
A Semantic Model for Graphical User Interfaces

Neelakantan R. Krishnaswami
Microsoft Research

<neelk@microsoft.com>

Nick Benton
Microsoft Research

<nick@microsoft.com>

Abstract
We give a denotational model for graphical user interface (GUI)
programming using the Cartesian closed category of ultrametric
spaces. The ultrametric structure enforces causality restrictions on
reactive systems and allows well-founded recursive definitions by a
generalization of guardedness. We capture the arbitrariness of user
input (e.g., a user gets to decide the stream of clicks she sends to
a program) by making use of the fact that the closed subsets of an
ultrametric space themselves form an ultrametric space, allowing us
to interpret nondeterminism with a “powerspace” monad.

Algebras for the powerspace monad yield a model of intuition-
istic linear logic, which we exploit in the definition of a mixed
linear/non-linear domain-specific language for writing GUI pro-
grams. The non-linear part of the language is used for writing re-
active stream-processing functions whilst the linear sublanguage
naturally captures the generativity and usage constraints on the vari-
ous linear objects in GUIs, such as the elements of a DOM or scene
graph.

We have implemented this DSL as an extension to OCaml, and
give examples demonstrating that programs in this style can be short
and readable.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Theory, Design

Keywords denotational semantics, ultrametric spaces, functional
reactive programming, guarded recursion, linear logic

1. Introduction
Graphical user interfaces (GUI) libraries are one of the most widely-
used examples of higher-order programming; even languages such
as Java or C#, in which programmers normally eschew higher-
order style, offer user interface toolkits which expose higher-order
interfaces. Unfortunately, these libraries are a poor advertisement
for higher-order style; they are extremely imperative, difficult to
extend, and understanding the behavior of client code requires deep
familiarity with the internal implementation of the toolkit.

Since its introduction, functional reactive programming [12] has
held great promise for simplifying the specification and interface
to graphical user interface libraries. However, a persistent diffi-
culty with modeling user interface toolkits with functional reactive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP ’11 September 19-21, Tokyo.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

programs is that certain basic abstractions, such as widgets, seem
inherently effectful.

For example, creating two buttons differs from creating one
button and accessing it twice, since creating two buttons creates two
distinct streams of button clicks. That is, since the button abstraction
uses its access to the outside world to generate a potentially arbitrary
stream of clicks – indeed, this is the essence of the abstraction – it
is difficult to explain it as a pure value.

In this paper, we extend our earlier work [17] on the semantics
of functional reactive programming to account for this phenomenon.
In that work, we used the category of ultrametric spaces to interpret
higher-order functional reactive programs, and used Banach’s theo-
rem to interpret (guarded) feedback. This offers a simple, general
semantics for functional reactive programming with an associated
language that is essentially the simply-typed lambda calculus with a
type constructor for streams and a ‘next’ modality.

Our primary observation is that the basic abstraction of reac-
tive programming, the event stream, allows us to decouple the state
changes arising from a stream taking on new values as time passes
from the effects associated with opening new channels of communi-
cation with the user. We can model the creation of a new button, for
example, as a nondeterministic choice over all possible streams of
clicks that the user might generate.

The powerspace monad we use to interpret the nondeterminism
associated with user interaction is rather well-behaved, allowing us
to design a cleaner term language for GUI-manipulating code than
would be possible for general imperative code. In particular, algebras
for the powerspace monad form a model of intuitionistic linear logic,
so we can use a linear lambda calculus syntax for GUI programming.
Viewing the monadic effect as the composition of the free and
forgetful functors, our DSL splits into two parts, a conventional
nonlinear functional language (with an unconventional treatment of
fixed points) in which programmers can write programs to control
the behavior of their interface, and a linear one in which they can
construct and compose widgets and other interactive components.

The linear treatment of widgets is a natural fit for interfacing our
DSL to existing GUI toolkits. Most of these feature some global
piece of state (variously called the DOM, the scene graph, the canvas,
the widget hierarchy, etc.) representing the graphical interface.
Modifications to this data structure change the graphical layout
of the interface, and the components of this data structure typically1

have a strong linearity constraint — a given node has a unique path
from the root of the scene graph. By placing widget-manipulating
operations in the linear part of our API, we can conveniently use this
global mutable data structure, while still maintaining the relevant
invariants and offering a purely functional specification.

To summarize, our contributions are:

1 At the implementation level, this is typically a consequence of the fact
that most GUI toolkits — including GTK, Win32, and the HTML/XML
DOM — require that each node contain a pointer to its (unique) parent. The
tree-shaped containment hierarchy is used for, amongst other things, routing
events efficiently.

1. We build upon our earlier work on semantics of reactive systems
to give a simple denotational semantics of GUI programs,
including strikingly simple semantics for the arbitrariness of
user interaction.

2. We give a type theory for this semantics, which integrates our
recent work on type systems for guarded recursion with an
adjoint calculus [1, 2] for mixed linear/nonlinear logic. Despite
the presence of a fixed point operator fix x : A. e, this type
theory has excellent proof-theoretic properties, including a
simple normalization proof.

3. We illustrate our theoretical work with an implementation,
demonstrating that it can lead to clean user code for GUI
programs.

2. Programming Language and Model
In this section, we will describe the type structure and equational
theory of our DSL. Our focus will be on conveying intuition about
the programming model, as preparation for exploring an extended
example. The denotational semantics and proof theory will come
after that. In slogan form, we use an intuitionistic lambda calculus to
give a language for higher-order reactive programming, and combine
it with a linear lambda calculus to model the stateful nature of the
display and user input.

Reactive programs are usually interpreted as stream transformers.
A time-varying value of type X is a stream of Xs, and so a program
that takes a time-varying X and produces a time-varying Y is then a
function that takes a stream of Xs and produces a stream of Y s. In
their original paper on functional reactive programming, Elliott and
Hudak [12] proposed using general stream-processing functional
programs to manipulate these dynamic values.

While stream programming is flexible, it suffers from a major
difficulty: there are definable stream-processing programs which
do not correspond to physically realistic stream transformers. If a
stream of values represents a time-varying signal, then it follows that
stream processors should be causal: the first n outputs of a program
should only depend on the first n inputs. But there are common
stream functions which are not causal; the simplest example of
which is tail xs, whose n-th value is the n+ 1-st value of xs.

There have been several attempts to resolve this difficulty [18,
20], all of which build on the basic idea of using data abstraction
to restrict the definable functions to the causal ones. In recent
work [17], we have described a new solution to this problem
which still blocks non-causal definitions, but does not surrender the
flexibility of the original FRP model — in particular, its support for
making free use of higher-order functions for building abstractions.

Our basic idea was to work in a lambda calculus with types
not only for data, but also indexed by time. We introduced a type
constructor •X , pronounced “nextX”. IfX is a type of values, then
•X represents X at the next time step. Then, we can type infinite
streams as follows:

head : S(X)→ X
tail : S(X)→ •S(X)
cons : X × •S(X)→ S(X)

Here, S(X) is the type of streams of elements of X . The head
operation has the usual type — it takes a stream and returns the
first element, a value of type X . We diverge from the standard
with the type of tail, which returns a value of type •S(X). So tail
does not return a stream right away — it only returns a value of
“stream tomorrow”. As a result, it is impossible to take the head of
the tail of a stream and perform a non-causal operation — typing
rules out this possibility. Of course, given a value v of type X , and a
stream tomorrow vs of type •S(X), we can construct a stream today,
which will return v today, and then start producing the elements of
vs tomorrow.

In Figure 1, we give the types of a small lambda typed calculus
corresponding to this idea. The “nonlinear types” are the types just
discussed, and are typed with a judgement Γ ` e :i X . This can be
read as saying “e is an expression of type X at time i, in context
Γ”. The context Γ also indexes all hypotheses with times, which
controls when we can use variables — the UHYP rule says that a
variable at time i can only be used at time i or later. The rules for
the •X type internalize these time indices. The UDELAY rule tells
us an expression of type X at time i+ 1 can be turned into a •X at
time i, and conversely the UAWAIT rule tells us that a •X at time i
can be used as an X at time i+ 1.

The last novelty in the nonlinear fragment is the UFIX rule.
At first glance, it seems like an unrestricted fixed point, which is
surprising in a calculus intended for defining well-founded stream
programs. However, when we look at the time indices, it says that
if we can create a value of type X at time i with a hypothesis at
time i + 1, then we can create a value at time i. The underlying
intuition is best conveyed at the stream type. Suppose that we can
build a stream, if only we had one tomorrow. Since we can’t look at
a stream tomorrow, this means that we can at least produce the head
today — and so by turning today’s output into tomorrow’s input, we
can tie the knot and construct a stream. (However, this works at all
types, including functions and nested streams!)

The nonlinear language is sufficient for writing pure reactive
programs, but cracks start to show if we try to bind it to GUI toolkits.
The problem is best illustrated with an example. Suppose we had
a function button : 1 → S(bool), which created a button and
returned a stream of booleans representing clicks. Now, consider the
following two programs:

1 let bs = button() in | let bs = button() in
2 let bs’ = button() in | map xor (zip bs bs)
3 map xor (zip bs bs’) |

On the left, we have a program which creates two buttons, and
then returns the xor of their click streams. On the right, we have a
program which creates a single button, and then a stream resulting
from xor’ing the stream with itself. The program in the right will
return a constantly-false stream, but there is no reason to expect
that the same should happen for two different buttons. Were we
to stay within our pure functional language, which satisfies all the
usual CCC equations, we would have to identify these two programs,
which is clearly wrong.

