Complete and Easy Bidirectional Typechecking for Higher-Rank Polymorphism

Jana Dunfield Neelakantan R. Krishnaswami
Max Planck Institute for Software Systems
Kaiserslautern and Saarbrücken, Germany
jd169@queensu.ca nk480@cl.cam.ac.uk

Abstract
Bidirectional typechecking, in which terms either synthesize a type or are checked against a known type, has become popular for its scalability (unlike Damas-Milner type inference, bidirectional typing remains decidable even for very expressive type systems), its error reporting, and its relative ease of implementation. Following design principles from proof theory, bidirectional typing can be applied to many type constructs. The principles underlying a bidirectional approach to polymorphism, however, are less obvious. We give a declarative, bidirectional account of higher-rank polymorphism, grounded in proof theory; this calculus enjoys many properties such as η-reduction and predictability of annotations. We give an algorithm for implementing the declarative system; our algorithm is remarkably simple and well-behaved, despite being both sound and complete.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features—polymorphism

Keywords bidirectional typechecking, higher-rank polymorphism

1. Introduction
Bidirectional typechecking (Pierce and Turner 2000) has become one of the most popular techniques for implementing typecheckers in new languages. This technique has been used for dependent types (Coquand 1996; Abel et al. 2008; Lindgren et al. 2012); subtyping (Pierce and Turner 2000); intersection, union, indexed and refinement types (Xi 1998; Davies and Pfenning 2000; Dunfield and Pfenning 2004); termination checking (Abel 2004); higher-rank polymorphism (Peyton Jones et al. 2007; Dunfield 2009); refinement types for LF (Lovas 2010); contextual modal types (Pientka 2008); compiler intermediate representations (Chlipala et al. 2005); and object-oriented languages including C# (Bierman et al. 2007) and Scala (Odersky et al. 2001). As can be seen, it scales well to advanced type systems; moreover, it is easy to implement, and yields relatively high-quality error messages (Peyton Jones et al. 2007).

However, the theoretical foundation of bidirectional typechecking has lagged behind its application. As shown by Watkins et al. (2004), bidirectional typechecking can be understood in terms of the normalization of intuitionistic type theory, in which normal forms correspond to the checking mode of bidirectional typechecking, and neutral (or atomic) terms correspond to the synthesis mode. This enables a proof of the elegant property that type annotations are only necessary at reducible expressions, and that normal forms need no annotations at all. The benefit of the proof-theoretic view is that it gives a simple and easy-to-understand declarative account of where type annotations are necessary, without reference to the details of the typechecking algorithm.

While the proof-theoretic account of bidirectional typechecking has been scaled up as far as type refinements and intersection and union types (Pfenning 2008), as yet there has been no completely satisfactory account of how to extend the proof-theoretic approach to handle polymorphism. This is especially vexing, since the ability of bidirectional algorithms to gracefully accommodate polymorphism (even higher-rank polymorphism) has been one of their chief attractions.

In this paper, we extend the proof-theoretic account of bidirectional typechecking to full higher-rank polymorphism (i.e., predicative System F), and consequently show that bidirectional typechecking is not merely sound with respect to the declarative semantics, but also that it is complete. Better still, the algorithm we give for doing so is extraordinarily simple.

First, as a specification of type checking, we give a declarative bidirectional type system which guesses all quantifier instantiations. This calculus is a small but significant contribution of this paper, since it possesses desirable properties, such as the preservation of typability under η-reduction, that are missing from the type assignment version of System F. Furthermore, we can use the bidirectional character of our declarative calculus to show a number of refactoring theorems, enabling us to precisely characterize what sorts of substitutions (and reverse substitutions) preserve typability, where type annotations are needed, and when programmers may safely delete type annotations.

Then, we give a bidirectional algorithm that always finds corresponding instantiations. As a consequence of completeness, we can show that our algorithm never needs explicit type applications, and that type annotations are only required for polymorphic, reducible expressions—which, in practice, means that only let-bindings of functions at polymorphic type need type annotations; no other expressions need annotations.

