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Abstract—We describe a denotational model of higher-order
functional reactive programming using ultrametric spaces and
nonexpansive maps, which provide a natural Cartesian closed
generalization of causal stream functions and guarded recursive
definitions. We define a type theory corresponding to this
semantics and show that it satisfies normalization. Finally, we
show how to efficiently implement reactive programs written in
this language using an imperatively updated dataflow graph, and
give a separation logic proof that this low-level implementation
is correct with respect to the high-level semantics.

I. INTRODUCTION

There is a broad spectrum of models for reactive program-
ming. Functional reactive programming (FRP), as introduced
by Elliott and Hudak [1], is highly expressive and typically
shallowly embedded in powerful general-purpose languages.
At the other end, synchronous dataflow languages such as
Esterel [2], Lustre [3] and Lucid Synchrone [4] provide a
restricted, domain-specific model of computation supporting
specialized compilation strategies and analysis techniques.
Synchronous languages have been highly successful in ap-
plications such as hardware synthesis and embedded control
software, and provide strong guarantees about bounded usage
of space and time. FRP is usefully less constrained than the
synchronous languages, supporting higher-order abstraction
and time-varying values of arbitrary types. But even in its
intended application domain — dynamic interactive applica-
tions running in resource-rich environments, such as desktop
GUIs, games and web applications — naive FRP seems too
expressive. Despite clever implementations, it is all too easy
to introduce significant space and time leaks in FRP programs,
and one can even write programs that are unimplementable,
e.g. because they violate causality. Some recent variants of
FRP [5], [6] restrict the model to rule out non-causal functions
and ill-formed feedback.

In practice, of course, interactive GUIs and the like are
usually implemented in general-purpose languages in a very
imperative style. A program implements dynamic behavior by
modifying state, and accepting callbacks to modify its own
state. These programs exhibit complex aliasing, tricky control
flow through callback functions living in the heap, and in
general are difficult to reason about. Part of the difficulty
is the inherent complexity of verifying programs using such
powerful features, but an even more fundamental problem is
that it is not immediately clear even what the semantics of
such programs should be; even the most powerful verification
techniques are useless without a specification to meet.

The goal of the work described here is to get the best of
both the synchronous and FRP worlds, without exposing the
programmer to the horror of higher-order imperative code. We
want to write complex dynamic reactive applications in an
FRP-like, higher-order declarative style, without abandoning
the efficient stateful execution model that synchronous lan-
guages provide, at least for the first-order parts of our pro-
grams. To this end, we first present a new semantic model for
reactive programs in terms of ultrametric spaces, generalizing
previous models based on causal stream functions. Our model
is Cartesian closed and so yields a mathematically natural
semantics for higher-order reactive programs.

Working with (ultra)metric spaces lets us use Banach’s
contraction map theorem to interpret feedback. Unlike earlier
semantics based on domain models of streams, we can thus
restrict our semantics to total, well-founded stream programs.
Furthermore, by using an abstract notion of contractiveness
instead of an explicit notion of guardedness, our semantics lifts
easily to model higher-type streams (e.g., streams of streams)
and recursion at higher type.

Next, we give a domain specific language (DSL) for writ-
ing reactive programs. The key idea is to introduce a type
constructor for delays, interpreted as an endofunctor that
shrinks distances by a factor of one-half. This lets us track
contractiveness by types, in much the same spirit as Nakano’s
calculus for guarded recursion [7].

In the second part of the paper, we give a reasonably
efficient implementation of our language in terms of im-
perative dataflow graphs and prove the correctness of the
implementation with respect to the semantics. The correctness
proof uses a non-trivial Kripke logical relation, built using
ideas from separation logic, rely-guarantee reasoning and step-
indexed models, but ensures that clients can reason about
programs as well-behaved mathematical objects, satisfying
the full range of β, η and fixpoint equations, with all the
complexities of the higher-order imperative implementation
hidden behind an abstraction barrier.

II. ULTRAMETRIC SEMANTICS

A. Reactive Programs and Stream Transformers

Reactive programs are usually interpreted as stream trans-
formers. A time-varying value of type A can be viewed as a
stream of As, and so a program that takes a time-varying A
and produces a time-varying B is then a function that takes a
stream of As and produces a stream of Bs.



However, the full function space on streams is too generous:
many functions on streams do not have sensible interpretations
as reactive processes. For example, a stock trading program
receives a stream of prices and emits a stream of orders, but the
type Priceω → Orderω includes functions that produce orders
today that are a function of the price tomorrow; such functions
are (much to our regret) unrealizable.

The semantic condition that expresses which functions do
correspond to implementable processes is causality: the nth

output should depend only on the first n inputs. More formally,
writing bxscn for the n-element prefix of the stream xs:

Definition 1: (Causality) A stream function f : Aω → Bω

is causal when, for all n and streams as and as′, if bascn =
bas′cn then bf(as)cn = bf(as′)cn.
This definition rules out, for example, the tail function, for
which the first n outputs depend upon the first n+ 1 inputs.

Causality is an intuitive and appealing definition for streams
of base types but it is not immediately clear how to generalize
it. What might causality mean over a stream of streams, or
even a stream of stream functions?

We also want to define streams by feedback or recursion,
as in this definition of the increasing sequence of naturals:

nats = fix(λxs. 0 :: map succ xs)

Thinking operationally about when such fixed points are well-
defined, observe that the function λxs. 0 :: map succ xs can
produce its first output without looking at its input. We imagine
implementing the fixed point by feeding the output at time n
back in as the input at time n+ 1, exploiting the fact that at
time 0 the input value does not matter. This leads us to define:

Definition 2: (Guardedness) A function f : Aω → Bω is
guarded if there exists a k > 0 such that for all for all n, as
and as′, if bascn = bas′cn then bf(as)cn+k = bf(as′)cn+k.

Proposition 1: (Fixed Points of Guarded Functions) Every
guarded endofunction f : Aω → Aω (where A is a nonempty
set) has a unique fixed point.

As with causality, guardedness is intuitive and natural,
but generalizations to higher types seem both useful and
unobvious. For example, we may want to write a recursive
function:

fib = fix(λf λ(j, k). j :: f(k, j + k))

What does guardedness mean, and how can we interpret fixed
points, at higher types? We will answer these questions by
moving to metric spaces.

B. An Ultrametric Model of Reactive Programs

A complete 1-bounded ultrametric space is a pair (A, dA),
where A is a set and dA ∈ A × A → [0, 1] is a distance
function, satisfying the following axioms:
• dA(x, y) = 0 if and only if x = y
• dA(x, x′) = dA(x′, x)
• dA(x, x′) ≤ max(dA(x, y), dA(y, x′))
• Every Cauchy sequence in A has a limit

A sequence 〈xi〉 is Cauchy if for any ε ∈ [0, 1], there is an
n such that for all i > n, j > n, d(xi, xj) ≤ ε. A limit is

an x such that for all ε, there is an n such that for all i > n,
d(x, xi) ≤ ε. Ultrametric spaces satisfy a stronger version of
the triangle inequality than ordinary metric spaces, which only
ask that d(x, x′) be less than or equal to dA(x, y)+dA(y, x′),
rather than max(dA(x, y), dA(y, x′)). We often just write A
for (A, dA). All the metric spaces we consider are bisected,
meaning that the distance between any two points is 2−n for
some n ∈ N.

A map f : A → B between ultrametric spaces is nonex-
pansive when it is non-distance-increasing:

∀xx′, dB(f x, f x′) ≤ dA(x, x′)

A map f : A → B between ultrametric spaces is (strictly)
contractive when it shrinks the distance between any two
points by a non-unit factor:

∃q ∈ [0, 1), ∀xx′, dB(f x, f x′) ≤ q · dA(x, x′)

Complete 1-bounded ultrametric spaces and nonexpansive
maps form a Cartesian closed category. The product is given
by equipping the set product with the pointwise sup-metric:

dA×B((a, b), (a′, b′)) = max {dA(a, a′), dB(b, b′)}

Exponentials give the set of nonexpansive maps a sup-metric
over all inputs (exploiting the ultrametric):

dA⇒B(f, f ′) = sup {dB(f a, f ′ a) | a ∈ A}

The discrete ultrametric space D(X) on a set X is given
by defining d(x, x′) to be 0 if x = x′ and 1 otherwise. The
category also has coproducts, with (A, dA) + (B, dB) being
defined as (A+B, dA+B), where

dA+B(x, y) =

 dA(a, a′) if x = inl a, y = inl a′

dB(b, b′) if x = inr b, y = inr b′

1 otherwise

The shrinking functor 1
2 (A, dA) = (A, d 1

2A
) halves all

distances:
d 1

2A
(a, a′) =

1

2
dA(a, a′)

The 1
2 functor is Cartesian closed: there are natural iso-

morphisms unzip 1
2
, zip 1

2
: 1

2 (A × B) ' 1
2A ×

1
2B and

ε, ε−1 : 1
2 (A → B) ' 1

2A →
1
2B. There is also a natural

transformation δA : A → 1
2A (pronounced “delay”), all of

which are implemented with the obvious identity embedding
on points. In general, however, 1

2 (A+B) 6' 1
2A+ 1

2B.
For a space A, the ultrametric space S(A) of streams on A

is defined by equipping Aω with the causal metric of streams:

dS(A)(as, as
′) = sup

{
2−n · dA(asn, as

′
n) | n ∈ N

}
This is functorial: for f : A→ B, S(f) : S(A)→ S(B) maps
f over the input, which preserves identity and composition.

