
Complete and Easy Bidirectional Typechecking
for Higher-Rank Polymorphism

Jana Dunfield Neelakantan R. Krishnaswami
Max Planck Institute for Software Systems
Kaiserslautern and Saarbrücken, Germany

jd169@queensu.ca nk480@cl.cam.ac.uk

Abstract
Bidirectional typechecking, in which terms either synthesize a type
or are checked against a known type, has become popular for its
scalability (unlike Damas-Milner type inference, bidirectional typ-
ing remains decidable even for very expressive type systems), its
error reporting, and its relative ease of implementation. Following
design principles from proof theory, bidirectional typing can be ap-
plied to many type constructs. The principles underlying a bidirec-
tional approach to polymorphism, however, are less obvious. We
give a declarative, bidirectional account of higher-rank polymor-
phism, grounded in proof theory; this calculus enjoys many proper-
ties such as η-reduction and predictability of annotations. We give
an algorithm for implementing the declarative system; our algo-
rithm is remarkably simple and well-behaved, despite being both
sound and complete.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—polymorphism

Keywords bidirectional typechecking, higher-rank polymorphism

1. Introduction
Bidirectional typechecking (Pierce and Turner 2000) has become
one of the most popular techniques for implementing typecheck-
ers in new languages. This technique has been used for depen-
dent types (Coquand 1996; Abel et al. 2008; Löh et al. 2008; As-
perti et al. 2012); subtyping (Pierce and Turner 2000); intersec-
tion, union, indexed and refinement types (Xi 1998; Davies and
Pfenning 2000; Dunfield and Pfenning 2004); termination check-
ing (Abel 2004); higher-rank polymorphism (Peyton Jones et al.
2007; Dunfield 2009); refinement types for LF (Lovas 2010); con-
textual modal types (Pientka 2008); compiler intermediate repre-
sentations (Chlipala et al. 2005); and object-oriented languages in-
cluding C] (Bierman et al. 2007) and Scala (Odersky et al. 2001).
As can be seen, it scales well to advanced type systems; moreover,
it is easy to implement, and yields relatively high-quality error mes-
sages (Peyton Jones et al. 2007).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500582 Reprinted from ICFP ’13, September 25–
27, 2013, Boston, MA, USA, pp. 1–13.
This is the 2021 version, which corrects and updates author information and the URLs
for the appendix and Dunfield (2009).

However, the theoretical foundation of bidirectional typecheck-
ing has lagged behind its application. As shown by Watkins et al.
(2004), bidirectional typechecking can be understood in terms of
the normalization of intuitionistic type theory, in which normal
forms correspond to the checking mode of bidirectional typecheck-
ing, and neutral (or atomic) terms correspond to the synthesis
mode. This enables a proof of the elegant property that type anno-
tations are only necessary at reducible expressions, and that normal
forms need no annotations at all. The benefit of the proof-theoretic
view is that it gives a simple and easy-to-understand declarative ac-
count of where type annotations are necessary, without reference to
the details of the typechecking algorithm.

While the proof-theoretic account of bidirectional typecheck-
ing has been scaled up as far as type refinements and intersection
and union types (Pfenning 2008), as yet there has been no com-
pletely satisfactory account of how to extend the proof-theoretic
approach to handle polymorphism. This is especially vexing, since
the ability of bidirectional algorithms to gracefully accommodate
polymorphism (even higher-rank polymorphism) has been one of
their chief attractions.

In this paper, we extend the proof-theoretic account of bidirec-
tional typechecking to full higher-rank polymorphism (i.e., pred-
icative System F), and consequently show that bidirectional type-
checking is not merely sound with respect to the declarative seman-
tics, but also that it is complete. Better still, the algorithm we give
for doing so is extraordinarily simple.

First, as a specification of type checking, we give a declara-
tive bidirectional type system which guesses all quantifier instanti-
ations. This calculus is a small but significant contribution of this
paper, since it possesses desirable properties, such as the preserva-
tion of typability under η-reduction, that are missing from the type
assignment version of System F. Furthermore, we can use the bidi-
rectional character of our declarative calculus to show a number
of refactoring theorems, enabling us to precisely characterize what
sorts of substitutions (and reverse substitutions) preserve typability,
where type annotations are needed, and when programmers may
safely delete type annotations.

Then, we give a bidirectional algorithm that always finds corre-
sponding instantiations. As a consequence of completeness, we can
show that our algorithm never needs explicit type applications, and
that type annotations are only required for polymorphic, reducible
expressions—which, in practice, means that only let-bindings of
functions at polymorphic type need type annotations; no other ex-
pressions need annotations.

Our algorithm is both simple to understand and simple to im-
plement. The key data structure is an ordered context containing all
bindings, including type variables, term variables, and existential
variables denoting partial type information. By maintaining order,
we are able to easily manage scope information, which is particu-

1

Terms e ::= x | () | λx. e | e e | (e : A)

Figure 1. Source expressions

Types A,B,C ::= 1 | α | ∀α. A | A→ B
Monotypes τ, σ ::= 1 | α | τ→ σ
Contexts Ψ ::= · | Ψ,α | Ψ, x : A

Figure 2. Syntax of declarative types and contexts

larly important in higher-rank systems, where different quantifiers
may be instantiated with different sets of free variables. Further-
more, ordered contexts admit a notion of extension or informa-
tion increase, which organizes and simplifies the soundness and
completeness proofs of the algorithmic system with respect to the
declarative one.

Contributions. We make the following contributions:

• We give a declarative, bidirectional account of higher-rank
polymorphism, grounded strongly in proof theory. This cal-
culus has important properties (such as η-reduction) that the
type assignment variant of System F lacks, yet is sound and
complete (up to βη-equivalence) with respect to System F.
As a result, we can explain where type annotations are needed,
where they may be deleted, and why important code transfor-
mations are sound, all without reference to the implementation.
• We give a very simple algorithm for implementing the declar-

ative system. Our algorithm does not need any data structure
more sophisticated than a list, but can still solve all of the prob-
lems which arise in typechecking higher-rank polymorphism
without any need for search or backtracking.
• We prove that our algorithm is both sound and complete with

respect to our declarative specification of typing. This proof is
cleanly structured around context extension, a relational notion
of information increase, corresponding to the intuition that our
algorithm progressively resolves type constraints.
As a result of completeness, programmers may safely “pay no
attention to the implementor behind the curtain”, and ignore
all the algorithmic details of unification and type inference: the
algorithm does exactly what the declarative specification says,
no more and no less.

Lemmas and proofs. Proofs of the main results, as well as state-
ments of all lemmas (and their proofs), can be found in the ap-
pendix, available at www.cs.queensu.ca/~jana/papers/bidir/.

2. Declarative Type System
In order to show that our algorithm is sound and complete, we need
to give a declarative type system to serve as the specification for
our algorithm. Surprisingly, it turns out that finding the correct
declarative system to use as a specification is itself an interesting
problem!

Much work on type inference for higher-rank polymorphism
takes the type assignment variant of System F as a specification
of type inference. Unfortunately, under these rules typing is not
stable under η-reductions. For example, suppose f is a variable of
type 1 → ∀α. α. Then the term λx. f x can be ascribed the type
1 → 1, since the polymorphic quantifier can be instantiated to 1
between the f and the x. But the η-reduct f cannot be ascribed the
type 1 → 1, because the quantifier cannot be instantiated until after
f has been applied. This is especially unfortunate in pure languages
like Haskell, where the η law is a valid program equality.

Therefore, we do not use the type assignment version of System
F as our declarative specification of type checking and inference.

Ψ ` A Under context Ψ, type A is well-formed

α ∈ Ψ
Ψ ` α DeclUvarWF

Ψ ` 1
DeclUnitWF

Ψ ` A Ψ ` B
Ψ ` A→ B

DeclArrowWF
Ψ,α ` A
Ψ ` ∀α. A DeclForallWF

Ψ ` A ≤ B Under context Ψ, type A is a subtype of B

α ∈ Ψ
Ψ ` α ≤ α ≤Var

Ψ ` 1 ≤ 1
≤Unit

Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→
Ψ ` τ Ψ ` [τ/α]A ≤ B

Ψ ` ∀α. A ≤ B ≤∀L
Ψ,β ` A ≤ B
Ψ ` A ≤ ∀β. B ≤∀R

Figure 3. Well-formedness of types and subtyping in the declara-
tive system

Instead, we give a declarative, bidirectional system as the specifi-
cation. Traditionally, bidirectional systems are given in terms of a
checking judgment Ψ ` e⇐ A, which takes a type A as input and
ensures that the term e checks against that type, and a synthesis
judgment Ψ ` e ⇒ A, which takes a term e and produces a type
A. This two-judgment formulation is satisfactory for simple types,
but breaks down in the presence of polymorphism.

The essential problem is as follows: the standard bidirectional
rule for checking applications e1 e2 in non-polymorphic systems
is to synthesize type A → B for e1, and then check e2 against A,
returningB as the type. With polymorphism, however, we may have
an application e1 e2 in which e1 synthesizes a term of polymorphic
type (e.g., ∀α.α→ α). Furthermore, we do not know a priori how
many quantifiers we need to instantiate.

To solve this problem, we turn to focalization (Andreoli 1992),
the proof-theoretic foundation of bidirectional typechecking. In fo-
cused sequent calculi, it is natural to give terms in spine form
(Cervesato and Pfenning 2003; Simmons 2012), sequences of ap-
plications to a head. So we view every application as really being a
spine consisting of a series of type applications followed by a term
application, and introduce an application judgment Ψ ` A • e⇒⇒
C, which says that if a term of type A is applied to argument e, the
result has type C. Consequently, quantifiers will be instantiated ex-
actly when needed to reveal a function type.

