor□ onC below; it filters out values that
do not possess any capabilities, i.e., values that are safe.

Definition 4.10 (□ ∶ C ⟶ C).
∣□𝐴∣ ≔ { 𝑎 ∈ ∣𝐴∣ ∣ ∀𝐶𝐴, 𝑤𝐴(𝑎, 𝐶𝑎) ⇒ 𝐶𝑎 = ∅ }
𝑤□𝐴 ≔ { (𝑎, ∅) }

On objects, we simply restrict the set to the subset of values that only have the empty set ∅ of
capabilities. □ acts on morphisms by restricting the domain of the function to ∣□𝐴∣. For any weight-
preserving function 𝑓, □(𝑓) is trivially weight-preserving as a function between sets with empty
capabilities.
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1:14 Anon.

This type constructor is especially useful at function type □(𝐴 → 𝐵), since in general the envi-
ronment can hold capabilities, and the □ constructor lets us rule those out. We further claim that □
is an idempotent strong monoidal comonad.

Definition 4.11 (□ is an idempotent comonad). The counit 𝜀 and comultiplication 𝛿 of the comonad
are the natural families of maps given by the inclusion and the identity maps on the underlying set.
𝛿 is a natural isomorphismmaking it idempotent. We state and verify the comonad laws in⁇ in the
appendix.

𝜀𝐴 ∶ □𝐴 → 𝐴 𝛿𝐴 ∶ □𝐴
∼
Ð→ □□𝐴

𝑎 ↦ 𝑎 𝑎 ↦ 𝑎

Definition 4.12 (□ is a strong monoidal functor). The functor is strong monoidal, in that it pre-
serves themonoidal structure of products (and tensors, see the sequel in subsection 4.7).The identity
element is preserved, and we have natural isomorphisms given by pairing on the underlying sets.

𝑚1
∶ 1

∼
Ð→ □1 𝑚×

𝐴,𝐵 ∶ (□𝐴 × □𝐵)
∼
Ð→ □(𝐴 × 𝐵)

∗ ↦ ∗ (𝑎 , 𝑏) ↦ (𝑎 , 𝑏)

𝑚𝐼
∶ 𝐼

∼
Ð→ □𝐼 𝑚⊗

𝐴,𝐵 ∶ (□𝐴 ⊗ □𝐵)
∼
Ð→ □(𝐴 ⊗ 𝐵)

∗ ↦ ∗ (𝑎 , 𝑏) ↦ (𝑎 , 𝑏)

We remark that□ is not a strong comonad, i.e., it does not possess a tensorial strength.Thismakes
it impossible to evaluate an arbitrary function under the comonad, as we saw in section 2. 4

4.6 The Comonad cancels theMonad

Wemake the followingobservation.There is an isomorphismΦ𝐴, natural in𝐴,where thecomonad
□ cancels the monad 𝑇. In programming terms, this says that an effectful computation with no capa-
bilities can perform no effects — i.e., it is safe. Note that this definition works because of the particular
definition of the monad 𝑇 we chose, in which the weight of a computation includes all the channels
it printed on. Consequently a computation of weight zero cannot print on any channel, and so must
be safe! We verify this fact in⁇ in the appendix.

Definition 4.13 (Φ ∶ □𝑇 ⇒ □).

Φ𝐴 ∶ □𝑇𝐴
∼
Ð→ □𝐴

(𝑎, 𝑜) ↦ 𝑎

This property is crucial and we will exploit it to manage our syntax: we use it to justify treating
terms in safe contexts as safe, without needing a second grammar for safe expressions.

4.7 Other remarks

While the monad and comonad, together with the cartesian closed structure, suffice to interpret
our language, it is worth noting that the category C also admits amonoidal closed structure.

4For Haskellers, the □ functor is not a Functor!
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1:15

4.7.1 Monoidal Closed Structure.

Definition 4.14 (Tensor product).
∣𝐴 ⊗ 𝐵∣ ≔ ∣𝐴∣ × ∣𝐵∣
𝑤𝐴⊗𝐵 ≔ { ((𝑎, 𝑏), 𝐶𝑎 ∪ 𝐶𝑏) ∣ 𝐶𝑎 ♯ 𝐶𝑏 ∧ 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝑤𝐵(𝑏, 𝐶𝑏) }

𝐼 ≔ 1

The tensor product is given by pairing, with unit 1, but it only restricts to pairs whose sets of
capabilities are disjoint. However, this tensor product also enjoys a right adjoint.

Definition 4.15 (Linear exponential).
∣𝐴 ⊸ 𝐵∣ ≔ ∣𝐴∣ → ∣𝐵∣

𝑤𝐴⊸𝐵 ≔
⎧
⎪⎪
⎨
⎪⎪
⎩

(𝑓 , 𝐶𝑓)

RRRRRRRRRRRR

∀𝑎, 𝐶𝑎, 𝑤𝐴(𝑎, 𝐶𝑎)∧ 𝐶𝑓 ♯ 𝐶𝑎 ⇒
∃𝐶𝑏 ⊆ 𝐶𝑓 ∪ 𝐶𝑎, 𝑤𝐵(𝑓(𝑎), 𝐶𝑏)

⎫
⎪⎪
⎬
⎪⎪
⎭

The linear exponential works the same way as the exponential, except that we have to restrict it
to satisfy the disjointness condition for the tensor product. We verify that this definition satisfies
the tensor-hom adjunction in⁇ in the appendix.

This supports an interpretation of a linear (actually, affine) type theory. The disjointness condi-
tions in the interpretation of tensor product and linear implication are essentially the same as the
disjointness conditions in the definition of the separating conjunction𝐴 ∗ 𝐵 andmagicwand𝐴 −∗ 𝐵
in separation logic [Reynolds 2002]. In separation logic, capabilities correspond to ownership of par-
ticular memory locations, and in our setting, capabilities correspond to the right to access a channel.