For discrete A, the stream metric on S(A) says that two
streams are closer, the later the time at which they first
disagree. So two streams which have differing values at time
0 are at a distance of 1, whereas two streams which never
disagree will have a distance of 0, and will thus be equal. The



stream type can also be understood as µα. A× 1
2α, but we do

not develop the general theory of recursive types here.
Proposition 2: (Banach’s Contraction Map Theorem) If A

is a nonempty, complete (ultra)metric space, any contractive
f : A → A has a unique fixed point. Equivalently (as strict
contractiveness is uniform), any nonexpansive map g : 1

2A→
A has a unique fixed point.

C. From Ultrametrics to Functional Reactive Programs

For streams of base type, the properties of maps in the cate-
gory of ultrametric spaces correspond exactly to the properties
of first-order reactive programs discussed previously.

Theorem 1: (Causality is Nonexpansiveness) For sets A and
B, a function f : Aω → Bω is causal if and only if it is
nonexpansive when considered as a function from S(D(A))
to S(D(B)).

Theorem 2: (Guardedness is Contractiveness) For sets A
and B, a function f : Aω → Bω is guarded if and only if it is
strictly contractive as a function from S(D(A)) to S(D(B)).

The proofs of these two theorems are merely the unwinding
of a few definitions. But the consequences of moving to
ultrametric spaces are quite dramatic:

1) Cartesian closure means we can interpret tuples and
functions (with full β and η laws); we also have sums,
which let clients implement the “switching” combinators
of FRP.

2) Since streams are functorial, we can interpret streams of
streams.

3) Contractiveness and Banach’s theorem generalize the
stream-centric notions of guardedness and guarded re-
cursion to give a notion of well-founded recursion that
also works at higher types. Further, the explicit delay
functor lets us express contractiveness via types, rather
than making it a property of functions.

In an abstract sense, this semantics fulfill the original promise
of FRP in a ‘no-compromise’ way: one can freely and natu-
rally write higher-order programs with stream values, and the
properties of ultrametric spaces ensure that all functions are
causal and all recursions well-founded.

III. A LANGUAGE FOR STREAM PROGRAMS

We now need a term calculus in which to write reactive
programs. Our semantic category is not inherently tailored to
reactivity, but the language (building in streams with the causal
metric and making particular use of the delay modality) does
reflect the synchronous operational semantics and implemen-
tation techniques we have in mind. Birkedal et al. [8] have
recently given an ultrametric model of the calculus for guarded
recursion due to Nakano [7], and we use the same semantics
for types. Our term calculus is different, however, being more
in the spirit of ‘standard’ natural deduction and Curry-Howard.
Nakano’s calculus includes both subtyping and rules (such
as (•)) whose application does not affect the subject term,
but which we wish to record for operational reasons. By
contrast with the impressively sophisticated metatheory of
Nakano, we have a straightforward normalization proof and an

algorithmic presentation of the system. We discuss the relation
with Nakano’s system further in the full version of the paper.

A. Syntax and Type Theory

Figure 1 gives the syntax and typing rules for our calculus.
The types are functions, streams, and delays, with sums and
products omitted for space reasons. Each of the types appear-
ing in a judgement is annotated with a ‘time’. Intuitively, time
0 means ‘now’, whilst time k means ‘k steps into the future’.
Time indices are used in typing stream terms. The introduction
form cons(e, e′) takes a head of type A at time i, and a tail
of type S(A) at time i + 1. The two elimination forms hd e
and tl e take a stream at i, and return the head and tail of a
stream, with the head coming at i and the tail one step later,
at i+ 1.

The HYP rule for variables includes subsumption: a hypoth-
esis x : Ai can be used to conclude x : Aj for any time j ≥ i.
The intuition is that values can be maintained for use at later
times. The ‘later’ modality •A partly internalizes this notion
of time. The introduction rule •I produces a term of type •A
at time i, given a premise of type A at time i+ 1, and dually
the elimination rule •E yields a term of type A at time i+ 1
from a term of type •A at time i.

We remark that the calculus only deals with relative times,
and there is no way to define a type valid only at a single
moment in time (as might be possible in a hybrid logic [9]).
For example, the type of values A, k steps in the future, would
be •k(A), but there is no type corresponding to being valid
exactly at time k = 17. This property can be formalized in
the following theorem, where the notation Γ+n means that we
add n to the time index of every hypothesis in Γ.

Lemma 1: (Time Adjustment) If Γ,Γ′ ` e : Ai, then
Γ,Γ′+n ` e : Ai+n. As a partial converse, if Γ+n ` e : Ai+n,
then Γ ` e : Ai.

Theorem 3: (Normalization) If Γ ` e : Ai, then there exists
a long β-η normal form n (orienting equations left to right as
in Figure 1) such that e

β,η
= n and Γ ` n : Ai.

The normalization proof is presented in the full version of
the paper. We give a bidirectional (algorithmic) type system
in canonical forms style, which types only normal forms our
calculus, and then define a hereditary substitution [10] which
preserves typing and is compatible with the equational theory.

B. Denotational Semantics

Figure 2 gives the semantics of our DSL, interpreting types
as ultrametric spaces and terms as non-expansive maps.

The •A type is interpreted as 1
2 [[A]], and a type indexed

with a time index Ai is interpreted as 1
2

i
[[A]]. As a result,

[[Ai+1]] = [[•Ai]], and the interpretation of the rules for •A
are identities. The real action of the 1

2 (A) functor occurs in
the interpretation of the hypothesis rule HYP, in which values
are moved from 1

2

i
[[A]] to 1

2

j
[[A]] by iterating the delay natural

transformation j − i times.
The interpretations of other types, such as functions, look

entirely standard, with occasional appearances of the isomor-
phisms mediating between 1

2

n
A→ 1

2

n
B and 1

2

n
(A→ B).



A ::= P | A→ B | • A | S(A) Types
Γ ::= · | Γ, x : Ai Contexts
e ::= λx : A. e | • e | cons(e, e) Terms

| x | e e | await(e) | hd e | tl e

Γ ` e : Ai

Γ, x : Ai ` e : Bi

Γ ` λx. e : A→ Bi
→I

Γ ` e : Ai+1

Γ ` •e : •Ai
•I

Γ ` e : Ai Γ ` e′ : S(A)i+1

Γ ` cons(e, e′) : S(A)i
SI

x : Ai ∈ Γ i ≤ j
Γ ` x : Aj

HYP

Γ ` t : (A→ B)i Γ ` e : Ai

Γ ` t e : Bi
→E

Γ ` t : •Ai
Γ ` await(t) : Ai+1

•E

Γ ` t : S(A)i

Γ ` hd t : Ai
Shd

Γ ` t : S(A)i

Γ ` tl t : S(A)i+1
Stl

A→ B (λx : A. e) e′
β
= [e′/x]e e

η
= λx : A. e x

•A await(•e) β
= e e

η
= •(await(e))

S(A) hd (cons(e, e′))
β
= e e

η
= cons(hd e, tl e)

tl (cons(e, e′))
β
= e′

Fig. 1. Syntax, Typing and Equations for the DSL

Theorem 4: (Soundness)
• If we have Γ ` e : Ai and Γ, x : Ai ` e′ : Bn then

we know [[Γ ` [e/x]e′ : Bn]] = [[Γ, x : Ai ` e′ : Bn]] ◦
〈idΓ, [[Γ ` e : Ai]]〉.

• If Γ ` e : Ai and Γ ` e′ : Ai and e =βη e′, then
[[Γ ` e : Ai]] = [[Γ ` e′ : Ai]].