The application judgment lets us suppress explicit type applica-
tions, but to get the η law, we need more. Recall the example with
f : 1 → ∀α. α. In η-reducing λx. f x to f, we reduce the number
of applications in the term. That is, we no longer have a syntac-
tic position at which we can (implicitly) instantiate polymorphic
quantifiers. To handle this, we follow Odersky and Läufer (1996)
in modeling type instantiation using subtyping, where subtyping is
defined as a “more-polymorphic-than” relation that guesses type in-
stantiations arbitrarily deeply within types. As a result, 1 → ∀α. α
is a subtype of 1 → 1, and the η law holds.

Happily, subtyping does fit naturally into bidirectional sys-
tems (Davies and Pfenning 2000; Dunfield 2007; Lovas 2010),
so we can give a declarative, bidirectional type system that guesses
type instantiations, but is otherwise entirely syntax-directed. In
particular, subsumption is confined to a single rule (which switches
from checking to synthesis), and our use of an application judgment
determines when to instantiate quantifiers. The resulting system is
very well-behaved, and ensures that the expected typability results
(such as typability being preserved by η-reductions) continue to
hold. Furthermore, our declarative formulation makes it clear that

2

http://www.cs.queensu.ca/~jana/papers/bidir/
www.cs.queensu.ca/~jana/papers/bidir/

Ψ ` e⇐ A Under context Ψ, e checks against input type A

Ψ ` e⇒ A Under context Ψ, e synthesizes output type A

Ψ ` A • e⇒⇒ C Under context Ψ, applying a function of type A to e synthesizes type C

(x : A) ∈ Ψ
Ψ ` x⇒ A

DeclVar
Ψ ` e⇒ A Ψ ` A ≤ B

Ψ ` e⇐ B
DeclSub

Ψ ` A Ψ ` e⇐ A

Ψ ` (e : A) ⇒ A
DeclAnno

Ψ ` () ⇐ 1
Decl1I

Ψ ` () ⇒ 1
Decl1I⇒ Ψ,α ` e⇐ A

Ψ ` e⇐ ∀α. A Decl∀I
Ψ ` τ Ψ ` [τ/α]A • e⇒⇒ C

Ψ ` ∀α. A • e⇒⇒ C
Decl∀App

Ψ, x : A ` e⇐ B

Ψ ` λx. e⇐ A→ B
Decl→I

Ψ ` σ→ τ Ψ, x : σ ` e⇐ τ

Ψ ` λx. e⇒ σ→ τ
Decl→I⇒ Ψ ` e1 ⇒ A Ψ ` A • e2 ⇒⇒ C

Ψ ` e1 e2 ⇒ C
Decl→E

Ψ ` e⇐ A

Ψ ` A→ C • e⇒⇒ C
Decl→App

Figure 4. Declarative typing

the fundamental algorithmic problem in extending bidirectional
typechecking to polymorphism is precisely the problem of figuring
out what the missing type applications are.

Preserving the η-rule for functions comes at a cost. The sub-
typing relation induced by instantiation is undecidable for im-
predicative polymorphism (Tiuryn and Urzyczyn 1996; Chrząszcz
1998). Since we want a complete typechecking algorithm, we con-
sequently restrict our system to predicative polymorphism, where
polymorphic quantifiers can be instantiated only with monomor-
phic types. We discuss alternatives in Section 9.

2.1 Typing in Detail
Language overview. In Figure 1, we give the grammar for our
language. We have a unit term (), variables x, lambda-abstraction
λx. e, application e1 e2, and type annotation (e : A). We write A,
B,C for types (Figure 2): types are the unit type 1, type variables α,
universal quantification ∀α. A, and functions A → B. Monotypes
τ and σ are the same, less the universal quantifier. Contexts Ψ
are lists of type variable declarations, and term variables x : A,
with the expected well-formedness condition. (We give a single-
context formulation mixing type and term hypotheses to simplify
the presentation.)

Checking, synthesis, and application. Our type system has three
main judgments, given in Figure 4. The checking judgment Ψ `
e ⇐ A asserts that e checks against the type A in the context Ψ.
The synthesis judgment Ψ ` e ⇒ A says that we can synthesize
the type A for e in the context Ψ. Finally, an application judgment
Ψ ` A • e ⇒⇒ C says that if a (possibly polymorphic) function
of type A is applied to argument e, then the whole application
synthesizes C for the whole application.

As is standard in the proof-theoretic presentations of bidirec-
tional typechecking, each of the introduction forms in our calculus
has a corresponding checking rule. The Decl1I rule says that ()
checks against the unit type 1. The Decl→I rule says that λx. e
checks against the function type A→ B if e checks against B with
the additional hypothesis that x has type A. The Decl∀I rule says
that e has type ∀α. A if e has type A in a context extended with a
fresh α.1 Sums, products and recursive types can be added similarly
(we leave them out for simplicity). Rule DeclSub mediates between

1 Note that we do not require an explicit type abstraction operation. As a
result, an implementation needs to use some technique like scoped type
variables (Peyton Jones and Shields 2004) to mention bound type variables
in annotations. This point does not matter to the abstract syntax, though.

synthesis and checking: it says that e can be checked against B, if
e synthesizes A and A is a subtype of B (that is, A is at least as
polymorphic as B).

As expected, we can infer a type for a variable (the DeclVar
rule) just by looking it up in the context. Likewise, the DeclAnno
rule says that we can synthesize a type A for a term with a type
annotation (e : A) just by returning that type (after checking that
the term does actually check against A).

Application is a little more complex: we have to eliminate
universals until we reach an arrow type. To do this, we use an
application judgment Ψ ` A • e ⇒⇒ C, which says that if we
apply a term of type A to an argument e, we get something of type
C. This judgment works by guessing instantiations of polymorphic
quantifiers in rule Decl∀App. Once we have instantiated enough
quantifiers to expose an arrow A → C, we check e against A and
return C in rule Decl→App.

In the following example, where we are applying some function
polymorphic in α, Decl∀App instantiates the outer quantifier (to
the unit type 1; we elide the premise Ψ ` 1), but leaves the inner
quantifier over β alone.

Ψ ` x⇐ (∀β. β→β)
Ψ ` (∀β. β→β) → 1 → 1 • x⇒⇒ 1 → 1

Decl→App

Ψ `
(
∀α. (∀β. β→β) → α→ α

)
• x⇒⇒ 1 → 1

Decl∀App

In the minimal proof-theoretic formulation of bidirectional-
ity (Davies and Pfenning 2000; Dunfield and Pfenning 2004), in-
troduction forms are checked and elimination forms synthesize,
full stop. Even () cannot synthesize its type! Actual bidirectional
typecheckers tend to take a more liberal view, adding synthesis
rules for at least some introduction forms. To show that our system
can accommodate these kinds of extensions, we add the Decl1I⇒
and Decl→I⇒ rules, which synthesize a unit type for () and a
monomorphic function type for lambda expressions λx. e. We ex-
amine other variations, including a purist bidirectional no-inference
alternative, and a liberal Damas-Milner alternative, in Section 8.

Instantiating types. We express the fact that one type is a poly-
morphic generalization of another by means of the subtyping judg-
ment given in Figure 3. One important aspect of the judgment is
that types are compared relative to a context of free variables. This
simplifies our rules, by letting us eliminate the awkward side con-
ditions on sets of free variables that plague many presentations.
Most of the subtyping judgment is typical: it proceeds structurally
on types, with a contravariant twist for the arrow; all the real ac-

3

tion is contained within the two subtyping rules for the universal
quantifier.

The left rule, ≤∀L, says that a type ∀α.A is a subtype of B, if
some instance [τ/α]A is a subtype of B. This is what makes these
rules only a declarative specification: ≤∀L guesses the instantia-
tion τ “out of thin air”, and so the rules do not directly yield an
algorithm.

The right rule ≤∀R is a little more subtle. It says that A is a
subtype of ∀β.B if we can show that A is a subtype of B in a
context extended with β. There are two intuitions for this rule,
one semantic, the other proof-theoretic. The semantic intuition is
that since ∀β. B is a subtype of [τ/β]B for any τ, we need A
to be a subtype of [τ/β]B for any τ. Then, if we can show that
A is a subtype of B, with a free variable β, we can appeal to a
substitution principle for subtyping to conclude that for all τ, type
A is a subtype of [τ/β]B.

The proof-theoretic intuition is simpler. The rules ≤∀L and
≤∀R are just the left and right rules for universal quantification
in the sequent calculus. Type inference is a form of theorem prov-
ing, and our subtype relation gives some of the inference rules a
theorem prover may use. Following good proof-theoretic hygiene
enables us to leave the reflexivity and transitivity rules out of the
subtype relation, since they are admissible properties (in sequent
calculus terms, they are the identity and cut-admissibility proper-
ties). The absence of these rules (particularly, the absence of tran-
sitivity), in turn, simplifies a number of proofs. In fact, the rules are
practically syntax-directed: the only exception is when both types
are quantifiers, and either ≤∀L or ≤∀R could be tried. Since ≤∀R
is invertible, however, in practice one can apply it eagerly.

Let-generalization. In many accounts of type inference, let-
bindings are treated specially. For example, traditional Damas-
Milner type inference only does polymorphic generalization at let-
bindings. Instead, we have sought to avoid a special treatment of
let-bindings. In logical terms, let-bindings internalize the cut rule,
and so special treatment puts the cut-elimination property of the
calculus at risk—that is, typability may not be preserved when a
let-binding is substituted away. To make let-generalization safe,
additional properties like the principal types property are needed, a
property endangered by rich type system features like higher-rank
polymorphism, refinement types (Dunfield 2007) and GADTs (Vy-
tiniotis et al. 2010).