Our model reassuringly suggests that operating systems researchers and program verification
researchers both identified the same notion of capability. However, it seems that the fact that these
are exactly the same idea was overlooked because operating systems researchers focused on the
cartesian closed structure, and semanticists focused on the monoidal closed structure!

4.7.2 Adding other effects. While we used the writer monad for print, we can also define other
interesting monads using the capability space model which can be used to interpret a language with
other effects. For example, we show how to define an exceptionmonadwhich allows raising a single
exception, and a state monad with a global heap, in⁇⁇ in the appendix. For each of these monads,
weneed to choose a suitableweight assignment, all ofwhich can be cancelled by our safety comonad!

5 INTERPRETATION

We now interpret the syntax of our language. We adopt some standard notation to work with our
categorical combinators. 5 The sequential composition of two arrows, in the diagrammatic order, is
𝑓 ; 𝑔. The product of morphisms 𝑓 and 𝑔 is ⟨𝑓 , 𝑔⟩ (also called a fork operation in the algebra of pro-
gramming community [Gibbons 2000]), and [𝑓 × 𝑔] is parallel composition with products. We define
these using the universal property of products and composition (as shown in⁇ in the appendix).

5.1 Types and Contexts
We interpret types as objects in C, as shown in figure 8a. Note that we use the monad in the inter-
pretation of functions, following the call-by-value computational lambda-calculus interpretation
in [Moggi 1989]. We use the comonad to interpret the modality. We use the particular objects Σ∗
and C to interpret strings and capabilities respectively.

5We sometimes drop the denotation symbol for brevity, i.e., we write !Γ instead of !JΓ K, or 𝛿Γs instead of 𝛿JΓs K.
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1:16 Anon.

JunitK ≔ 1 J𝐴 × 𝐵K ≔ J𝐴K × J𝐵K
JstrK ≔ Σ∗ J𝐴 ⇒ 𝐵K ≔ J𝐴K → 𝑇J𝐵K

JcapK ≔ C J 𝐴K ≔ □J𝐴K

(a) J𝐴K ∶ ObjC

J ·K ≔ 1
JΓ, 𝑥 ∶ 𝐴s K ≔ JΓK × □J𝐴K
JΓ, 𝑥 ∶ 𝐴i K ≔ JΓK × J𝐴K

(b) JΓK ∶ ObjC

Fig. 8. Interpretation of types and contexts

We interpret contexts as finite products of objects, in figure 8b.The comonad is used to interpret
the safe variables in the context, while the impure variables are just arbitrary objects in C.

The judgement 𝑥 ∶ 𝐴𝑞 ∈ Γ is interpreted as a morphism in HomC (JΓK , J𝐴K), which we give
later in figure 11a. It projects out the appropriately typed and annotated variable from the product
in the context. For safe variables, we need to use the counit 𝜀 to get out of the comonad. 6

5.2 Expressions
Wenowgive an interpretation for expressions Γ ⊢ 𝑒 ∶ 𝐴, and safe expressions Γ ⊢s 𝑒 ∶ 𝐴 , in figure 9.

To interpret unitI, we use the terminal map ! to simply get to the terminal object 1, then lift it into
the monad using 𝜂, without performing any effects.

For pair introduction ×I, we evaluate both components of the pair, and compose, then use the
strength of the monad 𝑇 with the 𝛽 combinator to form the product. 7

Weeliminate products using the×E1 and×E2 rules.These are interpreted using the corresponding
product projection maps, under the functorial action of 𝑇.

Variables are introduced using the Var rule, which is interpreted by looking up in the context, for
which we use the interpretation of our context membership judgement.This is followed by a trivial
lifting into the monad.

To interpret functions using the ⇒ I rule, we simply use the currying map, since our context
extension is interpreted as a product.Then we lift it into the monad using 𝜂.

To eliminate functions using the⇒ E rule, we evaluate the operator and operand in an application,
followed by a use of the monad strength 𝛽 to turn it into a pair. Then we use the evaluation map
under the functor 𝑇 to apply the argument. Since the function is effectful, we have to collapse the
effects using a 𝜇.

To interpret the I rule, we need to interpret the safe judgement (defined later), which gives a
value of type □𝐴, and then we lift it into the monad.

To eliminate a box-ed value using the E rule, we first evaluate 𝑓, which gives a value of type
□𝐴, but under the monad 𝑇. We can use it to introduce a safe variable in the context, but we use the
strength of the monad to shift the product under the 𝑇 and get an extended context. We evaluate 𝑔
under this extended context, and then use a 𝜇 to collapse the effects.

Finally, to interpret the Print rule, we need to perform a non-trivial effect.We define the function
𝑝 which builds an output function that records the output on channels. Given any channel 𝑐 and
string 𝑠, it returns a value of type 𝑇1 containing the trivial value ∗ ; the output function instantiates

6When interpreting judgements and inference rules, wewrite J
𝒥1…𝒥𝑛

𝒥
K tomean the interpretation of𝒥, i.e., we recursively

define J𝒥K under the assumption that we have an interpretation for 𝒥𝑖, i.e., J𝒥1 K, …, J𝒥𝑛 K.
7The vigilant reader will have noticed that 𝛽 evaluates the pair from right to left, so the action on the right will be performed
first, like OCaml!This is also useful when interpreting function application, because we evaluate the argument first.
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1:17

