
Representing Music with Prefix Trees
Yan Han

University of Cambridge
United Kingdom
yh412@cam.ac.uk

Nada Amin
University of Cambridge

United Kingdom
na482@cam.ac.uk

Neel Krishnaswami
University of Cambridge

United Kingdom
nk480@cam.ac.uk

Abstract
Tonal music contains repeating or varying patterns that oc-
cur at various scales, exist at multiple locations, and embody
diverse properties of musical notes. We define a language for
representing music that expresses such patterns as musical
transformations applied to multiple locations in a score. To
concisely represent collections of patterns with shared struc-
ture, we organize them into prefix trees. We demonstrate
the effectiveness of this approach by using it to recreate a
complete piece of tonal music.

CCSConcepts •Applied computing→ Sound andmu-
sic computing.

Keywords Prefix tree, music representation, Haskell
ACM Reference Format:
Yan Han, Nada Amin, and Neel Krishnaswami. 2019. Representing
Music with Prefix Trees. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Functional Art, Music, Modeling, and
Design (FARM ’19), August 23, 2019, Berlin, Germany. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3331543.3342586

1 Introduction
Programming languages have been used in a variety of ways
to represent and composemusic. Many tools aim tomaximize
the space of music they are able to express; such languages
typically provide score or signal level primitives, backed by
a general purpose programming language. Others take more
specialized approaches based on models such as constraint
satisfaction [6] and formal grammars [5], all of which excel
at representing different structural properties of music.

In this paper, we propose a language that excels at express-
ing shared patterns in tonal music. We define such patterns
using two components: the locations they apply to, and the
way they modify the musical events at those locations. We
allow patterns to modify arbitrary dimensions of musical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
FARM ’19, August 23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6811-7/19/08. . . $15.00
https://doi.org/10.1145/3331543.3342586

events (such as pitch, volume and duration), enabling a sin-
gle note to be comprised of multiple, overlapping patterns.
Since patterns often recur at diverse musical locations, we
express them in such a way that similar locations can be
compressed using a prefix tree. This allows us to organize a
piece of music based on shared patterns between its sections,
providing an expressive representation that complements its
score.

Our approach is based primarily on analysis, rather than
composition. We developed our model by using it to progres-
sively recreate a single piece of music, Johannes Brahms’s
Waltz in A Flat Major Op. 39 No. 15. The functions and
data structures we introduced were motivated by how well
they could be used to model sections of the Waltz. Narrow-
ing our focus to a single piece limited the generality of our
techniques across different styles of music, but allowed us
to examine all of the hierarchical levels within our chosen
piece, from individual notes to periods comprising a quarter
of the piece.

This paper will introduce our basic representation of mu-
sic as events organized into a tree (section 2), describe some
patterns exhibited by tonal music in this representation (sec-
tion 3), specify the data structures we use to express these
patterns (section 4), outline our recreation of the Waltz using
these data structures (section 5), and discuss our approach in
relation to other music representation languages (section 6).

2 Basic music representation
In this section, we introduce two fundamental components of
ourmusic representation: musical events, and a tree structure
to organize them in a hierarchy. These are the final output
types of the algorithms we describe throughout the paper.
We use Euterpea [2], a Haskell library for music compo-

sition, to play our music as MIDI. Our basic data structures
are closely related to those used by Euterpea, with a few
differences to account for our modeling requirements.

2.1 Musical events
2.1.1 Basic types
We can build a playable musical event with three basic pieces
of data: absolute pitch, duration and volume. We use Eu-
terpea’s definitions for all three:

• An absolute pitch is an integer corresponding to MIDI
note number. For example, 60 represents C4.
type AbsPitch = Int

https://doi.org/10.1145/3331543.3342586
https://doi.org/10.1145/3331543.3342586

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

• A duration is a positive fraction representing a number
of beats. For example, 1/4 represents a quarter note.
type Dur = Rational

• A volume is an integer from 0 (silent) to 127 (loudest)
corresponding to MIDI note velocity.
type Volume = Int

These three pieces of data suffice to represent notes for
playback. However, we found it useful to replace AbsPitch

with a more abstract type to represent additional tonal in-
formation.

2.1.2 Tonal types
We will define a collection of types that build up to the
ScalePitch, a representation of an absolute pitch in terms of
an underlying musical scale.

A PC (stands for "pitch class") represents an absolute pitch
modulo 12. 0 represents C, 1 represents C♯/D♭, and so on. It
does not distinguish between enharmonic pitch classes, and
is implemented as a newtype wrapper around an absolute
pitch.
newtype PC = PitchClass AbsPitch

A Scale is a nonempty set of pitch classes, where one
pitch class is distinguished as the root. It can be represented
as a root pitch class, and a list of distinct offsets that are
added to the root to form the other pitch classes in the scale.
We implement it in Haskell as an algebraic data type that
represents the product of a PC and [PC].
data Scale = Scale
{ _root :: PC
, _offsets :: [PC]
}

As an example, the E major scale is constructed as follows:
eMajor = Scale 4 [2, 4, 5, 7, 9, 11]

A ScalePitch is our tonal representation of an AbsPitch.
It consists of a Scale, an octave, and a scale degree.
type Octave = Int
type Degree = Int

data ScalePitch = ScalePitch
{ _scale :: Scale
, _octave :: Octave
, _degree :: Degree
}