We will deal with the side-effects associated with changes to
the widget hierarchy by assigning linear types to GUI expressions.
(Though the behaviour associated with clicks and changes to,
for example, the text displayed in widgets, are still dealt with
functionally.) From a purely syntactic point of view, the linearity
constraint means we cannot coalesce common subexpressions, and
so typing blocks problematic examples like the above. We still need
to say precisely what such a syntax should mean — a question
whose answer we defer to the denotational semantics — but for
now we keep in mind that any solution will have to account for the
fact that users are free to click a button arbitrarily, whenever they
choose.

So we add a linear sub-language, in the style of the LNL calculus
[1], also known as the adjoint calculus [2]. We write A,B,C for
the linear types, instead of the X,Y, Z we use for nonlinear types.
Linear types include the tensor A ⊗ B, the linear function space
A (B, and a type Window of GUI windows. We can give a
small but representative set of constants for building GUIs with the
following types:

label : F (S(string)) (Window
vstack : Window ⊗Window (Window
hstack : Window ⊗Window (Window
button : F (S(string)) (Window ⊗ F (S(bool))

The type constructor F (X) embeds a Functional type into the
linear GUI sub-language (and dually the type G(A) embeds a GUI
type into the functional sub-language), and so the type of label says
that if we supply a stream of strings (the time-varying message to
display) we will receive a window as a return value. The vstack and
hstack operations stack two windows vertically or horizontally, with
the linearity constraint ensuring that a window cannot be packed on
top of itself. The button function takes a stream of label messages,
and then returns both a (linear) window, and a (nonlinear) stream of
booleans representing the clicks from this button.

The typing judgment Γ; ∆ ` t :i A for linear types is a little
more complicated than for nonlinear ones. There are two contexts,
one for nonlinear variables, and a second for linear ones. The
Γ; ∆ ` t :i A can be read as, “t is a term of type A at time i,
which may freely use the variables in Γ, but must use the variables
in ∆ exactly once”. The presence of the linear variables in ∆ permits
us to reason about imperative data structures such as windows in an
apparently-functional way.

The G(A) and F (X) types serve to embed each language in
the other. The UG rule says that we can treat a term of type A
as a duplicable computation, when it uses no resources from the
context. This rule is in the nonlinear part of the calculus, but its
elimination rule LG lives in the linear sub-language, and says
that any nonlinear G(A) expression e can be run with the runG(e)
expression to produce an A.

Conversely, the LFI rule says that we can embed any nonlinear
term t into the linear language F (t), without using any resources.
Its elimination form let F (x) = t in t′ takes a term of type F (X),
and binds its result to the nonlinear variable x in the scope of t′.
Now t′ may use the result bound to x as often as it likes, even if
constructing t originally needed some resources.

Finally, in Figure 2, we give the equational theory of our little
language. Since our DSL is a total language, it supports all the β
and η laws of the lambda calculus, for both the linear and nonlinear
parts of the DSL. We also have βη-equalities for the adjoint type
constructors and the delay type.

3. Example: A Stack-based Calculator
In this section, we illustrate our language by developing a small
stack-based calculator program.

3.1 Implementation Description
Conceptually, the calculator consists of two parts. First, we imple-
ment the semantics of a calculator, making use of all the standard
facilities of the host language of our DSL (in this case, Objective
Caml). In the second part, we will use our DSL to turn the semantics
into a reactive event processor, and to connect the event processor
to a small GUI which lets a user interact with it.

3.1.1 Objective Caml Calculator Interpreter
In Figure 3, we give the Objective Caml code which implements the
calculator’s functionality. An RPN calculator acts on a stack, so on
line 1 we define a type of stacks simply as a list of integers. On line
3-4 we define the logical events to which our calculator will react,
including receiving a digit, an arithmetic operation, a push or pop
instruction, or a no-op. Our type of events has no connection to the
internal event-loop API of our GUI toolkit — it is just an ordinary
Caml datatype representing the semantic events in terms of which
we wish to program our calculator.

On lines 6-16, we give a step function which takes an event and
a stack, and returns a new event. We process a digit event by adding
it as the least significant digit of the topmost element of the stack
(creating it if necessary). For example, if the topmost element of the
stack is 7, then the sequence of digit operations Digit 1, Digit 2,
Digit 3 will take the stack top from 7 to the number 7123.

Nonlinear X,Y ::= 1 | X × Y | X ⇒ Y | S(X) | •X | G(A)
Linear A,B ::= I | A⊗B | A(B |Window | F (X)

Terms e ::= () | (e, e) | fst e | snd e | λx. t | t t′ | G(t)
| •(e) | await(e) | cons(e, e′) | head e | tail e
| fix x : A. e | x

t ::= () | let () = t in t′ | (t, t) | let (u, v) = t in t′

| λx. t | t t′ | F (e) | let F (x) = t in t′ | runG(e) | x
Contexts Γ ::= · | Γ, x :i X

∆ ::= · | ∆, x :i A

Nonlinear
Γ ` e :i X

Linear
Γ; ∆ ` t :i A

i ≤ j x :i A ∈ Γ

Γ ` x :j A
UHYP

Γ ` () :i 1
UUNIT

Γ ` e :i X Γ ` e′ :i Y

Γ ` (e, e′) :i X × Y
UPAIR

Γ ` e :i X × Y
Γ ` fst e :i X

UFST

Γ ` e :i X × Y
Γ ` snd e :i Y

USND
Γ, x :i A ` e :i B

Γ ` λx. e :i A⇒ B
UFUN

Γ ` e :i A⇒ B Γ ` e′ :i A

Γ ` t t′ :i B
UAPP

Γ ` e :i+1 X

Γ ` •e :i •X
UDELAY

Γ ` e :i •X
Γ ` await(e) :i+1 X

UAWAIT

Γ ` e :i X Γ ` e′ :i+1 S(X)

Γ ` cons(e, e′) :i S(X)
UCONS

Γ ` e :i S(X)

Γ ` head e :i X
UHEAD

Γ ` e :i S(X)

Γ ` tail e :i+1 S(X)
UTAIL

Γ, x :i+1 A ` e :i A

Γ ` fix x : A. e :i A
UFIX

Γ; · ` t :i A

Γ ` G(t) :i G(A)
UG

Γ;x :i A ` x :i A
LHYP

Γ; · ` () :i I
LUNIT

Γ; ∆ ` t :i I Γ; ∆′ ` t′ :i A

Γ; ∆,∆′ ` let () = t in t′ :i A
LUNITE

Γ; ∆ ` t :i A Γ; ∆′ ` t′ :i B

Γ; ∆,∆′ ` (t, t′) :i A⊗B
LPAIR

Γ; ∆ ` t :i A⊗B Γ; ∆′, x :i A, y :i B ` t′ :i C

Γ; ∆,∆′ ` let (x, y) = t in t′ :i C
LPAIRE

Γ; ∆, x :i A ` t :i B

Γ; ∆ ` λx. t :i A(B
LFUN

Γ; ∆ ` t :i A(B Γ; ∆′ ` t′ :i A

Γ; ∆,∆′ ` t t′ :i B
LAPP

Γ ` e :i G(A)

Γ; · ` runG(e) :i A
LG

Γ ` e :i X

Γ; · ` F (e) :i F (X)
LFI

Γ; ∆ ` t :i F (X) Γ, x :i X; ∆′ ` t′ :i B

Γ; ∆,∆′ ` let F (x) = t in t′ :i B
LFE

Figure 1. Types and Syntax

Type Equation
I let () = () in t =β t

[t/a]t′ =η let () = t in [()/a]t′

A⊗B let (a, b) = (t1, t2) in t′ =β [t1/a][t2/b]t′

[t/c]t′ =η let (a, b) = t in [(a, b)/c]t′

A(B (λa. t′) t =β [t/a]t′

t =β λa. t a
F (X) let F (x) = F (e) in t =β [e/x]t

[t/a]t′ =η let F (x) = t in [F (x)/a]t′

1 e =η ()
X × Y fst (e, e′) =β e

snd (e, e′) =β e′

e =η (fst e, snd e)
X ⇒ Y (λx. e′) e =β [e/x]e′

e =η λx. e x
S(X) head cons(e, e′) =β e

tail cons(e, e′) =β e′

e =β cons(head e, tail e)
•A await(•e) =β e

•(await e) =η e
G(A) runG(G(e)) =β e

t =η G(runG(t))

X fix x : X. e = [fix x : X. e/x]e

Figure 2. Equational Theory

As in other RPN-style calculators, we need a command to mark
the end of a numeric input, which the Push event accomplishes by
pushing 0 onto the top of the stack. Since digit operations only affect
the topmost element, pushing 0 completes the entry of a number
by making it the second element of the stack. The Pop operation
deletes the topmost element from the stack, discarding it. The Plus,
Minus, and Times operations each take the top two elements of the
stack, and replace them with the result of performing the appropriate
arithmetic operation on them (reducing the height of the stack by a
net of one). The Clear operation simply sets the topmost element
of the stack to 0.

Finally, we have a catchall clause which does nothing to the
stack, which handles the Nothing event and also ensures that invalid
operations (for instance Plus on a stack with 1 or 0 elements) do
nothing.

On lines 18-22, we define a display function which takes a
stack and returns a string of a comma-separated list of values. On
lines 24-27, we define the merge function, which we will use to
multiplex multiple streams of operations into a single stream. Since
fair merge is inherently nondeterministic, we implement a simple
biased choice operation. If its first argument is Nothing, then it
returns its second argument — otherwise it returns its first argument.
Finally, on lines 29-30 we define a function bool to op op b
which returns op if b is true, and Nothing otherwise.