To emphasize this point, we have omitted let-binding from our
formal development. But since cut is admissible—i.e., the substitu-
tion theorem holds—restoring let-bindings is easy, as long as they
get no special treatment incompatible with substitution. For exam-
ple, the standard bidirectional rule for let-bindings is suitable:

Ψ ` e⇒ A Ψ, x : A ` e ′ ⇐ C

Ψ ` let x = e in e ′ ⇐ C

Note the absence of generalization in this rule.

2.2 Bidirectional Typing and Type Assignment System F
Since our declarative specification is (quite consciously) not the
usual type-assignment presentation of System F, a natural question
is to ask what the relationship is. Luckily, the two systems are quite
closely related: we can show that if a term is well-typed in our type
assignment system, it is always possible to add type annotations to
make the term well-typed in the bidirectional system; conversely, if
the bidirectional system types a term, then some βη-equal term is
well-typed under the type assignment system.

We formalize these properties with the following theorems,
taking |e| to be the erasure of all type annotations from a term. We
give the rules for our type assignment System F in Figure 5.

Ψ ` e : A Under context Ψ, e has type A

(x : A) ∈ Ψ
Ψ ` x : A AVar

Ψ ` () : 1
AUnit

Ψ, x : A ` e : B
Ψ ` λx. e : A→ B

A→I
Ψ ` e1 : A→ B Ψ ` e2 : A

Ψ ` e1 e2 : B
A→E

Ψ,α ` e : A
Ψ ` e : ∀α. A A∀I

Ψ ` e : ∀α. A Ψ ` τ
Ψ ` e : [τ/α]A A∀E

Figure 5. Type assignment rules for predicative System F

Theorem 1 (Completeness of Bidirectional Typing). If Ψ ` e : A
then there exists e ′ such that Ψ ` e ′ ⇒ A and |e ′| = e.
Theorem 2 (Soundness of Bidirectional Typing). If Ψ ` e ⇐ A
then there exists e ′ such that Ψ ` e ′ : A and e ′ =βη |e|.

Note that in the soundness theorem, the equality is up to β and
η. We may need to η-expand bidirectionally-typed terms to make
them typecheck under the type assignment system, and within the
proof of soundness, we β-reduce identity coercions.

2.3 Robustness of Typing
Type annotations are an essential part of the bidirectional approach:
they mediate between type checking and type synthesis. However,
we want to relieve programmers from having to write redundant
type annotations, and even more importantly, enable programmers
to easily predict where type annotations are needed.

Since our declarative system is bidirectional, the basic prop-
erty is that type annotations are required only at redexes. Addi-
tionally, these typing rules can infer (actually, guess) all monomor-
phic types, so the answer to the question of where annotations are
needed is: only on bindings of polymorphic type.2 Where bidirec-
tional typing really stands out is in its robustness under substitution.
We can freely substitute and “unsubstitute” terms:
Theorem 3 (Substitution). Assume Ψ ` e⇒ A.
• If Ψ, x : A ` e ′ ⇐ C then Ψ ` [e/x]e ′ ⇐ C.
• If Ψ, x : A ` e ′ ⇒ C then Ψ ` [e/x]e ′ ⇒ C.

Theorem 4 (Inverse Substitution). Assume Ψ ` e⇐ A.
• If Ψ ` [(e : A)/x]e ′ ⇐ C then Ψ, x : A ` e ′ ⇐ C.
• If Ψ ` [(e : A)/x]e ′ ⇒ C then Ψ, x : A ` e ′ ⇒ C.

Substitution is stated in terms of synthesizing expressions, since
any checking term can be turned into a synthesizing term by adding
an annotation. Dually, inverse substitution allows extracting any
checking term into a let-binding with a type annotation.3 However,
doing so indiscriminately can lead to a term with many redundant
annotations, and so we also characterize when annotations can
safely be removed:
Theorem 5 (Annotation Removal). We have that:
• If Ψ `

(
(λx. e) : A

)⇐ C then Ψ ` λx. e⇐ C.
• If Ψ ` (() : A) ⇐ C then Ψ ` () ⇐ C.
• If Ψ ` e1 (e2 : A) ⇒ C then Ψ ` e1 e2 ⇒ C.
• If Ψ ` (x : A) ⇒ A then Ψ ` x⇒ B and Ψ ` B ≤ A.

2 The number of annotations can be reduced still further; see Section 8 for
how to infer the types of all terms typable under Damas-Milner.
3 The generalization of Theorem 4 to any synthesizing term—not just (e :
A)—does not hold. For example, given e = λy. y and e ′ = x and
Ψ ` λy. y ⇒ 1 → 1 and Ψ ` λy. y ⇐ C1 → C2, we cannot derive
Ψ, x : 1 → 1 ` x⇐ C1 → C2 unless C1 and C2 happen to be 1.

4

Types A,B,C ::= 1 | α | α̂ | ∀α. A | A→ B

Monotypes τ, σ ::= 1 | α | α̂ | τ→ σ

Contexts Γ, ∆,Θ ::= · | Γ, α | Γ, x : A
| Γ, α̂ | Γ, α̂ = τ | Γ,Iα̂

Complete Contexts Ω ::= · | Ω,α | Ω, x : A
| Ω, α̂ = τ | Ω,Iα̂

Figure 6. Syntax of types, monotypes, and contexts in the algo-
rithmic system

• If Ψ `
(
(e1 e2) : A

)⇒ A
then Ψ ` e1 e2 ⇒ B and Ψ ` B ≤ A.
• If Ψ `

(
(e : B) : A

)⇒ A
then Ψ ` (e : B) ⇒ B and Ψ ` B ≤ A.
• If Ψ ` ((λx. e) : σ→ τ) ⇒ σ→ τ then Ψ ` λx. e⇒ σ→ τ.

We can also show that the expected η-laws hold:
Theorem 6 (Soundness of Eta).
If Ψ ` λx. e x⇐ A and x 6∈ FV(e), then Ψ ` e⇐ A.

3. Algorithmic Type System
Our declarative bidirectional system is a fine specification of how
typing should behave, but it enjoys guessing entirely too much: the
typing rules Decl∀App and Decl→I⇒ could only be implemented
with the help of an oracle. The declarative subtyping rule ≤∀L has
the same problem.

The first step in building our algorithmic bidirectional system
will be to modify the three oracular rules so that, instead of guess-
ing a type, they defer the choice by creating an existential type
variable, to be solved later. However, our existential variables are
not exactly unification variables; they are organized into ordered al-
gorithmic contexts (Section 3.1), which define the variables’ scope
and controls the free variables of their solutions.

The algorithmic type system consists of subtyping rules (Fig-
ure 9, discussed in Section 3.2), instantiation rules (Figure 10, dis-
cussed in Section 3.3), and typing rules (Figure 11, discussed in
Section 3.4). All of the rules manipulate the contexts in a way con-
sistent with context extension, a metatheoretic notion described in
Section 4; context extension is key in stating and proving decidabil-
ity, soundness and completeness.

3.1 Algorithmic Contexts
A notion of (ordered) algorithmic context is central to our ap-
proach. Like declarative contexts Ψ, algorithmic contexts Γ (see
Figure 6; we also use the letters ∆ and Θ) contain declarations of
universal type variables α and term variable typings x : A. Unlike
declarative contexts, algorithmic contexts also contain declarations
of existential type variables α̂, which are either unsolved (and we
simply write α̂) or solved to some monotype (α̂ = τ). Finally, for
scoping reasons that will become clear when we examine the rules,
algorithmic contexts also include a marker Iα̂.

Complete contexts Ω are the same as contexts, except that they
cannot have unsolved variables.

The well-formedness rules for contexts (Figure 7, bottom) do
not only prohibit duplicate declarations, but also enforce order:
if Γ = (ΓL, x : A, ΓR), the type A must be well-formed under
ΓL; it cannot refer to variables α or α̂ in ΓR. Similarly, if Γ =
(ΓL, α̂ = τ, ΓR), the solution type τ must be well-formed under
ΓL. Consequently, circularity is ruled out: (α̂ = β̂, β̂ = α̂) is not
well-formed.

Γ ` A Under context Γ , type A is well-formed

Γ [α] ` α UvarWF
Γ ` 1

UnitWF

Γ ` A Γ ` B
Γ ` A→ B

ArrowWF
Γ, α ` A
Γ ` ∀α. A ForallWF

Γ [α̂] ` α̂ EvarWF
Γ [α̂ = τ] ` α̂ SolvedEvarWF

Γ ctx Algorithmic context Γ is well-formed

· ctx
EmptyCtx

Γ ctx α /∈ dom(Γ)

Γ, α ctx
UvarCtx

Γ ctx x /∈ dom(Γ) Γ ` A
Γ, x : A ctx

VarCtx

Γ ctx α̂ /∈ dom(Γ)

Γ, α̂ ctx
EvarCtx

Γ ctx α̂ /∈ dom(Γ) Γ ` τ
Γ, α̂ = τ ctx

SolvedEvarCtx

Γ ctx Iα̂ /∈ Γ α̂ /∈ dom(Γ)

Γ,Iα̂ ctx
MarkerCtx

Figure 7. Well-formedness of types and contexts in the algorith-
mic system

[Γ]α = α
[Γ]1 = 1[
Γ [α̂ = τ]

]
α̂ =

[
Γ [α̂ = τ]

]
τ[

Γ [α̂]
]
α̂ = α̂

[Γ](A→ B) = ([Γ]A) → ([Γ]B)
[Γ](∀α. A) = ∀α. [Γ]A

Figure 8. Applying a context, as a substitution, to a type

Contexts as substitutions on types. An algorithmic context can
be viewed as a substitution for its solved existential variables. For
example, α̂ = 1, β̂ = α̂→ 1 can be applied as if it were the sub-
stitution 1/α̂, (α̂→1)/β̂ (applied right to left), or the simultaneous
substitution 1/α̂, (1→1)/β̂. We write [Γ]A for Γ applied as a sub-
stitution to type A; this operation is defined in Figure 8.