To represent the note A2 (pitch class A, octave 2), we
could construct a ScalePitch as follows. This representation
contains the additional information that our pitch belongs
to the E major scale; it is the fourth scale degree of it. Note
that scale degree is zero-indexed, so the fourth scale degree
is represented by the integer 3.
a2 :: ScalePitch
a2 = ScalePitch eMajor 2 3

We provide a function that converts a ScalePitch to the
pitch it represents:

getPitch :: ScalePitch -> AbsPitch

getPitch a2 == 45

2.1.3 Defining an event
We define a musical event using a ScalePitch, duration and
volume. A volume of 0 means that the event is a rest; other-
wise, it represents a note.
data Event = Event

{ _duration :: Dur
, _volume :: Volume
, _scalePitch :: ScalePitch
}

2.2 Hierarchical structure
Now that we can represent musical events, we need a way to
organize them into a hierarchical structure. We will give an
intuitive overview of a certain type of hierarchical structure,
and define a data type that represents it.
Lerdahl and Jackendoff define hierarchical structure as

an "organization composed of discrete elements or regions
related in such a way that one element or region subsumes
or contains other elements or regions [4]". They describe
multiple instances of hierarchical structure in music, one of
which is grouping structure. As seen in Figure 1, grouping
structure is the recursive partitioning of a piece into con-
tiguous groups of events. This roughly corresponds to our
perception of a piece as composed of nested sections such
as periods, phrases and measures.

Figure 1. An example of grouping structure [4]

We extend the the notion of grouping structure by adding
an orientation (horizontal or vertical) to each group. This
allows us to capture common musical relationships such as
the division of a piano piece into parallel left hand and right
hand parts, and the partitioning of a chord into parallel notes.
Figure 2 shows an oriented grouping structure on a snippet
of the Waltz. It displays a single horizontal group containing
four vertical groups, which each contain two notes.

Figure 2. Grouping structure with orientation

This structure can be implemented in Haskell as a poly-
morphic tree whose branches have arbitrary sizes and are

Representing Music with Prefix Trees FARM ’19, August 23, 2019, Berlin, Germany

labeled with their orientation. It is straightforwardly con-
verted to Euterpea’s tree structure, which recursively com-
poses pairs of events in series or in parallel.
data Orientation =

H -- Horizontal
| V -- Vertical

data OrientedTree a =
Val a

| Group Orientation [OrientedTree a]

Using this data structure, we can represent Figure 2 as a
tree of musical events. Figure 3 provides a visual representa-
tion of this tree.
exampleTree :: OrientedTree Event
exampleTree =
Group H [

Group V [-- Chord 0
Val c5', -- Voice 0
Val ef4' -- Voice 1

],
Group V [Val af4, Val c4], -- Chord 1
Group V [Val af4, Val c4], -- Chord 2
Group V [Val c5, Val ef4] -- Chord 3

]

Figure 3. Figure 2 as a tree

3 Shared structure in music
We have defined music in terms of two types: a multidimen-
sional type representing a single note, and a hierarchical
tree structure representing nested groups of notes. We now
consider some patterns in music represented in this format,
which may allow a piece to be more concisely expressed than
its naive transcription into a tree.

3.1 Shared hierarchical structure
Music often features repetition across multiple hierarchical
levels. At the highest level, pieces are often structured as
variations on a few sections. For example, a piece in binary
form might be described as AA'BB': a section (A), a variation
on that section (A'), a new section (B), and a variation on
the new section (B'). Similar patterns occur at lower levels;
a sequence of four measures might feature one measure

repeated twice with minor changes, and a single measure
might contain repeated instances of a few motifs (see Figure
4 for examples of both). In general, music features significant
repetition, and the units of repetition frequently follow some
grouping structure.

Figure 4. Repeated patterns at two different structural levels

3.2 Shared dimensional structure
To represent a note, we decompose it into multiple dimen-
sions: duration, volume, scale, octave, and scale degree. The
relationship between these dimensions varies considerably
within a single piece of music. Figure 5 demonstrates this
by displaying three dimensions of a four-measure section of
the Waltz. The first two measures are identical in all three
dimensions, and are completely distinct from the third mea-
sure. The final measure can be seen as a variation of the
first two, since it differs from them in the pitch dimension
only. This example shows that variations in musical patterns
can be reduced to variations in their constituent dimensions.
Therefore, it it important to able to flexibly define these
dimensions.

Figure 5. The duration, pitch and scale dimensions of a four-
measure section of music

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

4 Modeling shared structure
This section describes a collection of data structures and
operations that allow us to concisely represent musical trees
with repeated hierarchical and dimensional structure. We
will define a type representing multiple locations in a tree
(section 4.1), a type representing a modification of events
at multiple locations in a tree (section 4.2), and a way to
organize these types into a prefix tree (section 4.3).