C. Fixed Points

Normalization establishes a sense in which the core of our
language has a well-behaved proof theory and is here proved
for the language without recursion. We then add well-founded
recursion to the language simply by adding constants fix :
(•A→ A)→ A for each non-empty type A, interpreted using
Prop. 2 (Banach’s theorem).1

D. Examples

Some reactive languages make everything a stream (or
stream transformer), implicitly lifting other constructs so that,
for example, a syntactic application is semantically a map
operation. Primitives are carefully chosen to preserve causality
(so head and ‘followed by’ are OK, but tail is not). We program
more explicitly with streams and can implement higher-order
operations such as mapping straightforwardly:

1 map = λ f :N→N. fix (λ g:•(S(N)→S(N)).
2 λ xs :S(N).
3 let g’ = await(g) in

1Subsequent to the present work, we have used a time-stratified notion
of normal form to show normalization for a closely-related language that
includes, amongst other things, a recursion construct.

4 let t ’ = tl (xs) in
5 cons(f (hd xs ), g’ t ’))

The justification that the recursion is well-founded is that
the function being defined is only needed at the next time
step. This is made explicit in the types, but the definition
is otherwise essentially the familiar one. Having defined map
(and the usual zip), we can program the stream of Fibonacci
numbers neatly as follows:

1 fibs = fix (λ xs ’: •(S(N)).
2 let xs = await(xs ’) in
3 let ys = tl (xs) in
4 cons(1, cons(1, map (+) ( zip (xs , ys )))))

There is some further subtlety here: in the subexpression
zip (xs , ys), we zip together xs and ys, which are streams
at different times. So xs needs to be “pushed into the future”
in order to be used at the same time as ys. If we think of
streams as sequences of events emitted over time, this means
that we need to buffer xs in order to be able to use it with ys.

On the other hand, the typing rules block an ill-founded
definition such as:

BAD = fix(λxs : •S(A). await(xs))

Here, the await(xs) term gives a term one step in the future
of the expected time, which means that the program fails to
type check.

Stream processors are often conveniently specified as finite
state machines. One can easily program the translation from
one representation to another using higher-order functions:

1 unfold = λ f :T→A ×•(T ). fix (
2 λ loop :•(T→S(A )). λ t :T.
3 let (a , t ’) = f t
4 in cons(a, (await(loop) await ( t ’))))

Here unfold : (T→A×•T)→T→S(A) takes a transition func-
tion mapping a state (of type T) to an output (of type A) and
and a next state, together with an initial state, and produces
the resulting stream of outputs.

Making well-foundedness a semantic property that can
be verified using typechecking contrasts with the work on
synchronous dataflow languages [4], in which guardedness
is established via syntactic checks, and gives us a stronger
equational theory. These syntactic checks can use dataflow
analysis to allow some definitions we do not, but on the
other hand our approach scales more naturally to higher-order
programs.

IV. IMPLEMENTATION

A. Idealized ML and Program Logic

Implementation Language. The programming language in
which we implement our domain-specific language is a poly-
morphic lambda calculus with monadically typed side-effects.
The types are the unit type 1, the function space τ → σ, sums
τ + σ, products τ ? σ, inductive types like the natural number
type N, the general reference type ref τ , as well as (higher-
kinded but still predicative) universal and existential types
∀α : κ. τ and ∃α : κ. τ . In addition, we have the monadic



[[A→ B]] = [[A]]⇒ [[B]]
[[•A]] = 1

2
[[A]]

[[S(A)]] = S([[A]])

[[Ai]] = 1
2

i
[[A]]

[[·]] = 1
[[Γ, x : Ai]] = [[Γ]]× [[Ai]]

δnA ∈ A→ 1
2

n
A

δ0A = idA
δn+1
A = 1

2
(δnA) ◦ δA

zipi1
2

∈ 1
2

i
A× 1

2

i
B → 1

2

i
(A×B)

zipn+1
1
2

= 1
2
(zipn1

2
) ◦ zip 1

2

zip0
1
2

= idA×B

εi ∈ ( 1
2

i
A⇒ 1

2

i
B)→ 1

2

i
(A⇒ B)

ε0 = idA⇒B
εn+1 = 1

2
(εn) ◦ ε

ε−1
i ∈ 1

2

i
(A⇒ B)→ ( 1

2

i
A⇒ 1

2

i
B)

ε−1
n = id
ε−1
n+1 = ε−1

n ◦ ε−1

[[Γ ` e : Ai]] ∈ [[Γ]]→ 1
2

i
[[A]]

[[Γ ` •e : •Ai]] = [[Γ ` e : Ai+1]]
[[Γ ` cons(e, e′) : S(A)i]] = let h = [[Γ ` e : Ai]] in

let t = [[Γ ` e′ : S(A)i+1]] in
1
2

i
(cons) ◦ zipi1

2
◦ 〈h, t〉

[[Γ ` λx. e : A→ Bi]] = εi ◦ λ([[Γ, x : Ai ` e : Bi]])
[[Γ ` xn : Aj ]] = δj−iA ◦ πn, if xn : Ai ∈ Γ
[[Γ ` await(e) : Ai+1]] = [[Γ ` e : •Ai]]
[[Γ ` hd e : Ai]] = 1

2

i
(hd) ◦ [[Γ ` t : S(A)i]]

[[Γ ` tl e : S(A)i+1]] = 1
2

i
(tl) ◦ [[Γ ` t : S(A)i]]

[[Γ ` e e′ : Bi]] = let f = [[Γ ` e : A→ Bi]] in
let v = [[Γ ` e′ : Ai]] in

1
2

i
(eval) ◦ zipi1

2
◦ 〈f, v〉

Fig. 2. Denotational Semantics

type ©τ for side-effecting computations producing values of
type τ . The side effects we consider are heap effects (such as
reading, writing, or allocating references) and nontermination.
The implementation language is standard, and we omit the
details for reasons of space.

Program Logic. We reason about programs in the imple-
mentation language in the program logic whose syntax is
shown in Figure 3. The Hoare triple {p} c {a : τ . q} is used
to specify computations, and is satisfied when running the
computation c in any heap satisfying the predicate p either
diverges or yields a heap satisfying q; note that the value
returned by terminating executions of c is bound (by a : τ )
in the postcondition. These atomic specifications can then be
combined with the usual logical connectives of intuitionistic
logic including quantifiers ranging over the sorts in ω. This
permits us to give abstract specifications to modules using
existential quantifiers to hide program implementations and
predicates.

The assertions in the pre- and post-conditions are drawn
from higher-order separation logic [11], including spatial con-
nectives like the separating conjunction p ∗ q. The universal

Assertion Sorts ω ::= τ | κ | ω ⇒ ω | prop
Assertion p ::= e | τ | x | λx : ω. p | p q
Constructors | > | p ∧ q | p⇒ q | ⊥ | p ∨ q

| emp | p ∗ q | e 7→ e′

| ∀x : ω. p | ∃x : ω. p | S
Specifications S ::= {p} c {a : τ . q} | {p}

| S and S′ | S =⇒ S′ | S or S′

| ∀x : ω. S | ∃x : ω. S

Fig. 3. Specification Language

and existential quantifiers ∀x : ω. p and ∃x : ω. p are higher-
order quantifiers ranging over all sorts ω. The sorts include
the language types τ , kinds κ, the sort of propositions prop,
and function spaces over sorts ω ⇒ ω′. For the function
space, we include lambda-abstraction and application. Because
our assertion language contains within it the classical higher-
order logic of sets, we will freely make use of features like
subsets, indexed sums, and indexed products, exploiting their
definability. Further details of this logic are given in the first
author’s dissertation [12].

B. The Implementation and its Correctness Proof

The basic idea underlying our implementation is the idea
of representing a collection of streams with a dataflow graph.
Instead of representing streams as (possibly-lazy) sequences of
elements, we use mutable data structures, which enumerate the
values of the stream as they evolve over time. We implement
reactive programs with a dataflow graph, which runs inside an
event loop. The event loop updates a clock cell to notify the
cells in the graph that they may need to recompute themselves,
and then it reads the cells it is interested in, doing (hopefully)
the minimal amount of computation needed at each time step.
We describe our program invariant precisely, illustrating it with
extracts from the implementation, full details of which are
given in the full version of the paper.

Dataflow Graphs. An imperative dataflow network is rather
like a generalized spreadsheet. It has a collection of cells,
each containing some code whose evaluation may read other
cells. When a cell is read, the expression within the cell is
evaluated, recursively triggering the evaluation of other cells
as they are read by the program expression. Furthermore, each
cell memoizes its expression, so that repeated reads of the
same cell will not trigger re-evaluation.