Our algorithm is both simple to understand and simple to implement. The key data structure is an ordered context containing all substitutions, including type variables, term variables, and existential variables denoting partial type information. By maintaining order, we are able to easily manage scope information, which is particu-
Lemmas and proofs. Proofs of the main results, as well as statements of all lemmas (and their proofs), can be found in the appendix, available at www.cs.queensu.ca/~jana/papers/bidir/.

2. Declarative Type System

In order to show that our algorithm is sound and complete, we need to give a declarative type system to serve as the specification for our algorithm. Surprisingly, it turns out that finding the correct declarative system to use as a specification is itself an interesting problem!

Much work on type inference for higher-rank polymorphism takes the type assignment variant of System F as a specification of type inference. Unfortunately, under these rules typing is not stable under \(\eta\)-reductions. For example, suppose \(f\) is a variable of type \(\forall \alpha. \alpha \rightarrow \alpha\). Then the term \(\lambda x. f x\) can be ascribed the type \(\forall \alpha. \alpha \rightarrow \alpha\) between the \(f\) and the \(x\). But the \(\eta\)-reduce \(f\) cannot be ascribed the type \(\forall \alpha\), because the quantifier cannot be instantiated until after \(f\) has been applied. This is especially unfortunate in pure languages like Haskell, where the \(\eta\) law is a valid program equality.

Therefore, we do not use the type assignment version of System F as our declarative specification of type checking and inference. Instead, we give a declarative, bidirectional system that guesses type instantiations arbitrarily deeply within types. As a result, \(1\) cannot be ascribed the type \(\forall \alpha\), which organizes and simplifies the soundness and completeness proofs of the algorithmic system with respect to the declarative one.

Contributions. We make the following contributions:

- We give a declarative, bidirectional account of higher-rank polymorphism, grounded strongly in proof theory. This calculus has important properties (such as \(\eta\)-reduction) that the type assignment variant of System F lacks, yet is sound and complete (up to \(\beta\eta\)-equivalence) with respect to System F.

As a result, we can explain where type annotations are needed, where they may be deleted, and why important code transformations are sound, all without reference to the implementation.

- We give a very simple algorithm for implementing the declarative system. Our algorithm does not need any data structure more sophisticated than a list, but can still solve all of the problems which arise in typechecking higher-rank polymorphism without any need for search or backtracking.

- We prove that our algorithm is both sound and complete with respect to our declarative specification of typing. This proof is clearly structured around context extension, a relational notion of information increase, corresponding to the intuition that our algorithm progressively resolves type constraints.

As a result of completeness, programmers may safely "pay no attention to the implementor behind the curtain", and ignore all the algorithmic details of unification and type inference: the algorithm does exactly what the declarative specification says, no more and no less.
the fundamental algorithmic problem in extending bidirectional typechecking to polymorphism is precisely the problem of figuring out what the missing type applications are.

Preserving the η-rule for functions comes at a cost. The subtyping relation induced by instantiation is undesirable for impredicative polymorphism [Tiuryn and Urzyczyn 1996; Chrzaszcz 1998]. Since we want a complete typechecking algorithm, we consequently restrict our system to predicative polymorphism, where polymorphic quantifiers can be instantiated only with monomorphic types. We discuss alternatives in Section 2.3.

2.1 Typing in Detail

Language overview. In Figure 1, we give the grammar for our language. We have a unit term (\(\)) , variables \(x\), lambda-abstraction \(\lambda x.e\), application \(e_1 e_2\), and type annotation \(e : A\). We write A, B, C for types (Figure 2); types are the unit type \(\text{()}\), type variables \(\alpha\), universal quantification \(\forall \alpha.A\), and functions \(A \to B\). Monotypes \(\tau\) and \(\sigma\) are the same, less the universal quantifier. Contexts \(\Psi\) are lists of type variable declarations, and term variables \(x : A\), with the expected well-formedness condition. (We give a single-context formulation mixing type and term hypotheses to simplify the presentation.)