4.1 Representing locations in a tree
We can uniquely identify each leaf in a tree with a list of the
indices of the branches taken to reach it. In the tree below,
the leaf containing z is indexed by the integer list [3, 0].
We call this representation of a leaf’s location a path.
exampleTree :: OrientedTree Event
exampleTree =
Group H [

Group V [Val x, Val x]
, Group V [Val x, Val x]
, Group V [Val x, Val x]
, Group V [Val z, Val x]

]

Figure 6. A single path in a tree

Sometimes it is convenient to represent many paths as
one value. Consider the following four overlapping paths on
a tree, and their corresponding representation in Haskell:

Figure 7. Multiple paths in a tree

fourPaths :: [[Int]]
fourPaths = [[1, 0], [1, 1], [2, 0], [2, 1]]

This collection of paths can also be summarized as a se-
quence of choices: take either branch 1 or 2, then take either
branch 0 or 1. We can represent each choice as a list of inte-
gers, and the complete collection of paths as a list of choices.
Thus, we can represent the list of paths above as follows:
twoChoices :: [[Int]]
twoChoices = [[1, 2], [0, 1]]

This collection of paths can be described another way: take
either branch 1 or 2, then take any branch. It is sometimes
useful to specify all branches at a level as a choice, without
knowing precisely howmany there are. Therefore, instead of
using a raw list of integers to represent a choice of branches,
we use a sum type:

data Choice = Some [Int] -- One or more branches
| All -- All branches

This allows us to rewrite twoChoices as follows. It now
chooses all branches at the second level, regardless of the
shape of the tree (see figure 8).

twoChoices' :: [Choice]
twoChoices' = [Some [1, 2], All]

Figure 8. The paths selected by twoChoices' on a tree with
a different shape

We call this representation of a collection of paths a slice.

type Slice = [Choice]

4.2 Transforming multiple locations in a tree
A tree modifier represents a transformation on a set of mu-
sical events in a tree. It contains a slice to represent the
locations of the events, and an event modifier to represent
a transformation on those events. In other words, the slice
represents hierarchical structure, and the event modifier rep-
resents dimensional structure.

data TreeModifier = TreeModifier
{ _slice :: Slice
, _modifier :: Event -> Event
}

We define a function that applies a TreeModifier to a tree of
musical events:

applyModifier
:: TreeModifier -- Modifies part of a tree
-> OrientedTree Event -- Input tree
-> OrientedTree Event -- Output tree

The code below shows the application of a tree modifier
to an oriented tree using applyModifier. The tree modifier
represents the application of the function f to the leaves at
the paths [0, 0] and [1, 0]. Figure 9 displays this transfor-
mation.

Representing Music with Prefix Trees FARM ’19, August 23, 2019, Berlin, Germany

applyModifier
(TreeModifier [Some [0, 1], Some [0]] f)
(Group H [

Group V [Val e, Val e],
Group V [Val e, Val e]

])
==
Group H [

Group V [Val (f e), Val e],
Group V [Val (f e), Val e]

]

Figure 9. An application of a tree modifier

4.2.1 Constructing event modifiers
We define various ways to construct event modifiers (func-
tions of type Event -> Event). For example, the following
functions update a field inside an Event.
modifyDuration
:: (Rational -> Rational) -> Event -> Event

modifyVolume :: (Int -> Int) -> Event -> Event
modifyScale :: (Scale -> Scale) -> Event -> Event
modifyOctave :: (Int -> Int) -> Event -> Event
modifyDegree :: (Int -> Int) -> Event -> Event

modifyDuration (+1)
(Event 1 vol (ScalePitch scale octave degree))

== Event 2 vol (ScalePitch scale octave degree)

modifyOctave (+1)
(Event dur vol (ScalePitch scale 4 degree))

== Event dur vol (ScalePitch scale 5 degree)

We also define functions that set a field to a constant value,
instead of applying a function to it. For example, setDuration
is a weaker version of modifyDuration that sets the duration
of an event instead of applying a function to it.
setDuration :: Rational -> Event -> Event
setVolume :: Int -> Event -> Event
setScale :: Scale -> Event -> Event
setOctave :: Int -> Event -> Event
setDegree :: Int -> Event -> Event

setDuration 2
(Event 1 vol (ScalePitch scale octave degree))

== Event 2 vol (ScalePitch scale octave degree)

These functions can be composed to create an event mod-
ifier that adjusts multiple fields of an Event at once.

(setDuration 1
. modifyVolume (+ 20)
. setScale (Scale 8 [4, 7])
$ Event dur vol (ScalePitch scale octave degree))
== Event 1

(vol + 20)
(ScalePitch (Scale 8 [4, 7]) octave degree)

4.2.2 Constructing slices
To build slices, we define ways to produce functions of type
Slice -> Slice, which we call slice modifiers.
-- Sets the choice in a slice at index 0
atChords :: [Int] -> Slice -> Slice
-- Sets the choice in a slice at index 1
atVoices :: [Int] -> Slice -> Slice

Using these slice modifiers, we can change the collection
of leaves that a slice selects:
atChords [0, 1] [All, All] == [Some [0, 1], All]
atVoices [2, 3] [All, All] == [All, Some [2, 3]]

We can also compose these functions to modify multiple
choices in a slice. This method of constructing a slice is more
verbose than simply using a list literal, but has properties
that make it useful later on.
(atChords [0, 1]
. atVoices [2, 3]
$ [All, All])
== [Some [0, 1], Some [2, 3]]

4.2.3 Using tree modifiers
To demonstrate the usage of tree modifiers, we will construct
the right hand part of a measure of the Waltz using them.

