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Abstract
Datalog may be considered either an unusually powerful query lan-
guage or a carefully limited logic programming language. Datalog
is declarative, expressive, and optimizable, and has been applied
successfully in a wide variety of problem domains. However, most
use-cases require extending Datalog in an application-specific man-
ner. In this paper we define Datafun, an analogue of Datalog sup-
porting higher-order functional programming. The key idea is to
track monotonicity with types.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

Keywords Prolog, Datalog, logic programming, functional pro-
gramming, domain-specific languages, type theory, denotational
semantics, operational semantics, adjoint logic

1. Introduction
The phrase “declarative programming” is as popular as it is am-
biguous, with seemingly hundreds of disparate senses in which it is
used. However, two of those usages stand out for popularity: both
functional and logic programming languages are generally deemed
declarative languages. Despite this shared epithet, the logic and
functional programming traditions have largely evolved indepen-
dently of one another (with a few honorable exceptions such as
Mercury (Somogyi et al. 1994), Curry (Antoy and Hanus 2010) and
Kanren (Friedman et al. 2005)). This could be seen as an occasion
for sorrow, but we prefer to view it as an opportunity: as functional
language designers, we can look to logic languages to discover new
ideas to steal.

A Prolog program can be understood as a collection of logical
axioms formulated as Horn clauses (i.e., first-order formulas of the
form ∀~x. P1∧ . . .∧Pn → Q, where Pi andQ are atomic formulas).
Execution of a Prolog program can be understood as running a proof
search algorithm on these clauses to figure out whether a particular
formula is derivable or not.

In other words, functional and logic programming languages
embody the Curry-Howard correspondence in two different ways. In
a functional language, types are propositions, terms are proofs, and
program evaluation corresponds to proof normalization. On the other
hand, for logic programming languages, terms are propositions, and
program evaluation corresponds to proof search.

Since proof search is in general undecidable, designers of logic
programming languages must be careful both about the kinds
of formulas they admit as programs, and about the proof search
algorithm they implement. Prolog offers a very expressive language
— full Horn clauses — and so faces an undecidable proof search
problem. Therefore, Prolog specifies its proof search strategy: depth-
first goal-directed/top-down search. This lets Prolog programmers
reason about the behaviour of their programs; however, it also means
many logically natural programs fail to terminate. Notoriously,
transitive closure calculations are much less elegant in Prolog
than one might hope, since their most natural specification is best
computed with a bottom-up (aka “forwards chaining”) proof search
strategy.

This view of Prolog suggests other possible design choices,
such as restricting the logical language so as to make proof search
decidable. One of the oldest such variants is Datalog (Gallaire and
Minker 1978), a subset of Prolog satisfying three restrictions:

1. Programs must be constructor-free: only atomic terms and
variables are permitted to appear as arguments to predicates.
This ensures that deduction will not introduce terms that do not
occur in the source of the program.

2. Clauses are range-restricted: all variables in the consequent
(head) of a clause must also occur positively in its premises
(body).

3. Programs are limited to stratified negation: the negation of a
predicate may be used in a definition only if it has already
been fully defined. That is, within the recursive definition of
a predicate, it cannot be used in negated form.

These restrictions make Datalog Turing-incomplete: all queries
are decidable. As functional programmers are well aware, though,
there is power in restraint: for example, in a total functional language,
the compiler may switch between strict and lazy evaluation at will.
Similarly, in Datalog decidability means that implementations are
free to use forwards chaining, and so can easily support queries (like
reachability and transitive closure) which are difficult to implement
in ordinary Prolog.

Over the last decade or so, this freedom has been put to good
use, with Datalog appearing at the heart of a a wild variety of
applications in both research and industry. For example, Whaley
and Lam (Whaley et al. 2005; Whaley 2007) implemented pointer
analysis algorithms in Datalog, and found that they could reduce
their analyses from thousands of lines of C code to tens of lines of
Datalog code, while retaining competitive performance. Semmle
has developed the .QL language (de Moor et al. 2007; Schäfer and
de Moor 2010) based on Datalog for analysing source code (which
was used to analyze the code for NASA’s Curiosity Mars rover), and
LogicBlox has developed the LogiQL (Aref et al. 2015) language
for business analytics. The Boom project at Berkeley has developed
the Bloom language for distributed programming (Alvaro et al.
2011), and the Datomic cloud database (Hickey et al.) uses Datalog



(embedded in Clojure) as its query language. Microsoft’s SecPAL
language (Becker et al. 2010) uses Datalog as the foundation of its
decentralised authorization specification language.

In all of these cases, the use of Datalog permits giving speci-
fications and implementations which are dramatically shorter and
clearer than alternatives implemented in more conventional lan-
guages. However, while all of these applications are built on a
foundation of Datalog, they all also extend it significantly. For ex-
ample, it is impossible even to implement arithmetic in Datalog,
since adding 2 and 3 produces 5, which is a new term not equal
to either 2 or 3! As a result, even though Datalog has a very clean
semantics, its metatheory needs to be re-established once again for
each application-specific extension to it.

As a result, it would be very desirable to understand what
makes Datalog tick, so that we can embed it into a more expressive
language without sacrificing the properties that make it so powerful
within its domain. In this way, extensions can become “a small
matter of programming”, without having to do a custom redesign of
the language for each application.

In this paper, we present Datafun, a typed functional language
which permits programming in the style of Datalog, while still
supporting the full power of higher-order functional programming.

Contributions

• We describe Datafun, a typed language capturing the expres-
sive power of Datalog and extending it to support higher-order
functional programming. Datafun’s key feature is to track mono-
tonicity with types. This permits us to use typing to analyze fixed
point computations in a way ensuring their termination.
• We present examples illustrating the expressive power of Data-

fun, including relational-algebra-style operations, transitive clo-
sure, CYK parsing, and dataflow analysis. Some of these ex-
amples are familiar from Datalog, but many of them go well
beyond what can be expressed in it, illustrating the benefits of
our approach.
• We identify the semantic structures underpinning Datalog, and

use this to give a denotational semantics for Datafun in terms of
a pair of adjunctions between Set, Poset, SemiLat.
• We have a prototype implementation of Datafun in Racket,

which has been used to implement all of the examples in
this paper, and is available at https://github.com/rntz/
datafun/.

2. Datafun, informally
We give the core syntax of Datafun in Figure 1. Datafun is a simply-
typed λ-calculus extended in four major ways:

1. We add a type of finite sets, {A}.

2. We add a type of monotone functions, A +→ B. Consequently
Datafun has two flavors of variable: ordinary variables, which we
call discrete, and monotone variables. We write discrete variables
in script and monotone variables in bold.
In order for “monotone” to have meaning, our types are implic-
itly partially ordered:
• Booleans 2 are ordered false < true.
• Natural numbers N have the usual order: 0 < 1 < 2 < ....
• We have no particular use-case for comparing strings str in

this paper, so we order them discretely; a ≤ b iff a = b.
• Pairs and functions are ordered pointwise:

(a, x) ≤ (b, y) iff a ≤ b∧ x ≤ y

A, B ::= 2 | N | str | {A} | A + B | A× B
types A→ B | A

+→ B

L,M ::= 2 | N | {A} | L×M | A→ L | A
+→ L

semilattice types

eq
A,

eq
B ::= 2 | N | str | {

eq
A} |

eq
A +

eq
B |

eq
A×

eq
B

eqtypes

fin
A,

fin
B ::= 2 | {

fin
A} |

fin
A +

fin
B |

fin
A×

fin
B

finite eqtypes

∆ ::= · | ∆, x :A
Γ ::= · | Γ , x :A

contexts

e ::= x | x | λx. e | λx. e | e e
terms (e, e) | π1 e | π2 e | in1 e | in2 e

case e of in1 x � e; in2 x � e
case e of in1 x � e; in2 x � e
true | false | if e then e else e
{e} | ε | e∨ e |

∨
(x ∈ e) e

fix x is e | fix x ≤ e is e

Figure 1. Syntax of core Datafun

f ≤ g iff ∀x. f x ≤ g x
• Sum types are ordered disjointly: ini a ≤ ini b iff a ≤ b,

but in1 a and in2 b are never comparable.
• Sets are ordered by inclusion: a ≤ b iff a ⊆ b.