Checking, synthesis, and application. Our type system has three main judgments, given in Figure 3. The checking judgment \(\Psi \vdash e \leftarrow A\) asserts that \(e\) checks against the type \(A\) in the context \(\Psi\). The synthesis judgment \(\Psi \vdash e \Rightarrow A\) says that we can synthesize the type \(A\) for \(e\) in the context \(\Psi\). Finally, an application judgment \(\Psi \vdash A \cdot e \Rightarrow C\) says that if \(A\) (possibly polymorphic) function of type \(A\) is applied to argument \(e\), then the whole application synthesizes \(C\) for the whole application.

As is standard in the proof-theoretic presentations of bidirectional typechecking, each of the introduction forms in our calculus has a corresponding checking rule. The DeclI rule says that \(\Psi \vdash A\) checks against the unit type \(\text{()}\). The Decl-\(\Rightarrow\) rule says that \(\lambda x.e\) checks against the function type \(A \to B\) if \(e\) checks against \(B\) with the additional hypothesis that \(x\) has type \(A\). The Decl\(\rightarrow\) rule says that \(e\) has type \(\forall \alpha.A\) if \(e\) has type \(A\) in a context extended with a fresh \(\alpha\). Sums, products and recursive types can be added similarly (we leave them out for simplicity). Rule Decl\(\Rightarrow\) mediates between

\[\Psi \vdash (\forall \beta. \beta \to \beta) \to I \Rightarrow I \to I \quad \text{Decl}\(\Rightarrow\)\]

\[\Psi \vdash (\forall \alpha. (\forall \beta. \beta \to \beta) \to \alpha \to \alpha) \cdot x \Rightarrow I \to I \quad \text{Decl\(\Rightarrow\)}\]

In the minimal proof-theoretic formulation of bidirectionality [Davies and Pfenning 2000; Dunfield and Pfenning 2003], introduction forms are checked and elimination forms synthesize, full stop. Even \(\text{()}\) cannot synthesize its type! Actual bidirectional typecheckers tend to take a more liberal view, adding synthesis rules for at least some introduction forms. To show that our system can accommodate these kinds of extensions, we add the DeclI\(\Rightarrow\) and Decl-\(\Rightarrow\) rules, which synthesize a unit type for \(\text{()}\) and a monomorphic function type for lambda expressions \(\lambda x.e\). We examine other variations, including a purist bidirectional no-inference alternative, and a liberal Damas-Milner alternative, in Section 3.

Instantiating types. We express the fact that one type is a polymorphic generalization of another by means of the subtyping judgment given in Figure 2. One important aspect of the judgment is that types are compared relative to a context of free variables. This simplifies our rules, by letting us eliminate the awkward side conditions on sets of free variables that plague many presentations. Most of the subtyping judgment is typical: it proceeds structurally on types, with a contravariant twist for the arrow; all the real ac-

\[\Psi \vdash e \Leftarrow A\] \(\text{Under context } \Psi, e \text{ checks against input type } A\)

\[\Psi \vdash e \Rightarrow A\] \(\text{Under context } \Psi, e \text{ synthesizes output type } A\)

\[\Psi \vdash A \bullet e \Rightarrow C\] \(\text{Under context } \Psi, \text{ applying a function of type } A \to e \text{ synthesizes type } C\)
tion is contained within the two subtyping rules for the universal quantifier.

The right rule, \(\leq \forall R \), says that if \(A \) is a subtype of \(B \), then every \(\forall \beta \) term is a subtype of \(B \). This is what makes these rules only a declarative specification: \(\leq \forall L \) and \(\leq \forall R \) are orthogonal; \(\leq \forall L \) guesses the instantiation \(\tau \) “out of thin air”, and so the rules do not directly yield an algorithm.

The right rule \(\leq \forall R \) is a little more subtle. It says that if \(A \) is a subtype of \(\forall \beta B \), if we can show that \(A \) is a subtype of \(B \) in a context extended with \(\beta \). There are two intuitions for this rule, one semantic, the other proof-theoretic. The semantic intuition is that since \(\forall \beta B \) is a subtype of \(\forall \beta B \) for any \(\forall \beta \), we need \(A \) to be a subtype of \(\forall \beta B \) for any \(\forall \beta \). Then, if we can show that \(A \) is a subtype of \(B \), with a free variable \(\beta \), we can appeal to a substitution principle for subtyping to conclude that for all \(\forall \beta \), type \(A \) is a subtype of \(\forall \beta B \).