Complete contexts. Complete contexts Ω (Figure 6) have no un-
solved variables. Therefore, applying such a context to a type A
(provided it is well-formed: Ω ` A) yields a type [Ω]A with no
existentials. Complete contexts are essential for stating and proving
soundness and completeness, but are not explicitly distinguished in
any of our rules.

Hole notation. Since we will manipulate contexts not only by ap-
pending declarations (as in the declarative system) but by inserting
and replacing declarations in the middle, a notation for contexts
with a hole is useful:

Γ = Γ0[Θ] means Γ has the form (ΓL, Θ, ΓR)

For example, if Γ = Γ0[β̂] = (α̂, β̂, x : β̂), then Γ0[β̂ = α̂] =
(α̂, β̂ = α̂, x : β̂). Since this notation is concise, we use it even

5

in rules that do not replace declarations, such as the rules for type
well-formedness in Figure 7.

Occasionally, we also need contexts with two ordered holes:

Γ = Γ0[Θ1][Θ2] means Γ has the form (ΓL, Θ1, ΓM, Θ2, ΓR)

Input and output contexts. Our declarative system used a sub-
typing judgment and three typing judgments: checking, synthesis,
and application. Our algorithmic system includes similar judgment
forms, except that we replace the declarative context Ψ with an al-
gorithmic context Γ (the input context), and add an output context
∆ written after a backwards turnstile: Γ ` A <: B a ∆ for subtyp-
ing, Γ ` e⇐ A a ∆ for checking, and so on. Unsolved existential
variables get solved when they are compared against a type. For ex-
ample, α̂ <: β would lead to replacing the unsolved declaration α̂
with α̂ = β in the context (provided β is declared to the left of
α̂). Input contexts thus evolve into output contexts that are “more
solved”.

The differences between the declarative and algorithmic sys-
tems, particularly manipulations of existential variables, are most
prominent in the subtyping rules, so we discuss those first.

3.2 Algorithmic Subtyping
The first four subtyping rules in Figure 9 do not directly manipulate
the context, but do illustrate how contexts are propagated.

Rules <:Var and <:Unit are reflexive rules; neither involves
existential variables, so the output context in the conclusion is the
same as the input context Γ . Rule <:Exvar concludes that any
unsolved existential variable is a subtype of itself, but this gives
no clue as to how to solve that existential, so the output context is
similarly unchanged.

Rule <:→ is a bit more interesting: it has two premises, where
the first premise has an output contextΘ, which is used as the input
context to the second (subtyping) premise; the second premise has
output context ∆, which is the output of the conclusion.4 Note that
in <:→’s second premise, we do not simply check that A2 <: B2,
but apply the first premise’s output Θ to those types:

Θ ` [Θ]A2 <: [Θ]B2 a ∆
This maintains a general invariant: whenever we try to derive Γ `
A <: B a ∆, the types A and B are already fully applied under Γ .
That is, they contain no existential variables already solved in Γ . On
balance, this invariant simplifies the system: the extra applications
of Θ in <:→ avoid the need for extra rules for replacing solved
variables with their solutions.

All the rules discussed so far have been natural extensions of
the declarative rules, with <:Exvar being a logical way to extend
reflexivity to types containing existentials. Rule <:∀L diverges sig-
nificantly from the corresponding declarative rule ≤∀L. Instead of
replacing the type variable α with a guessed τ, rule <:∀L replaces
α with a new existential variable α̂, which it adds to the premise’s
input context: Γ,Iα̂, α̂ ` [α̂/α]A <: B a ∆,Iα̂, Θ. The peculiar-
looking Iα̂ is a scope marker, pronounced “marker α̂”, which will
delineate existentials created by articulation (the step of solving α̂
to α̂1 → α̂2, discussed in the next subsection). The output context
(∆,Iα̂, Θ) allows for some additional (existential) variables to ap-
pear after Iα̂, in a trailing context Θ. These existential variables
could mention α̂, or (if they appear between Iα̂ and α̂) could be
mentioned by α̂; since α̂ goes out of scope in the conclusion, we
drop such “trailing existentials” from the concluding output con-
text, which is simply ∆.5

4 Rule <:→ enforces that the function domains B1, A1 are compared first:
Θ is an input to the second premise. But this is an arbitrary choice; the
system would behave the same if we chose to check the codomains first.
5 In our setting, it is safe to drop trailing existentials that are unsolved:
such variables are unconstrained, and we can treat them as having been

Rule <:∀R is fairly close to the declarative version, but for
scoping reasons similar to <:∀L, it also drops Θ, the part of the
context to the right of the universal type variable α. (Articulation
makes no sense for universal variables, so α can act as its own
marker.)

The last two rules are essential: they derive subtypings with an
unsolved existential on one side, and an arbitrary type on the other.
Rule <:InstantiateL derives α̂ <: A, and <:InstantiateR derives
A <: α̂. These rules do not directly change the output context;
they just do an “occurs check” α̂ /∈ FV(A) to avoid circularity, and
leave all the real work to the instantiation judgment.

3.3 Instantiation
Two almost-symmetric judgments instantiate unsolved existential
variables: Γ ` α̂ :=< A a ∆ and Γ ` A =<: α̂ a ∆. The symbol :=<
suggests assignment of the variable to its left, but also subtyping:
the subtyping rule <:InstantiateL moves from instantiation α̂ :=<
A, read “instantiate α̂ to a subtype of A”, to subtyping α̂ <: A.
The symmetric judgment A =<: α̂ can be read “instantiate α̂ to a
supertype of A”.

The first instantiation rule in Figure 10, InstLSolve, sets α̂ to
τ in the output context: its conclusion is Γ, α̂, Γ ′ ` α̂ :=< τ a
Γ, α̂ = τ, Γ ′. The premise Γ ` τ checks that the monotype τ is
well-formed under the prefix context Γ . To check the soundness of
this rule, we can take the conclusion α̂ :=< τ, substitute our new
solution for α̂, and check that the resulting subtyping makes sense.
Since [Γ, α̂ = τ, Γ ′]α̂ = τ, we ask whether τ <: τ makes sense,
and of course it does through reflexivity.

Rule InstLArr can be applied when the type A in α̂ :=< A has
the form A1 → A2. It follows that α̂’s solution must have the form
· · · → · · · , so we “articulate” α̂, giving it the solution α̂1 → α̂2
where the α̂k are fresh existentials. We insert their declarations just
before α̂—they must be to the left of α̂ so they can be mentioned in
its solution, but they must be close enough to α̂ that they appear to
the right of the marker Iα̂ introduced by <:∀L. Note that the first
premise A1 =<: α̂1 switches to the other instantiation judgment.
Also, the second premise Θ ` α̂2 :=< [Θ]A2 a ∆ applies Θ to A2,
to apply any solutions found in the first premise.

The other rules are somewhat subtle. Rule InstLReach derives

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]

where, as explained in Section 3.1, Γ [α̂][β̂] denotes a context where
some unsolved existential variable α̂ is declared to the left of β̂. In
this situation, we cannot use InstLSolve to set α̂ to β̂ because β̂
is not well-formed under the part of the context to the left of α̂.
Instead, we set β̂ to α̂.

Rule InstLAllR is the instantiation version of <:∀R. Since our
polymorphism is predicative, we can’t assign ∀β. B to α̂, but we
can decompose the quantifier in the same way that subtyping does.

The rules for the second judgmentA =<: α̂ are similar: InstRSolve,
InstRReach and InstRArr are direct analogues of the first three
α̂ :=< A rules, and InstRAllL is the instantiation version of <:∀L.

Example. The interplay between instantiation and quantifiers is
delicate. For example, consider the problem of instantiating β̂ to a
supertype of ∀α. α. In this case, the type ∀α. α is so polymorphic
that it places no constraints at all on β̂. Therefore, it seems we are
at risk of being forced to make a necessarily incomplete choice—
but the instantiation judgment’s ability to “change its mind” about
which variable to instantiate saves the day:

instantiated to any well-formed type, such as 1. In a dependently typed
setting, we would need to check that at least one solution exists.

6

Γ ` A <: B a ∆ Under input context Γ , type A is a subtype of B, with output context ∆

Γ [α] ` α <: α a Γ [α] <:Var
Γ ` 1 <: 1 a Γ <:Unit

Γ [α̂] ` α̂ <: α̂ a Γ [α̂] <:Exvar

Γ ` B1 <: A1 a Θ Θ ` [Θ]A2 <: [Θ]B2 a ∆
Γ ` A1 → A2 <: B1 → B2 a ∆

<:→
Γ,Iα̂, α̂ ` [α̂/α]A <: B a ∆,Iα̂, Θ

Γ ` ∀α. A <: B a ∆ <:∀L
Γ, α ` A <: B a ∆,α,Θ
Γ ` A <: ∀α. B a ∆ <:∀R

α̂ /∈ FV(A) Γ [α̂] ` α̂ :=< A a ∆
Γ [α̂] ` α̂ <: A a ∆ <:InstantiateL

α̂ /∈ FV(A) Γ [α̂] ` A =<: α̂ a ∆
Γ [α̂] ` A <: α̂ a ∆ <:InstantiateR

Figure 9. Algorithmic subtyping

Γ ` α̂ :=< A a ∆ Under input context Γ , instantiate α̂ such that α̂ <: A, with output context ∆

Γ ` τ
Γ, α̂, Γ ′ ` α̂ :=< τ a Γ, α̂ = τ, Γ ′ InstLSolve

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]
InstLReach

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` A1 =<: α̂1 a Θ Θ ` α̂2 :=< [Θ]A2 a ∆
Γ [α̂] ` α̂ :=< A1 → A2 a ∆