J
Γ ⊢ () ∶ unit

K ≔ !Γ ; 𝜂1 J
Γ ⊢ 𝑠 ∶ str

K ≔ !Γ ; ⌜𝑠⌝ ; 𝜂Σ∗

J
Γ ⊢ 𝑒1 ∶ 𝐴 Γ ⊢ 𝑒2 ∶ 𝐵

Γ ⊢ (𝑒1 , 𝑒2) ∶ 𝐴 × 𝐵
K ≔

𝑙𝑒𝑡
⎧
⎪⎪
⎨
⎪⎪
⎩

𝑓 ≔ JΓ ⊢ 𝑒1 ∶ 𝐴K
𝑔 ≔ JΓ ⊢ 𝑒2 ∶ 𝐵K

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴,𝐵

J
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑒 ∶ 𝐴

K ≔ JΓ ⊢ 𝑒 ∶ 𝐴 × 𝐵K ; 𝑇𝜋1 J
Γ ⊢ 𝑒 ∶ 𝐴 × 𝐵
Γ ⊢ snd 𝑒 ∶ 𝐵

K ≔ JΓ ⊢ 𝑒 ∶ 𝐴 × 𝐵K ; 𝑇𝜋2

J
𝑥 ∶ 𝐴𝑞 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

K ≔ J 𝑥 ∶ 𝐴𝑞 ∈ ΓK ; 𝜂𝐴

J
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵
K ≔ curry (JΓ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵K) ; 𝜂𝐴→𝑇𝐵

J
Γ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴

Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵
K ≔

𝑙𝑒𝑡
⎧
⎪⎪
⎨
⎪⎪
⎩

𝑓 ≔ JΓ ⊢ 𝑒1 ∶ 𝐴 ⇒ 𝐵K
𝑔 ≔ JΓ ⊢ 𝑒2 ∶ 𝐴K

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴→𝑇𝐵,𝐴 ; 𝑇 ev𝐴,𝑇𝐵 ; 𝜇𝐵

J
Γ ⊢ 𝑒1 ∶ cap Γ ⊢ 𝑒2 ∶ str

Γ ⊢ 𝑒1 .print(𝑒2) ∶ unit
K ≔

𝑙𝑒𝑡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑓 ≔ JΓ ⊢ 𝑒1 ∶ capK
𝑔 ≔ JΓ ⊢ 𝑒2 ∶ strK
𝑝 ∶ C × Σ∗ → 𝑇1

(𝑐, 𝑠) ↦
⎛

⎜

⎝

∗ , 𝜆𝑐′.
⎧
⎪⎪
⎨
⎪⎪
⎩

𝑠 if 𝑐 = 𝑐′

𝜀 otherwise

⎞

⎟

⎠

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽C,Σ∗ ; 𝑇𝑝 ; 𝜇1

J
Γ ⊢s 𝑒 ∶ 𝐴

Γ ⊢ box 𝑒 ∶ 𝐴
K ≔ J Γ ⊢s 𝑒 ∶ 𝐴 K𝑝 ; 𝜂□𝐴

J
Γs ⊢ 𝑒 ∶ 𝐴
Γ ⊢s 𝑒 ∶ 𝐴

K𝑝 ≔ ρ(Γ) ; M(Γ) ; □JΓs ⊢ 𝑒 ∶ 𝐴K ; Φ𝐴

J
Γ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵

Γ ⊢ let box 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵
K ≔

𝑙𝑒𝑡
⎧
⎪⎪
⎨
⎪⎪
⎩

𝑓 ≔ JΓ ⊢ 𝑒1 ∶ 𝐴K
𝑔 ≔ JΓ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵K

𝑖𝑛 ⟨𝑖𝑑Γ , 𝑓⟩ ; 𝜏Γ,□𝐴 ; 𝑇𝑔 ; 𝜇𝐵

Fig.9. Interpretationofexpressions, JΓ ⊢ 𝑒 ∶ 𝐴K ∶ HomC (JΓK , 𝑇J𝐴K), J Γ ⊢s 𝑒 ∶ 𝐴 K𝑝 ∶ HomC (JΓK , □J𝐴K)

a channel 𝑐′ and tests equality with 𝑐 – if it equals 𝑐, we record the string 𝑠, otherwise we just choose
the empty string 𝜀. We interpret the arguments of print and apply them to 𝑝 to evaluate it. 8 The rest
of the interpretation is similar to the one for ⇒ E, with output type 1.

We used a different interpretation function for safe expressions, which we define below.
We need to interpret the purify operation s on contexts, for which we define the map ρ(Γ) in fig-

ure 10a. We also need another combinator M(Γ), defined in figure 10b, which uses the monoidal
action and the idempotence of the comonad □ to distribute the □ over the products in Γ. Note that
M(Γ) is an isomorphism because 𝑚 and 𝛿 are.
8
⌜𝑠⌝ ∶ HomC (1 , Σ∗) is the global element that picks the literal 𝑠 in Σ∗.
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1:18 Anon.

ρ(·) ≔ 𝑖𝑑1
ρ(Γ, 𝑥 ∶ 𝐴s

) ≔ [ρ(Γ) × 𝑖𝑑□𝐴]

ρ(Γ, 𝑥 ∶ 𝐴i
) ≔ 𝜋1 ; ρ(Γ)

(a) ρ(Γ) ∶ HomC (JΓK , JΓs K)

M(·) ≔ 𝑖𝑑1
M(Γ, 𝑥 ∶ 𝐴s

) ≔ [M(Γ) × 𝛿𝐴] ; 𝑚×
Γs,□𝐴

M(Γ, 𝑥 ∶ 𝐴i
) ≔ M(Γ)

(b) M(Γ) ∶ HomC (JΓs K , □JΓs K)

Fig. 10. ρ(Γ) and M(Γ)

J
𝑥 ∶ 𝐴i ∈ (Γ, 𝑥 ∶ 𝐴i

)

K ≔ 𝜋2

J
𝑥 ∶ 𝐴s ∈ (Γ, 𝑥 ∶ 𝐴s

)

K ≔ 𝜋2 ; 𝜀𝐴

J
𝑥 ∶ 𝐴𝑞 ∈ Γ (𝑥 ≠ 𝑦)

𝑥 ∶ 𝐴𝑞 ∈ (Γ, 𝑦 ∶ 𝐵𝑟
)