We give the interface to a dataflow library in Figure 4. We
have implemented and given a correctness proof of this library
in prior work [13], [12], but briefly describe the specification
here, since we use it as a component of the present work.

The interface features two abstract data types, cell and code.
Values of type cell α are dataflow graph nodes that compute
a value of type α. The expressions within each cell are of the
monadic type code α, computing both a value of type α and
the set of cells that were read during that computation.

Since the dataflow graph maintains many internal invariants,
we give a “domain-specific separation logic” as an abstract



interface to the graph’s state, with library-specific formulas θ
indexing the dataflow predicate H(θ). I and φ⊗ψ correspond
to the emp and separating conjunction of separation logic,
denoting empty graphs and two disjoint collections of cells.
In addition to the ref(r, v) predicate (which corresponds to
points-to in separation logic), we include a pair of predicates
describing cells. The predicate cell−(c, e) means that c is a
cell in the dataflow graph containing code e, and that it is not
ready — i.e., it needs to be evaluated before producing a value.
The predicate cell+(c, e, v, rs) almost means the opposite: it
means that c is ready (i.e., has a memoized value), conditional
on all its dependencies in rs being ready themselves, which we
describe with two relations unready(θ, c), and ready(θ, c, v).
These establish respectively that the cell c is unready — either
it or one of its ancestors are a negative cell — or that c and
all of its ancestors are positive cells and it contains v.

We now explain the specifications of the code expressions in
Figure 4. First, all of these specifications are parameterized by
an extra quantifier ∀ψ. . . ., letting us manually build in a kind
of frame rule into this specification — any formula we derive
will also be quantified, and hence works in larger dataflow
graphs. One oddity of these rules is that the framed formula
ψ is asymmetric; in the postcondition, we frame on a formula
like <(u, ψ). This is a “ramification operator”, whose purpose
is to look at the dependencies of cells in ψ and ensure that
they are not falsely marked as ready due to the elements of
the set of cells u changing from un-ready to ready.

On lines 1-8 of Figure 4, we see the specifications for the
return and bind operation of this monad. On lines 9-12, we
give specifications for creating, reading and writing local state,
as well as (on line 9) creating a new cell with code in it.
On lines 13-14, we give the specification for reading from a
ready cell, which merely returns the value in the cell without
modifying the heap. On lines 15-22, we specify the behavior
of reading an unready cell — if we know that executing its
body takes us from θ to θ′, then reading the cell will do the
same, as well as setting the cell to a positive state.

The Implementation. The ML interpretations (|A|) of DSL
types A are given in Figure 5. Finite products are implemented
with ML units and pairs. Streams of type A are implemented
with type cell (|A|), the type of imperative nodes in our
dataflow graph library. The ‘next’ modality •A is realized by
code (|A|). Unlike our denotational semantics, in which A and
1
2A share the same underlying set, an implementation c for a
next value v is a computation yielding v, when run from any
memory one step in the future.

The function space A → B is interpreted by an ML
existential type, which explicitly represents a closure. This
closure contains a field env holding free variables and a
function, hom, taking the environment and an argument to
compute a value of type (|B|), possibly reading and creating
cells as part of its execution. The delay field contains code
to delay the closed-over value, which lets us implement the
delay action δA→B at function type.

To relate the high-level semantic view of programs with
the low-level implementation in terms of mutable dataflow

1 ∀ψ. {H(ψ)} return(v) {(a, ∅). H(ψ) ∧ a = v}
2 ∀ψ. {H(θ ⊗ ψ)} e {(a, r). H(θ′ ⊗<(u, ψ)) ∧ (a, r) = (v, r1)}
3 and
4 ∀ψ. {H(θ′ ⊗ ψ)}f v{(a, r). H(θ′′ ⊗<(u′, ψ)) ∧
5 (a, r) = (v′, r2)}
6 =⇒
7 ∀ψ. {H(θ ⊗ ψ)} bind e f{(a, r). H(θ′′ ⊗<(u ∪ u′, ψ))
8 ∧ (a, r) = (v′, r1 ∪ r2)}
9 ∀ψ. {H(ψ)} newref(v) {(a, ∅). H(ψ ⊗ ref(a, v))}
10 ∀ψ. {H(ref(r, v)⊗ ψ)} get(r) {(a, ∅). H(ref(r, v)⊗ ψ) ∧ a = v}
11 ∀ψ. {H(ref(r,−)⊗ ψ)} set(r, v) {(a, ∅). H(ref(r, v)⊗ ψ)}
12 ∀ψ. {H(ψ)} cell(code)

{
(a, ∅). H(cell−(a, code)⊗ ψ)

}
13 ready(θ, c, v) =⇒
14 ∀ψ. {H(θ ⊗ ψ)} read(c){(a, r). H(θ ⊗ ψ) ∧ (a, r) = (v, {c})}
15 unready(θ ⊗ cell±(c, e), c)
16 and
17 ∀ψ. {H(θ ⊗ ψ)} e {(a, r). H(θ′ ⊗<(u, ψ)) ∧ (a, r) = (v, rs)}
18 =⇒
19 ∀ψ.{H(θ ⊗ ψ)}
20 read(c)
21 {(a, {c}). H(<({c} , θ′)⊗<(u ∪ {c} , ψ)⊗ cell+(c, e, v, rs))
22 ∧ a = v}

Fig. 4. Dataflow Library Specification

graphs, we use a step-indexed Kripke logical relation [14].
The relation is parameterized by types, A, step-indices, k, and
‘abstract memories’, M . Step-indexing is necessary because
this program uses higher-order store, and so induction on types
is not possible. Abstract memories are our possible worlds,
abstracting the current state of the dataflow graph. The permis-
sible evolutions of the dataflow graph as the program executes
induce three preorder structures on abstract memories. First,
states change as a single timestep proceeds, for which we
use the preorder M ′ ≺ M . Within the scope of a single
computation, we may also need to locally perform updates
which do not directly correspond to transitions in the global
order, which we write M ′ v M (c.f. “private transitions”
in [15]). Finally, the global clock can advance, and so the
ordering M ′ �n M asserts that M ′ is a state which can
occur n steps in the future of M .

The logical relation, which we write V kA(M), does not
simply relate pairs of semantic and implementation values.
Instead, the relation at type A is a predicate on functions
ar(M)→ [[A]]× (|A|). Here, ar is a functor from the v partial
order on memories (viewed as a posetal category) into Set,
and so V kA(M) ⊆ Set(ar(M), [[A]] × (|A|)). The inspiration
for this move comes from functor category semantics of
local state. A U ∈ V kA(M) can be thought of as a heap-
varying pair of semantic and implementation values, and the
naturality condition of the poset enforces the parametricity of
computations with respect to the local state given by ar(M).

The relation is defined in Figure 6. Pairs are related if
their components are related, and a stream vs is realized by a
dataflow cell v, when it is in the abstract memory M , and the
memory asserts that this cell yields the elements vs. Delayed



(|1|) = unit
(|A×B|) = (|A|) ? (|B|)

(|A→ B|) = ∃τ.

 env : τ ;
hom : τ ? (|A|)→ code (|B|)
delay : τ → code code τ


(|S(A)|) = cell (|A|)
(|N|) = int
(|•A|) = code (|A|)

(|Hom(A,B)|) = (|A|)→ code (|B|)

Fig. 5. ML Implementation of DSL Types

values are thunks, which when run one step in the future, yield
an appropriate value. At function type, our relation states that
functions must work properly with both the evaluation map
and the delay operation at function type. The computation
relation T kA(M) says that if we run a term c in any concrete
heap realizing the memory M , it computes a value realizing
v, taking us to a future memory state in the same time step.
We also reduce the step count to ensure the well-foundedness
of the relation. Note that we allow local extension M1 v M
before executing the code, and the postcondition requires that
c does not alter these extensions.

Finally, we give the relation for hom-sets, which relates
particular semantic values and terms. It says that in any
memory, applying a heap-indexed value to the term, should
yield the result of applying the map to the value in that heap.

Abstract Memory. An abstract memory M ∈ Mem is a
tuple describing a dataflow graph, defined in Figure 7. The
five components S,D, I and (E,α) categorize the four uses
of state in our implementation. The set S is the set of dataflow
cells representing stream values. Its associated function σ
sends each cell c ∈ S to the pair of the stream c realizes,
and the c’s current implementation state.