InstLArr
Γ [α̂], β ` α̂ :=< B a ∆,β, ∆ ′

Γ [α̂] ` α̂ :=< ∀β. B a ∆
InstLAllR

Γ ` A =<: α̂ a ∆ Under input context Γ , instantiate α̂ such that A <: α̂, with output context ∆

Γ ` τ
Γ, α̂, Γ ′ ` τ =<: α̂ a Γ, α̂ = τ, Γ ′ InstRSolve

Γ [α̂][β̂] ` β̂ =<: α̂ a Γ [α̂][β̂ = α̂]
InstRReach

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` α̂1 :=< A1 a Θ Θ ` [Θ]A2 =<: α̂2 a ∆
Γ [α̂] ` A1 → A2 =<: α̂ a ∆

InstRArr
Γ [α̂],Iβ̂, β̂ ` [β̂/β]B =<: α̂ a ∆,Iβ̂, ∆

′

Γ [α̂] ` ∀β. B =<: α̂ a ∆
InstRAllL

Figure 10. Instantiation

Γ ` e⇐ A a ∆ Under input context Γ , e checks against input type A, with output context ∆

Γ ` e⇒ A a ∆ Under input context Γ , e synthesizes output type A, with output context ∆

Γ ` A • e⇒⇒ C a ∆ Under input context Γ , applying a function of type A to e synthesizes type C, with output context ∆

(x : A) ∈ Γ
Γ ` x⇒ A a Γ Var

Γ ` e⇒ A a Θ Θ ` [Θ]A <: [Θ]B a ∆
Γ ` e⇐ B a ∆ Sub

Γ ` A Γ ` e⇐ A a ∆
Γ ` (e : A) ⇒ A a ∆ Anno

Γ ` () ⇐ 1 a Γ 1I
Γ ` () ⇒ 1 a Γ 1I⇒ Γ, α ` e⇐ A a ∆,α,Θ

Γ ` e⇐ ∀α. A a ∆ ∀I
Γ, α̂ ` [α̂/α]A • e⇒⇒ C a ∆
Γ ` ∀α. A • e⇒⇒ C a ∆ ∀App

Γ, x : A ` e⇐ B a ∆, x : A,Θ
Γ ` λx. e⇐ A→ B a ∆ →I

Γ, α̂, β̂, x : α̂ ` e⇐ β̂ a ∆, x : α̂, Θ
Γ ` λx. e⇒ α̂→ β̂ a ∆

→I⇒ Γ ` e1 ⇒ A a Θ Θ ` [Θ]A • e2 ⇒⇒ C a ∆
Γ ` e1 e2 ⇒ C a ∆ →E

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` e⇐ α̂1 a ∆
Γ [α̂] ` α̂ • e⇒⇒ α̂2 a ∆

α̂App
Γ ` e⇐ A a ∆

Γ ` A→ C • e⇒⇒ C a ∆ →App

Figure 11. Algorithmic typing

7

Γ [β̂],Iα̂, α̂ ` α̂ =<: β̂ a Γ [β̂],Iα̂, α̂ = β̂
InstRReach

Γ [β̂] ` ∀α. α =<: β̂ a Γ [β̂]
InstRAllL

Here, we introduce a new variable α̂ to go under the universal
quantifier; then, instantiation applies InstRReach to set α̂, not β̂.
Hence, β̂ is, correctly, not constrained by this subtyping problem.

Thus, instantiation does not necessarily solve any existential
variable. However, instantiation to any monotype τ will solve an
existential variable—that is, for input context Γ and output ∆,
we have unsolved(∆) < unsolved(Γ). This will be critical for
decidability of subtyping (Section 5.2).

Another example. In Figure 12 we show a derivation that uses
quantifier instantiation (InstRAllL), articulation (InstRArr) and
“reaching” (InstLReach), as well as InstRSolve. In the output
context ∆ = Γ [β̂2, β̂1=β̂2, α̂=β̂1→β̂2] note that α̂ is solved to
β̂1 → β̂2, and β̂2 is solved to β̂1. Thus, [∆]α̂ = β̂1→β̂1, which is
a monomorphic approximation of ∀β.β→β.

3.4 Algorithmic Typing
We now turn to the typing rules in Figure 11. Many of these rules
follow the declarative rules, with extra context machinery. Rule Var
uses an assumption x : A without generating any new information,
so the output context in its conclusion Γ ` x ⇒ A a Γ is just
the input context. Rule Sub’s first premise has an output context Θ,
used as the input context to the second (subtyping) premise, which
has output context ∆, the output of the conclusion. Rule Anno does
not directly change the context, but the derivation of its premise
might include the use of some rule that does, so we propagate the
premise’s output context ∆ to the conclusion.

Unit and ∀. In the second row of typing rules, 1I and 1I⇒ gener-
ate no new information and simply propagate the input context.
∀I is more interesting: Like the declarative rule Decl∀I, it adds a

universal type variable α to the (input) context. The output context
of the premise Γ, α ` e⇐ A a ∆,α,Θ allows for some additional
(existential) variables to appear after α, in a trailing context Θ.
These existential variables could depend on α; since α goes out
of scope in the conclusion, we must drop them from the concluding
output context, which is just ∆: the part of the premise’s output
context that cannot depend on α.

The application-judgment rule ∀App serves a similar purpose to
the subtyping rule <:∀L, but does not place a marker before α̂: the
variable α̂ may appear in the output type C, so α̂ must survive in
the output context ∆.

Functions. In the third row of typing rules, rule →I follows the
same scheme: the declarations Θ following x : A are dropped in
the conclusion’s output context.

Rule →I⇒ corresponds to Decl→I⇒, one of the guessing rules,
so we create new existential variables α̂ (for the function domain)
and β̂ (for the codomain) and check the function body against β̂.
As in ∀App, we do not place a marker before α̂, because α̂ and β̂
appear in the output type (λx. e⇒ α̂→ β̂).

Rule →E is the expected analogue of Decl→E; like other rules
with two premises, it applies the intermediate context Θ.

On the last row of typing rules, α̂App derives α̂ • e ⇒⇒
α̂2 where α̂ is unsolved in the input context. Here we have an
application judgment, which is supposed to synthesize a type for an
application e1 ewhere e1 has type α̂. We know that e1 should have
function type; similarly to InstLArr/InstRArr, we introduce α̂1 and
α̂2 and add α̂ = α̂1→α̂2 to the context. (Rule α̂App is the only
algorithmic typing rule that does not correspond to a declarative
rule.)

Finally, rule →App is analogous to Decl→App.

4. Context Extension
We motivated the algorithmic rules by saying that they evolved
input contexts to output contexts that were “more solved”. To state
and prove the metatheoretic results of decidability, soundness and
completeness (Sections 5–7), we introduce a context extension
judgment Γ −→ ∆. This judgment captures a notion of information
increase from an input context Γ to an output context ∆, and relates
algorithmic contexts Γ and ∆ to completely solved extensions Ω,
which correspond—via the context application described in Section
4.1—to declarative contexts Ψ.

The judgment Γ −→ ∆ is read “Γ is extended by ∆” (or ∆
extends Γ). Another reading is that ∆ carries at least as much
information as Γ . A third reading is that Γ −→ ∆ means that Γ
is entailed by ∆: all positive information derivable from Γ (say,
that existential variable α̂ is in scope) can also be derived from
∆ (which may have more information, say, that α̂ is equal to a
particular type). This reading is realized by several key lemmas;
for instance, extension preserves well-formedness: if Γ ` A and
Γ −→ ∆, then ∆ ` A.

The rules deriving the context extension judgment (Figure 13)
say that the empty context extends the empty context (−→ID); a
term variable typing x : A ′ extends x : A if applying the extending
context ∆ to A and A ′ yields the same type (−→Var); universal
type variables must match (−→Uvar); scope markers must match
(−→Marker); and, existential variables may:

• appear unsolved in both contexts (−→Unsolved),
• appear solved in both contexts, if applying the extending con-

text ∆ makes the solutions τ and τ ′ equal (−→Solved),
• get solved by the extending context (−→Solve),
• be added by the extending context, either without a solution

(−→Add) or with a solution (−→AddSolved);

Extension does not allow solutions to disappear: information
must increase. It does allow solutions to change, but only if the
change preserves or increases information. The extension(

α̂, β̂ = α̂
)
−→ (

α̂ = 1, β̂ = α̂
)

directly increases information about α̂, and indirectly increases
information about β̂. Perhaps more interestingly, the extension(

α̂ = 1, β̂ = α̂
)︸ ︷︷ ︸

∆

−→ (
α̂ = 1, β̂ = 1

)︸ ︷︷ ︸
Ω

also holds: while the solution of β̂ in Ω is different, in the sense
that Ω contains β̂ = 1 while ∆ contains β̂ = α̂, applying Ω to the
two solutions gives the same thing: applying Ω to ∆’s solution of
β̂ gives [Ω]α̂ = [Ω]1 = 1, while applying Ω to Ω’s own solution
for β̂ also gives 1, because [Ω]1 = 1.

Extension is quite rigid, however, in two senses. First, if a
declaration appears in Γ , it appears in all extensions of Γ . Second,
extension preserves order. For example, if β̂ is declared after α̂ in
Γ , then β̂ will also be declared after α̂ in every extension of Γ . This
holds for every variety of declaration. This rigidity aids in enforcing
type variable scoping and dependencies, which are nontrivial in a
setting with higher-rank polymorphism.

This combination of rigidity (in demanding that the order of
declarations be preserved) with flexibility (in how existential type
variable solutions are expressed) manages to satisfy scoping and
dependency relations and give enough room to maneuver in the
algorithm and metatheory.