Figure 10. A measure of the Waltz as four tree modifiers

We first define a starting tree to apply tree modifiers to.
The events in the starting tree are technically redundant, as
they will be overwritten by the modifiers. They allow us to
move all of the musical material into tree modifiers.
startingTree :: OrientedTree Event
startingTree =

(Group H [
Group V [Val dummy, Val dummy]

, Group V [Val dummy, Val dummy]
, Group V [Val dummy, Val dummy]
, Group V [Val dummy, Val dummy]

])

The starting modifier sets all eight of the events in a tree
to the same note: a dotted quarter note with volume 100 and

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

Figure 11. Reconstructing a measure with tree modifiers

pitch C5 (represented as degree 1 of octave 4 in the A flat
major triad).
startingMod :: TreeModifier
startingMod = TreeModifier
(atChords [0, 1, 2, 3]
. atVoices [0, 1] $ [All, All])
(setDuration (3 / 8)
. setVolume 100
. setScale (extractTriad 0 $ mkMajorScale 8)
. setOctave 4
. setDegree 1)

The second modifier replaces the dotted quarter notes in
chords 1, 2 and 3 with eighth notes. It also reduces their
volume slightly, since chords 1, 2, and 3 fall on weaker beats
than chord 0.
rhythmMod :: TreeModifier
rhythmMod = TreeModifier
(atChords [1, 2, 3]
. atVoices [0, 1] $ [All, All])
(setDuration (1 / 8)
. modifyVolume (subtract 20))

The third modifier moves chords 1 and 2 down by one
absolute scale degree. Since the scale underlying all of the

events is the A♭ major triad, this moves each A♭ to the next
highest E♭, each E♭ to the next highest C, and each C to
the next highest A♭. This absolute degree transformation is
performed by modifyAbsDegree, which is distinct from the
previously defined modifyDegree.
melodyMod :: TreeModifier
melodyMod = TreeModifier

(atChords [1, 2]
. atVoices [0, 1] $ [All, All])
(modifyAbsDegree (subtract 1))

The final modifier moves the bottom voice of each chord
down by two absolute scale degrees. It also reduces their
volume slightly, as they are of less melodic importance than
the top notes.
voiceMod :: TreeModifier
voiceMod = TreeModifier

(atChords [0, 1, 2, 3]
. atVoices [1] $ [All, All])
(modifyAbsDegree (subtract 2)
. modifyVolume (subtract 20))

Applied in succession to the starting tree, these modifiers
produce the complete section of music.
music :: OrientedTree Event
music =

applyModifier voiceMod
. applyModifier melodyMod
. applyModifier rhythmMod
. applyModifier startingMod
$ startingTree

4.3 Compression using a prefix tree
We have demonstrated the usage of the tree modifier, a data
structure that modifies a slice of a tree of musical events.
This section outlines how multiple tree modifiers can be
represented concisely using a prefix tree.

4.3.1 Prefix trees in Haskell
A prefix tree is a tree data structure that represents a map
from keys to values. Each value is represented by a leaf, and
each key is represented by a path from the root node to a leaf.
This saves space when multiple keys have shared prefixes,
as the shared material only needs to be specified once.
Figure 12 shows a prefix tree representing a map from

strings to integers, where each key is constructed by con-
catenating all of the strings along a path. It maps "COT" to
1, "CAT" to 2, and "CANE" to 3.

We can express a prefix tree in Haskell using a tree data
structure where the leaves are annotated with an additional
value. The code below recreates the tree in Figure 12.
data PrefixTree k v =

Leaf k v
| Node k [PrefixTree k v]

Representing Music with Prefix Trees FARM ’19, August 23, 2019, Berlin, Germany

C

OT

1

A

T

2

NE

3

Figure 12. An example of a prefix tree

samplePrefixTree :: PrefixTree String Int
samplePrefixTree =
Node "C" [

Leaf "OT" 1,
Node "A" [

Leaf "T" 2,
Leaf "NE" 3

]
]

4.3.2 Compressing tree modifiers using prefix trees
A musical prefix tree maps slices to event modifiers, produc-
ing a collection of tree modifiers. For example, the prefix
tree below represents the four tree modifiers in section 4.2.3.
Each slice is built by composing the slice modifiers along a
path, and each event modifier is a leaf.

atChords [0, 1, 2, 3] . atVoices [0, 1]

id

evtModA

atChords

[1, 2, 3]

evtModB

atChords

[1, 2]

evtModC

atVoices

[1]

evtModD

evtModA, evtModB, evtModC, evtModD :: Event -> Event

musicPrefixTree
:: PrefixTree (Slice -> Slice) (Event -> Event)

musicPrefixTree = Node
(atChords [0, 1, 2, 3] . atVoices [0, 1])
[Leaf id evtModA
, Leaf (atChords [1, 2, 3]) evtModB
, Leaf (atChords [1, 2]) evtModC
, Leaf (atVoices [1]) evtModD
]

Consider the path from the root to the leftmost leaf. Its
event modifier is the leaf evtModA, and its slice is equal to all
of the slice modifiers along its path applied to the starting
slice [All, All]. Therefore, its tree modifier is

TreeModifier
(id
. (atChords [0, 1, 2, 3] . atVoices [0, 1])
$ [All, All])
evtModA

== TreeModifier [Some [0, 1, 2, 3], Some [0, 1]]
evtModA

The second path from the left represents the tree modifier
TreeModifier

(atChords [1, 2, 3]
. (atChords [0, 1, 2, 3] . atVoices [0, 1])
$ [All, All])
evtModB

== TreeModifier [Some [1, 2, 3], Some [0, 1]]
evtModB

Similarly, the third and fourth paths represent the follow-
ing tree modifiers:
TreeModifier [Some [1, 2], Some [0, 1]] evtModC
TreeModifier [Some [0, 1, 2, 3], Some [1]] evtModD

We have defined four TreeModifiers in one prefix tree by
sharing some of the choices in their slices. Though this spe-
cific example is not much more concise than specifying all
four modifiers separately, the principle it illustrates general-
izes well to larger sections of music.

