Explicit Refinement Types

ANONYMOUS AUTHOR(S)

We present λ_{ert}, a type theory supporting refinement types with explicit proofs. Instead of solving refinement constraints with an SMT solver like DML and Liquid Haskell, our system requires and permits programmers to embed proofs of properties within the program text, letting us support a rich logic of properties including quantifiers and induction. We show that the type system is sound by showing that every refined program erases to a simply-typed program, and by means of a denotational semantics, we show that every erased program has all of the properties demanded by its refined type. All of our proofs are formalised in Lean 4.

CCS Concepts:
• Theory of computation → Program verification; Denotational semantics.

Additional Key Words and Phrases: Refinement Types, First Order Logic, Denotational Semantics

ACM Reference Format:

1 INTRODUCTION

Refinement typing extends an underlying type system with the ability to associate types with logical predicates on their inhabitants, constructing, for example, the type of nonempty lists or integers between three and seven. Most such systems support type dependency between the input and output types of functions, allowing us to give specifications like "the output of this function is the type of integers greater than the input." The core concept underlying type checkers for refinement types is that of logical entailment. If we have a value satisfying a predicate P and require a value satisfying Q, we require that P entails Q for our program to typecheck; this then reduces the typechecking problem to typechecking in our underlying type system plus discharging a set of entailment obligations, called our verification conditions. Given an appropriate choice of logic for our predicates, SMT solvers provide a highly effective way of automatically discharging verification conditions: this allows us to use refinement types without dealing with the bookkeeping details required by manual proofs. Combined with type and annotation inference (in which we also infer refinements), refinement types allow verifying nontrivial properties of complex programs with a minimal annotation burden, making them more appealing for use as part of a practical software development workflow — for example, For example, the Liquid Types implementation of refinement typing for ML required a manual annotation burden of 1% to prove the DML array benchmarks safe, compared to DML [Xi and Pfenning 1998], a language with dependent types, requiring 31% of the code to consist of manual annotations [Rondon et al. 2008].

However, refinement typing’s reliance on automation is a double-edged sword: while it makes refinement types practical for usage in real-world contexts, it also creates a hard ceiling for expressiveness, especially if we want to use quantifiers, which would make the SMT problem undecidable. Rather than carefully massage annotations into forms that will satisfy the vagaries of whatever particular SMT solver is in use, it makes sense that the programmer may wish to provide manual
proofs for the (hopefully, few) complex cases where the solver gets “stuck” in utopia, humans would prove interesting things, and machines would handle the bookkeeping. However, because the semantics of refinement types are unclear, it is nontrivial to figure out how to add explicit proofs into a system. Before adding the capability to move freely between explicit proofs and automation, we need to know how a manual proof should look. To achieve this goal, we introduce a system of explicit refinement types, \(\lambda_{\text{ert}} \), in which all proofs are manual, to explore the design space. Since our proofs are entirely manual, our refinement logic can be extremely rich, and, in particular, we support full first-order logic with quantifiers. While the presence of explicit proofs means that functions and propositions look dependently typed, this system is not a traditional dependent type theory, as, in particular, there is no definitional equality.

1.1 Contributions

- We take a simply-typed effectful lambda calculus, \(\lambda_{\text{stlc}} \), and add a refinement type discipline to it, to obtain the \(\lambda_{\text{ert}} \) language.
- We support a rich logic of properties, including full first-order quantifiers, as well as ghost variables/arguments. It does not rely on automated proof, and instead features explicit proofs of all properties.
- We show that this type system satisfies the expected properties of a type system, such as the syntactic substitution property.
- We give a denotational semantics for both the simply-typed and refined calculi, and we prove the soundness of the interpretations. Using this, we establish semantic regularity of typing, which shows that every program respects the refinement discipline.
- We mechanise our semantics and proofs in Lean 4 (available in the supplementary material).

2 REFINEMENT TYPES

Consider a simply-typed functional programming language. In many cases, the valid inputs for a function are not the entire input type but rather a subset of the input; for example, consider the classic function \(\text{head} : \text{List A} \rightarrow \text{A} \).

Note that we cannot define this as a total function for an arbitrary type \(A \); we must either provide a default value, change the return type, or use some system of exceptions/partial functions. Refinement types give us native support for types guaranteeing an invariant about their inhabitants by allowing us to associate a base type with a predicate. For example we could represent the types of natural numbers and nonzero integers as

\[
\begin{align*}
\text{type Nat} &= \{v : \text{Int} \mid v \geq 0\} \\
\text{type Nonzero} &= \{v : \text{Int} \mid v \neq 0\}
\end{align*}
\]

We could then write the type signature of division as

\[
\text{div} : \text{Int} \rightarrow \{v : \text{Int} \mid v \neq 0\} \rightarrow \text{Int}
\]

By allowing dependency, where the output type of a function is allowed to depend on the value of its arguments, we can use such functionality to encode the specification of operations as well, as in

\[
\text{eq} : x : \text{Int} \rightarrow y : \text{Int} \rightarrow \{b : \text{Bool} \mid (x = y) = b\}
\]

We could now attempt to implement a safe-division function on the natural numbers as follows

\[
\text{safeDiv} : \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \\
\text{safeDiv} n m = \text{if eq m 0 then 0 else div n m}
\]
A refinement type system reduces the problem of type-checking to the question of whether a set of verification conditions holds. For example, given the program in equation 4, a compiler could generate verification conditions by recursively traversing the expression as follows:

- The call \(\text{eq}\ m\ 0 \) is trivially valid since there are no restrictions on the arguments to \(\text{eq} \), so there are no verification conditions. Note that we can ignore the refinement that \(m \geq 0 \).
- There are no calls in the \(\text{if} \) branch, so we generate no verification conditions.
- In the \(\text{else} \) branch, for the call \(\text{div}\ n\ m\ 0 \) to be valid, we require that \(m \neq 0 \) holds. To ever reach this branch, we must have that \(\text{false} \in \{ b : (m = 0) = b \} \), i.e., \((m = 0) = \text{false} \), and, of course, that \(m \) is valid, i.e., \(m \geq 0 \); therefore, the verification condition becomes \(m \geq 0 \land (m = 0) = \text{false} \implies m \neq 0 \).

Hence, we conclude that this program type checks if and only if all verification conditions hold for all inputs: in this case,

\[
\forall m : \mathbb{Z}, m \geq 0 \land (m = 0) = \text{false} \implies m \neq 0
\] (5)

At this point, we are left with a natural question: how do we check if our verification conditions, once generated, are true? Unfortunately, this problem quickly becomes undecidable for specifications in general logic, even without quantifiers; for example, the following program, where \(P \) is a polynomial,

\[
\text{prog} :: \text{Int} \to \ldots \to \text{Int} \\
\text{prog}\ x_1 \ldots x_n = \text{div} 1 P(x_1, \ldots, x_n)
\] (6)

yields the verification condition \(\forall x_1, \ldots, x_n \in \mathbb{Z}, P(x_1, \ldots, x_n) \neq 0 \) which is undecidable for generic polynomials. However, by appropriately restricting the logic of assertions, we can reduce the problem of checking verification conditions to a decidable fragment of logic that, while NP-hard (or worse), can usually be solved very effectively in practice.

In particular, many languages supporting refinement types require refinements to be expressions in the quantifier-free fragment of first-order logic, with atoms restricted to carefully chosen ground theories with efficient decision procedures. In Liquid Haskell, for example, formulas in refinements are restricted to formulas in QF-UFLIA [Vazou et al. 2014]: the quantifier-free theory of uninterpreted functions with linear integer arithmetic. While such a system may, at first glance, seem very limited, it is possible to prove very sophisticated properties of real programs with it. In particular, with clever function definitions and termination checking (which generates a separate set of verification conditions to ensure some measure on recursive calls to a function decreases), it is even possible to perform proofs by induction in a mostly-automated fashion [Jhala and Vazou 2020].

However, it is still challenging to frame definitions in a compatible manner, and many properties (such as monotonicity of functions or relational composition) require the use of quantifiers to be stated naturally. Unfortunately, attempts to extend solvers to support more advanced features like quantifiers usually lead to very unreliable performance.

Another issue is that systems designed around off-the-shelf solvers often do not satisfy the de-Bruijn criterion: their trusted code-base, rather than being restricted to a small, easily-trusted kernel, instead will often consist of an entire solver and associated tooling! Unfortunately, SMT solvers are incredibly complex pieces of software and hence are very likely to have soundness bugs, as recent research on fuzzing state-of-the-art solvers like CVC4 and Z3 for bugs tends to show [Winterer et al. 2020].