3. We add a term (fix x is e) denoting the least fixed point
of the monotone function (λx. e). This is computed (modulo
optimizations) by iteration, starting from the smallest value of
the desired type and halting once a fixed point is found. This
strategy constrains the types of fix terms in several ways:
• The type must have a smallest value. We enforce this using

semilattice types (see item 4, below).
• The type must support equality tests, to determine when

a fixed point has been reached. We call a type supporting
equality tests an eqtype.
• To ensure termination, the type must have finite height.1 We

conservatively approximate this property by limiting fix to
finite types.

In summary, fix may only be used at finite semilattice eqtypes.

4. Generalizing the empty set ∅ and union ∪, we identify a subset
of types that have a least element ε and a least upper bound
operator ∨. We call these semilattice types2, and denote them by
the metavariables L,M.
Semilattice types serve two purposes. First, as already men-
tioned, they guarantee the presence of a least element, needed to
compute fix terms.
Second, they provide a natural eliminator for sets. Given e1 : {A},
we write

∨
(x ∈ e1) e2 for the least upper bound, over all

elements x ∈ e1, of e2, provided e2 has some semilattice type L.

1 The height of a poset is the cardinality of its largest chain (totally-ordered
subset).
2 Technically, the partial orderings on these types form join-semilattices
with a least element. For brevity’s sake, we call these structures simply
“semilattices.”

https://github.com/rntz/datafun/
https://github.com/rntz/datafun/


terms e ::= ... | {~e} | {e | L} |
∨
(L) e

C ~e | case e of [p � e]∗

patterns p ::= | x | !e | (p, p) | true | false | C ~p

constructors C are abstract identifiers

loops L ::= L,L | p ∈ e | e

{}
expand−−−→ ε

{e, ~ei}
expand−−−→ {e} ∨ {~ei}

{e | L} expand−−−→ ∨
(L) {e}∨

(L1,L2) e
expand−−−→ ∨

(L1)
∨
(L2) e∨

(p ∈ e1) e2
expand−−−→ ∨

(x ∈ e1) case x of p � e2; � ε∨
(e1) e2

expand−−−→ if e1 then e2 else ε

Figure 2. Syntax sugar

case e1 of

x � e3;
expand−−−→ let x = e1 in e3

� e4

case e1 of

!e2 � e3;
expand−−−→ if e1 = e2 then e3 else e4

� e4

case e1 of

� e3;
expand−−−→ e3

� e4

case e1 of let (x, y) = e1 in

(p, p ′) � e3;
expand−−−→ case x of

� e4 p � (case y of p ′ � e3; � e4);
� e4

case e1 of case e1 of

in1 p � e3;
expand−−−→ in1 x→ (case x of p � e3; � e4);

� e4 in2 y→ e4

case e1 of case e1 of

in2 p � e3;
expand−−−→ in1 x→ e4;

� e4 in2 y→ (case y of p � e3; � e4)

Figure 3. Pattern matching expansion

If e2 is a set, for example, this provides the set type’s monadic
“bind” operation. For example,

∨
(x ∈ {1, 2, 3}) {10 · x, x2}

denotes the set {1, 4, 9, 10, 20, 30}.

3. Examples
For purposes of these examples, we use a simple Haskell-like
syntax for top-level type and function definitions. We also permit
ourselves infix notation, let-binding, n-ary tuples, n-ary sum types
with named constructors, and a restricted form of pattern-matching
(including non-linear patterns), and additional syntax sugar given

¬ : 2→ 2

= :
eq
A→

eq
A→ 2

≤ :
eq
A→

eq
A

+→ 2

range : N→ N +→ {N}
length : str→ N

substring : str→ N→ N→ str

Figure 4. Primitive functions and their type schemes

in Figures 2 and 3. These figures also show how to expand the
sugar into our core language. Full expansion for case-analysis is
complicated, so we include only the fragment for expressions of the
form case e1 of p � e2; � e3, as that is all we use in this paper.

All of these conveniences are supported (with slightly different
concrete syntax) in our implementation.

For clarity, we set the names of top-level variables in sans-serif;
discrete variables in script or italic (for long variable names); and
monotone variables in bold. Although Datafun as presented does
not have polymorphism, we give our examples their most general
possible type schemes.

3.1 Filtering, mapping, and cross products
Armed with the syntactic sugar given in Figure 2, basic set opera-
tions such as map, filter, and cross-product are easy first examples:

map : (A→ B)→ {A}
+→ {B}

map f A = {f x | x ∈ A}

filter : (A→ 2)
+→ {A}

+→ {A}

filter f A = {x | x ∈ A, f x}

(×) : {A}
+→ {B}

+→ {A× B}
A× B = {(a, b) | a ∈ A, b ∈ B}

Worth noting here are the subtleties of monotonicity typing. For
example, map is not monotone in its function argument, while filter
is. Recalling that sets are ordered by inclusion, this is straightforward
enough — observe, for example, that:

map (≤ 0) {0, 1} 6⊆ map (≤ 1) {0, 1}
filter (≤ 0) {0, 1} ⊆ filter (≤ 1) {0, 1}

However, it is perhaps unclear how Datafun’s type system “knows”
filter is monotone in f. In brief, Datafun knows that application (f x)
is monotone in the function, and moreover, testing a boolean guard
(f x) in a set-comprehension such as {x | x ∈ A, f x} is monotone in
the guard expression. The full explanation is in Section 4.

3.2 Equality, membership, and intersection
So long as the type of a set’s elements supports equality, we can test
whether the set contains a value x as follows:

(∈?) :
eq
A→ {

eq
A}

+→ 2

x ∈? A =
∨
(y ∈ A) x = y

The expression
∨
(y ∈ A) x = y takes the least upper bound,

at boolean type, for every y ∈ A, of the value of x = y. Since
booleans are ordered false < true, “least upper bound” is simply
logical disjunction!

Similarly, we can define set intersection by testing for equality:

(∩) : {
eq
A}

+→ {
eq
A}

+→ {
eq
A}

A ∩ B = {x | x ∈ A, y ∈ B, x = y}



However, explicitly binding multiple variables only to test for
equality can become tedious, so we support a form of equality
patterns. The grammar of patterns includes the form !e, which
means the term at that position equals the value of e. So we can
indicate that a pattern must have an equal value at different positions
by binding the first one to a variable x, and then marking later
positions with a !x. Now, the intersection can be written as:

(∩) : {
eq
A}

+→ {
eq
A}

+→ {
eq
A}

A ∩ B = {x | x ∈ A, !x ∈ B}

Since !x implies the use of an equality test, the condition that the
set’s element type support equality remains in force.

3.3 Composition of relations
One extremely useful operator it is convenient to define using
nonlinear pattern matching is composition of finite relations (that is,
sets of pairs):

(•) : {A×
eq
B}

+→ {
eq
B× C} +→ {A× C}

R • S = {(a, c) | (a, b) ∈ R, (!b, c) ∈ S}

This already demonstrates a capability Datafun has that Datalog does
not: defining operators over relations. A Datalog program defining
binary predicates r and s which wished to compose those predicates
would have to define a new top-level predicate:

r(X,Y) :- (...).
s(X,Y) :- (...).
rs(A,C) :- r(A,B), s(B,C).

In Datafun, we simply define (•) and use it inline as needed. We
shall see the use of this in later examples.

3.4 Transitive closure
Consider the following Datalog program, authored perhaps by a
J.R.R. Tolkien aficionado wishing to trace the geneologies of their
favorite work, The Silmarillion:

parent(earendil, elrond).
parent(elrond, arwen).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Z) :- ancestor(X, Y), ancestor(Y, Z).

This defines a binary parent relation, along with its transitive
closure, ancestor. The Datafun equivalent is:

data person = EÄRENDIL | ELROND | ARWEN

parent, ancestor : {person× person}
parent = {(EÄRENDIL, ELROND), (ELROND,ARWEN)}
ancestor = fix X is parent∨ (X • X)

The type person represents the domain of our parent and ancestor
relations. parent is simply a list of parent-child pairs. ancestor is
where the action is at: since the Datalog predicate ancestor is
defined recursively, ancestor is defined as a least fixed point — in
this case, of the the equation

X = parent∨ (X • X)

Informally, we may read this as stating that a pair is in X if it is
in either parent or the composition of X with itself. This requires
that X contain the transitive closure of parent. And since we take
the least fixed point of this equation, ancestor contains exactly the
transitive closure of parent. Voilà!