K ≔ 𝜋1 ; J 𝑥 ∶ 𝐴𝑞 ∈ ΓK

(a) J 𝑥 ∶ 𝐴𝑞 ∈ ΓK ∶ HomC (JΓK , J𝐴K)

J
· ⊇ ·

K ≔ 𝑖𝑑1

J
Γ ⊇ Δ

Γ, 𝑥 ∶ 𝐴𝑞 ⊇ Δ
K ≔ 𝜋1 ; JΓ ⊇ ΔK

J
Γ ⊇ Δ

Γ, 𝑥 ∶ 𝐴s ⊇ Δ, 𝑥 ∶ 𝐴s K ≔ [JΓ ⊇ ΔK × 𝑖𝑑□𝐴]

J
Γ ⊇ Δ

Γ, 𝑥 ∶ 𝐴i ⊇ Δ, 𝑥 ∶ 𝐴i
K ≔ [JΓ ⊇ ΔK × 𝑖𝑑𝐴]

(b) Wk(Γ ⊇ Δ) ≔ JΓ ⊇ ΔK ∶ HomC (JΓK , JΔK)

Fig. 11. Interpretation of Membership andWeakening

Now, the interpretation function for safe expressions Γ ⊢s 𝑒 ∶ 𝐴 uses the ctx-safe rule, and is
defined as a morphism in HomC ( JΓK , □J𝐴K ). We purify the context to a safe one, so that we
can evaluate the expression. However, we need a value in □𝐴, but the expression interpretation
would produce something in 𝑇𝐴. Now, we can only cancel the monad under the comonad, so we
use the M(Γ)map which uses the idempotence of □ to do a readjustment. We can now evaluate
the expression under the □ in the safe context, which gives a monadic value of type 𝑇𝐴 under the
comonad □. We can finally use Φ to cancel the monad 𝑇 under the □.

5.3 Weakening and Substitution
We now give semantics for the syntactic weakening and substitution operations.

5.3.1 Weakening. ForcontextsΓandΔ,we interpret theweakening judgementΓ ⊇ Δasamorphism
in HomC (JΓK , JΔK), as shown in figure 11b. We also refer to it as the weakening mapWk(Γ ⊇ Δ).
We prove a semantic weakening lemma, analogous to the syntactic weakening lemma 3.1.

Lemma 5.1 Semantic weakening. If Γ ⊇ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then
JΓ ⊢ 𝑒 ∶ 𝐴K =Wk(Γ ⊇ Δ) ; JΔ ⊢ 𝑒 ∶ 𝐴K.

5.3.2 Substitution. Wenow interpret a substitution Γ ⊢ 𝜃 ∶ Δ as amorphism in HomC (JΓK , JΔK),
as shown in figure 12b. However, this is not a trivial iteration of the expression interpretation.The
reason is that the interpretation of contexts in figure 8b interprets a variable 𝑥 ∶ 𝐴i in the context
as an element of the type J𝐴K, and a variable 𝑥 ∶ 𝐴s as an element of the type □J𝐴K. However, an
expression Γ ⊢ 𝑒 ∶ 𝐴 will be interpreted as a morphism in HomC ( JΓK , 𝑇J𝐴K ). Operationally,
we resolve this mismatch by only substituting values for variables in call-by-value languages, and
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J
Γ ⊢ () ∶ unit

K𝑣 ≔ !Γ

J
Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵

Γ ⊢ (𝑣1 , 𝑣2) ∶ 𝐴 × 𝐵
K𝑣 ≔ ⟨JΓ ⊢ 𝑣1 ∶ 𝐴K𝑣 , JΓ ⊢ 𝑣2 ∶ 𝐵K𝑣⟩

J
𝑥 ∶ 𝐴𝑞 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

K𝑣 ≔ J 𝑥 ∶ 𝐴𝑞 ∈ ΓK

J
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵
K𝑣 ≔ curry (JΓ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵K)

J
Γ ⊢s 𝑒 ∶ 𝐴

Γ ⊢ box 𝑒 ∶ 𝐴
K𝑣 ≔ J Γ ⊢s 𝑒 ∶ 𝐴 K𝑝

(a) JΓ ⊢ 𝑣 ∶ 𝐴K𝑣 ∶ HomC (JΓK , J𝐴K)

J
Γ ⊢ ⟨⟩ ∶ ·

K ≔ !Γ

J
Γ ⊢ 𝜃 ∶ Δ Γ ⊢s 𝑒 ∶ 𝐴
Γ ⊢ ⟨𝜃, 𝑒s/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴s K ≔ ⟨JΓ ⊢ 𝜃 ∶ ΔK , J Γ ⊢s 𝑒 ∶ 𝐴 K𝑝⟩

J
Γ ⊢ 𝜃 ∶ Δ Γ ⊢ 𝑣 ∶ 𝐴

Γ ⊢ ⟨𝜃, 𝑣i/𝑥⟩ ∶ Δ, 𝑥 ∶ 𝐴i
K ≔ ⟨JΓ ⊢ 𝜃 ∶ ΔK , JΓ ⊢ 𝑣 ∶ 𝐴K𝑣⟩

(b) JΓ ⊢ 𝜃 ∶ ΔK ∶ HomC (JΓK , JΔK)

Fig. 12. Interpretation of values and substitution

indeed, our definition of substitutions in figure 5c restricts the definition of substitution to range
over values in the rule sub-impure.

Therefore, we mimic this syntactic restriction in the semantics, by giving a separate interpreta-
tion only for values, interpreting the judgement Γ ⊢ 𝑣 ∶ 𝐴 as a morphism in HomC ( JΓK , J𝐴K),
in figure 12a. Note in particular that the value interpretation yields an element of J𝐴K, as the context
interpretation requires, rather than an element of 𝑇J𝐴K. This value interpretation makes use of the
expression interpretation in the interpretation of 𝜆-expressions, but the expression relation does
not directly refer to the value interpretation.There are alternative presentations such as fine-grain
call-by-value [Levy et al. 2003],which have a separate syntactic class of values and value judgements,
and hence make the value and expression interpretations mutually recursive. However, we choose
not to do that in order to remain close to the usual presentation.