In our work, build a refinement type system, which replaces the use of automated solvers with explicit proofs. This permits (at the price of writing proofs) the free use of quantifiers in propositions, while also having a trusted codebase small enough to be formally verified.
3 EXPPLICIT REFINEMENT TYPES

In this section, we introduce our notion of explicit refinement types, which we will construct by enriching the simply-typed lambda calculus with proof objects, intersection types, and union types, to obtain the λ_{ert} language. We can then recover a computational interpretation of terms in our calculus by simply recursively erasing the logical information added, yielding simply-typed λ_{stlc} terms. The presence of proof objects allows us to represent proofs of logical statements, and by pairing a term with a proof of its property, form subset types. We also support a general form of intersection and union type, to allow us to carry around terms used only in proofs in a way that is guaranteed to be computationally irrelevant, which is both a significant performance concern and allows type signatures to more clearly express the programmer’s intent. For example, consider the following definition of a vector type:

$$\text{Vec } A n \equiv \{ \ell : \text{List } A \mid \text{List.len }\ell = n \}$$ (7)

In particular, we define a vector of length n as merely a list paired with the information that the list has length n. That is, a vector is a subset type: a base type $\text{List } A$ paired with a proposition $P(\ell)$ (here $\ell = n$), which we will interpret as containing all elements ℓ of the base type satisfying $P(\ell)$. In general, we write such types as $\{ x : X \mid P(x) \}$, and introduce them with the form $\{ e, p \}$, where e is of type X and p is a proof of $P(e)$. We define a length function on vectors as follows:

$$\begin{align*}
\text{Vec.len} & : \forall n : \mathbb{N}, \text{ Vec } A n \to \mathbb{N} \\
\text{Vec.len} & \equiv \lambda n : \mathbb{N} \mid \lambda v : \text{Vec } A n, \text{ let } \{ \ell, p \} = v \text{ in } \text{List.len }\ell
\end{align*}$$ (8)

Let us break this definition down, starting from the signature. Vec.len begins by universally quantifying over a natural number n with the quantifier $\forall n : \mathbb{N}$, and then has a function type $\text{Vec } A n \to \mathbb{N}$. We can interpret this as saying that for every n, Vec.len takes vectors of length n to a natural number.

An explicit binding, written $\lambda \| n : \mathbb{N} \|$, represents this quantifier in the actual definition; we call a variable binding surrounded by double bars (e.g., $\| x : A \|$) a ghost binding. Moving inwards, we have a function type with input $\text{Vec } A n$ and output \mathbb{N}; as expected, this corresponds to the lambda-expression “$\lambda v : \text{Vec } A n, E$” in the definition, where $E \equiv \text{let } \{ \ell, _\} = v \text{ in len }\ell$ is an expression of type \mathbb{N}. Breaking down E, we must first explicitly destruct our vector v into its components, a list ℓ and a proof, p that ℓ is of length n. Unlike in refinement type systems like DML and Liquid Haskell, this is explicit, with no entailment-based subtyping.

The definition in equation 8 ignores the proof component of the let-binding and hence the refinement information carried by our type system. One way to use the proof information would be to have a definition for Vec.len, which promises to return an integer equal to the length.

$$\begin{align*}
\text{Vec.len'} & : \forall n : \mathbb{N}, \ (v : \text{Vec } A n) \to \{ x : \mathbb{N} \mid x = n \} \\
\text{Vec.len'} & \equiv \lambda \| n : \mathbb{N} \| \mid \lambda v : \text{Vec } A n, \text{ let } \{ \ell, p \} = v \text{ in } \{ \text{len }\ell, p \}
\end{align*}$$ (9)

However, one helpful feature of λ_{ert} is that even in this case, we can prove facts about our definitions by writing freestanding proofs about them rather than cramming every possible fact we could want into our type signature. For example, we could give a proof a proposition that the definition in equation 8 is correct as follows:

$$\begin{align*}
\text{Vec.len}_\text{def} & : \forall n : \mathbb{N}, \forall v : \text{Vec } A n, \text{Vec.len }\| n \| v = n \\
\text{Vec.len}_\text{def} & \equiv \lambda \| n : \mathbb{N} \| \mid \lambda v : \text{Vec } A n, \text{ let } \{ \ell, p \} = v \text{ in } \frac{}{}
\end{align*}$$

$$\begin{align*}
\text{trans}[\text{Vec.len }\| n \|] \{ \ell, p \} \\
= (\beta_v) (\lambda \| v : \text{Vec } A n, \text{ let } \{ \ell, _\} = v \text{ in len }\ell \{ \ell, p \}) \\
= (\beta_v) (\text{let } \{ \ell, _\} = \{ \ell, p \} \text{ in len }\ell) \\
= (\beta_{\text{set}}) \text{len }\ell \\
= (p) n
\end{align*}$$ (10)
Let us break this definition down, again starting with the signature. We quantify over both the length $n : \mathbb{N}$ and the vector $v : \text{Vec} \ A \ n$, and then assert the equality proposition $\text{Vec.len} \parallel n \parallel v = n$. In the proofs, both universal quantifiers are introduced by ghost lambdas “$\hat{\lambda} \parallel n \parallel \mathbb{N}$” and “$\hat{\lambda} \parallel v : \text{Vec} \ A \ n \parallel$”. However, we use $\hat{\lambda}$ instead of λ because we are proving a universally quantified proposition rather than forming a term of intersection type. The proof of equality is a term of the form $\text{trans}[\ldots]$, which represents an Agda-style syntax sugar for equational reasoning. In particular, if $\text{mtrans}_{p,q,r} : \beta \equiv p \rightarrow q \rightarrow r \rightarrow p = r$ is the transitivity rule, then we have the desugaring

$$\text{trans}[x_0 = (p_0) \ x_1 = (p_1) \ x_2 \ldots x_n = (p_n) \ x_{n+1}] = \text{trans}_{x_0,x_1,x_n} \ p_0(\text{trans}_{x_1,x_2,x_n} \ p_1(\ldots))$$

where each p_i is evidence of the proposition $x_i = x_{i+1}$.

Examining the proof of equation 7, we see that every piece of evidence used except one is of the form “$\hat{\beta}$something”. These are explicit β-reduction proofs, which is necessary since our calculus does not include a notion of judgemental equality: type equality is simply α-equivalence. While this dramatically simplifies the meta-theory, this can make even simple proofs very long. In our examples, we implement the pattern of repeatedly applying a β-reduction as syntax sugar. Writing it as β (pronounced “by beta”), we get the much simpler proof

$$\text{Vec.len} = \text{Vec.len} \parallel n \parallel \mathbb{N}, \hat{\lambda} v : \text{Vec} \ A \ n, \text{let} \{\ell, p\} = v \text{ in } \text{trans}[\text{len} \ n \ \{\ell, p\} = (\beta) \ n \ \ell = (p) ; n]$$

However, these definitions raise a question: why not simply write

$$\text{Vec.len} = \lambda \parallel n \parallel \mathbb{N}, \hat{\lambda} v : \text{Vec} \ A \ n, n$$

The problem with the above definition is that n is a ghost variable, indicating we may use it in propositions and proofs but not generally in terms. This is a critical distinction to be able to make: the specification of a program may involve values which we do not want to manipulate at runtime. For example, the correctness proof of a sorting routine might use an inductive datatype of permutations, elements of which could potentially be much larger than the list itself. By making a distinction between ghost and computational variables, we can define an efficient erasure of refined terms (which contain proofs) to simply-typed terms (which do not). For example, we can erase the signature in equation 9 into a simple type:

$$\forall n : \mathbb{N}, (v : \text{Vec} \ A \ n) \rightarrow \{x : \mathbb{N} \ | \ x = n\}$$

$$= 1 \rightarrow \{\ell : \text{List} \ A \ | \ \text{len} \ \ell = n\} \rightarrow \{x : \mathbb{N} \ | \ x = n\}$$ (unfold, erase quantified variable n)

$$= 1 \rightarrow \{\ell : \text{List} \ A \ | \ \text{len} \ \ell = n\} \rightarrow \{x : \mathbb{N} \ | \ x = n\}$$ (erasure distributes over function types)

$$= 1 \rightarrow \text{List} \ A \rightarrow \mathbb{N}$$

$$= 1 \rightarrow \text{List} \ A \rightarrow \mathbb{N}$$ (erase subset types to erased base types)

$$= 1 \rightarrow \text{List} \ A \rightarrow \mathbb{N}$$ (list erases to list of erased type, \mathbb{N} erases to \mathbb{N})

The actual β-reduction rules in our calculus, e.g. β_{ty}, require explicit annotations to be unambiguous. We omit these here for space and clarity.
We can then proceed to erase the definition as follows:

\[
|\lambda n : \mathbb{N}|, \lambda v : \text{Vec} A n, \text{let } \ell \ldots v \in \text{len } \ell |
\]

\[
= \lambda n : 1, |\lambda v : \{ \ell : \text{List} A \mid \text{len } \ell = n \}, \text{let } \ell \ldots v \in \text{len } \ell |
\]
(unfold, erase quantified variable \(n \))

\[
= \lambda n : 1, \lambda v : \{ \{ \ell : \text{List} A \mid \text{len } \ell = n \}, \text{let } \ell \ldots v \in \text{len } \ell |
\]
(erasure distributes over binders)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } \ell \ldots v \in \text{len } \ell |
\]
(erase subset types to erased base types)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } v \in \text{len } \ell |
\]
(list erases to list of erased type)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } v = |\ell| \in |\text{len } \ell|
\]
(erasure distributes over let)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } v = \ell \in |\text{len } \ell|
\]
(variables erase to themselves)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } v = \ell \in |\text{len }| |\ell|
\]
(erasure distributes over application)

\[
= \lambda n : 1, \lambda v : |\text{List} A|, \text{let } v = \ell \in |\text{len } : 1 \rightarrow |\text{List} A| \rightarrow \mathbb{N}|
\]
(variables, len erase to themselves)

At the type level, we see that we erase any dependency information, leaving us with simple types. Propositions are all either wholly erased or erased to the unit type. At the term level, erasure essentially consists of recursively erasing ghost variables and proofs into units and (in the case of proofs of falsehood) error stops, yielding a well-typed term in the simply-typed lambda calculus extended with an error stop effect (i.e., the option monad). We will prove in section 5 that the produced terms are always well-typed.