3.4.1 Transitive closure with an upper bound
The preceding explanation glosses over a critical requirement: fix
may only be used at finite semilattice eqtypes. ancestor has type

{person × person}. Does this suffice? It’s certainly a semilattice,
since it’s a set type. Since person is effectively a sum of units, it
supports equality, and sets and products of eqtypes are themselves
eqtypes. Likewise, person is finite, and products and sets of finite
types are themselves finite.

So we are in the clear, but in general the restriction of fix to finite
types can be quite limiting. So Datafun provides a more general way
to take a fixed-point: specify an upper bound which the fixed point
may not exceed. For this we write (fix x ≤ e> is e), where e> is
our upper bound.

Suppose, for example, we represent our dramatis personae as
strings (an infinite type). We may write:

persons : {str}
persons = {"eärendil", "elrond", "arwen"}
parent, ancestor : {str × str}
parent = {("eärendil", "elrond"), ("elrond", "arwen")}
ancestor = fix X ≤ (persons× persons) is parent∨ (X • X)

Instead of a person type, we have persons set, which we use to
construct an upper bound on our fixed-point: (persons× persons),
the complete binary relation. Since all strings in parent are in
persons, the transitive closure of parent cannot exceed the bound.

However, this invariant is left to the programmer to check. What
if a sloppy programmer should mistakenly include a person in
parent not present in persons? More generally, what if the fixed
point (fix x ≤ e> is e) is trying to compute exceeds e>? (Or indeed,
no such fixed point exists?)

In that case, the value of (fix x ≤ e> is e) is clamped to the
upper bound e>. This ensures Datafun programs terminate even in
the presence of sloppy programmers, and although they may not
have the value you expect, that value is at least predictable.

3.4.2 Generic transitive closure
Thus far we have only considered taking the transitive closure of a
relation we have already defined. But consider: for any finite eqtype

fin
A, we may write:

trans : {
fin
A×

fin
A}

+→ {
fin
A×

fin
A}

trans E = fix X is E ∨ (X • X)

Similarly, for any eqtype
eq
A, we may write:

trans : {
eq
A}

+→ {
eq
A×

eq
A}

+→ {
eq
A×

eq
A}

trans V E = fix S ≤ (V× V) is E ∨ (S • S)

In this way, we can abstract away from choice of underlying
relation and define transitive closure generically. Using functions
as a means of abstraction is of course familiar and unremarkable to
functional programmers, but it is simply not possible in Datalog.

3.5 CYK parsing
Parsing can be understood logically, with a parse tree representing
a proof that a certain string belongs to a language described by a
context-free grammar. As a result, it is possible to formulate parsing
in terms of proof search (Shieber et al. 1995). One of the simplest
algorithms for parsing context free grammars is the Cocke-Younger-
Kasami (CYK) algorithm for parsing with grammars in Chomsky
normal form.3 Given a grammarG, we begin by introducing a family
of predicates (sometimes called facts or items) A(i, j), with one A
for each nonterminal, and i and j representing indices into a string.
Given a word w, we write w[i, n] for the n-element substring of w

3 In Chomsky normal form, each production is of the form A → B · C
or A → ~a, with A, B, C ranging over nonterminals, and ~a over strings of
terminals.



beginning at position i. Then, we can specify the CYK algorithm
with the following two inference rules:

B(i, j) C(j, k) (A→ B C) ∈ G
A(i, k)

(A→ ~a) ∈ G w[i, n] = ~a

A(i, i + n)

Then, the predicate A(i, j) means that A is derivable from the
substring of w running from i to j, and so the whole word w is
derivable from the start symbol S if S(0, length w) is derivable.

In Datafun, this rule-based description of the algorithm can be
transliterated almost directly into code. We begin by introducing a
few basic types.

type sym = str
data rule = STRING str | CONCAT sym sym
type grammar = {sym× rule}
type fact = sym× N× N

The sym type is a type synonym representing nonterminal names
with strings. The rule type is the type of the right-hand-sides of
productions in Chomsky normal form – either a string, or a pair
of nonterminals. A grammar is just a set of productions – a set of
pairs of nonterminals paired with their rules. The type fact is the
type representing the atomic facts derived by the CYK inference
system – they are triples of the rulename, the start position, and the
end position.

With these types in hand, we can write the CYK algorithm as a
fixed point computation. In fact, it is convenient to break it into two
pieces, by first defining the function whose fixed point we take. So
we can write down the iter function, which represents one step of
the fixed point iteration.

iter : str→ grammar +→ {fact} +→ {fact}
iter text G chart =

{(a, i, k) | (a,CONCAT b c) ∈ G,
(!b, i, j) ∈ chart,
(!c, !j, k) ∈ chart}

∨ {(a, i, i + length s)
| (a, STRING s) ∈ G,
i ∈ range 0 (n − length s),
s = substring text i (i + length s)}

This function works by taking a string text and a grammar G, and
then taking a set of facts chart, and taking a union. The first clause
is a set comprehension, saying that we return (a, i, k) if (b, i, j)
and (c, j, k) are in chart – this corresponds to applications of the
first rule. The second clause corresponds to the second rule above,
saying that (a, i, i + length s) is a generated fact if s is a substring
of text at position i.

We can then use iter to implement the parse function.

parse : str→ grammar +→ {sym}

parse text G =
let n = length text

bound = {(a, i, j) | (a, ) ∈ G,
i ∈ range 0 n,
j ∈ range i n}

chart = fix C ≤ bound is iter text G C
in {a | (a, 0, !n) ∈ chart}

This function just takes the fixed point of iter – almost. Because
facts are triples sym × N × N, sets of facts may in general grow
unboundedly. To ensure termination, we construct a set bound to

bound the sets of facts we consider in our fixed point computation,
by bounding the symbols to names found in the grammar G, and
the indices to positions of the string. Since all of these are finite, we
know that the computation of chart as a bounded fixed point will
terminate. Then, having computed the fixed point, we can check
chart to see if (a, 0, length text) is derivable.

There are three things worth noting about this program. First, it
is not expressible in Datalog. Because Datalog provides no way to
represent a grammar as a piece of data (it’s compound, not an atom),
there is simply no way in Datalog to express a generic parser taking
a grammar as an input. This demonstrates one of the key benefits of
moving to a functional language like Datafun.

Moreover, Datalog programs must be constructor-free, to ensure
all relations are finite. Primitives such as range and substring violate
this restriction (as relations, they are infinite); it is not immediately
obvious that Datalog programs extended with these primitives
remain terminating. Our use of bounded fixed-points to guarantee
termination is robust under such extensions; as long as all primitive
functions are total, Datafun programs always terminate.

Finally, having computed a set via a fixed point, we can test
whether or not an element is in that set or not – the ability to test for
negative information after the fixed point computation completes
corresponds to a use of stratified negation in Datalog.

3.6 Dataflow analysis
In this section, we show how some simple dataflow analyses can be
expressed in Datafun. We begin with the types in these programs.

type var = str
type label = N
data oper = EQ | LE | ADD | SUB | MUL | DIV

data atom = VAR var | NUM N
data expr = ATOM atom | APPLY oper atom atom
data stmt = ASSIGN var expr | IF expr label label
type program = {label× stmt}

The basic idea is that we represent a program as a kind of control
flow graph. Each node of this graph has a label, which is a natural
number, and contains a statement of type stmt, which is either an
assignment of an expression (of type expr) to a variable (of type
var), or a conditional jump. A program is then just the set of nodes
– i.e., a set of label, statement pairs – with the invariant that the
relation is functional (i.e., if (l, s) and (l, s ′) are both in a program,
then s = s ′).

In what follows, we use a few trivial functions whose definitions
are omitted for space reasons.

labels : program→ {label}
vars : program→ {var}
uses : stmt→ {var}
defines : stmt→ {var}

The labels function returns the set of labels in a program. The
vars function returns the set of variables used in a program (both
in expressions and as targets for assignments). The uses function
returns the set of variables used by the expressions in a statement.
The defines function returns the set of variables defined by a
statement (i.e., at most one variable – the target of the assignment).

Given a program, we define the 1-step control flow graph with
the flow function.

type flow = {label× label}
flow : program→ flow
flow c =

∨
((i, s) ∈ c)

case s of IF j k � {(i, j), (i, k)}
| � {(i, i + 1) | i + 1 ∈? labels c}



It says that if (i, s) is a node of the program, then if s is a conditional
jump IF j k, then control can flow from i to j, and from i to k –
i.e., we add both (i, j) and (i, k) to the set of edges. Otherwise, it’s
an assignment, and control flows to the next statement (i.e., we add
(i, i + 1) to the set of edges).