4.3.3 Converting a prefix tree to music
From here on, we will use the type synonym MusicTree to
denote the type PrefixTree (Slice -> Slice) (Event ->

Event). We will outline the full process of converting a prefix
tree (MusicTree) to a musical oriented tree (OrientedTree
Event).
First, we obtain a list of tree modifiers from it using the

function
toTreeModifiers :: MusicTree -> [TreeModifier]

This function follows the process outlined in the example: it
collects a list of tree modifiers built from root-to-leaf paths
from left to right. The code essentially performs an in-order
tree traversal.
Next, we use the function makeStartingTree to generate

a starting tree filled with dummy events. When there is
insufficient information on the number of branches in a
certain subtree, such as when all of the choices at that level
are All, the function creates a single branch by default.
makeStartingTree :: MusicTree -> OrientedTree Event

Finally, we apply the list of tree modifiers, in order, to the
starting tree. This is implemented as a left fold:
toOrientedTree :: [TreeModifier] -> OrientedTree Event
toOrientedTree modifiers =

foldl' (flip applyModifier)
(makeStartingTree modifier)
modifiers

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

5 Case study
We examine our recreation of Johannes Brahms’s "Waltz in
A Flat Major Op. 39 No. 15" using prefix trees. We split our
analysis into lower level patterns relating to dimensional
structure (section 5.2) and higher level patterns relating to
hierarchical structure (section 5.3).

5.1 Hierarchical levels
Since our previous examples focused on small sections of
music, we used trees with two levels: chord and voice. To
model the complete Waltz, we expand our hierarchy to seven
levels. They are as follows:

0. Hand (vertical): Right (index 0) or left (index 1) hand.
1. Period (horizontal): A group of phrases. The Waltz

consists of four periods.
2. Phrase (horizontal): A group of measures. Contains

4-6 measures in the Waltz.
3. Measure (horizontal): Corresponds to a measure in the

score. Usually contains 3-4 chords.
4. Chord (horizontal): Contains 1 or more voices.
5. Voice (vertical): Contains 1 or more notes.
6. Note (horizontal): A single note, along with optional

passing tones.
This hierarchy requires adjustments to the existing code.

We redefine the slice modifiers atChord and atVoice to mod-
ify the slice indices 4 and 5, respectively. We also define
slice modifiers for each of the new levels: atHand, atPeriod,

atPhrase, atMeasure, atNote. Finally, we use the default
slice [All, All, All, All, All, All, All] when needed,
matching the number of hierarchical levels.

5.2 Dimensional patterns
The flexibility of event modifiers allows us to specify events
in many ways: we can construct a complete event using a
single event modifier, build it incrementally by specifying
each dimension separately, or anything in between.
The Waltz exhibits multiple trends in dimensional struc-

ture. First, scale can often be treated independently, since
harmony is less granular than pitch. Second, duration and
volume vary together, and can mostly be reduced to a hand-
ful of reusable, measure-sized trees. Finally, the pitch-related
dimensions of octave and scale degree exhibited diverse
patterns and required a variety of abstractions to model
concisely. We will describe how each of these trends are
expressed in the prefix tree.

5.2.1 Harmony
We found that the scale dimension of a ScalePitch frequently
changed less often than the octave and scale degree compo-
nents. As a result, it was often clearer to declare the scale of
a section of music separately from the other dimensions. For
example, figure 13 shows a five-measure section in the Waltz
where each measure contains precisely one scale for both

hands, while the other musical dimensions vary between
both hands, and at the more granular chord and voice levels.
We therefore separate the scale dimension of the section into
its own tree.

Figure 13. Harmony as an independent dimension

harmonyExample :: MusicTree
harmonyExample =

Node (atPhrases [2] . atMeasures [0, 1, 2, 3, 4])
[Node (atHands [0, 1])

[Leaf (atMeasures [0])
(setScale (extractSeventh 4 (mkMajorScale 8)))

, Leaf (atMeasures [1])
(setScale (extractTriad 0 (mkMajorScale 8)))

, Leaf (atMeasures [2])
(setScale (extractSeventh 4 (mkMajorScale 1)))

, Leaf (atMeasures [3])
(setScale (extractTriad 0 (mkMajorScale 1)))

, Leaf (atMeasures [4])
(setScale (extractSeventh 4 (mkMajorScale 3)))

]
, Node (atHands [0])
[{- Right hand duration, volume, pitch -}]

, Node (atHands [1])
[{- Left hand duration, volume, pitch -}]

]

5.2.2 Rhythm and meter
In the Waltz, duration and volume often vary together, and
follow a small collection of simple, measure-sized patterns.
We define these patterns as reusable prefix trees, allowing
them to be conveniently inserted where necessary. This often
allows us to factor out the volume and duration dimensions
of music.