As expected, we see that erasure sends base types like \(\mathbb{1} \) and \(\mathbb{N} \), as well as their literals like (\(\) or 0, to themselves. Erasure distributes over (dependent) function types, i.e., \(|a : A \rightarrow B(a)| = |A| \rightarrow |B(a)|\), and correspondingly is recursively applied to the argument type and result of a lambda function as follows: \(|\lambda a : A, b | = |A|, |b|\). Subset types are erased to the erasure of their base type, i.e., we have \(|\{ x : X \mid P(x) \}| = |X|\). Erasure of the formation and elimination rules for subset types is likewise as expected, with \(|\{ x, p \}| = |x|\) and \(|\text{let } \{ x, p \} = e \in e' | = \text{let } x = e \in |e'|\).

Similarly, universal quantifiers are erased to the unit type \(1 \) as follows: \(|\forall a : A, B(a)| = 1 \rightarrow |B(a)|\).

Correspondingly, we erase the introduction and elimination rules for intersection types likewise:

\[
|\lambda | = |A|, |B| = |\lambda__ : 1| |B|, |f| |a|| = |f| ()\]
In general, propositions and ghosts in multiplicative types like subset are erased completely, whereas propositions and ghosts in exponential types like intersection types are erased to units to avoid problems with defining eager evaluation.

Going back to the original question, attempting to erase the definition in equation 13 would, at least naively, yield the simply-typed term \(\lambda n : 1, \lambda v : |\text{List} A|, n\), which cannot be given the desired type \(1 \rightarrow |\text{List} A| \rightarrow \mathbb{N}\). Another way of thinking about this is that if \(\text{Vec.len} \) took the length \(n \) as a computational argument, we would never need to call the function – we would have to have the length in hand to call \(\text{Vec.len} \) in the first place. However, in our setting, vectors are merely refined lists, which erase into raw lists. A raw list does not carry its length \(n \); but \(n \) is a well-defined property of its specification. Since the specification value \(n \) gets erased to a unit, then a program that wants to compute the length must traverse the list – i.e., in equation 8 we call \(\text{List.len} \).

Another advantage of having explicit proofs as part of a refinement type system is the ability to reuse previous theorems and perform proofs by induction. For a simple example of this, consider the following definition of addition for natural numbers:

\[
n + m \equiv (\text{natrec } n (\lambda x, x) (|\text{succ } _||, f \mapsto \lambda x, \text{succ } (f x))) m : \mathbb{N}
\]

natrec is the eliminator for the natural numbers, which is defined essentially by iteration, with typing rule \text{Natrec}. The eliminator has the standard behavior, given by reduction rules \(\beta_\text{zero} \) and \(\beta_\text{succ} \), which essentially amount to substituting \(z \) into \(s \) recursively \(n \) times. We can then use these axioms to prove that zero is a left-identity by \(\beta \)-reduction, simply writing \(\text{zero}__ : (\forall n : \mathbb{N}, 0 + n = n) \equiv \lambda n : \mathbb{N}|n||, \beta\).

In contrast, we need induction to prove that zero is a right-identity. To perform induction, we
\[\text{zero}_{\text{comm}} : (\forall n : \mathbb{N}, n + 0 = 0 + n) \equiv \lambda n : \mathbb{N}. \text{trans}[n + 0 = (\text{zero}_{\text{right}} || n\|) n = (\beta) 0 + n] \]

\[\text{succ}_{\text{right}} : (\forall n, m : \mathbb{N}, n + \text{succ} m = \text{succ} (n + m)) \equiv \lambda n, m : \mathbb{N}. \text{ind}[x \mapsto x + (\text{succ} m) = \text{succ} (x + m)] n \beta \]

\[\text{(succ} n, u \mapsto \text{trans}[\text{succ} n + \text{succ} m) \]

\[= (\beta) \text{succ} (n + \text{succ} m) \]

\[= (u) \text{succ} (\text{succ} (n + m)) \]

\[= (\beta) \text{succ} (\text{succ} n + m)) \]

\[\text{zero}_{\text{comm}} : (\forall n : \mathbb{N}, n + 0 = 0 + n) \equiv \lambda n : \mathbb{N}. \text{trans}[n + 0 = (\text{zero}_{\text{right}} || n\|) n = (\beta) 0 + n] \]

\[\text{succ}_{\text{comm}} : (\forall n : \mathbb{N}, n + \text{succ} m = \text{succ} n + m) \equiv \lambda n : \mathbb{N}. \text{trans}[n + \text{succ} m = (\text{succ}_{\text{right}} || n\| || m\|) \text{succ}(n + m) = (\beta) \text{succ} n + m] \]

Fig. 1. Helper definitions for equation 18

Introduce the \text{ind} eliminator for natural numbers, essentially the propositional version of \text{natrec}, with typing rule \text{Ind}. We may then write

\[\text{zero}_{\text{right}} : (\forall n : \mathbb{N}, n + 0 = n) \equiv \lambda n : \mathbb{N}. \text{ind}[x \mapsto x + 0 = x] n \beta (\text{succ} n, u \mapsto \text{trans}[(\text{succ} n) + 0 = (\beta) \text{succ} (n + 0) = (u) \text{succ} n]) \]

(17)

Induction is a powerful rule, letting us prove almost any fact about arithmetic we can think of without it needing to be encoded beforehand into the type system. For example, we can prove by induction that addition is commutative as follows (see figure 1 for helpers):

\[\text{add}_{\text{comm}} : (\forall n, m : \mathbb{N}, n + m = m + n) \equiv \lambda n : \mathbb{N}. \text{ind}[x \mapsto \forall m : \mathbb{N}, x + m = m + x] n \beta \text{zero}_{\text{comm}} \]

\[(\text{succ} n, u \mapsto \text{trans}[\text{succ} n + m) \]

\[= (\beta) \text{succ} (n + m) \]

\[= (\text{congr} u) \text{succ} (m + n) \]

\[= (\beta) \text{succ} m + n \]

\[= (\text{symmm} (\text{succ}_{\text{comm}} || m\| || n\|)) m + \text{succ} n) \]

(18)

Note the ability to reuse theorems we have proved previously. Another advantage of explicit proof objects is that we do not need to encode even fundamental facts into our core calculus since we can prove them from a small core of base axioms. Minimizing the number of axioms simplifies the implementation of the type-checker and reduces the size of the trusted codebase while allowing the programmer to effectively write refinements and proofs using facts that the language designer may not have considered.

4 FORMALIZATION

In this section, we provide a formal presentation of \lambda_{\text{ext}}’s grammar and typing rules in sections 4.1 and 4.2. We then state some expected metatheoretic properties, such as substitution and regularity, in section 4.3.
Judgment	Meaning
\(\Gamma\) ok | \(\Gamma\) is a well-formed context
\(\Gamma \vdash A\) ty | \(A\) is a well-formed type in \(\Gamma\)
\(\Gamma \vdash \varphi\) pr | \(\varphi\) is a well-formed proposition in \(\Gamma\)
\(\Gamma \vdash a : A\) | \(a\) may consistently be assigned type \(A\) in \(\Gamma\)
\(\Gamma \vdash p : \varphi\) | \(p\) is a proof of \(\varphi\) in \(\Gamma\)

Fig. 2. \(\lambda_{ert}\) typing judgements

\[
\begin{array}{ccc}
\cdot & \Gamma \text{ ok} & \Gamma \vdash A \text{ ty} \\
\Gamma, x : A & \text{ ok} & \Gamma, \parallel x : A \parallel & \text{ ok} \\
\Gamma, u : \varphi & \text{ ok} & \Gamma, u : \varphi & \text{ ok}
\end{array}
\]

Fig. 3. \(\lambda_{ert}\) context well-formedness rules

4.1 Grammar

We begin by giving a grammar for well-formed \(\lambda_{ert}\) terms in figure 5. This grammar consists of four separate syntactic categories: types \(A\), propositions \(\varphi\), terms \(a\), and proofs \(p\). We denote the set of (syntactically) well-formed terms given by these grammars by Type, Prop, Term, and Proof, respectively. We may then define a typing context \(\Gamma\) as a list of computational variables \(x : A\), ghost variables \(\parallel x : A \parallel\), and propositional variables \(u : \varphi\), as in figure 3.

Ghost variables only appear within proofs, types, and propositions, whereas computational variables can occur anywhere, including computational terms. Typing contexts are telescopic, so types and propositions appearing later in the context may depend on previously defined variables. With these syntactic categories defined, we may give the typing judgments making up \(\lambda_{ert}\) in figure 2. A context is well-formed if the types of each of its variables are well-formed in the context made up of all previously defined variables. Formally, we introduce typing rules in figure 3. The presence of both computational and ghost variables means that our contexts have additional structural properties beyond the usual ones such as weakening and exchange. Since a computational variable can be used in more places than a ghost variable, we may introduce the concept of an upgrade.