We reiterate that the code in Figure 3 is ordinary Ocaml code.
Interpreters and symbolic computation is natural for functional
languages, and we do not need any special additional features to
implement this part. It is only when we need to write interactive
code that programs in standard functional languages (and for that
matter, OO languages) start to lose their appeal.

3.1.2 DSL Code for the User Interface
In Figure 4 we give the actual implementation of the user interface,
as a program written in our domain-specific language. The ambient
context of the code in this listing is on the functional side of the
wall, making use of the G(−) constructor to shift into the linear
sublanguage as needed.

On lines 1-4, we have a function stacks, which takes an initial
stack and a stream of operations, and turns it into a stream of stacks.

It does this by taking the current operation and applies it to the
current stack, to get the next stack, and recursively calls stacks on
the next state and the tail of the stream of operations. Note that as
a recursive definition (at a function type), the UFIX rule requires
that any recursive calls to stacks must occur at a later time. In this
definition, the only recursive call we make is inside the tail argument
to cons, which according to the UCons rule occurs at a later time
than the head argument. As a result, this is a safe recursive call
which will pass typechecking.

Figure 4 contains all of the code we need to plug our state ma-
chine into the GUI event loop — there are no callbacks or anything
like that. We just do familiar-looking functional programming with
streams, with a type system that warns the user of any ill-founded
definitions.

On lines 7-51, we actually build a GUI. On line 7, as an abbrevi-
ation we define the type of input builders input = G(Window ⊗
F (S(op))). We can read this type as saying it is a GUI command
which when executed builds a window yielding a stream of calcu-
lator operations. So this is the type we will use for user input GUI
widgets in our calculator application.

On lines 9-12, we define the calculator button widget. This
function takes a string and an event, and returns a button labeled with
the string argument, and which returns the event whenever the button
is clicked. On line 11, we create a button, calling the button function
with a constant stream of the message argument. This returns a
window and a stream of clicks, and we map bool to op over that
stream of clicks to generate a stream of events. (As an aside, we use
a nested pattern matching syntax let (w, F(bs)) = ...in ...
rather than splitting the term into the two bindings let (w, fbs)
= ...in let F(bs) = fbs in This is an easily desugared
notational convenience.)

On lines 14-16, we use the calculator button function to
define the numeric function, which is the function we will use
to create the number buttons of our calculator. It is just a call to
calculator button which converts its numeric argument to a
string and a digit operation before calling calculator button.

Despite its simplicity, this function illustrates a key feature
of our library: defining new widgets is easy. We construct a
new widget for no reason other than to avoid having to write
calls like calculator button (string of int 5) (Digit
5). This avoids a miniscule amount of redundancy, and yet defining
new widget operations is lightweight enough that it is worth doing.

On lines 18-31, we define a function pack, which is a combinator
for building new input widgets out of old ones. As arguments, it takes
a stacking function stack to merge windows (which in this case will
be hstack or vstack), and four inputs (g1, g2, g3, g4), which
it will coalesce into a new input widget. It does this by executing
each of the g’s, and merging the returned windows w1, w2, w3,
w4 with stack, and merging the returned operation streams es1,
es2, es3, es4 with the merge operation.

The pack function shows off two strengths and one minor
weakness of our DSL. The weakness is simply that we have not
yet added lists to the type constructors of our DSL, and so pack
is hard-coded to take a 4-tuple. The first strength is that pack is a
higher-order function, parameterized in the packing order. This is
something that a first-order embedded DSL, which did not supply
its own interpretation of the function space, could not conveniently
do, since the function space in question is a linear function space.

The second strength is the compositionality of functional pro-
gramming. We have taken the type G(Window ⊗ F (S(op))) to be
the type of input widgets, and we are at liberty to construct new in-
habitants of this type. Not only are individual buttons input widgets,
but entire input panels are also input widgets. So in the definition
of input panel on lines 33-45, we are able to use the same pack
function to lay out both the individual rows of buttons, and the stack

1 type stack = int list
2

3 type op = Push | Pop | Digit of int
4 | Plus | Minus | Times
5 | Clear | Delete | Nothing
6

7 val step : op * stack → stack
8 let step = function
9 | Digit n, m :: s → (10 * m + n) :: s

10 | Digit n, [] → [n]
11 | Push, s → 0 :: s
12 | Pop, _ :: s → s
13 | Plus, n :: m :: s → (n + m) :: s
14 | Minus, n :: m :: s → (n - m) :: s
15 | Times, n :: m :: s → (n * m) :: s
16 | Clear, n :: s → 0 :: s
17 | Delete, n :: s → s
18 | _, s → s
19

20 val display : stack → string
21 let rec display = function
22 | [] → "0"
23 | [n] → string_of_int n
24 | n :: s → (string_of_int_n) ^ ", " ^ (display s)
25

26 val merge : op * op → op
27 let merge = function
28 | Nothing, e →e
29 | e, _ → e
30

31 val bool_to_op : op → bool → op
32 let bool_to_op op b = if b then op else Nothing

Figure 3. RPN Calculator Internals (in OCaml)

of rows, simply by varying the stacking parameter. Furthermore,
since pack can do computation, it is able to act as a “smart con-
structor” which appropriately multiplexes the input signals of all
its components. As a result, none of the wiring code is explicit in
the code building the input panel — the code just follows the tree
structure of the visual layout, like an HTML document, even though
it also produces an output signal.

3.2 Comparison With Traditional Approaches
It is difficult to give a crisp, precise comparison with the traditional
approach to GUI programming based on imperative callbacks and
event loops, for two reasons. On the one hand, existing GUI libraries
have few algebraic or equational properties, which makes theoretical
comparisons difficult, and on the other, we have not yet written any
large programs in our language, which makes practical comparisons
difficult. Nevertheless, it is still possible to draw distinctions at the
architectural level.

Traditional GUI toolkits (based on the model-view-controller
pattern [15]) are logically structured as a collection of asynchronous
event processors. Each GUI widget listens to events generated by
some other widgets (and the main application/event loop), and
generates events itself. The primary feature of this design is that
widgets can generate events at different rates, and there is no
guarantee of the order in which events are delivered to other widgets.
(In practice, the order of delivery depends on the specific order in
which callbacks were registered with a widget object.)

In contrast, our system is based on a synchronous model of
time, such as used in languages such as Lustre [6] and Lucid
Synchrone [21]. There is a global clock, which is respected by
every event stream in the program — every stream generates one
event each tick. Our primary motivation was that with a simpler
deterministic semantics, it was possible to interpret higher-order

1 val stacks : stack × S(op) ⇒ S(stack)
2 let rec stacks (stack, ops) =
3 let next_stack = step (head ops, stack) in
4 cons(stack, stacks(next_stack, tail ops))
5

6

7 type input = G(Window ⊗ F(S(op)))
8

9 val calculator_button : string ⇒ op ⇒ input
10 let calculator_button msg op =
11 G(let (window, F(bs)) = button F(constant msg) in
12 (window, F(map (bool_to_op op) bs))
13

14 val numeric : int ⇒ input
15 let numeric n =
16 calculator_button (string_of_int n) (Num n)
17

18 val pack : G(Window ⊗ Window (Window) ⇒
19 (input × input × input × input) ⇒
20 input
21 let pack stack (g1, g2, g3, g4) =
22 G(let (w1, F(es1)) = runG g1 in
23 let (w2, F(es2)) = runG g2 in
24 let (w3, F(es3)) = runG g3 in
25 let (w4, F(es4)) = runG g4 in
26 let w = runG stack (runG stack (w1, w2),
27 runG stack (w2, w3)) in
28 let es = F(merge(es1,
29 merge(es2,
30 merge(es3, es4)))) in
31 (w, es))
32

33 val input_panel : input
34 let input_panel =
35 pack G(vstack)
36 (pack G(hstack) (numeric 7, numeric 8, numeric 9,
37 calculator_button "+" Plus),
38 pack G(hstack) (numeric 4, numeric 5, numeric 6,
39 calculator_button "-" Minus),
40 pack G(hstack) (numeric 1, numeric 2, numeric 3,
41 calculator_button "x" Times),
42 pack G(hstack) (calculator_button "D" Delete,
43 numeric 0,
44 calculator_button "," Push,
45 calculator_button "C" Clear))
46

47 val calculator : G(Window)
48 let calculator =
49 G(let (input, F(es)) = runG input_panel in
50 let msgs = F(map display (stacks([], es))) in
51 vstack(label msgs, input))

Figure 4. Code for Calculator (in embedded GUI DSL)

Figure 5. Screenshot of the RPN Calculator

constructions such as functions and streams of streams. We think
that these constructions offer the same simplifications of reasoning
that the lambda calculus offers over process calculi.

Under a strictly deterministic semantics, it is impossible to write
certain programs, such as a fair merge of streams. In our calculator
example, we have to explicitly write a function to multiplex events,
as can be seen in the definition of merge on line 26-28 of Figure 3,
and in its use in lines 28-31 of Figure 4. Here, we had to define a
biased choice, which favors the left argument over the right. Even
though fair merges are useful for specifying the behavior of GUIs,
we think that it is a bad choice for implementation, since it makes
debugging and reasoning about programs much harder than under a
deterministic semantics.