Now, we can define liveness analysis, one of the classic “back-
wards” dataflow analyses. The type of live say that given a program
and its flow graph, it returns a set of label/variable pairs, which
determine a relation saying for each label which variables are live.

live : program→ flow→ {label× var}
live code flow =

fix Live ≤ labels code× vars code is∨
((i, stmt) ∈ code)
( {(i, v) | v ∈ uses stmt}
∨ {(i, v) | (!i, j) ∈ flow,

(!j, v) ∈ Live,
¬(v ∈? defines stmt)})

For a statement stmt at label i, we say that the variable v is live at i
if v is used by stmt. The variable v is also live at i if control flows
from i to j, and and v is live at j, assuming that stmt isn’t a definition
site for v.

When computing this analysis, we again need to use a bounded
fixed point, which we do by taking the Cartesian product of the
labels and variables occuring in the program.

Next, we give one of the classic forwards dataflow analyses,
reaching definitions. This analysis is used to figure out whether
an assignment (a “definition”) can influence the value of later
expressions or not.

reachingDefinitions : program→ flow→ {(label× var)× label}
reachingDefinitions code flow =

fix RD ≤ (labels code× vars code)× labels code is∨
((i, stmt) ∈ code)
( {((i, v), i) | v ∈ defines stmt}
∨ {((l, v), i) | (j, !i) ∈ flow,

((l, v), !j) ∈ RD,
¬(v ∈? defines stmt)})

We define a function reachingDefinitions which takes a program
and a set of flows as arguments, and returns a relation of type
{(label × var) × label}. An entry ((l, v), i) in this relation means
the definition of v at l reaches program point i.

This is then computed as a fixed point of two clauses. First, if
there is a definition v at program point i, then i is reached by that
definition. Second, if (l, v) reaches j, and j flows to i, then (l, v)
reaches i as long as v is not re-defined at i.

As Whaley et al. (2005) observed, Datalog makes it very easy to
express dataflow analyses, and it is similarly easy in Datafun.

4. Type system
Datafun’s typing judgment ∆; Γ ` e : A is defined by the inference
rules given in Figure 5. We gloss ∆; Γ ` e : A as follows:
“expression e has type A using variables from ∆ ∪ Γ , and moreover
the value of e is monotone with respect to the variables in Γ”.

The context ∆ types discrete variables; Γ , monotone variables.
Both admit the usual structural rules of exchange, weakening, and
contraction. Variables from either context may be used freely (rules
VAR, VAR+).

For clarity, we also give typing rules for our syntax sugar, in
Figure 6. These use the auxilliary judgments ∆; Γ ` p : A ⇒ ∆ ′,
which can be read as saying that “in the contexts ∆ and Γ , the
pattern p typechecks at type A, binding the variables in ∆ ′”; and

∆; Γ ` L⇒ ∆ ′ ∆,∆ ′; Γ ` e : L
∆; Γ `

∨
(L) e : L

∆; Γ ` L⇒ ∆ ′ ∆,∆ ′; Γ ` e : A
∆; Γ ` {e | L} : {A}

∆; · ` e : A ∆; Γ ` p : A⇒ ∆ ′ ∆,∆ ′; Γ ` e1 : C ∆; Γ ` e2 : C

∆; Γ ` case e of p � e1; � e2 : C

∆; Γ ` L1 ⇒ ∆1 ∆; Γ ` L2 ⇒ ∆2

∆; Γ ` L1,L2 ⇒ ∆1, ∆2

∆; Γ ` e : 2
∆; Γ ` e⇒ ·

∆; Γ ` e : {A} ∆; Γ ` p : A⇒ ∆

∆; Γ ` p ∈ e⇒ ∆ ′ ∆; Γ ` x : A⇒ x :A

∆; Γ ` : A⇒ ·
∆; Γ ` p1 : A1 ⇒ ∆1 ∆; Γ ` p1 : A2 ⇒ ∆2

∆; Γ ` (p1, p2) : A1 ×A2 ⇒ ∆1, ∆2

∆; Γ ` e :
eq
A

∆; Γ ` !e :
eq
A⇒ · ∆; Γ ` p : Ai ⇒ ∆ ′

∆; Γ ` ini p : A1 +A2 ⇒ ∆ ′

Figure 6. Typing rules for syntax sugar

∆; Γ ` L ⇒ ∆ ′, which says that “in the contexts ∆ and Γ , the
comprehension clauses in L bind the variables in ∆ ′”.

4.1 Functions and application
Two function types require two function introduction rules: the
discrete λ and the monotone λ+. These simply introduce variables
into their respective contexts. Monotone function application APP+

is perfectly standard, but discrete function application APP has a
pecularity: the argument e2 gets an empty monotone context.

To understand why, recall our gloss: the application e1 e2 must
be monotone in Γ . But e1 is a discrete, and in general non-monotone,
function A → B: there is no guarantee that it respect any order
on its argument. (Suppose, for example, e2 were some monotone
variable x : A ∈ Γ .) We work around this scoff-law behavior on
e1’s part by ensuring its argument e2 is constant with respect to
Γ—which we accomplish by simply prohibiting e2 from using any
of Γ ’s variables.

This technique of wiping clean the monotone context to guaran-
tee constancy4 of a subterm recurs in several other rules. Readers
familiar with linear logic’s ! comonad (Girard 1987) or with judg-
mental formulations of modal logics of necessity (Pfenning and
Davies 2001) may notice a feeling of déjà vu; indeed, there is a
hidden comonad at work here. But we are getting ahead of ourselves.
For more on that, turn to Section 5.

4.2 Products and sums
The pairing and projection rules, PAIR and π, are completely
standard, as is the IN rule for sum introduction. Sum elimination,
however, splits into two rules, CASE and CASE+. CASE+ requires
its branches to be monotone in the variable x it introduces, and
consequently its subject e is permitted access to the monotone
context Γ . CASE, however, analyses its subject e as a constant

4 Wherever we write “constant” in this section, substitute “constant with
respect to the monotone context”. The discrete context is never “wiped
clean”, and behaves entirely as it would in a simply-typed λ-calculus.



x :A ∈ ∆
∆; Γ ` x : A VAR

x :A ∈ Γ
∆; Γ ` x : A

VAR+
∆, x :A; Γ ` e : B

∆; Γ ` λx. e : A→ B
λ

∆; Γ ` e1 : A→ B ∆; · ` e2 : A

∆; Γ ` e1 e2 : B
APP

∆; Γ, x :A ` e : B
∆; Γ ` λx. e : A +→ B

λ+ ∆; Γ ` e1 : A
+→ B ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : B
APP+

∆; Γ ` ei : Ai

∆; Γ ` (e1, e2) : A1 ×A2

PAIR
∆; Γ ` e : A1 ×A2

∆; Γ ` πi e : Ai

π

∆; Γ ` e : Ai

∆; Γ ` ini e : A1 +A2

IN
∆; · ` e : A1 +A2 ∆, x :Ai; Γ ` ei : C
∆; Γ ` case e of in1 x � e1; in2 x � e2 : C

CASE
∆; Γ ` e : A1 +A2 ∆; Γ, x :Ai ` ei : C
∆; Γ ` case e of in1 x � e1; in2 x � e2 : C

CASE+

∆; Γ ` true : 2
TRUE

∆; Γ ` false : 2
FALSE

∆; · ` e : 2 ∆; Γ ` ei : A
∆; Γ ` if e then e1 else e2 : A

IF
∆; Γ ` e : 2 ∆; Γ ` e1 : L

∆; Γ ` if e then e1 else ε : L
IF+

∆; Γ ` ε : L
ε

∆; Γ ` ei : L
∆; Γ ` e1 ∨ e2 : L

∨
∆; · ` e : A

∆; Γ ` {e} : {A}
{}

∆; Γ ` e1 : {A} ∆, x :A; Γ ` e2 : L

∆; Γ `
∨
(x ∈ e1) e2 : L

∨
∆; Γ, x : L ` e :

fin
L

∆; Γ ` fix x is e :
fin
L

FIX
∆; Γ ` e1 :

eq
L ∆; Γ, x :

eq
L ` e2 :

eq
L

∆; Γ ` fix x ≤ e1 is e2 :
eq
L

FIX≤

Figure 5. Typing rules for core Datafun

— wiping clean its monotone context — and thus is allowed to
introduce the variable x into the discrete context ∆.