When we upgrade a context, some of the ghost variables can be replaced by computational variables with the same name and type. So, for example, the context \(\parallel x : A \parallel, y : B\) can be upgraded to \(x : A, y : B\). We formalise this with a judgment \(\Gamma \leq \Delta\), which reads “\(\Delta\) upgrades \(\Gamma\)”:

\[
\Gamma \leq \Delta \\
\Gamma, \parallel x : A \parallel \leq \Delta, x : A \\
\Gamma, H \leq \Delta, H \\
\cdot \leq \cdot
\]

Fig. 4. \(\lambda_{ert}\) context upgrade rules, where \(H\) ranges over hypotheses \(x : A\), \(\parallel x : A \parallel\), \(p : \varphi\)

We may then define the upgrade of \(\Gamma\), written \(\Gamma^{\uparrow}\), to be the context with all ghost variables in \(\Gamma\) replaced by term variables, that is,

\[
\Gamma^{\uparrow} = \cdot \quad (\Gamma, \parallel x : A \parallel)^{\uparrow} = \Gamma^{\uparrow}, x : A \\
(\Gamma, x : A)^{\uparrow} = \Gamma^{\uparrow}, x : A \\
(\Gamma, u : \varphi)^{\uparrow} = \Gamma^{\uparrow}, u : \varphi
\]

(19)
Note that $\Gamma \leq \Gamma^\uparrow$. A context Δ which upgrades Γ types strictly more terms than Γ, since we may use a computational variable anywhere a ghost variable is expected, but not vice versa. In particular, we may prove the following lemma:

Lemma 4.1 (Upgrade). Given contexts $\Gamma \leq \Delta$,

- If $\Gamma \vdash \varphi \text{ pr}$, then $\Delta \vdash \varphi \text{ pr}$. In particular, if $\Gamma \vdash \varphi \text{ pr}$, then $\Gamma^\uparrow \vdash \varphi \text{ pr}$
- If $\Gamma \vdash \alpha \text{ ty}$, then $\Delta \vdash \alpha \text{ ty}$. In particular, if $\Gamma \vdash \alpha \text{ ty}$, then $\Gamma^\uparrow \vdash \alpha \text{ ty}$.
- If $\Gamma \vdash p : \varphi$, then $\Delta \vdash p : \varphi$. In particular, if $\Gamma \vdash p : \varphi$, then $\Gamma^\uparrow \vdash p : \varphi$.
- If $\Gamma \vdash a : A$, then $\Delta \vdash a : A$. In particular, if $\Gamma \vdash a : A$, then $\Gamma^\uparrow \vdash a : A$.
- If $\Gamma \text{ ok}$, then $\Delta \text{ ok}$. In particular, if $\Gamma \text{ ok}$, then $\Gamma^\uparrow \text{ ok}$.

Since the only difference between computational and ghost variables is that ghosts can’t be used in computational terms, this distinction does not matter for proofs, or for proposition- and type-well-formedness. Formally:

Lemma 4.2 (Downgrade). Given contexts $\Gamma \leq \Delta$,

- If $\Delta \vdash \varphi \text{ pr}$, then $\Gamma \vdash \varphi \text{ pr}$. In particular, if $\Gamma \vdash \varphi \text{ pr}$, then $\Gamma^\uparrow \vdash \varphi \text{ pr}$
- If $\Delta \vdash \alpha \text{ ty}$, then $\Gamma \vdash \alpha \text{ ty}$. In particular, if $\Gamma \vdash \alpha \text{ ty}$, then $\Gamma^\uparrow \vdash \alpha \text{ ty}$.
- If $\Delta \vdash p : \varphi$, then $\Gamma \vdash p : \varphi$. In particular, if $\Gamma \vdash p : \varphi$, then $\Gamma^\uparrow \vdash p : \varphi$.
- If $\Delta \text{ ok}$, then $\Gamma \text{ ok}$. In particular, if $\Gamma \text{ ok}$, then $\Gamma^\uparrow \text{ ok}$.

4.2 Typing Rules

The type formation rules for λ_{ert} are collected in figure 7, the term formation rules in figure 9, the proposition formation rules in figure 8, and the proof rules and axioms in figures 10 and 11 respectively.

4.2.1 Equality

The heart of the λ_{ert} type refinement system is the equality proposition $a =_A b$, which is inhabited by proofs that $a = b$ where a and b are interpreted as elements of the type A. This has formation rule Eq-WF, which checks that a and b are well-typed in an upgraded context. Because equality is a mathematical proposition, we may use ghost variables freely.

The introduction rule is the standard reflexivity axiom, Rfl, and equalities may be eliminated via substitution using the rule Subst. The substitution eliminator is powerful enough to prove the other equality axioms, such as, for example, transitivity:

$$\Gamma \vdash p : a =_A b \quad \Gamma \vdash q : b =_A c$$

$$\frac{}{\text{trans} \ p \ q \equiv \text{subst}[x \mapsto a =_A x][b][c] \ q \ p : a =_A c}$$

Type equality λ_{ert} is just α-equivalence, and so any equations which would have come via judgemental equality in a dependently typed lambda calculus, such as functions, pairs, sum types, and datatypes like natural numbers, as well as type constructors specific to refinement types such as subset types, generalised intersections and unions, and preconditions.

Dependent functions of type $(x : A) \to B$ may be introduced by lambda abstraction, via the rule Lam, and may be eliminated by application, via the rule App. The corresponding β and η equations
Fig. 5. \(\text{\texttt{\textsc{\texttt{lert}}}}\) grammar

\begin{align*}
\text{axiom} &::= \text{rfl} \ a \\
\beta &::= \beta_{\text{pr}} (x \mapsto e) \ p \\
\beta_{\text{eq}} (x \mapsto e) a &
\end{align*}

Fig. 6. \(\text{\texttt{\textsc{\texttt{lert}}}}\) axioms

\begin{align*}
\eta_{\nu} e &
\end{align*}
are introduced axiomatically, with the rules β_{ty} and η_{ty}. Each of the β and η axioms is subscripted with an annotation naming the type former it is for. For example, the subscript "ty" in β_{ty} refers to the fact that dependent function types are parametrized by a term variable (with a type). The rule application itself is annotated with the function body and argument.

While dependent function types abstract over a computational variable, we can also abstract over ghost or (computationally) irrelevant variables, yielding a form of intersection type. The type well-formedness conditions for $\forall x : A, B$ (in Intr-WF) are essentially the same conditions as for dependent functions, but the introduction rule Lam-Ir checks the body assuming the parameter is irrelevant.

We can eliminate a term of intersection type by applying it to an expression which is well-typed in the upgraded context Γ^\uparrow, i.e., which may contain ghost variables, via the rule App-Ir. Similarly to the case for dependent functions, reduction must be encoded as an axiom β_{ir}, where the "ir" stands for "irrelevant." We may also introduce an irrelevance axiom, Ir-Ty, which essentially says that ghost arguments do not matter for the purposes of determining equality whenever the ghost variable does not occur in the result type.

We move on to introduce dependent pair types with the type formation rule Pair-WF. The introduction rule Pair looks a bit like the introduction rule for sigma-types in dependent type theories, with the type of the second component varying according to the first component, and both components computationally relevant.

The elimination form is a let-binding form (in Let-Pair). We may also eliminate into proofs using Let-Pair-Pr; note that, in this case, the expression $e : (a : A) \times B$ may contain ghost variables (as it only needs to be well-typed in Γ^\uparrow.) As before, reduction for dependent pair elimination must be encoded as an axiom, β_{pair}.

\[
\begin{array}{ll}
\Gamma \vdash A \text{ ty} & \Gamma, x : A \vdash B \text{ ty} \\
& \text{Fn-WF} \\
\Gamma \vdash (x : A) \rightarrow B \text{ ty} \\
\Gamma \vdash A \text{ ty} & \Gamma, x : A \vdash B \text{ ty} \\
& \text{Pair-WF} \\
\Gamma \vdash \forall x : A, B \text{ ty} \\
\Gamma \vdash A \text{ ty} & \Gamma, x : A \vdash B \text{ ty} \\
& \text{Intr-WF} \\
\Gamma \vdash \varphi \text{ pr} & \Gamma, u : \varphi \vdash \psi \text{ ty} \\
& \text{Pre-WF} \\
\Gamma \vdash (u : \varphi) \Rightarrow A \text{ ty} \\
\Gamma \vdash A \text{ ty} & \Gamma \vdash B \text{ ty} \\
& \text{Coprod-WF} \\
\Gamma \vdash A + B \text{ ty} \\
\end{array}
\]
\[
\begin{align*}
&\text{Var} \quad \text{Absurd} \quad \text{Zero} \quad \text{Succ} \\
\Gamma, x : A \vdash x : A & \quad \Gamma \vdash p : \bot \quad \Gamma \vdash \text{absurd} p : A \\
\Gamma, x : A \vdash e : B & \quad \Gamma \vdash \lambda x : A, e : (x : A) \rightarrow B \quad \Gamma \vdash l : (x : A) \rightarrow B \quad \Gamma \vdash r : A \\
\Gamma \vdash (l, r) : (x : A) \times B & \quad \Gamma \vdash \text{inl} e : A + B \\
\Gamma \vdash e : (x : A) \times B & \quad \Gamma \vdash \text{inr} e : A + B \\
\Gamma \vdash e : \{x : A \mid \varphi\} & \quad \Gamma \vdash e : \{x : B \mid \psi\} \\
\Gamma \vdash \lambda u . e &\quad \Gamma \vdash \text{Let-Pair} \\
\Gamma \vdash \lambda \varphi . e & \quad \Gamma \vdash \text{Let-Set} \\
\Gamma \vdash e : A \Rightarrow B & \quad \Gamma \vdash e : \{y : X \mid \psi\} \\
\Gamma \vdash \exists x : A, B \quad \Gamma \vdash \exists y : X \mid \psi \Rightarrow B & \quad \Gamma \vdash \exists y : X \mid \psi \Rightarrow B \\
\Gamma \vdash e : \{x : A \mid \varphi\} & \quad \Gamma \vdash e : \{y : X \mid \psi\} \\
\Gamma \vdash e : N & \quad \Gamma \vdash e : \{0, n\} \\
\Gamma \vdash e : \{x : N\} & \quad \Gamma \vdash e : \{x \mid \psi\} \\
\Gamma \vdash \text{letrec} x \rightarrow C & \quad \Gamma \vdash e : C \\
\end{align*}
\]

Fig. 9. \(\lambda_{elf}\) Term Typing

Often, however, we may want to be able to consider, dually to intersection types, union types. Let us consider union types. Union-WF is the union of our type system. This is because we may consider union types \((u : \varphi) \Rightarrow A\) in which \(A\) is only well-formed if \(\varphi\) holds. For example, consider a function \(y : \{x \mid \varphi(x)\} \Rightarrow X\) (we will cover dependent pairs shortly), to reason about values of \(f\) for \(a : X\), we need \(\varphi(a)\) to hold, hence, we require dependency on proofs to be able to type \((x \mid \varphi(x)) \Rightarrow \{X \mid \varphi(y)\} | f z = f \{a, u\}\).
as expected.