The second component, D, is a set of references used to
forward values across time steps. Since our semantics is pure,
but represents values with mutable data structures, we need
to fix up cross-temporal values whenever the clock advances.
Each r ∈ D stores a computation, which is either a delayed
thunk scheduled to run on the next time step, or a thunk
received from the previous time step, ready to run now to
yield a value. The function ρD sends each reference to a pair
of the stream of values it yields, and the current computation
value it holds.

The component I gives the references used to implement
cons. Its type A×•S(A)→ S(A) tells us it takes a value and
a thunk, and returning a cell yielding the cons’d stream.2

1 cons : Hom(A× •S(A), S(A))
2 cons (x, dxs) =
3 do r ← newref ( Init x) ;
4 ys ← cell (do () ← read(clock) ;
5 x’ ← get r ;

2The notation f : Hom(A,B), where f is the name of a categorical
combinator f , means that f and f lie in the Hom relation — that is,
(f , f) ∈ Hom(A,B).

1 V k1 (M)(U) = >
2 V kA×B(M)(U) =
3 V kA (M)(Fst(U)) ∧ V kB (M)(Snd(U))

4 V kS(A)(M)(U) =

5 ∀j ≤ k, n ≤ j,M ′ �n M. T j−nA (M ′)(Head(U))
6 V k•A(M)(U) =
7 ∀j ≤ k,M ′ �1 M. T j−1

A (M ′)(U)

8 V kA→B(M)(U) =
9 ∀j ≤ k,M ′ ≺M,U ′ ∈ V jA(M ′).
10 T jB(M ′)(Eval(U,U ′)) and T j•(A→B)(M

′)(Delay(U))

11 T kA(M)(U) =
12 ∀j < k,M1 vM, e1 ∈ ar(M1), ψ.
13 let (v, c) = U(e1) in
14 {Heapj(M1, e1, ψ)}
15 c
16 {(a, rs). ∃M2 ≺M1, e2 ∈ ar(M2), U2 ∈ V jA(M2).
17 Heapj(M2, e2,<(U, ψ)) ∧ e2 = e1 ∧
18 (v, a) = U ′(e2) ∧ rs ⊆ SM2}

19 Eval(U,U ′) = λe ∈ ar(M). let (f, f) = U(e) in
20 let (v, v) = U ′(e) in
21 (f v, eval(f, v))

22 DelayA(U) = λe ∈ ar(M). let (v, v) = U(e) in
23 (v, delayA(v))

24 Fst(U) = λe ∈ ar(M). let ((a, b), (a, b)) = U(e) in (a, a)

25 Snd(U) = λe ∈ ar(M). let ((a, b), (a, b)) = U(e) in (b, b)

26 Head(U) = λe ∈ ar(M). let (vs, vs) = U(e) in (vs0, hd(vs))

27 Hom(A,B)(f, f) =
28 ∀k,M ≺M⊥, U ′ ∈ V kA (M).
29 (λe ∈ ar(M). (f, f (U ′ e))) ∈ T kB(M)

Fig. 6. The Logical Relation

6 case x’ of
7 Init x → do set r Make(dxs); return x
8 Make d → do xs ← d; set r Done(xs); hd(xs)
9 Done xs → hd(xs )) ;

10 register (ys)

The implementation first stores a reference to the head value.
After the cons cell returns the head, it saves the thunk to
compute the tail. On the step after that, it uses the thunk to
build the tail stream, which it uses to generate all subsequent
values. For each reference r in I , the function ρI says which
semantic stream r represents, and which of the three possible
states the reference is in. (register marks cells using state.)

The fourth and fifth components E and α track the refer-
ences used to implement the distributivity of functions and the
next modality ε : (•A→ •B)→ •(A→ B). The set E is the
set of all of the references, and α is the subset of E denoting
the active references. To see how they are used, consider the
implementation of ε:

1 epsilon : Hom(•A → •B, •(A → B))
2 epsilon f =
3 do t ← newref None;
4 a’ ← return (do v ← get r ; return (valOf v )) ;
5 b’ ← eval( f , a’) ;



6 return (return (pack(A, {env=b’;
7 delay = delay•B ;
8 hom = λ(b’,a ).
9 do old ← get t ;

10 set t (Some a);
11 b ← b’ ;
12 set t old ;
13 return b}))

In this function, we call the argument function right away,
using a dummy computation a′ that dereferences a forwarding
pointer t. This call is safe since t will not be dereferenced
until the next time step. Then, on the following time step, we
construct a function which computes a value by first setting
t to its argument, and then evaluating the thunk from the
previous time step. Since t changes at each call of the returned
function, there is no fixed value it always contains, which is
why elements of the relation are parameterized by α-values.
Modifications to t are only in the local relation v, which is
why we unset it before returning. The reference t is always in
E, but is in α only when the thunk b′ executes.

Cells maintain a dynamic dependency graph to memoize
their computations, and so we also specify how dependencies
evolve over time. The Deps component is an irreflexive partial
order overapproximating the true dependency graph (called R)
— one cell may read another only if it is below the other in
this ordering, ensuring that all dependencies are acyclic.

These dataflow cells use auxiliary state. To specify how to
use that state, , we use the components reader : L → S and
writer : L ⇀ S (here L = I ∪D) to specify the ownership of
the references in L. reader tells us the unique reading cell in
S for each reference, and writer identifies the unique writing
cell in S. To ensure writers do not trample readers, we require
each location’s reader to be a dependency of its writer. Finally,
writer is a partial function, which lets us defer defining a
location’s writer. Consider the fixed point for streams:

1 fix : Hom(A ×•S(B), S(B)) → Hom(A, S(B))
2 fix f = λ a. do r ← newref None;
3 preinput ← cell (get r) ;
4 // preinput is r’s reader , but r has no writer
5 input ← return (do vs’ ← preinput ;
6 cell (do v’ ← head(vs ’) ;
7 valOf v ’)) ;
8 // call f , using preinput
9 preoutput ← f (a , input ) ;

10 // out is r’s writer , but can only be defined
11 // after the call to f
12 out ← cell (do () ← read(clock) ;
13 ← hd(preinput ) ;
14 v ← hd(preoutput ) ;
15 d ← delayB(v);
16 set r d;
17 return v)
18 register (out)

We call a function f in a memory state where r has no defined
writer, in order to create the cell whose outputs become inputs.

The Heap Relation. The definition in Figure 7 makes
no reference to the logical relation, and does not relate any
semantic values to implementation values. The heap relation
Heapk(M, e, ψ), defined in Figure 8, does this. Lines 2-4

1 Mem =
2 ΣS ∈ Cell , D, I, (E,α) ∈ Loc.
3 let L = I ∪D and C = S ∪ {clock} in
4 σ : Π(A, c) ∈ S. S([[A]])× code (|A|)× (1 + (|A|)× P(C)),
5 ρD : Π(A, r) ∈ D. S( 1

2
[[A]])× (|•A|),

6 ρI : Π(A, r) ∈ I. [[S(A)]]× ((|A|) + (|•S(A)|) + (|S(A)|)),
7 Deps ⊆ C × C,
8 reader : L→ S,
9 writer : L ⇀ S,
10 I,D,E, {i} are mutually disjoint and α ⊆ E and clock 6∈ S
11 reader ,writer are injective
12 Deps strict partial order
13 let ready = λc ∈ S. σ(c) = ( , inr( , )) in
14 let V = {c ∈ S | ready(c)} in
15 let R = {(c, d) ∈ C × C | d ∈ σ(c)}
16 ∀c ∈ V ∩ writer(L). (c, clock) ∈ R+

17 ∀c ∈ V ∩ writer(L). (c, reader(L)) ∈ R∗
18 R+ ⊆ Deps|V×v

Fig. 7. Abstract Memories

translate the mathematical assertions in M into the assertions
of the domain-specific logic used to specify the dataflow
library. The extra argument ψ names the cells not in M , and
we also explicitly require the existence of a cell for the clock ,
and a registry i of all the cells that need to write state. For
each cell in S,D, I , and E, we assert that there is a cell
or reference containing the implementation value promised in
σ, ρD, ρI , and e using the cells(), refs(), and eps() auxiliary
functions (defined on lines 23-29). The map e, which assigns
values to each of the elements of αM , is not part of M but
rather is a parameter of the heap relation.

On lines 5-8, we relate the implementation of the graph with
its specification. On line 5, each stream cell c ∈ S must satisfy
the Stream predicate (lines 9-10), which asserts that reading it
for the next n time steps will yield the first n elements of the
stream. On line 6, we use the Delay predicate (lines 11-14) to
assert every reference r ∈ D is a computation either scheduled
to run tomorrow (if its writer has already run and updated it),
or is good to run today (in case its writer is not ready, and has
not yet used its contents). On line 7, we use Consref (lines
15-22) to assert each element of I is in an appropriate state
depending on how the cons cell has been used. On line 7, we
use Eps (line 23) to assert that all of the elements of αM
contain the values e gives.