Note that box 𝑒 expressions are also values, and our safe interpretation does the right thing for
box values, since the interpretation of 𝐴 uses the comonad, □J𝐴K. With the interpretation of
values in hand, we can define the substitution interpretation as follows.

We use the safe expression interpretation to interpret the sub-safe rule, and the impure value
interpretation for the sub-impure rule.

Finally, we prove the semantic analogue of the syntactic substitution theorem 3.4. We prove two
auxiliary lemmas 5.2 and 5.3, characterising the expression interpretation of safe expressions and
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1:20 Anon.

C ∶∶= [·] ∣ 𝑒 C ∣ C 𝑒 ∣ 𝜆𝑥 ∶ 𝐴. C
∣ fst C ∣ snd C ∣ (𝑒 , C) ∣ (C , 𝑒)
∣ box C ∣ let box 𝑥 = C in 𝑒 ∣ let box 𝑥 = 𝑒 in C

E ∶∶= [·] ∣ 𝑒 E ∣ E 𝑣
∣ fst E ∣ snd E ∣ (𝑒 , E) ∣ (E , 𝑣)
∣ let box 𝑥 = E in 𝑒 ∣ let box 𝑥 = 𝑣 in E

Fig. 13. Grammar extended with Evaluation Contexts

impure values. The lemmas show that the interpretation for each ends in a trivial lifting into the
monad 𝑇 using 𝜂. This makes the proof of the semantic substitution theorem 5.4 possible.

Lemma 5.2 Safe interpretation. If Γ ⊢s 𝑒 ∶ 𝐴 , then
JΓ ⊢ 𝑒 ∶ 𝐴K = J Γ ⊢s 𝑒 ∶ 𝐴 K𝑝 ; 𝜀𝐴 ; 𝜂𝐴.

Lemma 5.3 Value interpretation. If Γ ⊢ 𝑣 ∶ 𝐴, then
JΓ ⊢ 𝑣 ∶ 𝐴K = JΓ ⊢ 𝑣 ∶ 𝐴K𝑣 ; 𝜂𝐴.

Theorem 5.4 Semantic substitution. If Γ ⊢ 𝜃 ∶ Δ and Δ ⊢ 𝑒 ∶ 𝐴, then
JΓ ⊢ 𝜃(𝑒) ∶ 𝐴K = JΓ ⊢ 𝜃 ∶ ΔK ; JΔ ⊢ 𝑒 ∶ 𝐴K.

6 EQUATIONAL THEORY

We have an extension of the call-by-value simply-typed lambda calculus, so we want the usual
𝛽𝜂-equations to hold in our theory. However, we also added new expression forms for the type.
We want computation and extensionality rules for the box form and the let box binding form. To
handle the commuting conversions [Girard et al. 1989], we use evaluation contexts.

We extend our grammar with two kinds of evaluation contexts — a safe evaluation context C, and
an impure evaluation context E , as shown in figure 13.The intuition is that E allows safe reductions
for impure expressions, i.e., it picks out the contexts consistent with the evaluation order of the
call-by-value simply-typed lambda calculus.The safe evaluation context C allows redexes in every
sub-expression; but it is restricted only to safe expressions. The hole [·] is the empty evaluation
context.We use the notation C⟪𝑒⟫ or E⟪𝑒⟫ to indicate that we’re replacing the hole in the respective
evaluation context with 𝑒.

We define a judgement form for equality of terms, as shown in figure 2c, and state the rules for
the equational theory in figures 14 and 15.We have the usual refl, sym, and trans rules which give
the reflexive, symmetric, and transitive closure, so that the equality relation is an equivalence, and
the cong rules for each term former, which make the relation a congruence closure.

We have the computation rules ×1𝛽 and ×2𝛽 for pairs; we only allow values for these rules.The
×𝜂 rule is the extensionality rule for pairs, but again, restricted to values.

The ⇒ 𝛽 rule is the usual call-by-value computation rule for an application of a 𝜆-expression to
an argument. 9 Since the calculus has effects, we only allow the operand to be a value. For example,
consider the function 𝑓 ≔ 𝜆𝑥 ∶ unit. 𝑥 ; 𝑥. We can safely 𝛽-reduce 𝑓 () to () ; (), but allowing a
𝛽-reduction for 𝑓 (𝑐 .print(𝑠))would duplicate the effect!

We add 𝜂 rules for functions, but we need to be careful because we have effects. For example,
consider the expression 𝑓 ≔ 𝑐.print(𝑠) ; 𝜆𝑥. 𝑥. On 𝜂-expansion, we get 𝑔 ≔ 𝜆𝑦. 𝑓 𝑦, but now the
9The notation [𝑣/𝑥]𝑒 is shorthand for ⟨⟨Γ⟩, 𝑣i

/𝑥⟩(𝑒)where ⟨Γ⟩ is the identity substitution Γ ⊢ ⟨Γ⟩ ∶ Γ.
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1:21

Γ ⊢ 𝑒 ∶ 𝐴
Γ ⊢ 𝑒 ≈ 𝑒 ∶ 𝐴

refl
Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴
Γ ⊢ 𝑒2 ≈ 𝑒1 ∶ 𝐴

sym
Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢ 𝑒2 ≈ 𝑒3 ∶ 𝐴

Γ ⊢ 𝑒1 ≈ 𝑒3 ∶ 𝐴
trans

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 × 𝐵
Γ ⊢ fst 𝑒1 ≈ fst 𝑒2 ∶ 𝐴

fst -cong
Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 × 𝐵

Γ ⊢ snd 𝑒1 ≈ snd 𝑒2 ∶ 𝐵
snd -cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐵
Γ ⊢ (𝑒1 , 𝑒3)≈ (𝑒2 , 𝑒4) ∶ 𝐴 × 𝐵

pair-cong
Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒1 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒2 ∶ 𝐴 ⇒ 𝐵
𝜆-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐴
Γ ⊢ 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 ∶ 𝐵

app-cong
Γs ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴

Γ ⊢ box 𝑒1 ≈ box 𝑒2 ∶ 𝐴
box-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒3 ≈ 𝑒4 ∶ 𝐵
Γ ⊢ (let box 𝑥 = 𝑒1 in 𝑒3)≈ (let box 𝑥 = 𝑒2 in 𝑒4) ∶ 𝐵

let box-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ cap Γ ⊢ 𝑒3 ≈ 𝑒4 ∶ str