4.3 Booleans
While TRUE and FALSE are straightforward, there are two rules for
boolean elimination, IF and IF+. This is because in Datafun, 1 plus 1
does not equal 2: booleans are not a sum of units.5 At the type 1+ 1,
in1〈〉 and in2〈〉 are incomparable. But in Datafun, true > false.
Therefore, to eliminate a boolean in a monotone fashion, one must
ensure one’s then-branch is always greater than one’s else-branch.

Thus Datafun has two if rules. First, IF, where the boolean e
being analysed is constant (has an empty monotone context), and so
the branches e1, e2 may be arbitrary expressions.

Second, IF+, where the subject e has full access to Γ , but the
if-expression must have semilattice type, and the else-branch is
constrained to be ε— the least value, thus smaller than e1.

This is a conservative approach: there are many semantically
monotone, but untypeable, if-terms. However, it is complete for
semilattice types, for in that case (if e then e1 else e2) may be
rewritten (e2 ∨ if e then e1 else ε); as long as e1 ≥ e2 and so
e2 ∨ e1 = e1, this will not change the meaning of the expression,
only (potentially) its execution efficiency.

Thus the only meaningful restriction here is to semilattice types.
In practice, we have yet to find a case where this is problematic.

4.4 Semilattices and sets
The semilattice ε and ∨ operations are typed by the rules of the
same name. As ∨ is monotone, its arguments have full access to the
monotone context Γ .

Recall that sets are ordered by inclusion: although 2 ≤ 3,
nonetheless {2} 6≤ {3}. For this reason the rule {} for constructing
a singleton set {e} wipes clean its element e’s monotone context.
Datafun does not need empty-set or union operators, since ε and ∨
generalize them.

Finally, we come to
∨

, the set-comprehension rule. This rule has
the flavor of a monadic “bind” operation, but generalized to a result
of any semilattice type. This operation is naturally monotone both in
the set e1 being iterated over and in the expression e2 which we are
taking the least upper bound of. Since sets are ordered by inclusion

5 For simplicity, we have omitted the unit type 1 from our presentation of
Datafun, but it is easy enough to imagine including it.

Set Poset SemiLat

Disc

Pfin

|−|

⊥

F

U

⊥

Figure 7. Semantic categories of Datafun

|P| Underlying set of the poset P
S Set of strings
1 One-element poset {〈〉}
2 Two-element poset {ff, tt}, with ff < tt
N≤ The naturals N, as a (totally ordered) poset
P +Q Disjointly-ordered poset on disjoint union of P,Q
P ×Q Pointwise poset on pairs of Ps and Qs
P ⇒ Q Pointwise poset on monotone maps Poset(P,Q)
F P Free semilattice on a poset P
U L Underlying poset of a semilattice L

Disc A Discrete poset on underlying set A
PfinA Free semilattice on a set A; same as F (Disc A)↓(x : P) The sub-poset of P below x: {y ∈ P | y ≤ x}

Figure 8. Semantic notation

regardless of the ordering on their elements, e2 is not required to be
monotone in the variable x.

4.5 Fixed points
The reason Datafun tracks monotonicity is to permit taking fixed-
points of monotone functions. FIX expresses exactly that. As men-
tioned in Section 2, however, it is limited to types of the form

fin
L:

finite semilattice eqtypes.
FIX≤ loosens this restriction by letting us take fixed points at

(not-necessarily-finite) semilattice eqtypes
eq
L, as long as we provide

an upper bound e1 :
eq
L which we can check we do not exceed.



Derivation Denotation

J∆; Γ ` e : AK ∈ Set(|J∆K|, Poset(JΓK, JAK))
r
x1 :A1, ..., xn :AN; Γ ` xi : Ai

z
δ γ = πi δ

r
∆; x1 : L1, ..., xn : Ln ` xi : Li

z
δ γ = πi γ

s
∆, x :A; Γ ` e : B

∆; Γ ` λx. e : A→ B

{
δ γ = x 7→ JeK 〈δ, x〉 γ

s
∆; Γ, x :A ` e : B

∆; Γ ` λx. e : A +→ B

{
δ γ = x 7→ JeK δ 〈γ, x〉

s
∆; Γ ` e1 : A→ B ∆; · ` e2 : A

∆; Γ ` e1 e2 : B

{
δ γ = Je1K δ γ (Je2K δ 〈〉)

s
∆; Γ ` e1 : A

+→ B ∆; Γ ` e2 : B

∆; Γ ` e1 e2 : B

{
δ γ = Je1K δ γ (Je2K δ γ)

s
∆; Γ ` ei : Ai

∆; Γ ` (e1, e2) : A1 ×A2

{
δ γ = 〈Je1K δ γ, Je2K δ γ〉

s
∆; Γ ` e : A1 +A2

∆; Γ ` πi e : Ai

{
δ γ = πi (JeK δ γ)

s
∆; Γ ` e : Ai

∆; Γ ` ini e : A1 +A2

{
δ γ = ini (JeK δ γ)

s
∆; · ` e : A1 +A2 ∆, x :Ai; Γ ` ei : B
∆; Γ ` case e of in1 x � e1; in2 x � e2 : B

{
δ γ =

{
Je1K 〈δ, x〉 γ if JeK δ 〈〉 = in1 x
Je2K 〈δ, x〉 γ if JeK δ 〈〉 = in2 x

s
∆; Γ ` e : A1 +A2 ∆; Γ, x :Ai ` ei : B
∆; Γ ` case e of in1 x � e1; in2 x � e2 : B

{
δ γ =

{
Je1K δ 〈γ, x〉 if JeK δ γ = in1 x
Je2K δ 〈γ, x〉 if JeK δ γ = in2 x

r
∆; Γ ` true : 2

z
δ γ = tt

r
∆; Γ ` false : 2

z
δ γ = ff

s
∆; · ` e : 2 ∆; Γ ` ei : A
∆; Γ ` if e then e1 else e2 : A

{
δ γ =

{
Je1K δ γ if JeK δ 〈〉 = tt
Je2K δ γ if JeK δ 〈〉 = ff

s
∆; Γ ` e : 2 ∆; Γ ` e1 : L

∆; Γ ` if e then e1 else ε : L

{
δ γ =

{
Je1K δ γ if JeK δ γ = tt
εJLK if JeK δ γ = ff

r
∆; Γ ` ε : L

z
δ γ = εJLK

s
∆; Γ ` ei : L

∆; Γ ` e1 ∨ e2 : L

{
δ γ = Je1K δ γ∨JLK Je2K δ γ

s
∆; · ` e : A

∆; Γ ` {e} : {A}

{
δ γ = {JeK δ 〈〉}

s
∆; Γ ` e1 : {A} ∆, x :A; Γ ` e2 : L

∆; Γ `
∨
(x ∈ e1) e2 : L

{
δ γ =

∨
{Je2K 〈δ, x〉 γ | x ∈ Je1K δ γ}

t
∆; Γ, x :

fin
L ` e :

fin
L

∆; Γ ` fix x is e :
fin
L

|

δ γ = lfp (x 7→ JeK δ 〈γ, x〉) ∈ J
fin
LK

t
∆; Γ ` e1 :

eq
L ∆; Γ, x :

eq
L ` e2 :

eq
L

∆; Γ ` fix x ≤ e1 is e2 :
eq
L

|

δ γ = lfp

(
x 7→ {Je2K δ 〈γ, x〉 if it’s ≤ Je1K δ γ

Je1K δ γ otherwise

)
∈ ↓(Je1K δ γ : J

eq
LK)

Figure 10. Denotations of Datafun typing derivations



JAK ∈ Poset0
J2K = 2
JNK = N≤
JstrK = Disc S

JA× BK = JAK× JBK
JA + BK = JAK + JBK
JA +→ BK = JAK⇒ JBK
JA→ BK = Disc |JAK|⇒ JBK

J{A}K = Pfin |JAK|

J∆K, JΓK ∈ Poset0
J·K = 1

J∆, x :AK = J∆K× JAK
JΓ , x :AK = JΓK× JAK

Figure 9. Denotations of Datafun types and contexts

5. Denotational semantics
We give a denotational semantics for Datafun in terms of three
categories (Set, Poset, and SemiLat) and two adjunctions between
them (see Figure 7). We present the notation we use in Figure 8; we
take care to distinguish between sets and posets, and since posets
are more central to our semantics, most of our notation concerns
them. We take less care to distinguish posets and semilattices, since
while a set can be partially ordered in many ways, a poset either is
or is not a semilattice.