Another tradeoff comes when trying to correlate events. As can
be seen in the definition of the op datatype on line 3-5 of Figure 3,
we need to explicitly include a Nothing constructor to indicate
that no event happened on this tick. Under an asynchronous event
semantics, no-ops do not need to be part of the event datatype, since
the event source is never obligated to send a message.

However, this advantage is negated by the problems that arise
when we need to correlate events from multiple sources. Since
neither simultaneity nor order are guaranteed for event deliveries,
clients have to build their own state machines to reconstruct event
correlations (such as a view attempting to correlate events generated
by the model and the controller). Building these state machines can
get tricky, and programmers are often tempted to exploit details
of the subject-observer implementation and register callbacks in a
particular order to guarantee a certain order of event delivery. These
tricks are fragile, and any errors lead to bugs which can be fiendishly
difficult to diagnose.

4. Denotational Semantics
4.1 Intuition
Reactive programs are typically interpreted as stream transformers:
functions which take a stream of inputs and generate a stream of
outputs. However, not all functions on streams correspond to realistic
reactive programs. For example, a stock trading program accepts a
stream of price quotes and emits a sequence of buy and sell orders,
but the set-theoretic function space Priceω → Orderω contains
functions which produces orders that are a function of the future
stock prices. These functions are, alas, not implementable.

The condition governing which stream functions are imple-
mentable is causality: the first n outputs may only depend on the
first n inputs. Writing bxscn for the n-element prefix of the stream
xs, we can express causality as follows:

Definitition 1. (Causality) A stream function f : Aω → Bω is
causal, when for all n and all streams as and as′, we have

bascn =
⌊
as′
⌋
n

=⇒ bf ascn =
⌊
f as′

⌋
n

Causality is a very important idea, but it is defined in terms of
stream functions, and for building programs we will need many
more types than just the stream type. So we need to generalize
causality to work at other types such as streams of streams, or even
higher-order functions.

Furthermore, it is very common in reactive programming to
define streams by feedback and recursion, such as in the following
definition of the increasing sequence of naturals:

nats = µ(λxs. 0 :: map succ xs)

Intuitively, this fixed point is well-defined because the lambda-
term can produce the first value of its output (that is, 0) before
looking at its input. So we can imagine constructing the fixed point
via a feedback process, in which we take the n-the output and feed
it back to as the input at time n+ 1. So as long as we can generate

more than n outputs from the first n inputs, we can find a fixed
point.

Definitition 2. (Guardedness) A function f : Aω → Bω is guarded,
when there exists a k > 0 such that for all n and all streams as and
as′, we have

bascn =
⌊
as′
⌋
n

=⇒ bf ascn+k =
⌊
f as′

⌋
n+k

Lemma 1. (Fixed Points of Guarded Functions) Every guarded
endofunction g : Aω → Aω has a unique fixed point.

Just as with causality, the generalization to higher types seems
both useful and unobvious. For example, we may which to define a
recursive function to generate the Fibonacci numbers:

fib = µ(λf. λ(j, k). j :: f(k, j + k))

The above definition of fib seems intuitively plausible, but goes
beyond the stream-based definition of guardedness, since it involves
taking a fixed point at function type.

To systematically answer these questions, we make use of the
mathematics of metric spaces.

4.2 1-Bounded Complete Ultrametric Spaces
Definitition 3. (Complete 1-bounded Ultrametric Spaces) A com-
plete 1-bounded ultrametric space is a pair (X, dX), where X is a
set and dX ∈ X ×X → [0, 1] is a distance function, satisfying the
following axioms:

• dX(x, y) = 0 if and only if x = y
• dX(x, y) = dX(y, x)
• dX(x, y) ≤ max(dX(x, z), dX(z, y))
• Every Cauchy sequence in X has a limit

A sequence 〈xi〉 is Cauchy if for any ε ∈ [0, 1], there is an n such
that for all i > n, j > n, d(xi, xj) ≤ ε. A limit is an x such that
for all ε, there is an n such that for all i > n, d(x, xi) ≤ ε.

The first three conditions axiomatize the properties of 1-bounded
distance functions — that the distance between a point and it-
self is zero; that distances are symmetric, and the triangle in-
equality. Ultrametric spaces satisfy a stronger version of the tri-
angle inequality than ordinary metric spaces, which only ask that
d(x, y) be less than or equal to dX(x, z) + dX(z, y), rather than
max(dX(x, y), dX(y, x′)). We often just write X for (X, dX). All
the metric spaces we consider are bisected, meaning that the distance
between any two points is 2−n for some n ∈ N.

We will often simply write X for a metric space, and dX for its
corresponding metric (or even d, if the expression is unambiguous).

Definitition 4. (Nonexpansive maps) A function f : X → Y is
nonexpansive when for all a, a′ ∈ X , we have dY (f a, f a′) ≤
dX(a, a′).

Complete 1-bounded ultrametric spaces and nonexpansive maps
form a category (which we will write Ult). The category Ult is
bicartesian closed (ie, has sums, products and exponentials), and
supports a number of other functors on it which we will use in
our semantics. (Our semantics will only use nonempty spaces,
even though we will perform our semantic constructions in the
full category.)

1. Any set X (such as the natural numbers N) forms a metric space
under the discrete metric (i.e., d(x, y) = 0 if x = y, and 1
otherwise).

2. If (X, dX) is an object of Ult, we can form causal streams S(X)
of the elements as follows:
• S(X) = ({as | as ∈ N→ X} , dS(X)), where

• dS(X)(xs, ys) = sup
{

2−n × dX(xsn, ysn) | n ∈ N
}

The intuition behind the stream metric is best conveyed by
thinking of S(N), the streams of natural numbers (a discrete
space). In this case, the distance between two streams xs and ys
is 2−n, where n is the first position at which they disagree. So if
xs and ys disagree immediately, at time 0, then their distance is
1. If they disagree at time 32, then their distance is 2−32. If they
never disagree, then their distance is 2−∞ = 0 — that is, they
are the same stream.
It is a matter of unwinding definitions to establish that a non-
expansive map S(X) → S(Y) (for discrete spaces X and Y)
is equivalent to the definition of causality — that the first k
outputs are determined by at most the first k inputs. In this sense,
ultrametric spaces give a natural setting in which to interpret
higher-order reactive programs [17], since we can interpret func-
tions with the Cartesian closure and streams of arbitrary type
with the stream functor, and nevertheless we can still rule out
the definition of non-causal functions.

3. If (A, dA) and (B, dB) are objects of Ult, we have a Cartesian
product
• (A, dA)× (B, dB) ≡ (A×B, dA×B), where
• dA×B((a, b), (a′, b′)) = max(dA(a, a′), dB(b, b′))

The elements of the product space are pairs of elements of the
two underlying spaces, and the distance between two pairs is the
maximum of the distances between the individual components.

4. If (A, dA) and (B, dB) are objects of Ult, we have an exponen-
tial defined as follows:
• (A, dA)⇒ (B, dB) ≡ (Ult(A,B), dA⇒B), where
• dA⇒B(f, g) = max {dB(f a, g a) | a ∈ A}

The set of points for the function space is the set of nonexpansive
functions from A to B (i.e., the hom-set for A and B), and
the distance between two functions is the maximum distance
between the results ranging over all arguments a. Intuitively, a
function can be thought of as an A-indexed tuple of B’s, and so
the metric for the function space can be seen as a generalization
of the metric for tuples.

5. If (A, dA) and (B, dB) are objects of Ult, we have a coproduct
defined as follows:
• (A, dA) + (B, dB) ≡ (A+B, dA+B), where

• dA+B(x, y) =

 dA(a, a′) if x = inl(a), y = inl(a′)
dB(b, b′) if x = inr(b), y = inr(b′)
1 otherwise

The presence of coproducts in our semantic model means that
it is possible to implement FRP-style “switching combinators”
simply by performing a case analysis and returning different
stream results, in the ordinary style of functional programming.
(For space reasons, we did not include rules for sums in our
calculus, though they can be added in the standard way.)

6. For each metric space, there is a contraction •(X) (pronounced
“next-X”) defined as follows:
• •(X, d) = (X, d′), where
• d′•(X)(a, a

′) = 1
2
dX(a, a′)

This functor is Cartesian closed. That is, there are isomorphisms
zip• : •X×•Y ' •(X×Y) and ε : •(X ⇒ Y) ' •X ⇒ •Y .
The zip• isomorphism says that a delayed pair is the same as a
pair of delays. A little more surprisingly, the ε isomorphism says
that a delayed function is equivalent to a function which takes a
delayed argument and returns a delayed result. All of these maps

are just identities on the points; their real content lies in the fact
that these maps are nonexpansive.
We will write ε for the left-to-right direction of the isomorphism,
and write ε−1 for the right-to-left direction, and similarly for the
other isomorphisms we make use of.
We can also iterate these constructions, and will write εi for
the isomorphism of type •i(X ⇒ Y) ' •iX ⇒ •iY (and
again, similarly for the other isomorphisms). We give the explicit
definitions of these isomorphisms in Figure 6.
In addition, we have a natural transformation δX : X → •X
(pronounced “delay”) which embeds each space X into •X via
the identity on points. Intuitively, this corresponds to taking a
value and delaying using it until the tick of the clock.

Theorem 1. (Banach’s Contraction Map Theorem) If A ∈ Ult
is a nonempty metric space, and f : A → A is a strictly
contractive function, then f has a unique fixed point.