Similarly to for the computational and ghost variable cases, we must also introduce a reduction rule β_{pr}. Dually, we may introduce the subset type former Set-WF, representing, in essence, elements a of type A satisfying the predicate $\varphi(a)$. This has the expected introduction rule Set and supports elimination via let-binding with rules Let-Set and Let-Set-Pr. We also introduce a reduction rule, β_{Set}, as expected.

Currently, we have the ability to manipulate data and associate it with propositions, but do not yet have any bona fide data types. While it would be theoretically possible to introduce well-founded trees or even inductive families at this point in time, for simplicity, we will restrict ourselves to the
While on its own this is not a particularly interesting datatype, when combined with coproduct

Fig. 11. \(\lambda_{\text{ent}} \) Axiom Typing

unit type, sum types, and the natural numbers. As usual, a value of the unit type may be introduced with rule Unit; rather than the eliminator we would expect from dependent type theory, we may simply couple this with an axiom, Uniq, stating that every member of the unit type is equal to \((\)\). While on it’s own this is not a particularly interesting datatype, when combined with coproduct
types \(A + B \), we may define, for example, the type of Booleans as \(2 \equiv 1 + 1 \), allowing us to construct finite types. Coproducts may be introduced via injection (via rules \(\text{Inl} \) and \(\text{Inr} \)) and eliminated by case splitting (via rules \(\text{Cases} \) and \(\text{Cases-Pr} \)). To demonstrate support for infinite types, we introduce the natural numbers \(\mathbb{N} \), constants of which may be built up using \(\text{Zero} \) and \(\text{Succ} \). The elimination rule, \(\text{Natrec} \), implements essentially iteration with the current step available as a ghost variable (for reasoning about in propositions); it’s computational semantics are given by the axioms \(\beta_{\text{Zero}} \) and \(\beta_{\text{Succ}} \). Furthermore, just as we may construct terms recursively via natrec, we may also perform proofs by induction via \(\text{ind} \) using rule \(\text{Ind} \). Note that, unlike in \(\text{Natrec} \), the expression \(n \) over which we are performing induction is allowed to contain ghost variables.

4.2.3 Propositional Structure

Now that we’ve given essentially a complete description of the \(\lambda_{\text{ert}} \)'s terms and their computational behaviour, we can describe the main components of \(\lambda_{\text{ert}} \)'s propositional logic, which are for the most part dual to the term formers, since we encode proofs in first-order logic as \(\lambda \)-terms via the Curry-Howard correspondence. We begin by introducing propositions \(\top \) and \(\bot \); the former (being an initial object) is only equipped with introduction rule \(\beta_{\text{Succ-\bot}} \), on the other hand, is only equipped with the elimination rules \(\text{Absurd-Pr} \) and \(\text{Absurd} \). The latter rule is especially important, as it is the main way with which our logic is capable of interacting with our term calculus by allowing us to safely erase unreachable branches from, e.g., a natrec or cases expression.

Unfortunately, proofs of equality are still unable to interact meaningfully with the term calculus, since while the substitution eliminator is powerful enough to prove many statements about equality, it is not powerful enough to prove falsehood from false equalities, such as \(0 = 1 \), since doing so usually requires a form of higher order logic. Hence, we need to add an additional axiom, \(\text{Discr} \), which essentially says that the right-hand and left-hand side of a coproduct type are disjoint. This suffices to effectively introduce disequality into our type theory, as desired.

We may now introduce the rest of the connectives of first-order logic, suitably modified in order to fit our setting. In particular, we have implication \((u : \varphi) \Rightarrow \psi \), which, as per the Curry-Howard correspondence, is introduced by abstracting over a proposition variable, via rule \(\text{Imp} \), and eliminated via modus ponens (under Curry-Howard, application) \(\text{MP} \). Similarly, we have conjunction \((u : \varphi) \wedge \psi \), which is introduced by constructing a pair, via rule \(\text{And} \), and eliminated via a let-binding, with rule \(\text{Let-And} \). We note that both associated proposition formers, \(\text{Imp-WF} \) and \(\text{And-WF} \), are “dependent,” in that their right-hand side \(\psi \) is allowed to depend on a proof variable \(u \) for the right hand side \(\varphi \). This is because we allow the case where \(\varphi \) is not well-formed without \(u \) holding (for example, because it is about a term that requires a proof of \(\varphi \)). On the other hand, similarly to for coproducts, the rules for disjunction \(\varphi \vee \psi \) are simpler, with introduction by injection via rules \(\text{Orl} \) and \(\text{Orr} \), and elimination via case splitting with rule \(\text{Cases-Or} \).

Finally, just as we may consider a type quantifying over a proposition, to support full first-order logic, we must also be able to consider propositions quantified over types. In particular, we may introduce universally quantified propositions with formation rule \(\text{Univ-Wf} \). These may be introduced by generalization via rule \(\text{Gen} \), and specialized via elimination rule \(\text{Spec} \). Similarly, we may introduce existentially quantified propositions with formation rule \(\text{Exists-WF} \). We introduce proofs of an existentially quantified proposition by introducing a witness via rule \(\text{Wit} \), and may eliminate proofs via let-binding with rule \(\text{Let-Wit} \). Note in particular that, in both cases, we treat the variable being quantified over as a ghost variable, since it is appearing in a proposition. Furthermore, since propositions have no computational semantics, a reduction rule is unnecessary for either.
4.3 Syntactic Metatheory

λ_{ert} satisfies the expected syntactic properties of substitution and regularity. To show this, we define substitutions as functions $\sigma : \text{Var} \rightarrow \text{Term} \cup \text{Proof}$, and can recursively define capture-avoiding substitution on terms/proofs e, written $[\sigma]e$, in the obvious way. We define a well-formed substitution from Γ to Δ, written $\Gamma \vdash^{\sigma} : \Delta$, as a substitution satisfying the following conditions:

\[
\begin{align*}
((x : A) \in \Gamma) & \implies \Delta \vdash^{\sigma} x : [\sigma]A \\
((u : \varphi) \in \Gamma) & \implies \Delta \vdash^{\sigma} u : [\sigma]\varphi \\
[[x : A]] \in \Gamma & \implies [[\sigma x : [\sigma]A] \in \Delta] \vee \Delta \vdash^{\sigma} x : [\sigma]A
\end{align*}
\]

(21)

Furthermore, we say σ is a strict substitution, written $\Gamma \vdash^{\sigma} : \Delta$, if ghost variables in Γ are only replaced with ghost variables in Δ.

Lemma 4.3 (Syntactic Substitution). If $\Gamma \vdash^{\sigma} : \Delta$ and $\Gamma \vdash a : A$, then $\Delta \vdash [\sigma]a : [\sigma]A$.

The proof of substitution is a routine induction, which as usual requires first proving weakening. Once we know that substitution holds, we can prove regularity:

Lemma 4.4 (Syntactic Regularity). If $\Gamma \vdash a : A$, then $\Gamma \vdash A \text{ ty}$. Also, if $\Gamma \vdash p : \varphi$, then $\Gamma \vdash \varphi \text{ pr}$.

This requires syntactic substitution since some of the typing rules (such as App) involve a substitution in the result types. One other result we will use later is that substitutions can be upgraded; that is, $\Gamma \vdash^{\sigma} : \Delta \implies \Gamma^{\uparrow} \vdash^{\sigma^{\uparrow}} : \Delta^{\uparrow}$. To avoid confusion, we write the latter as $\Gamma^{\uparrow} \vdash^{\sigma^{\uparrow}} : \Delta^{\uparrow}$, with the upgrade on substitutions taken to be the identity.

5 SEMANTICS

To give a denotational semantics for the λ_{ert} calculus, we first show that all the proofs and dependencies in an λ_{ert} term can be erased in a compositional way. This yields a simple type for each λ_{ert} type, and a simply-typed term for each λ_{ert} term. We then give a semantics for each λ_{ert} type as a subset of the denotational semantics of the erasure for that type. Finally, we show that each well-typed λ_{ert} term, lies in the subset defined by its type.

In section 5.1, we recall the syntax and semantics of the simply-typed lambda calculus. In section 5.2, we give an erasure function from λ_{ert} types and terms to λ_{stlc} types and terms respectively, and prove some expected properties like preservation of well-typedness and semantic substitution (where the denotational semantics of an λ_{ert} term are taken to be the semantics of its erasure). Finally, in section 5.3, we give a semantics to λ_{ert} types by assigning each a subset, and show that the denotations of all well-typed λ_{ert} terms lie in the subset assigned to their type, i.e., semantic regularity. From this, we deduce that “well typed programs don’t go wrong.”