Memory Orderings. As mentioned earlier, there are three
ways in which the abstract memory may evolve, which we
describe in Figure 9. The order M ′ v M describes how M
can become M ’ within a single time step.

Under M ′ v M , the respective S,D, I, E and α sets
may grow, reflecting new allocation and activation, as can
the allowed dependency graph Deps and actual dependency
graph R. Both the reader and writer partial functions can be
extended, to reflect the readers and writers of newly-allocated
cells (or in the case or writers, to reflect a cell taking on the
responsibility of updating a reference). Each of σ, ρD, ρI can
also be extended, but has its own preorder, to reflect their
differing state update protocols.



On lines 6 and 7, we see that σM ′ extends σM just in case
that all ready cells in M are still ready. This allows the future
state to evaluate unready cells. On lines 8-10, we describe
how the ρI can change. If a reference’s writer has not run,
then the state must not have changed. On lines 11-14, we see
how ρD can evolve. As before, states cannot change before a
write. However, in this case, if there is a write, the expected
semantic value must become the tail of the stream, since a
new value has been written for use in the next time step.

The M ′ ≺M preorder (lines 15-17) is a restriction of M ′ v
M to disallow local extensions. It adds the conditions that cells
without writers cannot change, nor can the active set αM .

The M ′′ �n M preorder says M ′′ is n steps in the future of
M . This is defined inductively on lines 18-19, making use of
two auxiliary relations. If M ′′ is zero steps in the future, then
this is just the same as saying M ′′ ≺ M . If it is n + 1 steps
in the future, then there is some intermediate state M ′ which
is within the timestep ordering of M and complete. That is,
all references in IM ′ and DM ′ have writers, all of which have
performed their writes, and every reference in BM ′ has been
set, and αM is empty. Then, M ′′ must be n steps in the future
of the next state Next(M ′) of M ′. The function Next(M ′),
defined on lines 23-35, describes what happens when the clock
ticks. All clock-dependent cells become unready, and we take
the tails of the streams in S (and the references in I).

On lines 36-37, we give the explicit definitions of the arity
functor. Its action on objects gives assignments of values to
α, and its action on the order is simply restriction. The empty
memory M⊥ is a minimal element for all three preorders.

Adequacy. Since we can implement and prove correct
an implementation of each combinator used in the denota-
tional semantics in Figure 2, we can prove correctness by
replacing square brackets [[Γ ` e : Ai]] with banana brackets
(|Γ ` e : Ai|) to swap semantic combinators with the imple-
mentation combinators.

Theorem 5: If · ` e : Ai, then ([[· ` e : Ai]], (|· ` e : Ai|)) ∈
Hom(1, •iA)

Theorem 6: (Ticking the Clock) Suppose M ≺ M⊥, and
let step be the expression:

do ws ← ! i ; iter read ws; update clock () ; ← read clock
Then for all k, we can show the following Hoare triple:

1 {Heapk+1(M, ∅, I)}
2 step
3 {∃M ′ �1 M. Heapk(M ′, ∅, I)}

By reading all of the cells with writers, we ensure that the
state is complete, which makes it safe to update the clock and
invalidate every cell dependent on it.

Theorem 7: (Adequacy) Now choose · ` vs : S(N)0, and
let cmd = (|· ` vs : S(N)0|). For all k and i ≤ k,

1 {Heapk(M⊥, ∅, I)}
2 do vs ← cmd;
3 repeat step i ;
4 hd(vs)
5 {(a, ). ∃M ′ �i M. Heapk−i(M

′, ∅, I) ∧ a = vsi}

Here, we first show that step advances the clock (thus
showing how to implement the event loops), and then show

1 Heapk(M, e, ψ) =
2 H(ψ ⊗ cell+(clock, (), return(), ∅)⊗ ref(i,dom(writer)) ⊗
3 cells(σM )⊗ refs(ρIM )⊗ refs(ρDM )⊗ refs(ρBM )⊗
4 eps(EM , αM , e)) ∧
5 ∀(A, c) ∈ SM . Streamk

A(M)(π1(σM (c)), c) ∧
6 ∀(A, r) ∈ DM . DelaykA(M)(r, head(π1(ρIM (r))), π2(ρI(r))) ∧
7 ∀(A, r) ∈ IM . Consref kA(M)(π1(ρIM (r)), π2(ρI(r))) ∧
8 ∀(A, r) ∈ αM . EpskA(M)(r, e(r))

9 Streamk
A(M)(vs, c) =

10 ∀j ≤ k, n ≤ j,M ′ �n M. T j−nA (M ′)(λe. (vsn, hd c))

11 DelaykA(M)(r, v, c) =
12 if r ∈ dom(writerM ) ∧ readyM (writerM (r))
13 then ∀j ≤ k. V j•A(M)(λe. (v, c))
14 else ∀j ≤ k. T jA(M)(λe. (v, c))

15 Consref kA(M)(r, xs, Init(v)) =
16 ∀j ≤ k. V jA(M)(λe. (head(xs), v))
17 Consref kA(r, xs,Make(c),M) =
18 if r ∈ dom(writerM ) ∧ readyM (writerM (r))
19 then ∀j ≤ k. V j•S(A)(M)(λe. (tail (xs), c))

20 else ∀j ≤ k. T jS(A)(M)(λe. (xs, c))

21 Consref kA(M)(r, xs,Done(xs)) =
22 ∀j ≤ k. V jS(A)(M)(λe. (xs, xs))

23 EpskA(M)(r, v, v) = V kA (M)(λe. (v, v))

24 cells(σM ) =
⊗

c∈SM
cell(c, σM (c))

25 cell((A, c), ( , code, Some(v, ds))) = cell+(c, code, v, ds)
26 cell((A, c), ( , code,None)) = cell−(c, code)

27 refs(ρ) =
⊗

r∈dom(ρ) ref(r, π2(ρ(r)))
28 eps(E,α, e) =
29

⊗
r∈E if r ∈ α then ref(r, π2(e(r))) else ref(r,None)

Fig. 8. Heap Relation

that if vs is a closed term of type S(N), then building the
stream it computes and advancing the event loop i steps will
give us the i-th element of the stream.

V. DISCUSSION

We presented a model for reactive programs based on
ultrametric spaces, a domain-specific language corresponding
to that model, an implementatation of the language in terms of
dataflow graphs and a proof that the implementation is correct
with respect to the semantics. A OCaml implementation of the
DSL, extended with a monadic treatment of GUI operations,
is available from our websites; we will describe the use of our
model for GUI programming in a subsequent publication.

(Ultra)metric spaces have appeared before in semantics, no-
tably in concurrency [16] and in connection with the solution
of domain equations [17]. Escardo [18] gives a ultrametric
space semantics of PCF. His lift monad construction translates
quite naturally to our setting, with A⊥ = (A × N) + 1, with
a metric resembling the recursive type µα. 1 + •α. This
has obvious applications for modelling features of interactive
programs such as timeouts, which we plan to investigate in
the future. Birkedal et al. [19] have recently used ultrametric
spaces to solve recursive equations arising from modelling



1 M ′ vM =
2 SM′ ⊇ SM ∧ IM′ ⊇ IM ∧DM′ ⊇ DM ∧BM′ ⊇ BM ∧
3 readerM′ ⊇ readerM ∧ writerM′ ⊇ writerM ∧
4 DepsM′ ⊇ DepsM ∧RM′ ⊇ RM ∧
5 ρIM′ w ρIM ∧ ρDM′ w ρDM ∧ ρBM′ w ρBM ∧ σM′ w σM
6 σM′ w σM =
7 ∀c ∈ SM . readyM (c)⇒ σM (c) = σM′(c)

8 ρIM′ w ρIM =
9 ∀r ∈ IM , c ∈ writerM (c).
10 readyM (c) ∨ ¬readyM′(c)⇒ ρIM (r) = ρIM′(r)

11 ρDM′ w ρDM =
12 ∀r ∈ DM , c ∈ writerM (c).
13 readyM (c) ∨ ¬readyM′(c)⇒ ρDM (r) = ρDM′(r) ∧
14 ¬readyM (c) ∧ readyM′(c)⇒ π1(ρDM′) = tail ((π1(ρDM )))