The utility of the delay functor is that it lets us concisely state
Banach’s contraction map theorem for any nonempty, bisected
metric spaceX: Banach’s theorem is equivalent2 to the assertion
that there is a fixed point operator fix : (•X ⇒ X)→ X .

7. If X is an object of M , then we can construct the power space
PC(X) of its closed, nonempty subsets (a subset S ⊆ X is
closed if every Cauchy sequence of elements in S has a limit
also in S):

• PC(X) = {U ⊆ X | U is closed and nonempty}

• dPC(X)(U, V) = max

(
supx∈U infy∈V dX(x, y),
supy∈V infx∈U dX(x, y))

)
The metric dPCX is known as the Hausdorff metric. The functo-
rial action of PC(f) : PC(X)→ PC(Y) applies f pointwise
to the elements of its argument, and takes the metric closure of
that image. Explicitly, PC(f) = λX. cl({f(x) | x ∈ X}).
The functorPC(−) gives rise to a strong, commutative monad [25].
We will write ηX : X → PC(X) and µX : P2

C(X)→ PC(X)
for its unit and multiplication, and σX : X × PC(Y) →
PC(X ×Y) for its strength. Explicitly, the definition of the unit
is η(x) = {x}, and the multiplication is µ(U) = cl(

⋃
U).

Furthermore, the contraction functor distributes over the pow-
erspace; we have an isomorphism P•C : •PC(X) ' PC(• X).
(Again, this isomorphism is the identity on points, and fol-
lowing the pattern of Figure 6 we can iterate it to construct
P•iC : •iPC(X) ' PC(•i X).)

8. To interpret the Window type, we first take Pic to be the set of
trees inductively generated from the following grammar (with s
ranging over strings):

p ::= Button(s) | Label(s) | Vert(p, p) | Hor(p, p)

We turn this into a space by equipping it with the discrete metric,
and then take Window to be streams of Pic.

4.3 The Eilenberg-Moore Category of PC
From Ult, we can construct its Eilenberg-Moore category UltP ,
whose objects are algebras (A,α : PC(A) → A), where A is a
nonempty 1-bounded ultrametric space, and α satisfies α◦PC(α) =
α ◦ µ and α ◦ η = idA.

The morphisms from (A,α) to (B, β) are maps A→ B in the
category of ultrametric spaces which commute with the action (so

2 We have arranged our grammar of types so that every definable type is
nonempty, ensuring that the non-emptiness side-condition always holds.

zipi• : •i(X)× •i(Y)→ •i(X × Y)
zip0
• = idX×Y

zipn+1
• = zip• ◦ •(zipn•)

zipi• : •i(X)× •i(Y)→ •i(X × Y)
zip0
• = idX×Y

zipn+1
• = •(zipn•) ◦ zip•

εi : •i(X ⇒ Y)→ •i(X)⇒ •i(Y)
ε0 = idX→Y
εn+1 = ε ◦ •(εn)

ε−1
i : •i(X)⇒ •i(Y)→ •i(X ⇒ Y)
ε−1
0 = idX⇒Y
ε−1
n+1 = •(εn) ◦ ε−1

δi : A→ •i(X)
δ0 = idA
δn+1 = δ ◦ δn

Figure 6. Definition of Iterated Morphisms

that f ◦ α = β ◦ PC(f)). Identity and composition are inherited
from the underlying category Ult. (As a notational aid to keeping
the categories distinct, we will use functional composition f ◦ g
when composing maps in Ult, and diagrammatic order f ; g when
composing maps in UltP .)

Because PC is a commutative strong monad, Ult has equalizers
and coequalizers [22], and UltP has coequalizers of reflexive
pairs (since PC preserves coequalizers of reflexive pairs), UltP

is symmetric monoidal closed [2, 14, 16]. The tensor product is
defined using a coequalizer and the exponential by an equalizer.

We can lift the distribution of the next modality through tensor
products and ˆzip• : •A⊗•B ' •(A⊗B) the monoidal exponential
ε̂ : •(A (B) ' •A (•B, as well as the delay operator
δ̂ : A→ •A. These operations simply inherit their structure from
Ult, but for the operations to respect the algebra structure we need
the isomorphism P•C : •PC(X) ' PC(• X). This explains why
we restricted PC(X) to nonempty closed subsets of interpretation
X — one leg of this isomorphism would fail to be nonexpansive
due in the presence of the empty set, which is distance 1 from any
other subset.

We also iterate all of these morphisms following the pattern of
Figure 6.

The free F (X) = (PC(X), µ) and forgetful G(A,α) =
A functors give rise to an adjunction between Ult and UltP ,
whose unit and counit we write ηX : X → G(F (X)) and εA :
F (G(A,α))→ A. The action of η as the unit of this adjunction is
the same natural transformation as the unit of the monad PC , so no
notational confusion can arise. The components of the counit ε are
the algebra maps α of (A,α). This is a monoidal adjunction with
a natural isomorphism m : F (X) ⊗ F (Y) ' F (X × Y). This
isomorphism lets us duplicate and discard F -typed values; we have
maps drop : F (X)→ I and dup : F (X)→ F (X)⊗ F (X).

4.4 Interpretation of the Programming Language
In Figure 7, we give the interpretation of the syntactic types in terms
of metric spaces. The interpretation follows the categorical construc-
tions – in each category, products go to products, exponentials go
to exponentials, and the F and G adjunctions interpret the modal
operators connecting the Functional and Graphical sub-languages.

In Figure 8, we give the semantic interpretation of the syntax of
our language. A context Γ = x :i X, . . . , z :k Z is interpreted

as a product •i[[X]] × . . . •k [[Z]], and a term-in-context Γ `
e :i X is interpreted as a morphism [[Γ]] → •i[[X]]. A context
∆ = a :i A, . . . , b :j B is interpreted by the tensor product
•i[[A]] ⊗ . . . •j [[B]]. The pair of contexts Γ; ∆ is interpreted by
F ([[Γ]])⊗ [[∆]], and a linear term Γ; ∆ ` t :i A is interpreted as a
morphism F ([[Γ]])⊗ [[∆]]→ •i[[A]] in UltP .

As an abuse of notation, we abbreviate [[Γ ` e :i X]] as [[e]] when
Γ, X and i are clear from context, and similarly we abbreviate
[[Γ; ∆ ` t :i A]] as [[t]].

Our semantics combines the interpretation of adjoint logic given
in [1] with the guarded calculus given by Krishnaswami and Ben-
ton [17]. The main technical subtlety arose with the interpreta-
tion of the time indices. Concretely, consider the interpretation of
Γ ` G(t) :i G(A), which we expect to be a map [[Γ]]→ •i[[G(A)]],
and contrast it with its subderivation Γ; · ` t :i A, whose interpreta-
tion (viewed as a map in Ult) is in [[Γ]]→ G(•i(A)). To swap these
constructors, we use the P•C : •PC(X) ' PC(• X) isomorphism.

For readability, the semantics suppresses the associativity and
commutativity maps needed to permute the context.

Theorem 2. (Soundness of Substitution) Suppose Γ ` e :i X and
Γ; ∆ ` t :i A, and i ≤ j. Then:

• If Γ, x :j X ` e′ :k Y , then [[e′]] ◦
〈
Γ, δj−iX ◦ [[e]]

〉
= [[[e/x]e′]].

• If Γ, x :j X; ∆ ` t′ :k B, then F (
〈
Γ, δj−iX ◦ [[e]]

〉
); [[t]] =

[[[e/x]t′]].
• If Γ; ∆′, a :j A ` t′ :k B, then dupF (Γ); (F (Γ) ⊗ ∆′ ⊗

[[t]]); [[t′]] = [[[t/a]t′]].

Proof. The proof is a routine induction.

Theorem 3. (Soundness of Equality Rules) For well-typed terms,
the equational rules in Figure 2 are sound with respect to the
denotational semantics.

Proof. The proof is a routine verification.

4.5 Denotational Semantics of GUI Operations
We have left out the constructors from the syntax to keep from
cluttering the proof theory. We give the semantics of a representative
collection of GUI operations (including all of the ones used in the
calculator example) below:

label : F (S(string))→Window
label X = {λn. Label(xsn) | xs ∈ X}

vstack : Window ⊗Window→Window
vstack(W,W ′) = cl({λn. Vert(wn, w′n) | w ∈W,w′ ∈W ′})

hstack : Window ⊗Window→Window
hstack(W,W ′) = cl({λn. Hor(wn, w′n) | w ∈W,w′ ∈W ′})

button : F (S(string))→Window ⊗ F (S(bool))
button X = ({λn. Button(xsn) | xs ∈ X} , S(bool))

delete : Window→ I
delete W = ()

Since the free functor F yields sets of possible values, we must
define these constants so that they define appropriate outputs for all
their possible inputs. The first label operation essentially just maps
an operator over its input, and the two stacking operations take a
Cartesian product to define the result for each pair of possibilities.

On the other hand, the button operation, which is an operation
representing user input, does something a little more interesting. It
returns a set of pairs of window values (constructed by mapping its
input over the Button constructor), and a set of streams of booleans
(denoting clicks). We define the windows values by mapping over

1 = 1
[[X × Y]] = [[X]]× [[Y]]
[[X ⇒ Y]] = [[X]]⇒ [[Y]]
[[S(X)]] = S([[A]])
[[•(X)]] = •[[X]]
[[G(A)]] = G([[A]])

[[I]] = 1
[[A⊗B]] = [[A]]⊗ [[B]]
[[A(B]] = [[A]] ([[B]]
[[F (X)]] = F ([[X]])
[[Window]] = F (S(Pic))

F (X) = (PC(X), µ)
G(A,α) = A

Figure 7. Interpretation of Types

the input, as with the other operations, but we return the full space
of boolean streams as its second argument.