The proof-theoretic intuition is simpler. The rules \(\leq \forall L \) and \(\leq \forall R \) are just the left and right rules for universal quantification in the sequent calculus. Type inference is a form of theorem prov-

\[\vdash \neg \forall \text{ is a subtype of } \neg \forall \] by \(\forall \text{ and } \neg \forall \text{ are admissible properties (in sequent calculus terms, they are the identity and cut-admissibility properties). The absence of these rules (particularly, the absence of tran-

The left rule, \(\leq \forall L \), says that we can infer that \(A \) is a subtype of \(\forall \beta B \) if we can show that \(A \) is a subtype of \(B \) in a context extended with \(\beta \). This is what makes these rules only a declarative specification: \(\leq \forall L \) guesses the instantiation \(\tau \) “out of thin air”, and so the rules do not directly yield an algorithm.

Theorem 2 (Soundness of Bidirectional Typing). If \(\Psi \vdash e : A \) then there exists \(e' \) such that \(\Psi \vdash e' \Rightarrow A \) and \([e'] = e \).

Theorem 2 (Soundness of Bidirectional Typing). If \(\Psi \vdash e : A \) then there exists \(e' \) such that \(\Psi \vdash e' \Rightarrow A \) and \([e'] = e \).

Theorem 3 (Substitution). Assume \(\Psi \vdash e \Rightarrow A \).

Substitution is stated in terms of synthesizing expressions, since any checking term can be turned into a synthesizing term by adding an annotation. Dually, inverse substitution allows extracting any checking term into a let-binding with a type annotation. However, doing so indiscriminately can lead to a term with many redundant annotations, and so we also characterize when annotations can safely be removed:

Theorem 5 (Annotation Removal). We have that:

- If \(\Psi \vdash (\lambda x. e) \Rightarrow A \) then \(\Psi \vdash \lambda x. e \Rightarrow C \).
- If \(\Psi \vdash (\lambda x. e) \Rightarrow A \) then \(\Psi \vdash \lambda x. e \Rightarrow C \).
- If \(\Psi \vdash e_1 e_2 \Rightarrow A \) then \(\Psi \vdash e_1 \Rightarrow e_2 \Rightarrow C \).
- If \(\Psi \vdash (\lambda x. C) \Rightarrow A \) then \(\Psi \vdash \lambda x. C \Rightarrow B \) and \(\Psi \vdash B \Rightarrow A \).

Note the absence of generalization in this rule.

2.2 Bidirectional Typing and Type Assignment System F

Since our declarative system is (quite consciously) not the usual type-assignment presentation of System F, a natural question is to ask what the relationship is. Luckily, the two systems are quite closely related: we can show that if a term is well-typed in our type assignment system, it is always possible to add type annotations to make the term well-typed in the bidirectional system; conversely, if the bidirectional system types a term, then some \(\beta \eta \)-equal term is well-typed under the type assignment system.

We formalize these properties with the following theorems, taking \([e] \) to be the erasure of all type annotations from a term. We give the rules for our type assignment System F in Figure 5.

\[\Psi \vdash \begin{array}{c} (x : A) \times \Psi \vdash x : A \text{ AVar} \Psi \vdash (\psi) : 1 \text{ AUnit} \\ \Psi, x : A \vdash e : B \text{ A→L} \Psi \vdash e_1 : A \rightarrow B \text{ \rightarrow A→L} \Psi \vdash e_2 : A \rightarrow B \text{ A→L} \end{array} \]

\[\begin{array}{c} \Psi, \alpha \vdash e : A \text{ A\→L} \Psi \vdash c : \forall \alpha. A \text{ A\→L} \Psi \vdash \tau \text{ A\→L} \end{array} \]