Γ ⊢ 𝑒1 .print(𝑒3)≈ 𝑒2 .print(𝑒4) ∶ unit
print-cong

Fig. 14. Equivalence and Congruence rules for the Equational Theory

print operation is suspended in the closure, and doesn’t evaluate when we apply 𝑔. Hence, we add
two forms of 𝜂 rules for functions — the ⇒ 𝜂-impure rule only allows 𝜂-expansion for values, and
the ⇒ 𝜂-safe rule allows 𝜂-expansion also for expressions that are safe.

The computation rule 𝛽 for the type allows computation under the let box binder. If we bind
a box-ed expression under the let box binder, we can substitute the underlying expression in the
motive.This is safe because 𝑒1 is forced to be a safe expression.

Finally, we have the 𝜂 expansion rules for the type, which pushes an expression in an evalua-
tion context under a let box binder.The 𝜂−𝑠𝑎𝑓 𝑒 rule uses the safe evaluation context C, while the

𝜂−𝑖𝑚𝑝𝑢𝑟𝑒 rule uses the impure evaluation context E . The only difference in the rules is that the
C evaluation context can be plugged with safe expressions only.

We prove that our equality rules are sound with respect to our categorical semantics. If two
expressions are equal in the equational theory, they have equal interpretations in the semantics.

Theorem 6.1 Soundness of ≈. If Γ ⊢ 𝑒1 ≈ 𝑒2 ∶ 𝐴, then JΓ ⊢ 𝑒1 ∶ 𝐴K = JΓ ⊢ 𝑒2 ∶ 𝐴K.

7 EMBEDDING

Our language is an extension of the call-by-value simply-typed lambda calculus. But how could
we claim that it is really an extension? In this section, we show that we can embed the simply-typed
lambda calculus into our calculus, in an equation preserving way. We state the full simply-typed
lambda calculus including its 𝛽𝜂-equational theory in figure 16.

We give the grammar and judgements in figures 16a and 16b, typing rules in figure 16c, and the
𝛽𝜂-equational theory in figure 16d. Note that we choose to use the base type unit, and we leave out
products because their embedding is trivial and uninteresting for our purpose.
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1:22 Anon.

Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵
Γ ⊢ fst (𝑣1 , 𝑣2)≈ 𝑣1 ∶ 𝐴

×1𝛽
Γ ⊢ 𝑣1 ∶ 𝐴 Γ ⊢ 𝑣2 ∶ 𝐵
Γ ⊢ snd (𝑣1 , 𝑣2)≈ 𝑣2 ∶ 𝐵

×2𝛽

Γ ⊢ 𝑣 ∶ 𝐴 × 𝐵
Γ ⊢ 𝑣 ≈ (fst 𝑣 , snd 𝑣) ∶ 𝐴 × 𝐵

×𝜂

Γ, 𝑥 ∶ 𝐴i ⊢ 𝑒 ∶ 𝐵 Γ ⊢ 𝑣 ∶ 𝐴
Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑒) 𝑣 ≈ [𝑣/𝑥]𝑒 ∶ 𝐵

⇒ 𝛽

Γ ⊢ 𝑣 ∶ 𝐴 ⇒ 𝐵
Γ ⊢ 𝑣 ≈ 𝜆𝑥 ∶ 𝐴. 𝑣 𝑥 ∶ 𝐴 ⇒ 𝐵

⇒ 𝜂-impure
Γ ⊢s 𝑒 ∶ 𝐴 ⇒ 𝐵

Γ ⊢ 𝑒 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒 𝑥 ∶ 𝐴 ⇒ 𝐵
⇒ 𝜂-safe

Γs ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴s ⊢ 𝑒2 ∶ 𝐵
Γ ⊢ let box 𝑥 = box 𝑒1 in 𝑒2 ≈ [𝑒1/𝑥]𝑒2 ∶ 𝐵

𝛽

Γ ⊢s 𝑒 ∶ 𝐴 Γ ⊢ C⟪𝑒⟫ ∶ 𝐵 Γ ⊢ let box 𝑥 = 𝑒 in C⟪box 𝑥 ⟫ ∶ 𝐵
Γ ⊢ C⟪𝑒⟫ ≈ let box 𝑥 = 𝑒 in C⟪box 𝑥 ⟫ ∶ 𝐵

𝜂-safe

Γ ⊢ 𝑒 ∶ 𝐴 Γ ⊢ E⟪𝑒⟫ ∶ 𝐵 Γ ⊢ let box 𝑥 = 𝑒 in E⟪box 𝑥 ⟫ ∶ 𝐵
Γ ⊢ E⟪𝑒⟫ ≈ let box 𝑥 = 𝑒 in E⟪box 𝑥 ⟫ ∶ 𝐵

𝜂-impure

Fig. 15. Equational Theory

We define an embedding function from the simply-typed lambda calculus to our calculus. We use
the notation 𝑋

´¶

to denote the embedding of a syntactic object 𝑋 from STLC into our calculus. We

give the syntactic translation of types, contexts, and raw terms in figure 17.
To embed the function type, we embed the domain and codomain, but we apply our comonadic

type constructor to restrict the domain to a safe type. This embedding is quite like the Gödel-
McKinsey-Tarski embedding of the intuitionistic propositional calculus into classical S4modal logic,
as outlined in [McKinsey andTarski 1948], butwe donot need to apply the type constructor on the
codomain, because our functions are capability-safe.We remark that this is similar to the embedding
of lax logic into S4 modal logic described in [Pfenning and Davies 2001], as well as the embedding
of intuitionistic logic into linear logic [Girard 1987].