Therefore, if we receive a fixed stream of string inputs xs, we
may receive any stream of clicks as a possible return value. So the
semantics of button captures the inherent nondeterminism of user
actions in a simple way — we simply say that the user can click a
button whenever he or she likes, and our semantics has to account
for all of these possibilities.

Finally, the delete operation simply throws away its argument.
Using the semantics of this command, it is possible to prove program
equalities such as the following:

1 let (F(x), v) = button() in | let (F(y), w) = button()
2 let (F(y), w) = button() in | in w
3 let () = delete v |
4 in w |

In this program, we create two buttons and throw the first of them
away, which is equivalent to not creating it at all. The proof follows
as easily from the semantics of programs as it ought.

One fact worth noting is that our semantics does not rule out
the possibility of two different buttons both yielding a click event
(ie, returning true) on the same time step. We see essentially two
possibilities for ruling out such behavior, both of which we rejected
for this work.

If we wish to retain a high-level semantics, where we specify
the semantics of the API in terms of events like clicks, rather than
primitive events such as mouse movements and keystrokes, then
positing a collection of constraints (such as “two buttons are never
simultaneously clicked”) seems to require explicitly modeling a
store of input channels and maintaining these constraints as an
invariant on the store. This is a bit ugly, and more than a little
technically complicated.

A better approach, in our view, would be to model layout and
event synthesis explicitly. In our semantics, we model the display as
a time-varying tree, much like an HTML document. If the display
model actually specified what the graphic layout of a GUI program
was, and supplied the primitive mouse movements, keystrokes, and
clicks as an input, then the semantics could explicitly give the
functions explaining how to interpret primitive events as high-level
ones — for example, we might define a “click” to occur when the
mouse is pressed down inside the button area, and subsequently
released, while still inside the button area.

We think this level of precision is likely the right approach to
take when building new GUI toolkits. However, if we wish to bind
to existing toolkits, it is better to give a semantics imprecise enough
to tolerate wide variation in precisely how it is implemented.

[[Γ ` •e :i •A]] = [[e]]
[[Γ ` cons(e, e′) :i S(A)]] = •i(cons) ◦ zipi• ◦ 〈[[e]], [[e′]]〉
[[Γ ` λx. e :i A→ B]] = εi ◦ λ([[Γ, x :i A ` e :i B]])

[[Γ ` xn :j A]] = δj−iA ◦ πn, if xn :i A ∈ Γ
[[Γ ` await(e) :i+1 A]] = [[e]]
[[Γ ` head e :i A]] = •i(hd) ◦ [[t]]
[[Γ ` tail e :i+1 S(A)]] = •i(tl) ◦ [[t]]
[[Γ ` e e′ :i B]] = •i(eval) ◦ zipi• ◦ 〈[[e]], [[e′]]〉
[[Γ ` G(t) :i G(A)]] = P•iC ◦G([[t]]) ◦ ηΓ

[[Γ ` fix x : A. e :i A]] = •i(fixA) ◦ εi ◦ λ([[e]])

[[Γ; a :i A ` a :j A]] = drop; δ̂j−i
[[Γ; · ` () :i I]] = drop; δ̂i
[[Γ; ∆,∆′ ` let () = t in t′ :i B]] = dupF (Γ) ⊗∆⊗∆′; [[t]]; [[t′]]
[[Γ; ∆,∆′ ` (t, t′) :i A⊗B]] = dupF (Γ) ⊗∆⊗∆′;

([[t]]⊗ [[t′]]); ˆzipi•
[[Γ; ∆,∆′ ` let (a, b) = t in t′ :i C]] = dupF (Γ) ⊗∆⊗∆′;

(F (Γ)⊗∆′ ⊗ [[t]]); [[t′]]
[[Γ; ∆ ` λa. t :i A(B]] = λ([[Γ; ∆, a :i A ` t :i B]]); ε̂i

[[Γ; ∆,∆′ ` t t′ :i B]] = dupF (Γ) ⊗∆⊗∆′;

[[t]]⊗ [[t′]]; ˆzipi•; eval
[[Γ; · ` runG(e) :i A]] = F (P•iC ◦ [[Γ ` e :i G(A)]]); ε
[[Γ; · ` F (e) :i F (X)]] = F ([[e]])
[[Γ; ∆,∆′ ` let F (x) = t in t′ :i C]] = dupF (Γ) ⊗∆⊗∆′;

F (Γ)⊗∆′ ⊗ [[t]];
m⊗∆′; [[t′]]

Figure 8. Denotational Interpretation of Terms

5. Proof Theory
We have established denotationally that the β and η equalities are
valid, but this does not make clear just how extraordinarily well-
behaved this calculus is. We can prove a stratified normalization
result, despite the fact that this language contains a recursion
operator of the form fix x : A. e.

To state the normalization theorem precisely, we must first say
what the normal forms are. To see that this is not an entirely trivial
question, consider the term e , fix xs : S(N). cons(0, x). The
term e is equivalent to cons(0, e), and to cons(0, cons(0, e)) and
so on for infinitely many unfoldings. So we have to ask, which of
these unfoldings count as normal forms, and which do not?

In Figure 9, we give normal and atomic forms of the calculus.
The normal and atomic forms are a sub-syntax of the full language
with the property that only beta-normal terms are grammatically
valid. In this syntax, we count fixed points as atomic forms, which
means we still need to fix a policy for when to allow fixed points,
and when not.

Next, we introduce the idea of a n-normal form, which are
normal forms in which fixed point subterms fix x : A. e only
occur at times of n or greater. So e , fix xs : S(N). cons(0, x)
is itself a 0-normal form, and cons(0, e) is a 1-normal form, and
cons(0, cons(0, e)) is a 2-normal form, and so on. To specify n-
normal forms, we use the judgments Γ ǹ e :i X and Γ; ∆ ǹ t :i A.
These typing rules exactly mirror the existing typing rules, with the
exception of the UFIX’ rule (given in Figure 9), where we add a
side-condition that a fixed point is permitted only when the time
index i at which it is typechecked is at least as large as n. Hence
an n-normal form is a normal form which passes the n-restricted
typechecking rule for fixed points.

So our example e , fix xs : S(N). cons(0, x) is a 0-normal
form but not a 1-normal form, since it has no redexes, but does
have a fixed point at time 0. However, its unfolding cons(0, e) is a
1-normal form, since e occurs in the tail position of a cons, which is
checked at a time index 1 greater than the cons expression.

Now, we can show that every term has a normal form (i.e., a
weak normalization result) in the following manner. Given two n-
normal terms, we can define a hereditary substitution [27] which
combines substitution and computing a normal form. For our type
system, an appropriate functions are given in Figures 10, 11, and 12.

In each of these figures, we define two of six mutually recursive
procedures, one substituting a normal form into a normal form, and
the other substituting a normal form into a atomic term. The normal-
normal substitution returns a new normal form, and the normal-
atomic substitution returns a pair of a term and optionally a type.
If the result of the substitution is still an atomic term, then no type
is returned, and if it is a normal form, the type of the substitutand
is returned. Below, we write A v X to say that the type A is a
subterm of the type X .

Theorem 4. (Hereditary Substitution) Suppose Γ ǹ ê :i X and
Γ; ∆ ǹ t̂ :i A and i ≤ j. Then

• If Γ, x :j X ǹ ê
′ :k Y then Γ ǹ 〈ê/x〉X ê

′ :k Y

• If Γ, x :j X; ∆ ǹ t̂
′ :k B then Γ; ∆ ǹ 〈ê/x〉X t̂

′ :k B

• If Γ; ∆′, a :j A ǹ t̂
′ :k B then Γ; ∆,∆′ ǹ

〈
t̂/a
〉
A
t̂′ :k B

• If Γ, x :j X ǹ g :k Y then either
〈ê/x〉X g = (ê′, Y) and Y v X and Γ ǹ ê

′ :k Y

or 〈ê/x〉X g = (g′, n/a) and Γ ǹ g
′ :k Y

• If Γ, x :j X; ∆ ǹ u :k B then either
〈ê/x〉X u = (t̂′, B) and B v X and Γ; ∆ ǹ t̂

′ :k B

or 〈ê/x〉X u = (u′, n/a) and Γ; ∆ ǹ u
′ :k B

• If Γ; ∆′, a :j A ǹ u :k B then either〈
t̂/a
〉
A
u = (t̂′, B) and B v A and Γ; ∆,∆′ ǹ t̂

′ :k B

or
〈
t̂/a
〉
A
u = (u′, n/a) and Γ; ∆,∆′ ǹ u

′ :k B

Furthermore, hereditary substitution is βη-equivalent to ordinary
substitution.

The statement of the theorem is a bit complicated, since we
have 6 cases, depending on which judgement and context we are
substituting into, and whether we are substituting into a normal
or atomic form. Luckily, the induction is straightforward, and the
algorithm offers no surprises. The induction is lexicographically on
the type of the term being substituted, together with the unordered
product of the sizes of the two derivations of the substitutand and
subtitutee.

Note that hereditary substitution never needs to unroll fixed
points. By hypothesis, neither the substitutee nor the substitutand
contain fixed point terms at an index less than n, and as a result, the
process of substitution and normalization will never create a fixed
point at the head of a term at time less than n.