Figure 5. Type assignment rules for predicative System F

<table>
<thead>
<tr>
<th>\Psi \vdash e : A</th>
<th>Under context (\Psi), (e) has type (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x : A) \in \Psi</td>
<td>AVar \text{ AVar} \text{ AVar}</td>
</tr>
<tr>
<td>\Psi \vdash x : A</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
<tr>
<td>\Psi, x : A \vdash e : B</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
<tr>
<td>\Psi \vdash e_1 : A \rightarrow B</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
<tr>
<td>\Psi \vdash e_2 : A \rightarrow B</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
<tr>
<td>\Psi, \alpha \vdash e : A</td>
<td>A→E \text{ A→E} \text{ A→E}</td>
</tr>
<tr>
<td>\Psi \vdash c : \forall \alpha. A \rightarrow B</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
<tr>
<td>\Psi \vdash \tau \rightarrow \forall \alpha. A \rightarrow B</td>
<td>A→L \text{ A→L} \text{ A→L}</td>
</tr>
</tbody>
</table>

2 The number of annotations can be reduced still further; see Section 5 for how to infer the types of all terms typable under Damas-Milner.

3 The generalization of Theorem 2 to any synthesizing term—\(\text{not just } (e : A) \)—does not hold. For example, given \(e = \lambda x. y \) and \(e' = x = x \) and \(\Psi \vdash \lambda y. y \rightarrow 1 \rightarrow 1 \) and \(\Psi \vdash \lambda y. y \rightarrow C_1 \rightarrow C_2 \), we cannot derive \(\Psi, x : 1 \rightarrow 1 \vdash x \rightarrow C_1 \rightarrow C_2 \) unless \(C_1 \) and \(C_2 \) happen to be 1.
• If $\Psi \vdash ((e_1 e_2) : A) \Rightarrow A$ then $\Psi \vdash e_1 e_2 \Rightarrow B$ and $\Psi \vdash B \leq A$.
• If $\Psi \vdash ((e : B) : A) \Rightarrow A$ then $\Psi \vdash (e : B) \Rightarrow B$ and $\Psi \vdash B \leq A$.
• If $\Psi \vdash ((\lambda x. e) : \sigma \Rightarrow \tau) \Rightarrow \sigma \Rightarrow \tau$ then $\Psi \vdash \lambda x. e \Rightarrow \sigma \Rightarrow \tau$.

We can also show that the expected η-laws hold:

Theorem 6 (Soundness of Eta).
If $\Psi \vdash \lambda x. e \leftarrow A$ and $x \not\in \text{FV}(e)$, then $\Psi \vdash e \leftarrow A$.

3. Algorithmic Type System

Our declarative bidirectional system is a fine specification of how typing should behave, but it enjoys guessing entirely too much: the typing rules $\text{Decl}v\text{App}$ and $\text{Decl}−l\Rightarrow$ could only be implemented with the help of an oracle. The declarative subtyping rule \leq_{VL} has the same problem.

The first step in building our algorithmic bidirectional system will be to modify the three oracle rules so that, instead of guessing a type, they defer the choice by creating an existential type variable, to be solved later. However, our existential variables are not exactly unification variables; they are organized into ordered algorithmic contexts (Section 3.1), which define the variables’ scope and controls the free variables of their solutions.

The algorithmic type system consists of subtyping rules (Figure 9) discussed in Section 3.2, instantiation rules (Figure 10) discussed in Section 3.3, and typing rules (Figure 11) discussed in Section 3.4. All of the rules manipulate the contexts in a way consistent with context extension, a metatheoretic notion described in Section 4 context extension is key in stating and proving decidability, soundness and completeness.

3.1 Algorithmic Contexts

A notion of (ordered) algorithmic context is central to our approach. Like declarative contexts Ψ, algorithmic contexts Γ (see Figure 6) we also use the letters Δ and Θ contain declarations of universal types α and term variable typings $x : A$. Unlike declarative contexts, algorithmic contexts also contain declarations of existential type variables $\hat{\alpha}$, which are either unsolved (and we simply write $\hat{\alpha}$) or solved to some monotype $(\hat{\alpha} = \tau)$. Finally, for scoping reasons that will become clear when we examine the rules, algorithmic contexts also include a marker \triangleright_{α}.

Complete contexts Ω are the same as contexts, except that they cannot have unsolved variables.