4.1 Context Application
A complete context Ω (Figure 6) has no unsolved variables, so ap-
plying it to a (well-formed) type yields a type [Ω]Awith no existen-

8

context to the left of β̂︷ ︸︸ ︷
Γ ′ ,Iβ̂ ` β̂1

Γ ′ ,

Γ ′ = Γ [β̂2, β̂1, α̂=β̂1→β̂2]
Iβ̂, β̂ ` β̂2 :=< β̂ a Γ ′ ,Iβ̂, β̂=β̂1

InstLReach

context to the left of β̂1︷ ︸︸ ︷
. . . , β̂2 ` β̂2

Γ ′ ,Iβ̂, β̂=β̂1 ` β̂2 =<: β̂1 a ∆,Iβ̂, β̂=β̂1
InstRSolve

Γ [α̂],Iβ̂, β̂ ` β̂→β̂ =<: α̂ a ∆,Iβ̂, β̂=β̂1
InstRArr

Γ [α̂] ` (∀β. β→β) =<: α̂ a

∆ = Γ [β̂2, β̂1=β̂2, α̂=β̂1→β̂2]

∆
InstRAllL

Figure 12. Example of instantiation

Γ −→ ∆ Γ is extended by ∆

· −→ · −→ID
Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A −→ ∆, x : A ′ −→Var
Γ −→ ∆

Γ, α −→ ∆,α
−→Uvar

Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved

Γ −→ ∆ [∆]τ = [∆]τ ′

Γ, α̂ = τ −→ ∆, α̂ = τ ′ −→Solved
Γ −→ ∆

Γ, α̂ −→ ∆, α̂ = τ
−→Solve

Γ −→ ∆

Γ −→ ∆, α̂
−→Add

Γ −→ ∆

Γ −→ ∆, α̂ = τ
−→AddSolved

Γ −→ ∆

Γ,Iα̂ −→ ∆,Iα̂
−→Marker

Figure 13. Context extension

[·]· = ·
[Ω, x : A](Γ, x : AΓ) = [Ω]Γ , x : [Ω]A if [Ω]A = [Ω]AΓ
[Ω,α](Γ, α) = [Ω]Γ , α
[Ω, α̂ = τ](Γ, α̂) = [Ω]Γ
[Ω, α̂ = τ](Γ, α̂ = τΓ) = [Ω]Γ if [Ω]τ = [Ω]τΓ
[Ω, α̂ = τ]Γ = [Ω]Γ if α̂ /∈ dom(Γ)
[Ω,Iα̂](Γ,Iα̂) = [Ω]Γ

Figure 14. Applying a complete contextΩ to a context

tials. Such a type is well-formed under a declarative context—with
just α and x : A declarations—obtained by dropping all the exis-
tential declarations and applying Ω to declarations x : A (to yield
x : [Ω]A). We can think of this context as the result of applying Ω
to itself: [Ω]Ω.

More generally, we can applyΩ to any context Γ that it extends.
This operation of context application [Ω]Γ is given in Figure 14.
The application [Ω]Γ is defined if and only if Γ −→ Ω, and
applyingΩ to any such Γ yields the same declarative context [Ω]Ω:

Lemma (Stability of Complete Contexts). If Γ −→ Ω then
[Ω]Γ = [Ω]Ω.

5. Decidability
Our algorithmic type system is decidable. Since the typing rules
(Figure 11) depend on the subtyping rules (Figure 9), which in turn
depend on the instantiation rules (Figure 10), showing that the typ-
ing judgments (checking, synthesis and application) are decidable
requires that we show that the instantiation and subtyping judg-
ments are decidable.

5.1 Decidability of Instantiation
As discussed in Section 3.3, deriving Γ ` α̂ :=< A a ∆ does
not necessarily instantiate any existential variable (unless A is a
monotype). However, the instantiation rules do preserve the size of
(substituted) types:

Lemma (Instantiation Size Preservation).
If Γ = (Γ0, α̂, Γ1) and Γ ` α̂ :=< A a ∆ or Γ ` A =<: α̂ a ∆,

and Γ ` B and α̂ /∈ FV([Γ]B), then |[Γ]B| = |[∆]B|, where |C| is
the plain size of C.

Using this lemma, we can show that the type A in the instan-
tiation judgment always get smaller, even in rule InstLArr: the
second premise applies the intermediate context Θ to A2, but the
lemma tells us that this application cannot make A2 larger, and A2
is smaller than the conclusion’s type (A1 → A2).

Now we can prove decidability of instantiation, assuming that
α̂ is unsolved in the input context Γ , that A is well-formed under
Γ , that A is fully applied ([Γ]A = A), and that α̂ does not occur in
A. These conditions are guaranteed when instantiation is invoked,
because the typing rule Sub applies the input substitution, and the
subtyping rules apply the substitution where needed—in exactly
one place: the second premise of <:→. The proof is based on the
(substituted) types in the premises being smaller than the (substi-
tuted) type in the conclusion.
Theorem 7 (Decidability of Instantiation).
If Γ = Γ0[α̂] and Γ ` A such that [Γ]A = A and α̂ /∈ FV(A), then:

(1) Either there exists ∆ such that Γ0[α̂] ` α̂ :=< A a ∆, or not.
(2) Either there exists ∆ such that Γ0[α̂] ` A =<: α̂ a ∆, or not.

5.2 Decidability of Algorithmic Subtyping
To prove decidability of the subtyping system in Figure 9, measure
judgments Γ ` A <: B a ∆ lexicographically by

(S1) the number of ∀ quantifiers in A and B;

(S2) |unsolved(Γ)|, the number of unsolved existentials in Γ ;

(S3) |Γ `A| + |Γ `B|.

Part (S3) uses contextual size, which penalizes solved variables (*):

Definition (Contextual Size).

|Γ `α| = 1
|Γ [α̂] ` α̂| = 1
|Γ [α̂ = τ] ` α̂| = 1 + |Γ [α̂ = τ] ` τ| (*)
|Γ `∀α. A| = 1 + |Γ, α `A|
|Γ `A→ B| = 1 + |Γ `A| + |Γ `B|

For example, if Γ = (β, α̂ = β) then |Γ ` α̂| = 1 + |Γ `β| =
1 + 1 = 2, whereas the plain size of α̂ is simply 1.

9

The connection between (S1) and (S2) may be clarified by
examining rule <:→, whose conclusion says that A1 → A2 is a
subtype of B1 → B2. If A2 or B2 is polymorphic, then the first
premise on A1 → A2 is smaller by (S1). Otherwise, the first
premise has the same input context as the conclusion, so it has
the same (S2), but is smaller by (S3). If B1 or A1 is polymorphic,
then the second premise is smaller by (S1). Otherwise, we use the
property that instantiating a monotype always solves an existential:

Lemma (Monotypes Solve Variables). If Γ ` α̂ :=< τ a ∆ or
Γ ` τ =<: α̂ a ∆, then if [Γ]τ = τ and α̂ /∈ FV([Γ]τ), we have
|unsolved(Γ)| = |unsolved(∆)| + 1.

A couple of other lemmas are worth mentioning: subtyping on
two monotypes cannot increase the number of unsolved existen-
tials, and applying a substitution Γ to a type does not increase the
type’s size with respect to Γ .

Lemma (Monotype Monotonicity).
If Γ ` τ1 <: τ2 a ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Lemma (Substitution Decreases Size).
If Γ ` A then |Γ ` [Γ]A| ≤ |Γ `A|.

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ` A and Γ ` B and
[Γ]A = A and [Γ]B = B, it is decidable whether there exists ∆ such
that Γ ` A <: B a ∆.

5.3 Decidability of Algorithmic Typing
Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e, it is decidable
whether there exist a type A and a context ∆ such that
Γ ` e⇒ A a ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that
Γ ` B, it is decidable whether there is a context ∆ such that
Γ ` e⇐ B a ∆.

(iii) Application: Given a context Γ , a term e, and a type A such
that Γ ` A, it is decidable whether there exist a type C and a
context ∆ such that
Γ ` A • e⇒⇒ C a ∆.

The following induction measure suffices to prove decidability:〈
e,

⇒⇐, |Γ `B|⇒⇒, |Γ `A|

〉
where 〈. . . 〉 denotes lexicographic order, and where (when com-
paring two judgments typing the same term e) the synthesis judg-
ment (top line) is considered smaller than the checking judgment
(second line), which in turn is considered smaller than the applica-
tion judgment (bottom line). That is, ⇒≺⇐≺⇒⇒. In Sub, this
makes the synthesis premise smaller than the checking conclusion;
in →App and α̂App, this makes the checking premise smaller than
the application conclusion.

Since we have no explicit introduction form for polymorphism,
the rule ∀I has the same term e in its premise and conclusion, and
both the premise and conclusion are the same kind of judgment
(checking). The rule ∀App is similar (with application judgments
in premise and conclusion). Therefore, given two judgments on the
same term, and that are both checking judgments or both appli-
cation judgments, we use the size of the input type expression—
which does get smaller in ∀I and ∀App.

6. Soundness
We want the algorithmic specifications of subtyping and typing to
be sound with respect to the declarative specifications. Roughly,

given a derivation of an algorithmic judgment with input context Γ
and output context ∆, and some complete contextΩ that extends ∆
(which therefore extends Γ), applying Ω throughout the given al-
gorithmic judgment should yield a derivable declarative judgment.
Let’s make that rough outline concrete for instantiation, showing
that the action of the instantiation rules is consistent with declara-
tive subtyping:
Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ]B = B and α̂ /∈ FV(B):
(1) If Γ ` α̂ :=< B a ∆ then [Ω]∆ ` [Ω]α̂ ≤ [Ω]B.
(2) If Γ ` B =<: α̂ a ∆ then [Ω]∆ ` [Ω]B ≤ [Ω]α̂.

Note that the declarative derivation is under [Ω]∆, which is Ω
applied to the algorithmic output context ∆.