5.1 The category SemiLat

SemiLat is the category of join-semilattices with least elements,
which we call simply “semilattices”.

Directly, a semilattice is a poset L, with a least element ε, in
which any two elements a, b have a least-upper-bound a∨ b. From
ε and ∨ it follows that any finite subset X ⊆fin |L| has a least upper
bound, written

∨
X.

A morphism f ∈ SemiLat(L,M) is a function from |L| to |M|
satisfying:

f(a∨A b) = f(a)∨B f(b)

f(εA) = εB

SemiLat is a subcategory of Poset; every SemiLat-morphism f
is monotone, since a ≤ b ⇐⇒ a∨b = b, and so from a ≤ b we
know f(a) ∨ f(b) = f(a ∨ b) = f(b), thus f(a) ≤ f(b). Since it
is a subcategory, we will typically not explicitly write the forgetful
functor U L which sends semilattices to posets by forgetting the
lattice structure.

5.2 Denotation of Datafun types
Datafun types and contexts denote posets as shown in Figure 9. To
complete our semantics, we will need a few simple lemmas about
the denotations of Datafun types. First, we need to know that our
semilattice types are semilattices, and that our finite types are finite:

Lemma 1. The denotation JLK of a semilattice type L is a semilat-
tice.

Lemma 2. The poset J
fin
AK denoted by a finite eqtype

fin
A is finite.

Second, to show that bounded fixed-points (fix x ≤ e> is e)
terminate, we need any possible e> to pick out a finite-height sub-
poset:

Lemma 3. For any semilattice equality type
eq
L, for any x ∈ J

eq
LK, the

height of ↓(x : J
eq
LK) is finite.

All of these are trivial to prove by induction over types and the
definition of J−K.

5.3 Denotation of Datafun terms
In Figure 10 we give a denotation for typing derivations with the
following signature:

J∆; Γ ` e : AK ∈ Set(|J∆K|,Poset(JΓK, JAK))

Colloquially, ∆; Γ ` e : A denotes a function from J∆K× JΓK to
JAK that must be monotone in JΓK (but not in J∆K).

Our semantics requires the following lemma regarding fixed-
points of monotone functions:

Lemma 4 (Fixed points in finite-height pointed posets). Any mono-
tone map f : P → P on a poset P of finite height with a least element
ε has a least fixed point of the form fn(ε).

Proof. Consider the sequence ε, f(ε), f2(ε), f3(ε), .... Note that
ε ≤ f(ε), so by monotonicity of f and induction fi(ε) ≤ fi+1(ε).
Thus this sequence forms an ascending chain. Since P has finite
height, this chain cannot be infinite; thus there is an n such that
fn(ε) = fn+1(ε), i.e. fn(ε) is a fixed-point of f.

Now consider any fixed-point x of f. Since ε ≤ x, by monotonic-
ity of f, induction, and x = f(x), we have fn(ε) ≤ x. Thus fn(ε) is
the least fixed point of f.

We write (lfp f ∈ L) for the least fixed point of a monotone map
f on a semilattice L of finite height.

5.4 Metatheory
We have proven the following theorems:

Theorem 1 (Weakening and exchange). The rules

∆; Γ ` e : A
∆,∆ ′; Γ, Γ ′ ` e : A

WEAK
∆2, ∆1; Γ2, Γ1 ` e : A
∆1, ∆2; Γ1, Γ2 ` e : A

XCHG

are admissible.

Theorem 2 (Substitution, discrete). From

• ∆; · ` e1 : A,
• and ∆, x :A; Γ ` e2 : B,

it follows that

• ∆; Γ ` [e1/x] e2 : B,
• and J[e1/x] e2K δ γ = Je2K 〈δ, Je1K δ γ〉 γ.

Theorem 3 (Substitution, monotone). From

• ∆; Γ ` e1 : A,
• and ∆; Γ, x :A ` e2 : B

it follows that

• ∆; Γ ` [e1/x] e2 : B,
• and J[e1/x] e2K δ γ = Je2K δ 〈γ, Je1K δ γ〉.

5.5 Discussion
It has been known for a very long time that database queries have a
monadic structure arising from the adjunction between Set and
SemiLat — indeed, the very name of the Kleisli (Wong 2000)
database system was chosen to reflect this fact!

However, our decomposition of this adjunction into two smaller
adjunctions, with an intermediate way-station in Poset is new. By
interpreting our types in the intermediate category Poset, we gain
access to the comonad Disc |A|. This lets us distinguish between
monotone and non-monotone computations, which is the critical
property letting us interpret fixed points in a sensible way. Indeed,
it would also have been possible to directly reflect the adjunctions



in the syntax (in the style of Benton and Wadler (1996)), but we
chose not to because the explicit coercions were somewhat noisy in
practice. However, the ghost of this logic persists, as can be seen in
the context-clearing actions in our typing rules.

6. An operational semantics
We consider the denotational semantics to be primary in Datafun; as
with Datalog, any implementation technique is valid so long as it
lines up with these semantics. As a proof of concept, however, we
present a simple call-by-value structural operational semantics in
Figure 11 and show that all well-typed terms terminate.

In our operational semantics we:

1. Assume all semilattice operations (ε, ∨,
∨

, and fix) are sub-
scripted with their type.

2. Drop the distinction between discrete and monotone variables,
and write x, y for arbitrary variables.

3. Add iter expressions, which occur as intermediate forms in the
evaluation of fix.

4. Classify some expressions e as values v, and add a value-form
{~v} for finite sets.

We use a small-step operational semantics using evaluation
contexts E after the style of Felleisen and Hieb (1992) to enforce
a call-by-value evaluation order; an evaluation context E is an
expression with a hole in it (written [ ]) such that whatever is in
the hole is next in line to be evaluated (if it is not a value already).
To fill the hole [ ] in an evaluation context E with the expression e,
we write E[e].

We define a relation e 7→ e ′ for expressions e whose outermost
structure is immediately reducible; we extend this relation to all
expressions with the rule

e 7→ e ′

E[e] 7→ E[e ′]

In our rules for e 7→ e ′ where e is an iter expression we make
use of a decidable ordering test on values, v v u :

eq
A, and a

corresponding equality test v ≡ u :
eq
A. We define these using

inference rules, but they are easily seen to be decidable by induction
on

eq
A. The quantifiers in the premise of the rule ⊆ range over finite

domains, and thus pose no issue.

6.1 Computing fix-ed points via iter-ation
Our implementation strategy for fix x is e is exactly that suggested
by the proof of Lemma 4: starting from ε, iteratively apply λx. e
until a fixed point is reached.

To model this iteration, we introduce iter forms into our syntax.
The fixed point expression fix

fin
L x is e immediately steps to the form

iter
fin
L(ε

fin
L; x. e), which can be thought of as an initial state of the

iteration, starting with ε
fin
L.

The intuition for iterating to the fixed point is that we apply
the body and then check to see if the result changed. This is why
we also introduce the two-place version iter

eq
A(v1; e2; x. e) which

remembers the old value v1, so that we can test it against e2 (when
it reaches a value v2) to determine whether we’ve reached a fixed
point. If not, we can continue to iterate from v2 with iter

fin
L(v2; x. e).

The iter≤ forms are similar, but additionally check that the
iteration value never exceeds their first argument, to implement
the clamping behavior of fix x ≤ e> is e.

6.2 A logical relation for termination
To prove that all well-typed terms terminate according to our
operational semantics, we use a logical relations argument.

The standard approach of interpreting each type as a partial
equivalence relation (PER) on closed terms turns out not to be
sufficient in our case, and we need to extend it to prove termination.
Just as posets are sets equipped with an order structure, we define
our semantic types as PERs equipped with a preorder respecting
the PER structure. The intuition is that since we needed the order
structure in the denotational semantics to prove the definedness of
fixed points, we will similarly need an order structure on the syntax
to prove the termination of fixed points. Therefore, we inductively
define relations a v b | A for each type A, then show how to
understand these relations as preordered PERs.