15 M ′ ≺M
16 M ′ vM ∧ αM′ = αM ∧
17 [(LM′ − dom(writerM′)) = (LM − dom(writerM ))]

18 M ′ �0 M = M ′ ≺M
19 M ′′ �n+1 M =
20 ∃M ′.M ′ ≺M ∧ complete(M ′) ∧M ′′ �n Next(M ′)

21 complete(M) =
22 ∀r ∈ L. r ∈ dom(writer) ∧ readyM (writer(c)) ∧ αM = ∅
23 Next(M ∈ Mem) = M ′ ∈ Mem , where
24 SM′ = SM ,
25 DM′ = DM ,
26 IM′ = IM ,
27 BM′ = BM ,
28 DepsM′ = DepsM ,
29 readerM′ = writerM ,
30 readerM′ = writerM ,
31 σM′ = λc ∈ SM′ . (tail(π1(σM (c))), π2(σM (c)), updateM (c))
32 ρDM′ = ρDM
33 ρIM′ = λc ∈ SM′ . (tail(π1(ρIM (c))), π2(ρIM (c)))
34 ρBM′ = ρBM
35 updateM (c) = if (clock , c) ∈ RM then None else π3(σM (c))

36 ar(M) = Π(A, r) ∈ αM . ([[A]]× (|A|))
37 ar(M2 vM1) = λe2. λr ∈ αM1 . e2(r)

Fig. 9. Orderings on Memories

stateful programs in both operational and domain-theoretic
settings.

Uustalu and Vene [20] observed that streams have a
comonad structure whose co-Kleisli category is Cartesian
closed, elegantly extending implicit lifting from the first-order
setting to the higher-order case. Unfortunately, it is difficult
to interpret fixed points in this category. The category of free
coalgebras has too few global points (maps S(1)→ S(N)) to
denote very many streams, including such basic ones such as
(0, 1, 4, 9, . . .).

The original work on FRP [1] was based on unrestricted
stream programs. Variations such as arrowized FRP [21] were
introduced to give combinators restricting the definable stream
transformers to the causal ones, corresponding roughly to the
first-order stream programs, with some special operators for
dynamic behavior.

Cooper and Krishnamurthi [22] describe FrTime, a
dataflow-based FRP system for PLT Scheme (now Racket).

They carefully restrict higher-order features to a set of primi-
tives to simplify implementation and block memory leaks.

A notable feature of traditional FRP, which we have so far
ignored, is that it deals with continuous time. On the semantic
side, it looks straightforward to model continuous behaviors
as functions R → A, but relating that to an implementation
delivering time deltas (instead of ticks, as presently) will be
more challenging. We hope our proof framework can extend
to proving a sampling theorem, as in Wan and Hudak [23].

There has been much recent work on the foundations of
step-indexed logical relations [14]. Our relation demonstrates
a very intricate use of higher-order state, and it would be par-
ticularly interesting to see whether it has a natural expression
in Dreyer et al.’s [15] transition-system indexed relations.
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APPENDIX

Relation to Nakano’s Calculus.
Recently, Birkedal et al. [8] gave a metric model of

Nakano’s calculus of guarded recursion [7], using a model very
similar to ours — in fact, once we learned of this, we chose our
syntax of types to be identical. Below, we give a semantics-
preserving interderivability theorem for the fragments of the
two systems without recursive types.

Since Nakano gave a general syntax for contractive, equire-
cursive types, we will follow the syntax in Birkedal et al. [8],
which is the fragment of Nakano’s calculus corresponding
more closely to our language. We will write ∆ for a se-
quence of hypotheses x : A, . . . , x′ : A′, and write •n∆
for x : •nA, . . . , x′ : •nA′. We can send these contexts
to our annotated contexts by 〈x : A, . . . , x′ : A′〉+n = x :
An, . . . , x

′ : A′n. Then the following two theorems hold for
the 1,×,→, • fragment of the two systems.

Lemma 2: (Derivability of Subtyping) If A ≤ B in
Nakano’s calculus, then there exists a term e such that · `
e : A→ B in our calculus. Furthermore, their denotational
interpretation of the coercion equals our interpretation of e.

Theorem 8: (Interderivability) If •n∆ ` t : •nA in
Nakano’s calculus, then there exists a term e such that
〈∆〉+n ` e : An, such that [[•n∆ ` t : •nA]] under Birkedal et
al.’s semantics equals [[〈∆〉+n ` e : An]] under our semantics.
Furthermore, the converse also holds.

The proof is a routine structural induction, which makes use
of the time adjustment lemma.

Unfortunately, this correspondence does not extend to recur-
sive types, as Nakano’s rules for recursive types (and hence
Birkedal et al.’s semantics) differ from ours.

They interpret recursive types so that [[µα. τ(α)]] '
1
2 [[τ(µα. τ(α))]]. This means that under their interpretation of
streams µα. A×α, the first element of the stream is an element
of 1

2 (A), whereas in our semantics the head is an element of
A.

This difference arises from the differing operational idea
underlying each semantics. The intuition for guarded recursion
is that 1

2 corresponds to a value lying underneath a constructor,
whereas we interpret it as a computation scheduled to run on
a future trip through an event loop. Both of these give rise to
perfectly sensible metric structures, though ultrametric spaces
are more abstract than either operational model.

It would be interesting to look for models which reflect
more of the operational content, though of course part of the
purpose of abstraction is to suppress such details!
Normalization Proof. We prove normalization giving a bidi-
rectional type system for the normal forms, and then defining
a hereditary substitution operation for it.

In Figure 10, we give the syntax and typing of normal
forms, with two judgments Γ ` n ⇐ Ai for checking that
n is a normal term with type A, and a judgment Γ ` t⇒ Ai,
which takes an atomic form and synthesizes a type A for it.
Note that beta-redexes are not typeable in this type system
— applications and projections are always to a head variable.

n ::= λx : A. n | • n | cons(n, n) | t Normal
t ::= x | t n | await(t) | hd t | tl t Atomic

Γ ` n⇐ Ai Γ ` t⇒ Ai

Γ, x : Ai ` n⇐ Bi

Γ ` λx. n⇐ A→ Bi
→I

Γ ` n⇐ Ai+1

Γ ` •n⇐ •Ai
•I

Γ ` n⇐ Ai Γ ` e′ ⇐ S(A)i+1

Γ ` cons(n, e′)⇐ S(A)i
SI

Γ ` t⇒ Ai

Γ ` t⇐ Ai
SHIFT

x : Ai ∈ Γ i ≤ j
Γ ` x⇒ Aj

HYP

Γ ` t⇒ A→ Bi Γ ` n⇐ Ai

Γ ` t n⇒ Bi
→E

Γ ` t⇒ •Ai
Γ ` await(t)⇒ Ai+1

•E
Γ ` t⇒ S(A)i

Γ ` hd t⇒ Ai
Shd

Γ ` t⇒ S(A)i

Γ ` tl t⇒ S(A)i+1

Stl

Fig. 10. Syntax and Typing

Also note that by changing the arrow ⇒ or ⇐ into a colon :,
we have a derivation in our original type system.

As a result, the ordinary substitution theorem does not go
through, since that can introduce redexes. Instead, in Fig-
ure 11, we define a pair of mutually-recursive procedures for
substituting a normal form n for a variable x. The procedure
〈|n/x|〉A n′ substitutes the normal form n (of type A) for the
free variable x in n′. The procedure 〈n/x〉A t performs the
same substitution, only into an atomic term. This procedure
can return either a normal form or an atomic term, and in the
case that it returns an atomic term, it also computes the type
of the expression t.

We can then prove the following theorem:
Theorem 9: (Hereditary Substitution) Suppose Γ ` n ⇐

Ai. Then
• If Γ, x : Ai ` n′ ⇐ Cn, then Γ ` 〈|n/x|〉A n′ ⇐ Cn
• If Γ, x : Ai ` t⇒ Cn, then either

– 〈n/x〉A t = (n′, C) and C is a subterm of A and
Γ ` n′ ⇐ Cn, or

– 〈n/x〉A t = (t′,⊥) and Γ ` t′ ⇒ Cn
Furthermore, in all cases the result of the substitution is βη
equal to [n/x]n′.

The proof of this theorem relies on an induction on the
size of A and the derivations of the two subterms. It is
lexicographic between A and the unordered pair of the sizes
of the derivations of the subterms. This establishes a weak
normalization result for our calculus, in a very simple way.
Implementation.