When embedding contexts, we mark the variables as safe using the s annotation. To embed
functions and applications, we need to use the introduction and elimination forms for . When
embedding a 𝜆-expression, the bound variable is embedded as a term of type, so we eliminate
the underlying variable using the let box binding form before using it in the body. To embed an
application, we simply put the argument in a box.

We show that this translation preserves typing, i.e., well-typed expressions embed to well-typed
expressions. Then, we show that the 𝛽𝜂-equational theory of the pure call-by-value simply-typed
lambda calculus is preserved under the translation. If two expressions are equal in the simply-typed
lambda calculus, they remain equal after embedding into our imperative calculus.
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1:23

Types 𝐴, 𝐵 ∶∶= unit ∣ 𝐴 ⇒ 𝐵
Terms 𝑒 ∶∶= () ∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒 ∣ 𝑒1 𝑒2
Values 𝑣 ∶∶= () ∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝐴. 𝑒
Contexts Γ, Δ, Ψ ∶∶= · ∣ Γ, 𝑥 ∶ 𝐴

(a) Grammar for STLC

𝑥 ∶ 𝐴 ∈ Γ 𝑥 is a variable of type 𝐴 in context Γ
Γ ⊢𝜆 𝑒 ∶ 𝐴 𝑒 is an expression of type 𝐴 in context Γ

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 𝑒1 and 𝑒2 are equal expressions of type 𝐴 in context Γ

(b) Judgements for STLC

Γ ⊢𝜆 () ∶ unit
unitI

𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢𝜆 𝑥 ∶ 𝐴

Var

Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒 ∶ 𝐵
Γ ⊢𝜆 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 ⇒ 𝐵

⇒I
Γ ⊢𝜆 𝑒1 ∶ 𝐴 ⇒ 𝐵 Γ ⊢𝜆 𝑒2 ∶ 𝐴

Γ ⊢𝜆 𝑒1 𝑒2 ∶ 𝐵
⇒E

(c) Typing rules for STLC

Γ ⊢𝜆 𝑒 ∶ 𝐴
Γ ⊢𝜆 𝑒 ≈ 𝑒 ∶ 𝐴

refl
Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴
Γ ⊢𝜆 𝑒2 ≈ 𝑒1 ∶ 𝐴

sym

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 Γ ⊢𝜆 𝑒2 ≈ 𝑒3 ∶ 𝐴
Γ ⊢𝜆 𝑒1 ≈ 𝑒3 ∶ 𝐴

trans
Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐵

Γ ⊢𝜆 𝜆𝑥 ∶ 𝐴. 𝑒1 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒2 ∶ 𝐴 ⇒ 𝐵
𝜆-cong

Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴 ⇒ 𝐵 Γ ⊢𝜆 𝑒3 ≈ 𝑒4 ∶ 𝐴
Γ ⊢𝜆 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 ∶ 𝐵

app-cong

Γ, 𝑥 ∶ 𝐴 ⊢𝜆 𝑒1 ∶ 𝐵 Γ ⊢𝜆 𝑒2 ∶ 𝐴
Γ ⊢𝜆 (𝜆𝑥 ∶ 𝐴. 𝑒1) 𝑒2 ≈ [𝑒2/𝑥]𝑒1 ∶ 𝐵

⇒ 𝛽
Γ ⊢𝜆 𝑒 ∶ 𝐴 ⇒ 𝐵

Γ ⊢𝜆 𝑒 ≈ 𝜆𝑥 ∶ 𝐴. 𝑒 𝑥 ∶ 𝐴 ⇒ 𝐵
⇒ 𝜂

(d) Equational Theory for STLC

Fig. 16. The pure call-by-value simply-typed lambda calculus

Types unit
´¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¶

≔ unit

𝐴 ⇒ 𝐵
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≔ 𝐴
´¶

⇒ 𝐵
´¶

Contexts ·
´¶

≔ ·

Γ, 𝑥 ∶ 𝐴
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≔ Γ
´¶

, 𝑥 ∶ 𝐴
´¶

s

Terms ()

´¶

≔ ()

𝑥
´¶

≔ 𝑥

𝜆𝑥 ∶ 𝐴. 𝑒
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≔ 𝜆𝑧 ∶ 𝐴
´¶

. let box 𝑥 = 𝑧 in 𝑒
´¶

𝑒1 𝑒2
´¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¶

≔ 𝑒1
´¶

box 𝑒2
´¶

Fig. 17. Embedding STLC
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Theorem 7.1 Preservation of typing. If Γ ⊢𝜆 𝑒 ∶ 𝐴, then Γ
´¶

⊢ 𝑒
´¶

∶ 𝐴
´¶

.

Theorem 7.2 Preservation of eqality. If Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴, then Γ
´¶

⊢ 𝑒1
´¶

≈ 𝑒2
´¶

∶ 𝐴
´¶

.

Finally, we show that our imperative calculus is a conservative extension of the simply-typed
lambda calculus. To do so, we claim that if two embedded terms are equal in the extended theory,
then they must have been equal in the smaller theory.This shows that the equational theory of the
imperative calculus does not introduce any extra equations that would destroy the computational
properties of the pure simply-typed lambda calculus.

Theorem 7.3 Conservative Extension. IfΓ ⊢𝜆 𝑒1 ∶ 𝐴,Γ ⊢𝜆 𝑒2 ∶ 𝐴, and Γ
´¶

⊢ 𝑒1
´¶

≈ 𝑒2
´¶

∶ 𝐴
´¶

,

then Γ ⊢𝜆 𝑒1 ≈ 𝑒2 ∶ 𝐴.