As a matter of notation, a, b, c range over closed expressions;
γ, σ over substitutions containing only closed expressions; and
Ctx(Γ) is the set of all substitutions of closed expressions for the
variables in Γ .

Because it simplifies our definitions and proofs, we introduce an
additional pseudo-type �A, which ordersA discretely, x ≤ y ⇐⇒
x = y.

types A ::= ... | �A

This represents the Disc | − | comonad on Poset present in our
denotational semantics. Observe that under this interpretation A→
B is just �A +→ B. In particular, if we let J�AK = Disc |JAK| then
JA→ BK = J�A +→ BK = Disc |JAK|⇒ JBK.

We define the following relations:

a v b | A definition given below
γ v σ | Γ iff ∀(x :A ∈ Γ) γ(x) v σ(x) | A

(for γ, σ ∈ Ctx(Γ))
Γ ` e1 v e2 | A iff ∀(γ1 v γ2 | Γ) γ1, e1 v γ2, e2 | A

γ1, e1 v γ2, e2 | A iff ∀(i = 1, 2) γi(e1) v γi(e2) | A
∧ γ1(ei) v γ2(ei) | A

γ1, e1 v γ2, e2 | A may be seen as a transitive square:

γ1(e1) γ1(e2)

γ2(e1) γ2(e2)

v

v v

v

As a matter of notation, for any relation Y v Z | X, we write:

Y ≡ Z | X iff Y v Z | X∧ Z v Y | X

Y | X iff Y v Y | X

We now give the definition of a v b | A by induction on A:

a v b | �A iff a ≡ b | A

a v b | 2 iff a 7→∗ v∧ b 7→∗ u∧ v v u : 2
a v b | {A} iff a 7→∗ {~vi} ∧ b 7→∗ { ~ui}

∧ ∀vi ∃uj (vi ≡ uj | A)
a v b | A1 +A2 iff a 7→∗ ini v∧ b 7→∗ ini u∧ v v u | Ai

a v b | A1 ×A2 iff a 7→∗ (v1, v2)∧ b 7→∗ (u1, u2)
∧ ∀i (vi v ui | Ai)

a v b | A→ B iff a v b | �A
+→ B

a v b | A
+→ B iff a 7→∗ λx. e1 ∧ b 7→∗ λx. e2

∧ (x :A ` e1 v e2 | B)

It may not be immediately obvious that (for a given A) the
relation a v b | A can be seen as a preordered PER. This requires
the following two theorems, proven by induction on A:

Theorem 4 (Partial reflexivity). If a v b | A then a v a | A and
b v b | A.

Theorem 5 (Transitivity). If a v b | A and b v c | A, then
a v c | A.



Additional syntax

e, f, g ::= ... | {~v} | εL | e∨L e |
∨

L(x ∈ e) e
expressions fix

fin
L x is e | fix

eq
L x ≤ e is e

iter
eq
A(e; x. e) | iter

eq
A(e; e; x. e)

iter≤
eq
A(e; e; x. e) | iter≤

eq
A(e; e; e; x. e)

v, u,w ::= λx. e | (v, v) | ini v | true | false | {~v}
values

E ::= [ ] | E e | v E | (E, e) | (v, E) | ini E | πi E

evaluation E∨L e | v∨L E |
∨

L(x ∈ E) e
contexts if E then e else e

case E of in1 x � e; in2 x � e
iter

eq
A(E; x. e) | iter

eq
A(v;E; x. e)

iter≤
eq
A(E; e; x. e) | iter≤

eq
A(v;E; x. e)

iter≤
eq
A(v; v;E; x. e)

Rules for v v u :
eq
A and v ≡ u :

eq
A

false v false : 2 false v true : 2 true v true : 2

∀vi ∃uj (vi ≡ uj : eq
A)

{~vi} v { ~ui} : { eq
A}

⊆
v1 v v2 :

eq
A u1 v u2 :

eq
B

(v1, u1) v (v2, u2) : eq
A×

eq
B

v v u :
eq
Ai

ini v v ini u :
eq
A1 + eq

A2

v v u :
eq
A u v v :

eq
A

v ≡ u :
eq
A

≡

β-reductions
(λx. e1) e2 7→ [e2/x] e1
πi (v1, v2) 7→ vi

case ini v of
−−−−−−→
inj xj � ej 7→ [v/xi] ei

if true then e1 else e2 7→ e1
if false then e1 else e2 7→ e2

Evaluating ε
ε2 7→ false
ε{A} 7→ {}

εL×M 7→ (εL, εM)
εA→L 7→ λx. εL
ε
A

+→L
7→ λx. εL

Evaluating ∨

false∨2 v 7→ v

true∨2 v 7→ true
{~v} ∨{A} {~u} 7→ {~v, ~u}

(v1, v2)∨L×M (u1, u2) 7→ (v1 ∨L u1, v2 ∨M u2)
v∨A→L u 7→ λx. v x∨L u x

v∨
A

+→L
u 7→ λx. v x∨L u x

Evaluating
∨∨

L(x ∈ {}) e 7→ εL∨
L(x ∈ {v, ~u}) e 7→ [v/x] e∨L

∨
L(x ∈ {~u}) e

Evaluating fix and iter
fix

fin
L x is e 7→ iter

fin
L(ε

fin
L; x. e)

iter
eq
A(v; x. e) 7→ iter

eq
A(v; [v/x] e; x. e)

iter
eq
A(v1; v2; x. e) 7→ {

v1 if v1 ≡ v2 :
eq
A

iter
eq
A(v2; x. e) otherwise

fix
eq
L x ≤ e> is e 7→ iter≤

eq
L(e>; ε

eq
L; x. e)

iter≤
eq
A(v>; v; x. e) 7→ {

iter≤
eq
A(v>; v; [v/x] e; x. e) if v v v> :

eq
A

v> otherwise

iter≤
eq
A(v>; v1; v2; x. e) 7→ {

v1 if v1 ≡ v2 :
eq
A

iter≤
eq
A(v>; v2; x. e) otherwise

Figure 11. Operational semantics

From these it follows immediately that a ≡ b | A is a PER, and
a v b | A forms a preorder over this PER which respects it.

Theorem 6 (Termination). If a | A then a 7→∗ v.
Proof. By cases on the definition of a v a | A.

Theorem 7 (Fundamental theorem). If ∆; Γ ` e : A then �∆, Γ `
a | A.

Proof. By induction on ∆; Γ ` e : A; full proof available at
https://github.com/rntz/datafun/. The key case is the fixed
point rule, whose proof is a syntactic version of the proof of
definedness of fixed points in the denotational semantics.

It follows as immediate corollary of termination and the funda-
mental property that every closed, well-typed program terminates.

7. Comparing Datalog and Datafun
At this point, we have demonstrated by example that Datafun
programs are rather similar to Datalog programs, and we have given
the typing and denotational semantics of Datafun. However, we still
need to explain why our semantics lets us express Datalog-style
programs.

To understand this, recall that Datalog is a bottom-up logic
programming language. A program consists of a primitive database
of facts, along with a set of rules the rules the programmer wrote.
A Datalog program executes by using the rules to derive new
conclusions from the database, and extending the database with
them, until no additional conclusions can be drawn. Then the query
can be checked simply by seeing if it occurs in the final database.

This is, essentially, a fixed point computation – each stage of
execution of a Datalog program takes a database and returns an
extended database, until a fixed point is reached. The stratified
negation restriction essentially ensures that the database transformer
defined by a Datalog program is a monotone function on the set of

https://github.com/rntz/datafun/


facts. This is why the type system of Datafun tracks the monotonicity
of functions — since we permit both higher-order definitions and
taking fixed points, we need to ensure that the body of a fixed point
definition is monotone in order to guarantee that the recursion is
well-founded.

This ensures that the recursive definition is well-defined, but is
not sufficient by itself to guarantee termination. To manage this,
Datalog depends upon the other two restrictions described in the
introduction. By restricting terms occuring in predicates to consist
of either atoms or variables, Datalog ensures that quantifiers need
only be instantiated with the atoms used in a program. By requiring
every variable in the consequent of rules to also occur in the premise
of a rule, it ensures that every consequent will also only feature
atoms occuring in the original program.

Then, since there can only be finitely many atoms in a finite
program, this means that the set of possible arguments to a predicate
is itself finite. Then the lattice of sets of atomic predicates ordered
by inclusion will be finite, and so fixed point iteration is guaranteed
to terminate.