With instantiation soundness, we can prove the expected sound-
ness property for subtyping:
Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ` A <: B a ∆ where [Γ]A = A and [Γ]B = B and ∆ −→ Ω
then [Ω]∆ ` [Ω]A ≤ [Ω]B.

Finally, knowing that subtyping is sound, we can prove that
typing is sound:
Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ` e⇐ A a ∆ then [Ω]∆ ` e⇐ [Ω]A.
(ii) If Γ ` e⇒ A a ∆ then [Ω]∆ ` e⇒ [Ω]A.

(iii) If Γ ` A • e⇒⇒ C a ∆ then [Ω]∆ ` [Ω]A • e⇒⇒ [Ω]C.

The proofs need several lemmas, including this one:

Lemma (Typing Extension).
If Γ ` e⇐ A a ∆ or Γ ` e⇒ A a ∆ or Γ ` A • e⇒⇒ C a ∆
then Γ −→ ∆.

7. Completeness
Completeness of the algorithmic system is something like sound-
ness in reverse: given a declarative derivation of [Ω]Γ ` [Ω] · · · ,
we want to get an algorithmic derivation of Γ ` · · · a ∆.

For soundness, the output context ∆ such that ∆ −→ Ω was
given; Γ −→ Ω followed from Typing Extension (the above
lemma) and transitivity of extension. For completeness, only Γ
is given, so we have Γ −→ Ω in the antecedent. Then we might
expect to show, along with Γ ` · · · a ∆, that ∆ −→ Ω. But this is
not general enough: the algorithmic rules generate fresh existential
variables, so ∆ may have existentials that are not found in Γ , nor in
Ω. In completeness, we are given a declarative derivation, which
contains no existentials; the completeness proof must build up the
completing context Ω along with the algorithmic derivation. Thus,
completeness will produce an Ω ′ which extends both the given Ω
and the output context of the algorithmic derivation: Ω −→ Ω ′

and ∆ −→ Ω ′. (By transitivity, we also get Γ −→ Ω ′.)
As with soundness, we have three main completeness results,

for instantiation, subtyping and typing.

Theorem 13 (Instantiation Completeness). Given Γ −→ Ω and
A = [Γ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):
(1) If [Ω]Γ ` [Ω]α̂ ≤ [Ω]A then there are ∆,Ω ′ such that

Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` α̂ :=< A a ∆.
(2) If [Ω]Γ ` [Ω]A ≤ [Ω]α̂ then there are ∆,Ω ′ such that

Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` A =<: α̂ a ∆.

Theorem 14 (Generalized Completeness of Subtyping).
If Γ −→ Ω and Γ ` A and Γ ` B and [Ω]Γ ` [Ω]A ≤ [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and
Γ ` [Γ]A <: [Γ]B a ∆.

10

Theorem 15 (Completeness of Algorithmic Typing).
Given Γ −→ Ω and Γ ` A:

(i) If [Ω]Γ ` e⇐ [Ω]A
then there exist ∆ andΩ ′

such that ∆ −→ Ω ′ andΩ −→ Ω ′ and Γ ` e⇐ [Γ]A a ∆.
(ii) If [Ω]Γ ` e⇒ A

then there exist ∆,Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` e ⇒ A ′ a ∆
and A = [Ω ′]A ′.

(iii) If [Ω]Γ ` [Ω]A • e⇒⇒ C
then there exist ∆,Ω ′, and C ′

such that ∆ −→ Ω ′ andΩ −→ Ω ′

and Γ ` [Γ]A • e⇒⇒ C ′ a ∆ and C = [Ω ′]C ′.

8. Design Variations
The rules we give infer monomorphic types, but require annotations
for all polymorphic bindings. In this section, we consider alterna-
tives to this choice.

Eliminating type inference. To eliminate type inference from the
declarative system, it suffices to drop the Decl→I⇒ and Decl1I⇒
rules. The corresponding alterations to the algorithmic system are a
little more delicate: simply deleting the →I⇒ and 1I⇒ rules breaks
completeness. To see why, suppose that we have a variable f of type
∀α. α→ α, and consider the application f (). Our algorithm will
introduce a new existential variable α̂ for α, and then check ()
against α̂. Without the 1I⇒ rule, typechecking will fail. To restore
completeness, we need to modify these two rules. Instead of being
synthesis rules, we will change them to checking rules that check
values against an unknown existential variable.

Γ [α̂] ` () ⇐ α̂ a Γ [α̂ = 1]
1Iα̂

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2], x : α̂1 ` e⇐ α̂2 a ∆, x : α̂1, ∆ ′

Γ [α̂] ` λx. e⇐ α̂ a ∆ →Iα̂

With these two rules replacing 1I⇒ and →I⇒, we have a complete
algorithm for the no-inference bidirectional system.

Full Damas-Milner type inference. Another alternative is to in-
crease the amount of type inference done. For instance, a natural
question is whether we can extend the bidirectional approach to
subsume the inference done by the algorithm of Damas and Milner
(1982). This appears feasible: we can alter the →I⇒ rule to support
ML-style type inference.

Γ,Iα̂, α̂, β̂, x : α̂ ` e⇐ β̂ a ∆,Iα̂, ∆ ′

τ = [∆ ′](α̂→ β̂) ~̂α = unsolved(∆ ′)

Γ ` λx. e⇒ ∀~α. [~α/~̂α]τ a ∆ →I⇒ ′

In this rule, we introduce a marker Iα̂ into the context, and then
check the function body against the type β̂. Then, our output type
substitutes away all the solved existential variables to the right of
the marker Iα̂, and generalizes over all of the unsolved variables
to the right of the marker. Using an ordered context gives precise
control over the scope of the existential variables, making it easy to
express polymorphic generalization.

The above is only a sketch; we have not defined the correspond-
ing declarative system, nor proved completeness.

9. Related Work and Discussion
9.1 Type Inference for System F
Because type inference for System F is undecidable (Wells 1999),
designing type inference algorithms for first-class polymorphism

inherently involves navigating a variety of design tradeoffs. As a re-
sult, there have been a wide variety of proposals for extending type
systems beyond the Damas-Milner “sweet spot”. The main trade-
off appears to be a “two-out-of-three” choice: language designers
can keep any two of: (1) the η-law for functions, (2) impredicative
instantiation, and (3) the standard type language of System F.

As discussed in Section 2, for typability under η-reductions, it
is necessary for subtyping to instantiate deeply: that is, we must
allow instantiation of quantifiers to the right of an arrow. However,
Tiuryn and Urzyczyn (1996) and Chrząszcz (1998) showed that
the subtyping relation for impredicative System F is undecidable.
As a result, if we want η and a complete algorithm, then either
the polymorphic instantiations must be predicative, or a different
language of types must be used.

Figure 15 summarizes the different choices made by the design-
ers of this and related systems.

Impredicativity and the η-law. The designers of MLF (Le Bot-
lan and Rémy 2003; Rémy and Yakobowski 2008; Le Botlan and
Rémy 2009) chose to use a different language of types, one with
a form of bounded quantification. This increases the expressivity
of types enough to ensure principal types, which means that (1)
required annotations are few and predictable, and (2) their system
is very robust in the face of program transformations, including
η. However, the richness of the MLF type structure requires a so-
phisticated metatheory and correspondingly intricate implementa-
tion techniques.

Impredicativity and System F types. Much of the other work on
higher-rank polymorphism avoids changing the language of types.

The HML system of Leijen (2009) and the FPH system of Vy-
tiniotis et al. (2008) both retain the type language of (impredicative)
System F. Each of these systems gives as a specification a slightly
different extension to the declarative Damas-Milner type system,
and handle the issue of inference in slightly different ways. HML
is essentially a restriction of MLF, in which the external language
of types is limited to System F, but which uses the technology of
MLF internally, as part of type inference. FPH, on the other hand,
extends and generalizes work on boxy types (Vytiniotis et al. 2006)
to control type inference. The differences in expressive power be-
tween these two systems are subtle—roughly speaking, FPH re-
quires slightly more annotations, but has a less complicated speci-
fication. However, in both systems, the same heuristic guidance to
the programmer applies: place explicit annotations on binders with
fancy types.

The η-law and System F types. Peyton Jones et al. (2007) devel-
oped an approach for typechecking higher-rank predicative poly-
morphism that is closely related to ours. They define a bidirec-
tional declarative system similar to our own, but which lacks an
application judgment. This complicates the presentation of their
system, forcing them to introduce an additional grammatical cate-
gory of types beyond monotypes and polytypes, and requires many
rules to carry an additional subtyping premise. Next, they enrich
the subtyping rules of Odersky and Läufer (1996) with the distribu-
tivity axiom of Mitchell (1988), which we rejected on ideological
grounds: it is a valid coercion, but is not orthogonal (it is a sin-
gle rule mixing two different type connectives) and does not cor-
respond to a rule in the sequent calculus. They do not prove the
soundness and completeness of their Haskell reference implemen-
tation, but it appears to implement behavior close to our application
judgment.

History of our approach. Several of the ideas used in the present
paper descend from Dunfield (2009), an approach to first-class
polymorphism (including impredicativity) also based on ordered
contexts with existential variables instantiated via subtyping. In

11

System η-laws? Impredicative? System F type language?
MLF yes yes no
FPH no yes yes
HML no yes yes
Peyton Jones et al. (2007) yes no yes
This paper yes no yes

Figure 15. Comparison of type inference algorithms

fact, the present work began as an attempt to extend Dunfield
(2009) with type-level computation. During that attempt, we found
several shortcomings and problems. The most serious is that the de-
cidability and completeness arguments were not valid. These prob-
lems may be fixable, but instead we started over, reusing several of
the high-level ideas in different technical forms.