As a result, we can prove an unrolling lemma separately, without
any mutual recursion with the normalization algorithm. In Figure 13,
we define an unfolding operation dee which unrolls all the fixed
points in a term by one step, and prove the following theorem:

Theorem 5. (Unrolling)

• If Γ ǹ e :i X , then Γ ǹ+1 dee :i X
• If Γ; ∆ ǹ t :i X , then Γ; ∆ ǹ+1 dte :i X

Proof. The result follows by a routine induction on the derivation.

Now we can combine these two theorems to prove a normaliza-
tion theorem.

Theorem 6. (Weak Normalization)

• Suppose Γ ` e :i X . Then for any m, there is an m-normal
form e′, such that Γ m̀ e′ :i X , which is βη-equivalent to e.

Normal Nonlinear ê ::= () | (ê, ê′) | λx. ê
| cons(ê, ê′) | G(t̂) | • (ê) | g

Atomic Nonlinear g ::= x | g ê | fst g | snd g | await(g)
| head g | tail g | fix x : X. ê

Normal Linear t̂ ::= () | (t̂, t̂′) | λx. t̂
| let () = u in t̂ | let (a, b) = u in t̂
| F (ê) | let F (x) = u in t̂ | u

Atomic Linear u ::= a | u t̂ | runG(g)

Γ ǹ e :i X Γ; ∆ ǹ t :i A

Γ, x :i+1 X ǹ e :i X i ≥ n
Γ ǹ fix x : A. e :i X

UFIX’

(all other rules unchanged except for the appearance of n)

Figure 9. Normal and Atomic Forms, and Leveled Fixed Points

〈ê/x〉X () = ()
〈ê/x〉X (ê′, ê′′) = (〈ê/x〉X ê′, 〈ê/x〉X ê′′)
〈ê/x〉X λy. ê′ = λy. 〈ê/x〉X ê′

〈ê/x〉X •ê′ = •(〈ê/x〉X ê′)
〈ê/x〉X cons(ê′, ê′′) = cons(〈ê/x〉X ê′, 〈ê/x〉X ê′′)
〈ê/x〉X G(t) = G(〈ê/x〉X t)

〈ê/x〉X g =

{
g′ when 〈ê/x〉X g = (g′, n/a)
ê′ when 〈ê/x〉X g = (ê′, Y)

〈ê/x〉X x = (x,X)
〈ê/x〉X y = (y, n/a)
〈ê/x〉X fix y : Y . ê′ = (fix y : Y . (〈ê/x〉X ê′), Y)

〈ê/x〉X g1 ê2 =

let ê′2 = 〈ê/x〉X ê2 in
case 〈ê/x〉X g of

(g′, n/a) → (g′ ê′2, n/a)
(λy. ê′1, Y ⇒ Z) →

〈
ê′2/y

〉
Y
ê′1

〈ê/x〉X head g =
case 〈ê/x〉X g of

(g′, n/a) → (head g′, n/a)
(cons(ê1, ê2), S(Y)) → (ê1, Y)

〈ê/x〉X tail g =
case 〈ê/x〉X g of

(g′, n/a) → (tail g′, n/a)
(cons(ê1, ê2), S(Y)) → (ê2, S(Y))

〈ê/x〉X fst g =
case 〈ê/x〉X g of

(g′, n/a) → (fst g′, n/a)
((ê1, ê2), Y × Z) → (ê2, Y)

〈ê/x〉X snd g =
case 〈ê/x〉X g of

(g′, n/a) → (snd g′, n/a)
((ê1, ê2), Y × Z) → (ê2, Z)

〈ê/x〉X await(g) =
case 〈ê/x〉X g of

(g′, n/a) → (await(g′), n/a)
(•ê′, •Y) → (ê′, Y)

Figure 10. Substituting Nonlinear Terms into Nonlinear Terms

• Suppose Γ; ∆ ` t :i A. Then for any n, there is an n-normal
form t′, such that Γ; ∆ ǹ t

′ :i A, which is βη-equivalent to t.

To prove this, note than any well-typed term satisfies the UFIX’
rule for n = 0. Hence we can use the unfolding lemma n times to
get a term which has no fixed points at times earlier than n. Then
we can find a normal form, by inductively walking down the syntax
and using hereditary substitution to eliminate reducible expressions.

〈ê/x〉X () = ()
〈ê/x〉X (t′, t′′) = (〈ê/x〉X t′, 〈ê/x〉X t′′)
〈ê/x〉X λy. t′ = λy. 〈ê/x〉X t′

〈ê/x〉X F (ê′) = F (〈ê/x〉X ê′)

〈ê/x〉X let () = u in t =
case 〈ê/x〉X u of

(u′, n/a) → let () = u′ in 〈ê/x〉X t
((), I) → 〈ê/x〉X t

〈ê/x〉X let (a, b) = u in t =

case 〈ê/x〉X u of
(u′, n/a) →

let (x, y) = u′ in 〈ê/x〉X t
((t1, t2), A⊗B) →
〈t2/b〉B (〈t1/a〉A (〈ê/x〉X t))

〈ê/x〉X let F (x) = u in t =

case 〈ê/x〉X u of
(u′, n/a) →

let () = u′ in 〈ê/x〉X t
(F (ê′), F (Y)) →
〈ê′/y〉Y (〈ê/x〉X t)

〈ê/x〉X u =

{
u′ when 〈ê/x〉X u = (u′, n/a)
t′ when 〈ê/x〉X u = (t′, A)

〈ê/x〉X a = (a, n/a)

〈ê/x〉X runG(g) =
case 〈ê/x〉X g of

(g′, n/a) → (runG(g′), n/a)
(G(t), G(A)) → (t, A)

〈ê/x〉X u1 t2 =

let t′2 = 〈ê/x〉X t2 in
case 〈ê/x〉X u1 of

(u′1, n/a) → (u′1 ê
′
2, n/a)

(λa. t′1, A(B) →
〈
t′2/a

〉
A
t′1

Figure 11. Substituting Nonlinear Terms into Linear Terms

〈t/a〉A () = ()
〈t/a〉A (t′, t′′) = (〈t/a〉A t′, 〈t/a〉A t′′)
〈t/a〉A λy. t′ = λy. 〈t/a〉A t′
〈t/a〉A F (ê′) = F (ê′)

〈t/a〉A let () = u1 in t2 =

case 〈t/a〉A u1 of
(u′1, n/a)→

let () = u′1 in 〈t/a〉A t2
((), I)→ 〈t/a〉A t2

〈t/a〉A let (b, c) = u1 in t2 =

case 〈t/a〉A u1 of
(u′1, n/a) →

let (x, y) = u′1 in 〈t/a〉A t2
((t3, t4), B ⊗ C) →
〈t4/c〉C (〈t3/b〉B (〈t/a〉A t2))

〈t/a〉A let F (x) = u1 in t2 =

case 〈t/a〉A u1 of
(u′1, n/a) →

let () = u′1 in 〈t/a〉A t2
(F (ê′1), F (Y)) →〈

ê′1/y
〉
Y

(〈t/a〉A t2)

〈t/a〉A u1 =

{
u′1 when 〈t/a〉A u1 = u′1
t′1 when 〈t/a〉A u1 = (t′1, B)

〈t/a〉A a = (t, A)

〈t/a〉A b = (b, n/a)

〈t/a〉A runG(g) = (runG(g), n/a)

〈t/a〉A u1 t2 =

let t′2 = 〈t/a〉A t2 in
case 〈t/a〉A u1 of

(u′1, n/a) → (u′1 ê
′
2, n/a)

(λb. t′1, B (C) →
〈
t′2/b

〉
B
t′1

Figure 12. Substituting Linear Terms into Linear Terms

d()e = d()e
d(e, e′)e = (dee , de′e)
dλx. ee = λx. dee
dcons(e, e′)e = cons(dee, de′e)
d•(e)e = •(dee)
dG(t)e = G(dte)
dxe = x
de e′e = dee de′e
dfst ee = fst dee
dsnd ee = snd dee
dhead ee = head dee
dtail ee = tail dee
dawait(e)e = await(dee)
dfix x : A. ee = [fix x : A. dee/x] dee

d()e = d()e
d(t, t′)e = (dte , dt′e)
dλa. te = λa. dte
dF (e)e = F (dee)
dae = a
dt t′e = dte dt′e
dlet () = t in t′e = let () = dte in dt′e
dlet (a, b) = t in t′e = let (a, b) = dte in dt′e
dlet F (x) = t in t′e = let F (x) = dte in dt′e
drunG(e)e = runG(dee)

Figure 13. Unfolding

6. Implementation
The basic idea underlying our implementation is to represent a
collection of streams with a dataflow graph. An imperative dataflow
network is rather like a generalized spreadsheet. It has a collection of
cells, each containing some code whose evaluation may read other
cells. When a cell is read, the expression within the cell is evaluated,
recursively triggering the evaluation of other cells as they are read
by the program expression. Furthermore, each cell memoizes its
expression, so that repeated reads of the same cell will not trigger
re-evaluation.

Then, we implement reactive programs with a dataflow graph,
which runs inside an event loop. Instead of representing streams as
lazy sequences of elements, we represent our streams with mutable
dataflow cells, which enumerate the values of the stream as they
evolve over time. The event loop updates a clock cell to notify the
cells in the graph that they may need to recompute themselves,
so that each one reads the cells it depends on, doing the minimal
amount of computation needed at each time step. The details of our
implementation strategy are in our earlier paper [17], including a
correctness proof for the purely functional fragment.