Instead of this (rather indirect) scheme, Datafun directly tracks
the finiteness of types, permitting recursion only if it is over a
finite type, or is bounded explicitly. These two approaches achieve
the same effect, albeit in different ways. Datalog’s approach has
the benefit that no type discipline is needed to ensure finiteness.
One advantage of our choice is that we permit recursion over any
semilattice, not just the semilattice of sets. A much more serious
advantage of our approach is that it makes it much easier to write
fixed-point computations which actually compute with the data they
see (for example, the CYK parser we wrote computed lengths of
substrings).

8. Implementation
We have built a proof-of-concept implementation of Datafun in
Racket, available at https://github.com/rntz/datafun/. In
addition to core Datafun, it supports pattern-matching, variant
types, record types, dictionaries, subtyping, antitone functions, and
unbounded (potentially nonterminating) fixed points. We implement
everything in a naïve style, and perform no optimizations.

Type inference As a practical matter, type-checking needs to
distinguish between discrete and monotone λ, application, case,
let, and if. In our implementation we solve this in two ways:

1. Bidirectional type inference (Pierce and Turner 2000) determines
whether λs and applications are discrete or monotone.

2. For if, case, and let, the programmer annotates which form is
intended; for example, (if e then e1 else ε) is written (when e
then e1) to indicate the rule IF+ applies.

We believe that this scheme could be extended to support
polymorphism in the style of Dunfield and Krishnaswami (2013).
However, it would not be an entirely off-the-shelf affair, since
we would want to add support for polymorphism over the tones
of function, so that, for example, λf. λx. f x can be assigned the
principal type ∀o : tone.∀α, β : type. (α o→ β)

+→ (α
o→ β), where

o→ indicates a function of tone o; a tone may be empty (for a discrete
function) or + for a monotone function.

9. Related and future work
Aggregation Aggregation of values — for example, taking the
sum

∑
x∈A f x of a function f across a set A — is a useful

and ubiquitous database operation. Datafun naturally supports
semilattice aggregation via

∨
, but many natural operations such

as summation do not form semilattices on their underlying type.

There are several potential ways to add support for aggregations to
Datafun:

• Common aggregations can be provided as primitive functions,
for example size : {

eq
A}

+→ N or sum : (
eq
A→ N)→ {

eq
A}

+→ N.

• In the style of Machiavelli (Ohori et al. 1989), one could add
a general operator hom : B → (A → B → B) → {A} → B,
which effectively linearizes a set in an unspecified order. The
semantics of hom are, alas, necessarily nondeterministic.
• One could augment Datafun with a type of bags (multisets) A∗;

bags naturally support a much broader class of aggregation —
commutative monoids — than sets. See, for example, Budiu and
Plotkin (2014) and Gibbons et al. (2015).

Optimization Because Datalog is so strongly constrained, there
has been a lot of very successful work on optimizing it, ranging
from compilation into binary decision diagrams (Bryant 1992) by
Whaley et al. (2005), to the famous “magic sets” (Bancilhon et al.
1986) algorithm.

From our perspective, magic sets are a natural next step for in-
vestigation into how to optimize Datafun. Intuitively, the magic
sets algorithm exploits the fact that Datalog (as a total logic lan-
guage) has both a top-down and bottom-up reading, and rewrites
the program so that it does bottom-up search, while using top-down
reasoning to strategically avoid adding useless facts to the database.
Transplanting this analysis to Datafun would essentially give us opti-
mized implementations of fixed points, but extending the magic sets
algorithm is likely to be very subtle, since Datafun has higher-order
functions and Datalog does not. As a result, our goal is to first see if
magic sets can be applied to first-order Datafun programs, and then
use defunctionalization (Reynolds 1998) to extend it to full Datafun.

Very recently, Madsen et al. (2016) have introduced the Flix lan-
guage, which extends the semantics of Datalog to support defining
relations valued in arbitrary lattices (rather than just the power-
set of atoms). Like Datafun, this lets Flix support using monotone
functions (on suitable lattices) in program expressions. Unlike Data-
fun, Flix does not yet have monotonicity checking for programmer-
defined operators. However, because Flix does not extend Datalog
to higher order, efficient Datalog implementation strategies (such as
semi-naive evaluation) continue to apply.

Databases Datalog has sometimes been described as “relational
algebra plus fixed points”, and there is a long line of work on em-
bedding database query languages into general-purpose languages,
including pioneering efforts such as Machiavelli (Ohori et al. 1989)
and Kleisli (Wong 2000), as well as more recent systems such as
Ferry (Grust et al. 2009) and LINQ in C# (Cheney et al. 2013).
The focus of this work has been on embedding query languages
based on relational algebra into general purpose languages, with
an emphasis on statically compiling higher-order queries into the
first-order queries supported by existing database systems (Cheney
et al. (2014) is a representative example).

Our approach is a little bit different. Instead of embedding
Datalog into a general purpose language, Datafun is also a “little
language”, albeit one that happens to be a higher-order functional
language. We very deliberately did not try to embed Datafun into an
existing language, because that would have greatly complicated the
context-management operations needed to ensure monotonicity.

In fact, from a language designer’s perspective, Datafun can be
seen as an argument in favor of extending functional languages to
support programming with user-defined, non-strong comonads.

Deletion Ganzinger and McAllester (2002) showed how forward-
chaining logic programming permits concise and elegant expression
of a wide variety of algorithms, including a natural cost semantics.
However, they noted that there were some algorithms (such as union-
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find and greedy algorithms) which could be formulated in this style,
if there were additionally support for deleting facts from a database.
Later, Simmons and Pfenning (2009) went on to show how deletion
could be given a logical interpretation by formulating in terms of
linear logic programming.

This naturally raises the question of whether we could identify a
“linear Datafun” corresponding to this style of programming, where
we might linear types to model features like deletion. There are
many nontrivial semantic issues (e.g., how to define monotonicity),
but it seems a promising question for future work.

Termination Datafun as presented is Turing-incomplete. This is
advantageous for optimization; for example, one powerful opti-
mization technique is loop reordering (in SQL terminology, join
reordering), that is, taking advantage of the equation∨

(x ∈ e1)
∨
(y ∈ e2) e =

∨
(y ∈ e2)

∨
(x ∈ e1) e

when x, y /∈ FV(e1) ∪ FV(e2). But this equation does not always
hold in the presence of nontermination; for example, if e1 = ε and
e2 diverges.

Nonetheless, without adding advanced facilities for termination
checking, there are many functions it is difficult to implement
without use of general recursion. So a natural direction for future
work is to study how to add support for general recursion to Datafun.
Because domains (Abramsky and Jung 1994) can be understood as
partial orders with directed joins, there are likely many interesting
categorical structures connecting the category of domains to the
category of posets, some of which will hopefully lead to a principled
type-theoretic integration of partial functions into Datafun.

User-Defined Posets and Semilattices The two fundamental semi-
lattice types Datafun provides are booleans and sets; products
and functions merely preserve semilattice structure where they
find it. One might contemplate allowing the programmer to de-
fine their own semilattice structures using something like Haskell’s
newtype/instance. In general, this is a difficult problem, because
we may need to do serious mathematical reasoning to prove that
a comparison function implements a partial ordering, or that a
datatype can be equipped with a semilattice structure obeying this
partial ordering which is commutative, associative and idempotent.

One example of such a family of types are the lexicographic
sum types. Given two posets P and Q, their disjoint union P +Q is
also a poset, with left values compared by the P-ordering, and right
values compared by the Q-ordering, and no ordering between left
and right values. However, this is not the only way that the disjoint
union could be equipped with an order structure.

For example, we could define the lexicographic sum P � Q,
which has the same elements as the sum, but extending the coproduct
order relation with the additional facts that in1(p) ≤ in2(q). Indeed,
we already have a special case of this: as we noted earlier, our
boolean type is not 1 + 1, but it is 1� 1.

But as our Booleans already show, giving good syntax for their
eliminators is difficult, because we have to show that not just a term
is monotone, but that the different branches of a lexicographic case
expression are ordered with respect to each other. For the case of
ordered Booleans, we were able to give a special eliminator which
guaranteed it, but in general it requires proof.

One natural direction for future work is to extend the syntax
of Datafun with support for these kinds of proofs, perhaps taking
inspiration from dependent type theory.
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