9.2 Other Type Systems
Pierce and Turner (2000) developed bidirectional typechecking for
rich subtyping, with specific techniques for instantiating polymor-
phism within function application (hence, local type inference).
Their declarative specification is more complex than ours, and
their algorithm depends on computing approximations of upper and
lower bounds on types. Colored local type inference (Odersky et al.
2001) allows different parts of type expressions to be propagated in
different directions. Our approach gets a similar effect by manipu-
lating type expressions with existential variables.

9.3 Our Algorithm
One of our main contributions is our new algorithm for type infer-
ence, which is remarkable in its simplicity. Three key ideas under-
pin our algorithm.

Ordered contexts. We move away from the traditional “bag of
constraints” model of type inference, and instead embed existential
variables and their values directly into an ordered context. Thus,
straightforward scoping rules control the free variables of the types
each existential variable may be instantiated with, without any need
for model-theoretic techniques like skolemization, which fit awk-
wardly into a type-theoretic discipline. Using an ordered context
permits handling quantifiers in a manner resembling the level-based
generalization mechanism of Rémy (1992), used also in MLF (Le
Botlan and Rémy 2009).

The instantiation judgment. The original inspiration for instanti-
ation comes from the “greedy” algorithm of Cardelli (1993), which
eagerly uses type information to solve existential constraints. In
that setting—a language with rather ambitious subtyping—the
greedy algorithm was incomplete: consider a function of type
∀α. α→ α→ α applied to a Cat and an Animal; the cat will be
checked against an existential α̂, which instantiates α̂ to Cat, but
checking the second argument, Animal <: Cat, fails. (Reversing
the order of arguments makes typing succeed!)

In our setting, where subtyping represents the specialization
order induced by quantifier instantiation, it is possible to get a
complete algorithm, by slightly relaxing the pure greedy strategy.
Rather than eagerly setting constraints, we first look under quanti-
fiers (in the InstLAllR and InstRAllL rules) to see if there is a fea-
sible monotype instantiation, and we also use the the InstLReach
and InstRReach to set the “wrong” existential variable in case we
need to equate an existential variable with one to its right in the
context. Looking under quantifiers seems forced by our restriction
to predicative polymorphism, and “reaching” seems forced by our
use of an ordered context, but the combination of these mechanisms
fortuitously enables our algorithm to find good upper and lower
monomorphic approximations of polymorphic types.

This is surprising, since it is quite contrary to the implemen-
tation strategy of MLF (also used by HML and FPH). There, the
language of type constraints supports bounds on fully quantified
types, and the algorithm incrementally refines these constraints. In
contrast, we only ever create equational constraints on existentials
(bounds are not needed), and once we have a solution for an exis-
tential, our algorithm never needs to revisit its decision.

Distinguishing instantiation as a separate judgment is new in
this paper, and beneficial: Dunfield (2009) baked instantiation into
the subtyping rules, resulting in a system whose direct implementa-
tion required substantial backtracking—over a set of rules includ-
ing arbitrary application of substitutions. We, instead, maintain an
invariant in subtyping and instantiation that the types are always
fully applied with respect to an input context, obviating the need
for explicit rules to apply substitutions.

Context extension. Finally, we introduce a context-extension
judgment as the central invariant in our correctness proofs. This
permits us to state many properties important to our algorithm ab-
stractly, without reference to the details of our algorithm.

We are not the only ones to study context-based approaches to
type inference. Recently, Gundry et al. (2010) recast the classic
Damas-Milner algorithm, which manipulates unstructured sets of
equality constraints, as structured constraint solving under ordered
contexts. A (semantic) notion of information increase is central to
their development, as (syntactic) context extension is to ours. While
their formulation supports only ML-style prenex polymorphism,
the ultimate goal is a foundation for type inference for dependent
types. To some extent, both our algorithm and theirs can be under-
stood in terms of the proof system of Miller (1992) for mixed-prefix
unification. We each restrict the unification problem, and then give
a proof search algorithm to solve the type inference problem.

Acknowledgments
Thanks to the anonymous ICFP reviewers for their comments,
which have (we hope) led to a more correct paper.

References
Andreas Abel. Termination checking with types. RAIRO—

Theoretical Informatics and Applications, 38(4):277–319, 2004.
Special Issue: Fixed Points in Computer Science (FICS’03).

Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a
semantic βη-conversion test for Martin-Löf type theory. In
Mathematics of Program Construction (MPC’08), volume 5133
of LNCS, pages 29–56, 2008.

Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. J. Logic and Computation, 2(3):297–347, 1992.

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and
Enrico Tassi. A bi-directional refinement algorithm for the
calculus of (co)inductive constructions. Logical Methods in
Computer Science, 8(1), 2012.

12

Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost in
translation: formalizing proposed extensions to C]. In OOPSLA,
2007.

Luca Cardelli. An implementation of F<:. Research report 97,
DEC/Compaq Systems Research Center, February 1993.

Iliano Cervesato and Frank Pfenning. A linear spine calculus. J.
Logic and Computation, 13(5):639–688, 2003.

Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirec-
tional type checking. In Workshop on Types in Language Design
and Impl. (TLDI ’05), pages 71–78, 2005.

Jacek Chrząszcz. Polymorphic subtyping without distributivity. In
Mathematical Foundations of Computer Science, volume 1450
of LNCS, pages 346–355. Springer, 1998.

Thierry Coquand. An algorithm for type-checking dependent types.
Science of Computer Programming, 26(1–3):167–177, 1996.

Luis Damas and Robin Milner. Principal type-schemes for func-
tional programs. In POPL, pages 207–212. ACM, 1982.

Rowan Davies and Frank Pfenning. Intersection types and compu-
tational effects. In ICFP, pages 198–208, 2000.

Jana Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, 2007. CMU-CS-07-129.

Jana Dunfield. Greedy bidirectional polymorphism. In ML
Workshop, pages 15–26, 2009. http://www.cs.queensu.ca/
~jana/papers/poly/.

Jana Dunfield and Frank Pfenning. Tridirectional typechecking. In
POPL, pages 281–292, January 2004.

Adam Gundry, Conor McBride, and James McKinna. Type infer-
ence in context. In Mathematically Structured Functional Pro-
gramming (MSFP), 2010.

Didier Le Botlan and Didier Rémy. MLF: raising ML to the power
of System F. In ICFP, pages 27–38, 2003.

Didier Le Botlan and Didier Rémy. Recasting MLF. Information
and Computation, 207:726–785, 2009.

Daan Leijen. Flexible types: robust type inference for first-class
polymorphism. In POPL, pages 66–77, 2009.

Andres Löh, Conor McBride, and Wouter Swierstra. A tu-
torial implementation of a dependently typed lambda cal-
culus. Unpublished draft, http://people.cs.uu.nl/andres/
LambdaPi/index.html, 2008.

William Lovas. Refinement Types for Logical Frameworks. PhD
thesis, Carnegie Mellon University, 2010. CMU-CS-10-138.

Dale Miller. Unification under a mixed prefix. J. Symbolic Compu-
tation, 14:321–358, 1992.

John C. Mitchell. Polymorphic type inference and containment.
Information and Computation, 76:211–249, 1988.

Martin Odersky and Konstantin Läufer. Putting type annotations to
work. In POPL, 1996.

Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored
local type inference. In POPL, pages 41–53, 2001.

Simon Peyton Jones and Mark Shields. Lexically scoped type
variables. Technical report, Microsoft Research, 2004.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types.
J. Functional Programming, 17(1):1–82, 2007.

Frank Pfenning. Church and Curry: Combining intrinsic and ex-
trinsic typing. In Reasoning in Simple Type Theory: Festschrift
in Honor of Peter B. Andrews on His 70th Birthday. College
Publications, 2008.

Brigitte Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitutions. In
POPL, pages 371–382, 2008.

Benjamin C. Pierce and David N. Turner. Local type inference.
ACM Trans. Prog. Lang. Sys., 22:1–44, 2000.

Didier Rémy. Extension of ML type system with a sorted equa-
tional theory on types. Research Report 1766, INRIA, 1992.

Didier Rémy and Boris Yakobowski. From ML to MLF: graphic
type constraints with efficient type inference. In ICFP, pages
63–74, 2008.

Robert J. Simmons. Structural focalization. arXiv:1109.6273v4
[cs.LO], 2012.

Jerzy Tiuryn and Paweł Urzyczyn. The subtyping problem for
second-order types is undecidable. In LICS, 1996.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton
Jones. Boxy types: inference for higher-rank types and impred-
icativity. In ICFP, pages 251–262, 2006.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton
Jones. FPH: First-class polymorphism for Haskell. In ICFP,
pages 295–306, 2008.

Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let
should not be generalised. In Workshop on Types in Language
Design and Impl. (TLDI ’10), pages 39–50, 2010.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework: The propositional
fragment. In Types for Proofs and Programs, pages 355–377.
Springer-Verlag LNCS 3085, 2004.

J. B. Wells. Typability and type checking in System F are equiv-
alent and undecidable. Annals of Pure and Applied Logic, 98:
111–156, 1999.

Hongwei Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998.

13

http://www.cs.queensu.ca/~jana/papers/poly/
http://www.cs.queensu.ca/~jana/papers/poly/
http://people.cs.uu.nl/andres/LambdaPi/index.html
http://people.cs.uu.nl/andres/LambdaPi/index.html
http://arxiv.org/abs/1109.6273v4
http://arxiv.org/abs/1109.6273v4

	Introduction
	Declarative Type System
	Typing in Detail
	Bidirectional Typing and Type Assignment System F
	Robustness of Typing

	Algorithmic Type System
	Algorithmic Contexts
	Algorithmic Subtyping
	Instantiation
	Algorithmic Typing

	Context Extension
	Context Application

	Decidability
	Decidability of Instantiation
	Decidability of Algorithmic Subtyping
	Decidability of Algorithmic Typing

	Soundness
	Completeness
	Design Variations
	Related Work and Discussion
	Type Inference for System F
	Other Type Systems
	Our Algorithm