In this paper, we content ourselves with a brief informal dis-
cussion of how we extended that implementation to handle linear
types. In our earlier paper, we implemented a family of abstract
types representing the morphisms of the category of ultrametric
spaces, and then wrote an Ocaml syntax extension which translated
our DSL’s lambda-calculus into calls to the procedures which called
the combinators in question. We extend this implementation strat-
egy continues to the adjoint calculus: now we have two families of
abstract types, with one each for the nonlinear side and the linear
side.

We represent the type of windows with widget objects from the
GUI toolkit. As we mentioned in the introduction, we are exploiting
linearity to double effect. At a low level, we use it to enforce the
linear use of widgets in the scene graph, even though the high-
level denotational semantics never mentions state, generativity or
mutation at all – the semantics of windows is just a pure set of
stream of Pic.

We have not yet done a correctness proof of the implementation,
though this is an obvious next step. In our earlier correctness proof,
we proved the adequacy of our denotational semantics with respect
to an imperative implementation, by means of a Kripke logical
relation which related the state of the dataflow graph to the meaning
of the streams in the program. Our implementation was highly
imperative to start with, and we expect that the Kripke structure
should extend naturally to let us use imperative widget state to
model the meanings of the widgets. Essentially, since we only ask
the equations of the linear lambda calculus to hold, we ought to be
able to realize Window values with mutable state.

On the other hand, specifying our contract with the GUI toolkit
will be more challenging. The basic issue is to find a specification
of the behavior of the toolkit precise enough to let us prove the
correctness of the library, while still being abstract enough that
we are not forced to verify large parts of the implementation of
the underlying toolkit. A usable Hoare-style specification for an
imperative toolkit API could well be a result of independent interest!
It may involve ideas from process calculi, since low-level APIs such
as Win32 or GTK are often designed with logically concurrent
and asynchronous abstractions in mind (even though the actual
implementations are usually sequential).

7. Discussion
In our earlier paper [17], we used ultrametric spaces to reinterpret
the stream transformers familiar from the semantics of synchronous
dataflow. In the special case of functions from streams to streams,
causality and non-expansiveness precisely coincide, but complete
ultrametric spaces are Cartesian closed, supporting function spaces
at all orders, and a general notion of contractiveness for defining
well-founded fixed points.

Metric methods entered semantics in the early 1980s, to simplify
the denotational semantics of concurrency [10]. The applications
to stream programming were recognized early, but not followed
up on: in a surprisingly little-cited 1985 paper [9], de Bakker and
Kok proposed an ultrametric semantics for a language of first-order
stream programs over integers and wrote “We think there are no
problems when we allow functions of higher order[. . .]”.

Birkedal et al. [3] have recently given an ultrametric model of
Nakano’s [19] calculus for guarded recursion. Nakano’s types are
very similar to ours (though he supports full recursive types), making
use of a delay type to guard recursive definition. However, his system
includes both subtyping and rules (such as (•)) whose application
does not affect the subject term, but which we wished to record for
operational reasons. His correctness proof relied on a logical relation,
whereas in this paper we have been able to prove normalization for
a language including the recursion operator fix x : X. e using only
ordinary induction — as the proof of Banach’s theorem hints we
ought, since it only uses induction up to ω to find fixed points.

A suggestive paper of Escardo’s [13] gives a metric model to
PCF. He noticed that ultrametric spaces support a version of the lift
monad from domain theory, and that the extra structure of metrics
relative to domains means that the lift monad can be used to interpret
timeouts. Since cancels and interrupt operations pervade interactive
programs, this suggests a direction of investigation for learning
how to support these operations without disturbing the reasoning
principles of the language.

Recently, Birkedal et al. [4] have given an alternative model of
guarded recursion, based on the topos of trees. Their construction
forms a topos, and so many of the semantic constructions we
performed with metric spaces can be replayed as set-theoretic
operations within the internal language of their topos. In particular,
we found the calculations involving powerspaces rather difficult,
and so the possibility of working with ordinary powersets (albeit in
a slightly different mathematical universe) seems quite attractive.

Pouzet and Caspi [5] extended synchronous dataflow program-
ming to higher order with their co-iterative semantics. They il-
lustrated how that this generated a Cartesian closed category (of
size-preserving functions), which they used to interpret functions.
Uustalu and Vene [24] subsequently observed that size-preserving
functions could be understood more abstractly as the co-Kleisli
category of streams. However, in both of these works, feedback
was handled in a somewhat ad hoc fashion. The problem is that
these categories contain too few global points (maps S(1)→ S(N))
to denote very many streams, including such basic ones such as
(1, 2, 3, 6, 24, . . .).) Still, implicit lifting is a very attractive notation
for simplifying writing stream programs, and there is an adjunction
between the category of ultrametric spaces and the co-Kleisli cate-
gory of the stream functor, which would makes it easy to return to
Ult to take fixed points.

The original work on functional reactive programming [12] was
based on writing reactive programs as unrestricted stream programs,
but due to problems with causality, variations such as arrowized
FRP [20] were introduced to give combinators restricting the defin-
able stream transformers to the causal ones. The restriction to arrows
is roughly equivalent to first-order functional programming, though
Sculthorpe and Nilsson [23] introduced additional combinators to
recover higher-order and dynamic behavior while using dependent
types to retain causality. In contrast, Liu, Cheng and Hudak [18]
showed how to exploit this first-order structure to develop a very
efficient compilation scheme (reminiscent of the Bohm-Jacopini
theorem) from arrow programs to single-loop code.

A distinctive feature of the original FRP work is its focus
on continuous time. Though it does not yet do so, we hope our
proof framework can extend to proving a sampling theorem, as in
Wan and Hudak [26]. On the semantic side, we can easily model
continuous behaviors as functions of type R → A, but relating it
to an implementation delivering time deltas (instead of ticks, as
presently) seems much more challenging.

Cooper and Krishnamurthi [7, 8], describe FrTime, an embed-
ding of functional reactive programming into the PLT Scheme (now
Racket) implementation. They integrate a language with full (i.e.,
non-commutative) effects, which rules out an adjoint-logic style as
we have done here. However, it might be possible to use Egger et
al.’s enriched effect calculus [11] to support both general effects
and strong reasoning principles.

References
[1] N. Benton. A mixed linear and non-linear logic: Proofs, terms and

models. In Computer Science Logic, volume 933 of LNCS, 1995.

[2] P. N. Benton and P. Wadler. Linear logic, monads and the lambda
calculus. In LICS, pages 420–431, 1996.

[3] L. Birkedal, J. Schwinghammer, and K. Støvring. A metric model of
guarded recursion. In FICS, 2010.

[4] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring.
First steps in synthetic guarded domain theory: step-indexing in the
topos of trees. In LICS, 2011.

[5] P. Caspi and M. Pouzet. A co-iterative characterization of synchronous
stream functions. Electr. Notes Theor. Comput. Sci., 11, 1998.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A
declarative language for real-time programming. In POPL, 1987.

[7] G. Cooper. Integrating dataflow evaluation into a practical higher-
order call-by-value language. PhD thesis, Brown University, 2008.

[8] G. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. Programming Languages and Systems, pages
294–308, 2006.

[9] J. W. de Bakker and J. N. Kok. Towards a uniform topological treatment
of streams and functions on streams. In ICALP, 1985.

[10] J. W. de Bakker and J. I. Zucker. Denotational semantics of concurrency.
In STOC, pages 153–158. ACM, 1982.

[11] J. Egger, R. E. Møgelberg, and A. Simpson. Enriching an effect calculus
with linear types. In E. Grädel and R. Kahle, editors, CSL, volume 5771
of Lecture Notes in Computer Science, pages 240–254. Springer, 2009.
ISBN 978-3-642-04026-9.

[12] C. Elliott and P. Hudak. Functional reactive animation. In ICFP, 1997.
[13] M. Escardó. A metric model of PCF. In Workshop on Realizability

Semantics and Applications, 1999.
[14] M. P. Fiore and G. D. Plotkin. An extension of models of axiomatic

domain theory to models of synthetic domain theory. In Proceedings
of Computer Science Logic (CSL), volume 1258 of Lecture Notes in
Computer Science. Springer, 1996.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1995.

[16] A. Kock. Closed categories generated by commutative monads. Journal
of the Australian Mathematical Society, 12, 1971.

[17] N. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. In LICS. IEEE, 2011.

[18] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows and
their optimization. In ACM International Conference on Functional
Programming, 2009.

[19] H. Nakano. A modality for recursion. In LICS, pages 255–266, 2000.
[20] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive pro-

gramming, continued. In ACM Haskell Workshop, page 64. ACM,
2002.

[21] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, 2006.

[22] J. J. M. M. Rutten. Elements of generalized ultrametric domain theory.
Theor. Comput. Sci., 170(1-2):349–381, 1996.

[23] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In ICFP, 2009.

[24] T. Uustalu and V. Vene. The essence of dataflow programming. In
Central European Functional Programming School, volume 4164 of
LNCS, 2006.

[25] S. Vickers. Localic completion of generalized metric spaces II:
Powerlocales. Theory and Applications of Categories, 14(15):328–
356, 2005. ISSN 1201-561X.

[26] Z. Wan and P. Hudak. Functional reactive programming from first
principles. In PLDI, pages 242–252, 2000.

[27] K. Watkins, I. Cervesato, F. Pfenning, , and D. Walker. A concurrent
logical framework i: Judgments and properties. Technical Report CMU-
CS-02-101, Carnegie Mellon University, 2002.