A common rhythmic pattern in the right hand is to make
chord 0 a dotted quarter note, and chords 1, 2, and 3 eighth
notes. The section below shows an example of this patter,
which we define in code as unevenRhythmMeter.

Figure 14. A right hand measure with the "uneven" rhythm

Representing Music with Prefix Trees FARM ’19, August 23, 2019, Berlin, Germany

unevenRhythmMeter :: MusicTree
unevenRhythmMeter = Node id
[Leaf (atChords [0])

(setDuration (3 / 8) . setVolume 100)
, Leaf (atChords [1, 2, 3])

(setDuration (1 / 8) . setVolume 90)
]

Another common rhythmic pattern in the piece consists
of three quarter-note chords. This is used in every measure
in the left hand. It is present less uniformly in the right
hand, with slight variations due to shorter passing tones
between chords. We define a two versions of this pattern
with different volume settings, for the left and right hand.
evenRhythmMeterL :: MusicTree
evenRhythmMeterL = Leaf
(atChords [0, 1, 2])
(setDuration (1 / 4) . setVolume 60)

evenRhythmMeterR :: MusicTree
evenRhythmMeterR = Leaf
(atChords [0, 1, 2])
(setDuration (1 / 4) . setVolume 100)

Figure 15. A left hand measure with an even rhythm

5.2.3 Voice stacks
A voice stack is a pitch-based pattern that is common enough
in the Waltz to be abstracted into a helper function. It is a
chord consisting of a root pitch, and a series of absolute
degree offsets from that pitch.
For example, consider the A♭ major chord in figure 16.

We can recreate its pitch content in code by setting all three
voices to the pitch of voice 0 (the top voice), and decreasing
the absolute degrees of voices 1 and 2.

Figure 16. An example of a voice stack

exampleChord :: MusicTree
exampleChord = Node

(atChords [1] . atVoices [0, 1, 2])
[Leaf id

(setScale (extractTriad 0 (mkMajorScale 8)
. setOctave 3
. setDegree 1)

, Leaf (atVoices [1]) (modifyAbsDegree (subtract 1))
, Leaf (atVoices [2]) (modifyAbsDegree (subtract 2))
]

To write this more concisely, we define a function that
can generate the code above given a slice modifier, event
modifier, and list of absolute degree offsets:

voiceStack
:: (Slice -> Slice) -- Location of the voice stack
-> (Event -> Event) -- Event modifier for voice 0
-> [Int] -- Absolute degree offsets
-> MusicTree -- Output tree

This allows exampleChord to be rewritten:

exampleChord' = voiceStack
(atChords [1])
(setScale (extractTriad 0 (mkMajorScale 8))
. setOctave 3
. setDegree 1)
[-1, -2]

We use this pattern throughout the Waltz to simplify the
creation of multi-voice chords. All of the left hand measures,
along with a significant portion of the right hand measures,
can be expressed as a series of voice stacks.

5.2.4 Voice leading
A few measures in the Waltz can be expressed in terms of
voice leading between scales, using a collection of functions
that modify all of the components of the ScalePitch.

roundDown :: Scale -> ScalePitch -> ScalePitch
stepDown :: Scale -> ScalePitch -> ScalePitch
roundUp :: Scale -> ScalePitch -> ScalePitch
stepUp :: Scale -> ScalePitch -> ScalePitch

The roundDown function takes a Scale and a ScalePitch. It
changes the ScalePitch to use the new Scale, and sets its
absolute pitch to the highest pitch in the new scale that is
less than or equal to its old pitch. stepDown works similarly,
except the new pitch is strictly lower than the old pitch.
Finally, roundUp and stepUp are analogous to roundDown and
stepDown, except they move the pitch up.

In the figure 17, the two passing notes belong to the A flat
major scale, and the three chords each belong to different
triads and sevenths taken from the A flat major scale. We
model the measure as voice leading transformations on a
single voice stack with some ad-hoc tree modifiers for the
passing tones.

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

Figure 17.Ameasure modeled using voice leading functions

voiceLeadingMeasure :: MusicTree
voiceLeadingMeasure =

Node (atHands [0])
[evenRhythmMeterR -- Rhythm and meter
, voiceStack -- Base voice stack

(atChords [0, 1, 2])
(modifyScale (extractTriad 3 (mkMajorScale 8)))
. setOctave 5
. setDegree 0)
[-1, -2]

-- Passing tones
, Node (atChords [0] . atVoices [0])

[Leaf (atNotes [0]) (setDuration (1 / 8)
, Leaf (atNotes [1, 2])

(setDuration (1 / 16)
. modifyScalePitch (stepUp (mkMajorScale 8)))

, Leaf (atNotes [2])
(modifyScalePitch (stepDown (mkMajorScale 8)))

]
, Leaf (atChords [1, 2]) -- First roundDown stack

(modifyScalePitch (roundDown
(extractTriad 0 (mkMajorScale 8))))

, Leaf (atChords [2]) -- Second roundDown stack
(modifyScalePitch (roundDown

(extractSeventh 1 (mkMajorScale 8))))
]

5.3 Hierarchical patterns
Slice modifiers allow us to specify the choices in a slice in any
order, separating the physical structure of an oriented tree
from the organization of its prefix tree. At a high level, we
structure the prefix tree to minimize repetition by recursively
partitioning it into slices with shared structure. We provide
examples of this technique at multiple scales, starting with
measures and ending with the complete piece.