8 DISCUSSIONAND FUTUREWORK

There has been a vast amount of work on integrating effects into purely functional languages.
Ironically though, even the very definition of what a purely functional language is has historically
been a contested one. Sabry [1998] proposed that a functional language is pure when its behaviour
under different evaluation strategies is “morally” the same, in the sense of Danielsson et al. [2006].
That is, if changing the evaluation strategy fromcall-by-value to (say) call-by-need couldonly change
the divergence/error behaviour of programs in a language, then the language is pure. In contrast,
the definition we use in this paper is less sophisticated: we take purity to be the preservation of the
𝛽𝜂 equational theory of the simply-typed lambda calculus. However, it lets us prove the correctness
of our embedding in an appealingly simple way, by translating derivations of equality.

Theuseof substructural typesystems tocontrol access tomutabledata is alsoa long-running theme
in the development of programming languages. It is so long-running, in fact, that it actually predates
linear logic [Girard 1987] by nearly a decade! Reynolds’ Syntactic Control of Interference [Reynolds
1978] proposed using a substructural type discipline to prevent aliased access to data structures.
The intuition that substructural logic corresponds to ownership of capabilities is also a very old one
– O’Hearn [1993] uses it to explain his model of SCI, and Crary et al. [1999] compare their static
capabilities to the capabilities in the HYDRA system ofWulf et al. [1974].

However, these comparisons remained informal, due to the fact that semanticists tended to use
capabilities in a substructural fashion (e.g., see [Crary et al. 1999; Terauchi and Aiken 2006]), but
from the very outset ([Dennis and Horn 1966]) to modern day applications like capability-safe
Javascript [Maffeis et al. 2010], systems designers have tended to use capabilities non-linearly. In
particular, they thought it was desirable for a principal to hand a capability to two different deputies,
which is a design principle obviously incompatible with linearity.

The idea that the linear implication and intuitionistic implication could coexist, without one re-
ducing to the other, first arose in the logic of bunched implications [O’Hearn and Pym 1999]. This
led to separation logic [Reynolds 2002], which has been very successful at verifying programs with
aliasable state. However, even though the semantics of separation logic supports BI, the bulk of the
tooling infrastructure for separation logic (such as Smallfoot [Berdine et al. 2006]) have focused on
the substructural fragment, often even omitting anything not in the linear fragment.

However, one observation very important to our work did arise from work on separation logic.
Dodds et al. [2009] made the critical observation that in addition to being able to assert ownership, it
is extremely useful to be able to deny the ownership of a capability. Basically, knowing that a client
program lacks any capabilities can make it safe to invoke it in a secure context.
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The comonadic structure behind denial was also known informally: it arises in the work of Mor-
risett et al. [2005], where the exponential comonad in linear logic is modelled as the lack of any heap
ownership; and in an intuitionistic context, the work on functional reactive programming [Krish-
naswami 2013] used a capability to create temporal values, and a comonad denying ownership of it
permittedwriting space-leak-free reactiveprograms.However, bothof thesepapersusedoperational
unary logical relations models, and so did not prove anything about the equational theory.

Equational theories are easier to get with denotational models, and our model derives from the
work ofHofmann [2003]. In hiswork, he developed a denotationalmodel of space-bounded computa-
tion, by taking a naive set-theoretic semantics, and then augmenting it with intensional information.
His sets were augmented with a length function saying how much memory each value used, and
in ours, we use a weight function saying howmany capabilities each value holds. (In fact, he even
notes that his category also forms a model of bunched implications!) We think his approach has a
high power-to-weight ratio, and hope we have shown that it has broad applicability as well.

However, this semantics is certainly not the last word: e.g., the semantics in this paper does not
model the allocation of new capabilities as a program executes. In the categorical semantics of
bunched logics, it is common to use functor categories, such as functors from the category of finite
sets and injections I , to Set, or presheaves over some other monoidal category. The functor cate-
gory forms a model of BI, inheriting the cartesian closed structure where the limits are computed
Kripke-style in Set, and also amonoidal closed structure using the tensor product from themonoidal
category and Day convolution. In addition, the ability to move to a bigger set permits modelling
allocation of new names and channels (e.g., as is done in models of the 𝜈-calculus [Stark 1996]).

Another natural question is how we might handle recursion, as our explicit description of the
category of capability spaces C in section 4 seems quite tied to Set. By replaying this in a category
like CPO rather than Set, we may be able to derive a domain-theoretic analogue of capability spaces.

Another direction for future work lies in the observation that our □ comonad in subsection 4.5
takes away all capabilities, yielding a systemwith a syntax like that of Pfenning and Davies [2001]
with an interpretation close to the axiomatic categorical semantics proposed byAlechina et al. [2001]
and Kobayashi [1997]. However, we could consider a graded or indexed version of the same, i.e., □𝐶,
which only takes away a set of capabilities 𝐶 ∈ 𝔓(C ) from a value. Our hope would be that this
could form amodel of systems like bounded linear logic [Dal Lago and Hofmann 2009; Orchard et al.
2019], or other systems of coeffects [Petricek et al. 2014]. One issue we foresee is that while this
indexed comonadwould still be a strongmonoidal functor, it loses the idempotence property, which
we used in our interpretation and proofs.

There has also been a great deal ofwork onusingmonads and effect systems [Gifford and Lucassen
1986; Moggi 1989; Nielson and Nielson 1999; Wadler 1998] to control the usage of effects. However,
the general idea of using a static tag which broadcasts that an effect may occur seems somewhat
the reverse of the idea of object capabilities, where access to a dynamically-passed value determines
whether an effect can occur. The key feature of our system is that the comonad does not say what
effects are possible, but rather asserts that effects are absent. This manifests in the cancellation law
(in subsection 4.6) of the comonad and the monad. Still, the very phrases “may perform” and “does
not possess” hint that some sort of duality ought to exist.
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