〈|n/x|〉A λy. e′ = λy. 〈|n/x|〉A e′
〈|n/x|〉A •e′ = •〈|n/x|〉A e′
〈|n/x|〉A cons(n1, n2) = cons(〈|n/x|〉A n1, 〈|n/x|〉A n2)
〈|n/x|〉A t = let (e′, ) = 〈n/x〉A t in e′

〈n/x〉A y = (y,⊥)
〈n/x〉A x = (n,A)
〈n/x〉A t1 n2 = let e′2 = 〈|n/x|〉A n2 in

case 〈n/x〉A t1 of
(λy. e′1, B → C)⇒ 〈|e′2/y|〉B e′1
(t′1, )⇒ (t′1 e

′
2,⊥)

〈n/x〉A await(t) = case 〈n/x〉A t of
(•e′, •A′)⇒ (e′, A′)
(t′, )⇒ (await(t′),⊥)

〈n/x〉A hd t = case 〈n/x〉A t of
(cons(e′, e′′), S(A′))⇒ (e′, A′)
(t′, )⇒ (hd t′,⊥)

〈n/x〉A tl t = case 〈n/x〉A t of
(cons(e′, e′′), S(A′))⇒ (e′′, S(A′))
(t′, )⇒ (tl t′,⊥)

Fig. 11. Hereditary Substitution

In what follows, the general pattern is that when we give a
type foo : Hom(A,B), where foo is the name of a categorical
combinator foo, we mean the following code satisfies the spec
(foo, foo) ∈ Hom(A,B). Some operations (such as pairing
and currying) are higher-order, and we give their specifications
more explicitly.

1 // Basic operations on categories
2 id : Hom(A, A)
3 id x = return x
4

5 compose : Hom(A, B) →Hom(B, C) →Hom(A, C)
6 compose f g = λa. do b ← f a;
7 g b
8

9 //
10 // Units and pairs
11 //
12

13 one : Hom(A, 1)
14 one x = return ()
15

16 fst : Hom(A×B, A)
17 fst (a,b) = return a
18

19 snd : Hom(A×B, A)
20 snd (a,b) = return b
21

22 // The spec of pairing is:
23 // ∀ (f , f’) ∈ Hom(A,B), (g,g’) ∈ Hom(A,C).
24 // (〈f, g〉, pair f’ g’) in Hom(A, B ×C)
25 //
26 pair : Hom(A, B) → Hom(A, C) → Hom(A, B × C)
27 pair f g = λ a . do b ← f a;
28 c ← g a;
29 return (b ,c)
30

31 //

32 // Sums
33 //
34

35 inl : Hom(A, A + B)
36 inl x = return ( inl x)
37

38 inr : Hom(B, A + B)
39 inr x = return ( inr x)
40

41 // The spec of sum is:
42 // ∀ (f , f’) ∈ Hom(A,C), (g,g’) ∈ Hom(B,C).
43 // ([f, g], sum f’ g’) in Hom(A + B, C)
44 //
45 sum : Hom(A, C) → Hom(B, C) → Hom(A + B, C)
46 sum f g =
47 λ v . case v of
48 Inl x → f x
49 Inr y → g y
50

51 //
52 // Stream operations
53 //
54

55 // The spec of mapS is:
56 // ∀ (f , f’) ∈ Hom(A,B),
57 // (S(f), mapS f’) in Hom(S(A), S(B))
58

59 mapS : Hom(A,B) →Hom(S(A), S(B))
60 mapS f = λxs. cell (do x ← hd(xs) ; f x)
61

62 hd : Hom(S(A), A)
63 hd xs = read xs
64

65 tl : Hom(S(A), •S(A))
66 tl xs = return (return xs)
67

68 zip : Hom(S(A)× S(B), S(A×B))
69 zip (xs , ys) = cell (do x ← hd(xs) ;
70 y ← hd(ys) ;
71 return (x ,y ))
72

73 cons : Hom(A× •S(A), S(A))
74 cons (x, dxs) = do r ← ref ( Init x) ;
75 ys ← cell (do () ← read(clock) ;
76 x’ ← !r ;
77 case x’ of
78 Init xs →
79 do r := Make(dxs); hd(xs)
80 Make dxs →
81 do xs ← dxs ;
82 r := Done xs;
83 hd(xs)
84 Done xs →
85 hd(xs )) ;
86 register (ys)
87

88 tails : Hom(S(A), S(S(A)))
89 tails xs = cell (return xs)
90

91 unzip : Hom(S(A×B), S(A)× S(B))
92 unzip = pair (mapS fst) (mapS snd)
93

94 //
95 // Operations for the later modality
96 //
97

98 // The spec of mapS is:



99 // ∀ (f , f’) ∈ Hom(A,B),
100 // ( 1

2
(f), mapN f’) in Hom(•A, •B)

101 //
102

103 mapN : Hom(A,B) →Hom(•A, •B)
104 mapN f = λd. return (do a ← d; f a)
105

106 // We define delayA as an inductive family
107 // following the type structure . In ML this
108 // would be written as a collection of
109 // combinators
110

111 delayN : Hom(N, •N)
112 delay n = return (return n)
113

114

115 delay1 : Hom(1, •1)
116 delay () = return (return ())
117

118 delayA→B : Hom(A→ B, •(A→ B))
119 delay pack(A, cl ) =
120 do c’ ← cl .delay ( cl .env);
121 return (do c ← c’ ;
122 pack(A, {env = c;
123 hom = cl.hom;
124 delay = cl .delay}))
125

126 delayA×B : Hom(A×B, •(A×B))
127 delay (a,b) = do d ← delayA(a);
128 e ← delayB(b);
129 return (do a ← d;
130 b ← e ;
131 return (d , e ))
132

133 delay•A : Hom(• A, •(• A))
134 delay d = return (do a ← d; // at the following
135 delayA(a)) // step get a and delay it
136

137 delayS(A) : Hom(S(A), •(S(A)))
138 delay xs = do x ← hd(xs) ;
139 xt ← delayA(xs);
140 return
141 (do r ← ref xt ;
142 c ← cell (do () ← read(clock) ;
143 oldt ← !r ;
144 old ← oldt ;
145 new ← hd(xs) ;
146 newt ← delayA(new);
147 r := newt;
148 return old) ;
149 register (c ))
150

151

152 // Now we give the Cartesian closed structure for delays
153

154 ziphalf : Hom(•A ×•B, •(A ×B))
155 ziphalf (da, db) = return (do a ← da;
156 b ← db;
157 return (a,b))
158

159 unziphalf : Hom(•(A ×B), •A ×•B)
160 unziphalf dab = do da ← return (do (a,b) ← dab;
161 return a) ;
162 db ← return (do (a ,b) ← dab;
163 return b) ;
164 return (da,db)

165

166 onehalf : Hom(1, •1)
167 onhalf () = return (return ())
168

169 epsilon inv : Hom(•(A →B), •A → •B)
170 epsilon inv d = return (λ e . return (do f ← d;
171 v ← e ;
172 f (v )))
173

174 epsilon : Hom(•A →•B, •(A → B))
175 epsilon f =
176 do t ← ref None;
177 a’ ← return (do v ← get r ; return (valOf v )) ;
178 b’ ← eval( f , a’) ;
179 return (pack(A, {env=b’;
180 delay = delay {•B};
181 hom = λ(b’,a ).
182 do old ← get t ;
183 set t (Some a);
184 b ← b’ ;
185 set t old ;
186 return b}))
187

188

189 //
190 // Exponentials
191 //
192 // To implement currying , we need to use the delay operator
193

194 apply : Hom((A→ B)×A, B)
195 apply (pack(C, cl ), v) = do c ← cl .env;
196 f ← cl .hom;
197 f (c , v)
198

199 curry : Hom(A×B, C) → Hom(A, B →C)
200 curry( f ) = λ a . return (pack(A, {env = a;
201 hom = f;
202 delay = delayA}))
203

204 //
205 // Fixed points
206 //
207 // These are morally trace operators rather than fixed points ,
208 // which are nicer when translating a lambda calculus into
209 // categorical operations
210

211 fix : Hom(A ×•S(B), S(B)) → Hom(A, S(B))
212 fix f = λ a . do r ← ref None;
213 preinput ← cell (! r) ;

// None, Some fix(f) 0, ...
214 input ← return (do vs’ ← preinput ;
215 cell (do v’ ← head(vs ’) ;
216 valOf v ’)) ;
217 preoutput ← f (a , input ) ;
218 out ← cell (do () ← read(clock) ;
219 ← head(preinput ) ;
220 v ← head(preoutput ) ;
221 d ← delayB(v);
222 r := d;
223 return v)
224 register (out)
225 // Utilities
226 valOf x’ = case x’ of
227 Some x → return x
228 None → bottom
229

230 register (c) = do i := c :: xs ;



231 return c