5.3.1 Organizing measures
Many instances of shared material in the Waltz manifest at
the measure level. As a simple example, the two measures in
figure 18 differ in precisely the first note in the left hand. To
model this, we use a prefix tree that specifies both measures
together, except for a single branch at chord 0 in the left
hand.

Figure 18. Two measures that differ slightly

phraseAMeasures01 :: MusicTree
phraseAMeasures01 =

Node (atMeasures [0, 1]) -- Both measures
[Node (atHands [0]) [...]
, Node (atHands [1]) -- Left hand
[...
, Node (atChords [0]) -- Chord 0

[Leaf (atMeasures [0]) -- Measure 0
(setOctave 2 . setDegree 0)

, Leaf (atMeasures [1]) -- Measure 1
(setOctave 1 . setDegree 0)

]
]

]

Shared patterns in the Waltz are usually more complex.
Consider the complete first phrase, which consists of the first
four measures in the piece. Figure 19 uses colors to show the
high level organization of the phrase as nested slices in the
prefix tree, corresponding to the code below.

Figure 19. The high level slice structure of phrase A

We place measures [0, 1, 3] in their own branch because
they have a significant amount of shared material. Most
notably, they all use notes from the same scale: the root triad
of the A♭major scale. As we will see, their right and left hand
parts also contain a significant amount of repeated structure.

We partition measures [0, 1, 3] into the right and left hand.
The right hand measures have the same rhythm and meter,
but measure 3 differs in pitch content from measures [0,
1]. This is modeled by specifying the rhythm for the entire
slice, and then creating a branch between the two groups of
measures. The measures in the left hand are identical except
for the first note, which is modeled by a partition between
measure 0 and measures [1, 3].

Representing Music with Prefix Trees FARM ’19, August 23, 2019, Berlin, Germany

phraseA :: MusicTree
phraseA =
Node
(atPhrases [0]
. atMeasures [0, 1, 2, 3])
[Node (atMeasures [0, 1, 3])

[-- Scale
Leaf id

(setScale (extractTriad 0 (mkMajorScale 8)))
, Node (atHands [0] . atChords [0, 1, 2, 3])
[unevenRhythmMeter -- Rhythm and meter
, Node (atMeasures [0, 1]) [...]
, Node (atMeasures [3]) [...]
]

, Node
(atHands [1] . atChords [0, 1, 2])
[evenRhythmMeterL -- Rhythm and meter
, Node (atChords [0])

[Leaf (atMeasures [0]) (...)
, Leaf (atMeasures [1, 3]) (...)
]

, Node (atChords [1, 2]) [...]
]

]
, Node (atMeasures [2]) [...]
]

This outline of Phrase A exemplifies our organizational
philosophy for the Waltz. At each subtree in the prefix tree,
we partition it along the hierarchical dimension that creates
the most similar groups. This allows us to group related
sections together at every level, providing a conceptual or-
ganization of the piece that complements its physical orga-
nization as a score.

5.3.2 Organizing phrases
To outline the entire Waltz, we divide its material into three
phrases, labeled A B and C. The piece then consists of four
consecutive periods composed of variations on these phrases:
AB AB'C AB''C A'B'''. The most complex phrase in the piece
is Phrase B, which appears in four different variations. Using
lowercase letters to denote measures, these variations are as
follows:

• B (period 0): aabc
• B'(period 1): aabc'
• B''(period 2): aab'c''
• B'''(period 3): a'a'b''c'''

Figure 20 displays the variations of Phrase B with the first
few levels of its prefix tree. As with smaller sections of the
piece, we partition the tree to maximize the amount of shared
structure within its slices. In this instance, we first partition
into periods [0, 1, 2] and period 3, since period 3 shares little
material with the others. We then partition into measure
2 and measures [0, 1, 3] due the rhythmic and harmonic
differences in measure 2. We then partition by period again
to specify the different variations of measures b and c.

Figure 20. The slice structure of Phrase B across all periods

phraseBAllPeriods :: MusicTree
phraseBAllPeriods =

Node
(atPeriods [0, 1, 2, 3]
. atPhrases [1]
. atMeasures [0, 1, 2, 3)
[Node (atPeriods [0, 1, 2])

[Node (atMeasures [2])
[Node (atPeriods [0, 1]) [{- b -}]
, Node (atPeriods [2]) [{- b' -}]
]

, Node (atMeasures [0, 1, 3])
[Node (atMeasures [0, 1]) [{- a -}]
, Node (atMeasures [3])

[Node (atPeriods [0, 1]) [{- c, c' -}]
, Node (atPeriods [2]) [{- c'' -}]
]

]
]

, Node (atPeriods [3]) [{- a', b'', c''' -}]
]

5.3.3 Organizing the piece
For completeness, the overall structure of the Waltz is given
by the code below. It reflects our partitioning of the piece

FARM ’19, August 23, 2019, Berlin, Germany Yan Han, Nada Amin, and Neel Krishnaswami

into three phrases, each of which contains its own variations
across multiple periods.
waltz :: MusicTree
waltz =

Node (atPeriods [0, 1, 2, 3])
[Node (atPhrases [0]) [{- Phrase A -}]
, Node (atPhrases [1]) [{- Phrase B -}]
, Node (atPhrases [2] . atPeriods [1, 2])

[{- Phrase C -}]
]

6 Discussion
The distinguishing feature of our language is its prefix tree
structure, which simplifies the encoding of patterns that vary
in multiple dimensions and occur at multiple locations. It
allows music to be organized according to the amount of
shared structure, which complements the sequential view
offered by a musical score. In our experience, it was cleaner
to represent the Waltz using a prefix tree than using naive
Haskell functions and variables. This is likely due to the
interrelated nature of the patterns in the Waltz, which of-
ten conflicts with the clean, delineated nature of functions
and variables. The flexibility offered by the prefix tree is,
to the best of our knowledge, unique among music repre-
sentation languages. Nonetheless, many existing languages
have features that make them more powerful or ergonomic,
providing avenues of improvement for our language.