5.1 The Simply-Typed Lambda Calculus

We begin by providing a grammar for λ_{stlc} in figure 12 and typing rules in figure 13. This is a standard lambda calculus with functions, sums, products, natural numbers, as well as a simple effect: error stops. We define Term_λ to be the set of λ_{stlc} terms generated by the grammar in figure 12. Similarly to the λ_{ert} calculus, given a function $\sigma : \text{Var} \rightarrow \text{Term}_\lambda$, we may then recursively define (capture-avoiding) substitution of a term t in the usual manner. We say that σ is a substitution from Γ to Δ, written $\Gamma \vdash_{\lambda}^{\sigma} : \Delta$, if it satisfies the property that $(a : A) \in \Gamma \implies \Delta \vdash_{\lambda}^{\sigma} a : A$.

We may then state the usual property of syntactic substitution as follows:

Lemma 5.1 (Syntactic Substitution (λ_{stlc})). Given a substitution $\Gamma \vdash_{\lambda}^{\sigma} : \Delta$ and $\Gamma \vdash_{\lambda} t : A$, we have $\Delta \vdash_{\lambda} [\sigma]t : A$.
We may now give \(\lambda_{\text{stlc}} \) a denotational semantics. Fixing the exception monad \(M \), with exception error, we begin by giving denotations for \(\lambda_{\text{stlc}} \) types in figure 14, using Moggi’s call-by-value semantics for types [Moggi 1991]. We may then define the denotation of an \(\lambda_{\text{stlc}} \) context elementwise by taking \([\cdot] = 1\), \([\Gamma, x : A] = [\Gamma] \times M[\,A]\). Despite the fact that our semantics is call-by-value, the interpretation of each hypothesis lives in the monad \(M \). We do this so our denotational semantics can interpret substituting arbitrary terms for variables, and not just values for variables. For each variable \(x : A \) in a context \(\Gamma \), we define pointwise projections \(\pi_x : [\Gamma] \to [A] \). We define (in figure 15) the denotation of a derivation \(\Gamma \vdash \lambda \sigma : \Delta \) as a function of type \([\Gamma] \to M([A])\), which takes environments (elements of \(dnt\Gamma \)) to elements of the monadic type \(M([A]) \).

We can now give a relatively straightforward account of the denotational semantics of an \(\lambda_{\text{stlc}} \) substitution as follows: we interpret a substitution \(\Gamma \vdash \lambda \sigma : \Delta \) as a function \([\Gamma \vdash \lambda \sigma : \Delta] : [\Delta] \to [\Gamma]\) by composing it elementwise with the the denotational semantics. Supposing \(\Delta \subseteq [\Delta] \):

\[
\pi_{x, \Gamma}([\Gamma \vdash \lambda \sigma : \Delta] D) = ([\Delta \vdash \lambda \sigma x : A] D) \in [A] \tag{22}
\]

We may now state semantic substitution for the \(\lambda_{\text{stlc}} \) as follows:

Lemma 5.2 (Semantic Substitution (\(\lambda_{\text{stlc}} \))). Given \(\lambda_{\text{stlc}} \) derivation \(\Gamma \vdash \lambda a : A \) and \(\lambda_{\text{stlc}} \) substitution \(\Gamma \vdash \lambda \sigma : \Delta \), we have

\[
[\Gamma \vdash \lambda a : A] \circ [\Gamma \vdash \lambda \sigma : \Delta] = [\Delta \vdash \lambda [\sigma] a : [\sigma]A]
\]

5.2 Erasure

We define a notion of erasure \(|A|\) of \(\lambda_{\text{ert}} \) types and terms to corresponding \(\lambda_{\text{stlc}} \) ones in Figure 16. Erasure on types simply erases all dependency and propositional information leaving behind a simply-typed skeleton. For multiplicative type formers like \(\{x : A \mid \varphi\} \), the propositional information is erased completely, yielding \(|A|\), whereas for exponential type formers like \(\{u : \varphi\} \Rightarrow A \), it is instead erased to a unit, yielding \(1 \Rightarrow |A| \); this is to avoid issues with eager evaluation. Where necessary, we take proofs and propositions to erase into the unit as a convenience, i.e.,

\[
\forall \varphi \in \text{Prop}, |\varphi| = 1 \in \text{Type}_\lambda, \quad \forall p \in \text{Proof}, |p| = () \in \text{Term}_\lambda \tag{23}
\]

We may then recursively define the erasure of an \(\lambda_{\text{ert}} \) context into an \(\lambda_{\text{stlc}} \) context as follows:

\[
|\cdot| = \cdot, \quad [\Gamma, x : A] = [\Gamma], x : [A] \quad [\Gamma, u : \varphi] = [\Gamma], u : 1 \quad [\Gamma, \|x : A\|] = [\Gamma], x : 1 \tag{24}
\]

Fig. 12. Grammar for the \(\lambda_{\text{stlc}} \) with error
\[\begin{align*}
\Gamma \vdash \lambda () : 1 & \quad \Gamma \vdash \lambda \text{error} : A \\
\Gamma, x : A \vdash e : B & \quad \Gamma \vdash \lambda \text{let } x = a \text{ in } e : B \\
\Gamma \vdash \lambda x : A, s : A \rightarrow B & \quad \Gamma \vdash \lambda f : A \rightarrow B \\
\Gamma \vdash \lambda e : A & \quad \Gamma \vdash \lambda \text{inl} e : A + B \\
\Gamma \vdash \lambda e : B & \quad \Gamma \vdash \lambda \text{inr} e : A + B \\
\Gamma \vdash 0 : N & \quad \Gamma \vdash \lambda \text{succ} : N \rightarrow N \\
\Gamma, x : A \vdash l : C & \quad \Gamma, y : B \vdash r : C \\
\Gamma \vdash \lambda \text{cases} e (\text{inl } x \mapsto l) (\text{inr } y \mapsto r) : C \\
\Gamma \vdash \lambda \text{natrec } e \, z (x \mapsto s) : C \\
\end{align*}\]

Fig. 13. \(\lambda_{\text{stlc}}\) typing rules

\[\begin{align*}
[0] &= \{\}, \quad [1] = \{\ast\}, \quad [N] = N \\
[A \rightarrow B] &= [A] \rightarrow M[B], \quad [A + B] = [A] \cup [B], \quad [A \times B] = [A] \times [B]
\end{align*}\]

Fig. 14. \(\lambda_{\text{stlc}}\) type denotations parametrized by a monad \(M\). The denotation of a term of type \(A\) has type \(M[A]\).

\[\begin{align*}
\left[\Gamma \vdash \lambda a : A\right] & : [\Gamma] \rightarrow M[A] \\
\left[\Gamma \vdash \lambda x : A\right] G & = \pi_{\lambda,\Gamma} G \\
\left[\Gamma \vdash () : 1\right] G & = \text{ret} () \\
\left[\Gamma \vdash \lambda \text{error} : A\right] G & = \text{error}_A \\
\left[\Gamma \vdash \lambda x : A, e : A \rightarrow B\right] G & = \lambda m.\text{bind } m (\lambda a, \left[\Gamma, x : A \vdash \lambda e : B\right] G (\text{ret } a)) \\
\left[\Gamma \vdash \lambda f : A \rightarrow B\right] G & = \text{bind} \left(\left[\Gamma \vdash \lambda f : (x : A) \rightarrow B\right] G\right) (\lambda f, \text{bind} (\left[\Gamma \vdash \lambda a : A\right] G f)) \\
\left[\Gamma \vdash (l, r) : A \times B\right] G & = \text{bind} \left(\left[\Gamma \vdash \lambda l : A\right] G\right) (\lambda l, \text{bind} (\left[\Gamma \vdash \lambda r : B\right] G) (\lambda r, \text{ret} (l, r))) \\
\left[\Gamma \vdash \lambda \text{inl} e : A + B\right] G & = \text{fmap} \, \text{inl} \left(\left[\Gamma \vdash \lambda e : A\right] G\right) \\
\left[\Gamma \vdash \lambda \text{inr} e : A + B\right] G & = \text{fmap} \, \text{inr} \left(\left[\Gamma \vdash \lambda e : B\right] G\right) \\
\left[\Gamma \vdash \lambda \text{cases} d\right] (\text{inl } y \mapsto l) (\text{inr } z \mapsto r) : C & = \begin{cases}
\lambda d, & \text{cases } d \\
(\text{ret } a \mapsto \left[\Gamma, y : A \vdash \lambda l : C\right] G (\text{ret } a)) \\
(\text{ret } b \mapsto \left[\Gamma, z : B \vdash \lambda r : C\right] G (\text{ret } b))
\end{cases} \\
\left[\text{succ}\right] G & = \text{ret } \text{succ} \\
\left[\Gamma \vdash \lambda \text{natrec } n \, z (x \mapsto s) : C\right] G & = \begin{cases}
\lambda n, & \text{natrec } n \left(\left[\Gamma \vdash \lambda z : C\right] G\right) \\
(c \mapsto \text{bind } c (\lambda c, \left[\Gamma, x : C \vdash s : C\right] G (\text{ret } c)))
\end{cases} \\
\left[\Gamma \vdash \lambda \text{let } x = a \text{ in } e : B\right] G & = \text{bind} \left(\left[\Gamma \vdash \lambda a : A\right] G\right) (\lambda a', \left[\Gamma, x : A \vdash \lambda e : B\right] G (\text{ret } a'))
\end{align*}\]

Fig. 15. Denotations for \(\lambda_{\text{stlc}}\) terms, where \(M\) is the exception monad with error\(_A : M A\).
As one would expect; erasing a well-typed λ term yields a well-typed λ_{stlc} term; in particular, we have that:

Lemma 5.3 (Erasure). Given a derivation $\Gamma \vdash a : A$, we may derive a derivation of $[\Gamma] \vdash_\lambda [a] : [A]$, written $[\Gamma \vdash a : A]$.

With this definition in hand, we may define the erasure of a substitution pointwise, that is, as

$$\forall \sigma \in \text{Var} \rightarrow \text{Term}, [\sigma] a = [\sigma a] \quad (25)$$

It then follows as a trivial corollary of lemma 5.3 that, given a substitution $\Gamma \vdash \sigma : \Delta$, we have $[\Gamma] \vdash_\lambda [\sigma] : [\Delta]$; we write this as $[\Gamma \vdash \sigma : \Delta]$. We are now in a position to prove that the erasure of the substitution of an λ_{ert} term is the erased substitution of the corresponding erased λ_{stlc} term:

Lemma 5.4 (Substitution and Erasure Commute). Given a substitution $\Gamma \vdash \sigma : \Delta$, we have $[\Gamma \vdash a : A]$ and λ_{ert} substitution $\Gamma \vdash_\lambda \sigma : \Delta$, we have

$$[\Gamma \vdash a : A] \circ [\Gamma \vdash \sigma : \Delta] = [\Gamma \vdash a : [\sigma] A]$$

We may then deduce the following corollary from lemma 5.2 and lemma 5.4:

Corollary 5.5 (Substitution and Erasure Denotation Commute). Given λ_{ert} derivation $\Gamma \vdash a : A$ and λ_{ert} substitution $\Gamma \vdash_\lambda \sigma : \Delta$, we have

$$[[\Gamma \vdash a : A]] \circ [[\Gamma \vdash \sigma : \Delta]] = [[\Gamma \vdash a : [\sigma] A]]$$
5.3 Denotational Semantics

Using lemma 5.3, we could assign a computational meaning to well-typed \(\lambda_{\text{ert}} \) terms \(\Gamma \vdash t : A \) by simply composing the denotation for \(\lambda_{\text{stlc}} \) terms with the erasure function, i.e., taking \([\Gamma \vdash t : A] : [\Gamma] \rightarrow M[A] \). While this interpretation assigns terms a computational meaning, it simply ignores their refinements: there is not yet any guarantee that the refinements mean anything.

To rectify this, we will give a denotational semantics for \(\lambda_{\text{ert}} \) types (in figure 17), which maps each type to a subset of the denotation of the corresponding erased type. This semantics is mutually recursive with semantics for \(\lambda_{\text{ert}} \) propositions as well.

The denotation of types (and propositions) is parameterised by an environment \(G \) drawn from the interpretation of the context \(\Gamma \). To break the recursion between the semantics of contexts and types, the domain of the interpretation function for types (and propositions) is not restricted to valid \(\lambda_{\text{ert}} \) environments \(G \in [\Gamma \text{ ok}] \), but is defined for all \(\lambda_{\text{stlc}} \) environments \(G \in [\Gamma] \). However, the semantics of \(\lambda_{\text{ert}} \) types does depend upon the values of ghost variables. As a result, we do not consider the erasure \([\Gamma] \), but rather the erasure of the \textit{upgrade} \([\Gamma^\uparrow] \).

The denotation of types basically follows the structure of a unary logical relation (i.e., a logical predicate). For example, the interpretation \([\Gamma \vdash (x : A) \rightarrow B] \) \(G \) are functions \(A \rightarrow M([B]) \) which satisfy the property that for all inputs in the refined type \(A \), the function returns a pure value in the refined type \(B \). An element of a pair \((x : A) \times B[x] \) is a pair \((a, b) \) in \(|A| \times |B| \) where \(a \) is an element of \(A \) and \(b \) is an element of \(B[a] \).

The union type \(\exists x : A, B[x] \) are those elements of \(|B| \) which lie in \(B[a] \) for some \(a \) in \(A \). The intersection type \(\forall x : A, B \) is almost dual, but to account for call-by-value evaluation in the case where \(A \) may be an empty type, we consider thunks \(1 \rightarrow M(|A|) \) rather than elements of \(|A| \).

An element of a subset type \(\{ x : A \mid \varphi \} \) is an element of \(A \) which also satisfies the property \(\varphi \). The dual precondition type \((u : \varphi) \Rightarrow A \) represents elements \(A \), conditional on \(\varphi \) holding. Just as with intersections, this type must be represented by thunks \(1 \rightarrow M(|A|) \) to account for the case where \(\varphi \) is false. Units and natural numbers have the same denotation as their simply-typed counterpart, and a coproduct \(A + B \) is either a left injection of a value satisfying \(A \) or a right injection of a value satisfying \(B \). A proposition \(\varphi \) could be interpreted by a map \([\Gamma] \rightarrow 2 \), but it is more convenient to think of it as a subset of \(|[\Gamma]| \) – the set of contexts for which the proposition holds. So \(\top \) is the whole set of contexts, \(\bot \) is the empty set, and disjunction and conjunction are modelled by union and intersection. Because conjunction is written \(u : \varphi \land \psi[u] \), we have to extend the environment of the interpretation of \(\psi \). Since we erase all propositions to \(1 \), we just choose \(\text{ret} (\) as the erased proof. The same idea is used in the case of propositional implication. Quantifiers in our language of propositions are interpreted by quantifiers in the meta-language, and equality is interpreted as the set of contexts \(G \in [\Gamma^\uparrow] \) for which the equality holds.

The semantics of types and propositions is defined over a bigger set of contexts than just the valid ones, but once we have this semantics, we can use it to define the valid contexts. Again, the interpretation \([\Gamma \text{ ok}] \) is going to be the subset of \([\Gamma^\uparrow] \) which satisfy all the propositions and in which all the values lie within their \(\lambda_{\text{ert}} \) types. So the empty context is inhabited by the empty environment; the context \(\Gamma, u : \varphi \) is inhabited by \((G, \text{ret} ()) \) when \(G \) is in \([\Gamma \text{ ok}] \) and \(\varphi \) is satisfied; and \(\Gamma, x : A \) is inhabited by \((G, \text{ret} x) \) when \(G \in [\Gamma \text{ ok}] \) and \(x \) is in \(A \). (The case of ghost variables is the same as ordinary variables, since we care about the values of ghost variables when interpreting propositions in refined types.) It is easy to show that no \(\lambda_{\text{ert}} \) type can contain any errors.

\textbf{Lemma 5.6 (Termination).} \textit{Given an \(\lambda_{\text{ert}} \) derivation} \(\Gamma \vdash A \ty \), \textit{we have} \(\forall G, \text{error} \not\in [\Gamma \vdash A \ty] \) \(G \)

However, we give semantics to \(\lambda_{\text{ert}} \) terms by erasure, and so we have to connect the erased semantics of \(\lambda_{\text{ert}} \) terms to these semantic types. Furthermore, the semantics of \(\lambda_{\text{ert}} \) types cares about ghost values, but the semantics of erased terms ignore ghost values.
To relate these two, we also need to define the corresponding notion of a downgrade of an environment. Given an environment \(G \in [[\Gamma]] \), we recursively define its downgrade \(G_* \in [[\Gamma]] \), written \(G_* \) when \(\Gamma \) is clear from context, as
\[
_ = *, \quad (x, G)_x,*,* = (x, G_*)_x,*, (y, G)_{x:A;*} = (y, G_*)_{x:A;*}, (y, G)_{[[x:A]]} = (*, G_*) \tag{26}
\]
This discards all of the ghost information from an environment, and now we can show that

This lets us state the primary theorems proven about the semantics of \(\lambda_{ert} \), namely, semantic substitution and semantic regularity.

Theorem 5.7 (Semantic Substitution). Given \(\lambda_{ert} \) derivation \(\Gamma \vdash A \text{ ty} \), \(\lambda_{ert} \) substitution \(\Gamma \vdash \sigma : \Delta \), and valid environment \(D \in [[\Delta \text{ ok}]] \), we have
\[
[[\Delta \vdash [\sigma]A \text{ ty}]] D = [[\Gamma \vdash A \text{ ty}]] ([[[\Gamma]_* + \sigma]_* : \Delta_*] D)
\]
We can also show that for any well-typed \(\lambda_{ert} \) term, its erasure lies in the interpretation of the \(\lambda_{ert} \) type. This shows that every well-typed term satisfies the properties of its fancy type.

Theorem 5.8 (Semantic Regularity). Given an \(\lambda_{ert} \) derivation \(\Gamma \vdash a : A \), we have
\[
\forall G \in [[\Gamma \text{ ok}]], [[\Gamma \vdash a : A]] G_* \in [[\Gamma \vdash A \text{ ty}]] G
\]
For both of these propositions, similar theorems hold for contexts and propositions; see the appendix for details.

Furthermore, it is an immediate corollary of lemma 5.6 and theorem 5.8 that, for any well-typed term \(\Gamma \vdash a : A \), we have that \(\forall G \in [[\Gamma \text{ ok}]], [[\Gamma \vdash a : A]] G \neq \text{ error} \). That is, “well-typed programs do not go wrong”.

6 FORMAL VERIFICATION

We have proved all the results stated in the previous sections in Lean 4. The proof development is about 15 kLoC in length and is partially automated, though there is much potential for further automation. In particular, lemmas 4.1, 4.2, and 4.3 are heavily automated, while theorems 5.7 and 5.8 and lemmas 5.2, 5.4, and 5.5 have been proven manually. The formalized syntax and semantics are mostly the same as that presented in this writeup, except that we have implemented variables using de-Bruijn indices and folded types, propositions, terms, and proofs into a single inductive type to avoid mutual recursion, which Lean 4 currently has poor support for.