6.1 Related work
Many music representation languages offer graphic repre-
sentations of their code, which aid the composition process
by making the output music easier to visualize. Abjad [7], a
music notation format implemented in Python, achieves this
by directly mapping its internal music representation to an
output score. OpenMusic [1] and PWGL [3] provide more
programmatic visualizations of music; both frameworks use
a display of interconnected boxes to illustrate the musical
outputs of functions and chart the flow of data through them.
Our language would benefit from either a score-based or
code-based visualization. The prefix tree could be visually
tied to areas in a score, in a manner similar to the visual-
izations used in this paper. It could also be displayed more
literally, as a graphical tree that contains visual representa-
tions of event modifiers at the leaves. Either visualization
would make the code much more transparent, improving the
usability of the language.

The breadth and power of our musical abstractions could
be improved, as they were guided by the recreation of a
single piece. This issue could be addressed by progressively
analyzing and composing more pieces using the language,
and implementing features as they are needed. It could also
be addressed by directly incorporating useful features in
existing systems. A notable candidate for this is constraint
satisfaction, which has been implemented in Strasheela [6].

This would allow pieces of music to be specified nondeter-
ministically, which better models situations in composition
where multiple musical patterns can be used to achieve the
same goal. In general, it is worth exploring the interaction
between our prefix tree structure and other models of music
representation to see how they might augment each another.

6.2 Future work
In addition to the ergonomic and expressive enhancements
mentioned in the previous section, the implementation of
our language could be improved in many ways. Our should
also be generalized and decoupled from the Waltz, as it cur-
rently assumes a fixed number of hierarchical levels and
orientations. Additionally, it is difficult to verify that all di-
mensions of the notes in a prefix tree are initialized, and to
predict how overlapping modifiers in different sections of
the tree interact. This could be addressed by encoding the
dimensions that each tree modifier affects in its type, though
this would be tricky to implement concisely. Alternatively,
changing the language to use a deep embedding would allow
its terms to be directly inspected, allowing such checks to
be implemented as run-time algorithms.

7 Conclusion
Each piece of music is a complex web of relationships that ex-
hibits vastly different structure when viewed from different
perspectives. In this paper, we have presented a single per-
spective of a single piece; we have recreated Brahms’s Waltz
in A Flat Major by deconstructing it into a collection of mu-
sical patterns, and organizing these patterns hierarchically
into a prefix tree. We find that this format excels at repre-
senting shared and varied content in the piece, illuminating
a unique conceptual organization of the Waltz.

References
[1] Jean Bresson, Carlos Agon, and Gérard Assayag. 2011. OpenMusic:

Visual Programming Environment for Music Composition, Analysis
and Research. In Proceedings of the 19th ACM international conference
on Multimedia - MM ’11. ACM Press, Scottsdale, Arizona, USA, 743.

[2] Paul Hudak and Donya Quick. 2018. The Haskell School of Music: From
Signals to Symphonies (1st ed.). Cambridge University Press.

[3] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo. 2009. An
Overview of PWGL, a Visual Programming Environment for Music.
Computer Music Journal 33, 1 (2009), 19–31.

[4] Fred Lerdahl and Ray Jackendoff. 1983. A Generative Theory of Tonal
Music. MIT Press.

[5] Donya Quick and Paul Hudak. 2013. Grammar-based automated music
composition in Haskell. In Proceedings of the first ACM SIGPLAN work-
shop on Functional art, music, modeling & design - FARM ’13. ACM Press,
Boston, Massachusetts, USA, 59.

[6] Anders Torsten. 2007. Composing Music by Composing Rules: Design
and Usage of a Generic Music Constraint System. Ph.D. Dissertation.
Queen’s University Belfast.

[7] Bača Trevor, Josiah Wolf Oberholtzer, Jeffrey Treviño, and Víctor Adán.
2015. Abjad: An Open-source Software System for Formalized Score
Control.. In Proceedings of The First International Conference on Tech-
nologies for Music Notation and Representation.

	Abstract
	1 Introduction
	2 Basic music representation
	2.1 Musical events
	2.2 Hierarchical structure

	3 Shared structure in music
	3.1 Shared hierarchical structure
	3.2 Shared dimensional structure

	4 Modeling shared structure
	4.1 Representing locations in a tree
	4.2 Transforming multiple locations in a tree
	4.3 Compression using a prefix tree

	5 Case study
	5.1 Hierarchical levels
	5.2 Dimensional patterns
	5.3 Hierarchical patterns

	6 Discussion
	6.1 Related work
	6.2 Future work

	7 Conclusion
	References