This project was the first time the authors used Lean 4 for serious formalization work. While we ran into numerous issues due to Lean still being in active early-stage development, we found it to be a highly effective formalization tool. One issue we ran into was very high memory usage and, in some cases, timeouts, when using Lean’s \(\text{dsimp} \) tactic on complex pattern matches. The addition of the \(\text{dsimp} \) tactic, after a discussion on the Lean 4 Zulip, mostly alleviated this, and performance has improved in later versions of Lean. We otherwise found the quality of automation to be very good: even though the authors are novices at Lean, we were able to easily maintain and extend the proofs without needing to edit theorems proved via tactics. For example, we originally forgot to include the Unit-WF axiom, but we were able to include it with only minor edits to the manual theorems in about 30 minutes. As the formalization made heavy use of dependent types, we also ran into many issues attempting to establish equalities between dependently typed terms. However, in this case, we found Lean relatively easy to use compared to other dependently-typed proof assistants based on dependent types, with our experiments at Coq-based formalization running into similar issues.
Function Extensionality, Recursion and Effects. Our current semantics is inconsistent with function extensionality because two functions must be equal over their entire, unrefined domain to satisfy the denotation of the equality type. To support extensionality (and related types like quotient types),

Fig. 17. Denotations for \(\lambda_{\text{ert} \text{r}} \)

7 DISCUSSION AND RELATED WORK

\[
\begin{align*}
[\Gamma \vdash A \text{ ty}] & : [[\Gamma^1]] \rightarrow \mathcal{P}(\mathcal{M}[|A|]) \\
[\Gamma \vdash \text{1 ty}] & : \{()\} \\
[\Gamma \vdash (x : A) \rightarrow B \text{ ty}] & : \{f \in [|A|] \rightarrow \mathcal{M}[|B|] \mid \forall x \in [\Gamma \vdash A \text{ ty}] \ G, \ f(x) \in \mathcal{E}[\Gamma, x : A \vdash B \text{ ty}] \ G, \ (G, \text{ret} x)\} \\
[\Gamma \vdash (x : A) \times B \text{ ty}] & : \{(l, r) \mid l \in [\Gamma \vdash A \text{ ty}] \ G \land r \in [\Gamma, x : A \vdash B \text{ ty}] \ G, \ (G, \text{ret} l)\} \\
[\Gamma \vdash A + B \text{ ty}] & : \text{inn}(\{\Gamma \vdash A \text{ ty}\} \ G) \cup \text{inn}(\{\Gamma \vdash B \text{ ty}\} \ G) \\
[\Gamma \vdash (u : \phi) \Rightarrow A \text{ ty}] & : \{f \in 1 \rightarrow \mathcal{M}[|A|] \mid gn \in [\Gamma, u : \phi \vdash A \text{ ty}] \ G, \ (G, \text{ret} (\))\} \\
[\Gamma \vdash \{x : A \mid \phi\} \text{ ty}] & : \{a \in [\Gamma \vdash A \text{ ty}] \ G \mid (G, a) \in [\Gamma, x : A \vdash \phi \text{ pr}]\} \\
[\Gamma \vdash \forall x : A, B \text{ ty}] & : \{f \in 1 \rightarrow \mathcal{M}[|B|] \mid \forall x \in [\Gamma \vdash A \text{ ty}] \ G, \ f(x) \in [\Gamma, x : A \vdash B \text{ ty}] \ G, \ (G, \text{ret} x)\} \\
[\Gamma \vdash \exists x : A, B \text{ ty}] & : \bigcup_{x \in [\Gamma \vdash A \text{ ty}] \ G} \{G, \text{ret} (\{\Gamma \vdash \lambda \lambda \text{ A ty}\} \ G) : [[\Gamma^1]] \rightarrow \mathcal{P}(\mathcal{M}[|A|])\} \\
[\Gamma \vdash \emptyset \text{ pr}] & : [[\Gamma^1]] \\
[\Gamma \vdash \bot \text{ pr}] & : \emptyset \\
[\Gamma \vdash (u : \phi) \Rightarrow \psi \text{ pr}] & : \{G \mid G \in [\Gamma, u : \phi \vdash \psi \text{ pr}] \mid (G, \text{ret} (\)) \in [\Gamma, u : \phi \vdash \psi \text{ pr}]\} \\
[\Gamma \vdash (u : \phi) \land \psi \text{ pr}] & : \{G \mid G \in [\Gamma, u : \phi \vdash \psi \text{ pr}] \land (G, \text{ret} (\)) \in [\Gamma, u : \phi \vdash \psi \text{ pr}]\} \\
[\Gamma \vdash (u : \phi) \lor \psi \text{ pr}] & : [\Gamma, u : \phi \vdash \psi \text{ pr}] \cup [\Gamma, \psi \text{ pr}] \\
[\Gamma \vdash \forall \phi : A, \phi \text{ pr}] & : \{G \mid \forall x \in [\Gamma \vdash A \text{ ty}] \ G, \ (G, x \vdash A \vdash \phi \text{ pr})\} \\
[\Gamma \vdash \exists \phi : A, \phi \text{ pr}] & : \{G \mid \exists x \in [\Gamma \vdash A \text{ ty}] \ G, \ (G, x \vdash A \vdash \phi \text{ pr})\} \\
[\Gamma \vdash a \equiv_{A} b \text{ pr}] & : \{G \mid [\Gamma^1 \vdash a : A \text{ ty}] \ G = [\Gamma^1 \vdash b : A \text{ ty}] \ G\} \\
[\cdot \text{ ok}] & : \{\cdot\} \\
[\Gamma, x : A \text{ ok}] & : [\Gamma, x : A \text{ ok}] = \{ (G, \text{ret} x) \mid G \in [\Gamma \text{ ok}] \land x \in [\Gamma \vdash x : A \text{ ty}] \ G\} \\
[\Gamma, u : \phi \text{ ok}] & : ([\Gamma \text{ ok}] \cap [\Gamma, u : \phi \text{ pr}] \times \text{ M1}\}
we should be able to interpret the calculus via a semantics based on partial-equivalence relations, as in [Harper 1992].

We also want to reason about the partial correctness and divergent programs. Hence, it makes sense to add support for general recursive definitions, including nonterminating definitions, by moving to a domain-theoretic semantics (rather than the set-theoretic semantics we currently use). We also want to extend the base language with more effects (such as store and IO) and extend λ_{ert} to support fine-grained reasoning about them via an effect system such as in [Katsumata 2014].

Categorical Semantics. The motivating model of refinement types underlying our work is that of [Melliès and Zeilberger 2015], which equates type refinement systems with functors from a category of typing derivations to a category of terms. In essence, one can view our work as taking the setup in [Melliès and Zeilberger 2015] and inlining all the categorical definitions for the case of the simply-typed lambda calculus.

We would like to update our formalisation to work in terms of the categorical semantics; this would let us to account for all of the extensions above at once, without having to reprove theorems (such as semantics substitution and regularity) for each modification.

Dependent Types. In some sense, we may view λ_{ert} as a degenerate dependent type theory rather than a refinement type system since the system of explicit proofs may be viewed as a variation on the Prop type of Coq. Coq [The Coq Development Team 2021] and Agda [Norell 2007] both support a notion of erasure, in which dependently typed programs are extracted to programs in purely functional languages such as Ocaml or Haskell, which sometimes requires unsafe features. The core difference of our system as the fact that it is built from the ground up as a refinement of our erasure target rather than adding erasure in an ad-hoc way to a pre-existing system. We also show how to omit judgemental equality, β, or η-conversion, which is usually an essential components of dependent type theories (and the source of much metatheoretical complexity). However, there are some dependent type theories, such as Objective Type Theory [van den Berg and den Besten 2021] and Zombie [Sjöberg and Weirich 2015], which implement reduction propositionally as axioms, similarly to what we have done.

Automation and Solver Integration. One of the critical advantages of refinement types is the potential for significantly reducing the annotation burden of formal verification. Hence, to make λ_{ert} usable, it should be able to be automated to a similar degree for similarly complex programs. One potential form of basic automation is support for an “smt” tactic, similar to section 3’s “β” tactic; we can similarly envision calling out to various automated theorem provers like Vampire [Kovács and Voronkov 2013] or SPASS [Weidenbach et al. 2002].

A more powerful approach would be to adapt the work on Liquid Typing [Rondon et al. 2008] to this setting, which works by inferring appropriate refinement types and proofs for an unrefined program such that, given that the program’s preconditions are satisfied, the preconditions of all function calls within the program as well as the postconditions of the program are both satisfied. Liquid Typing sometimes requires annotations to infer appropriate invariants and may require explicit checks to be added for conditions it cannot verify are implied by the preconditions. One way to combine Liquid Typing with λ_{ert} would be to, using λ_{ert} types as annotations, automatically refine the types of subterms of an λ_{ert} program to make it typecheck, inferring and inserting proofs as necessary. One advantage of this approach would be that (assuming it compiles down to fully-annotated λ_{ert}) it removes the liquid typing algorithm itself from the trusted codebase, and, if the solvers used support proof output, the solvers themselves as well. Furthermore, we could replace potentially expensive runtime checks with explicit proofs.
REFERENCES

U. Norell. 2007. Towards a practical programming language based on dependent type theory.