The well-formedness rules for contexts (Figure 7) do not only prohibit duplicate declarations, but also enforce order: if $\Gamma = (\Gamma_1, x : A, \Gamma_R)$, the type A must be well-formed under Γ_1; it cannot refer to variables α or $\hat{\alpha}$ in Γ_R. Similarly, if $\Gamma = (\Gamma_1, \hat{\alpha} = \tau, \Gamma_R)$, the solution type τ must be well-formed under Γ_1. Consequently, circularity is ruled out: $(\hat{\alpha} = \beta, \beta = \hat{\alpha})$ is not well-formed.

<table>
<thead>
<tr>
<th>Types</th>
<th>$\mathcal{A}, \mathcal{B}, \mathcal{C}$::= 1</th>
<th>α</th>
<th>$\forall \alpha. \mathcal{A} \rightarrow \mathcal{B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotypes</td>
<td>τ, σ ::= 1</td>
<td>α</td>
<td>$\forall \alpha. \tau \rightarrow \sigma$</td>
</tr>
<tr>
<td>Contexts</td>
<td>Γ, Δ, Θ ::= \cdot</td>
<td>Γ, α</td>
<td>$\Gamma, x : \mathcal{A}$</td>
</tr>
<tr>
<td>Complete Contexts</td>
<td>Ω ::= \cdot</td>
<td>α, τ</td>
<td>$\Omega, x : \mathcal{A}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega, \hat{\alpha} = \tau$</td>
<td>$\Omega, \triangleright_{\alpha}$</td>
</tr>
</tbody>
</table>

Figure 6. Syntax of types, monotypes, and contexts in the algorithmic system

\[
\Gamma \vdash A \quad \text{Under context } \Gamma, \text{type } A \text{ is well-formed} \\
\Gamma[\alpha] \vdash \alpha \quad \text{UvarWF} \\
\Gamma \vdash 1 \quad \text{UnitWF} \\
\Gamma \vdash \alpha \quad \text{ArrowWF} \\
\Gamma, \alpha \vdash \mathcal{A} \quad \text{ForallWF} \\
\Gamma[\alpha] \vdash \alpha \quad \text{EvarWF} \\
\Gamma[\alpha = \tau] \vdash \alpha \quad \text{SolvedEvarWF} \\
\Gamma \text{ctx} \quad \text{Algorithmic context } \Gamma \text{ is well-formed} \\
\text{EmptyCtx} \quad \text{\text{ctx} } \quad \alpha \not\in \text{dom}(\Gamma) \quad \text{UvarCtx} \\
\Gamma \alpha \text{ctx} \quad \Gamma \text{ctx} \quad x \not\in \text{dom}(\Gamma) \quad \text{VarCtx} \\
\Gamma, x : \mathcal{A} \text{ctx} \quad \Gamma, \alpha \text{ctx} \quad \text{EvarCtx} \\
\Gamma, \hat{\alpha} \text{ctx} \quad \hat{\alpha} \not\in \text{dom}(\Gamma) \quad \text{SolvedEvarCtx} \\
\Gamma, \triangleright_{\alpha} \text{ctx} \quad \triangleright_{\alpha} \not\in \text{dom}(\Gamma) \quad \text{MarkerCtx} \\
\]
in rules that do not replace declarations, such as the rules for type well-formedness in Figure 4.

Occasionally, we also need contexts with two ordered holes:

$$\Gamma = \Gamma_0 \left[\Theta_1 | \Theta_2\right]$$

means Γ has the form $(\Gamma_1, \Theta_1, \Gamma_2, \Theta_2, \Gamma_3)$

Input and output contexts. Our declarative system used a subtyping judgment and three typing judgments: checking, synthesis, and application. Our algorithmic system includes similar judgment forms, except that we replace the declarative context Ψ with an algorithmic context Γ (the *input context*), and add an *output context* Δ written after a backwards turnstile: $\Gamma \vdash \alpha <: B \vdash \Delta$ for subtyping, $\Gamma \vdash e \in A \vdash \Delta$ for checking, and so on. Unsolved existential variables get solved when they are compared against a type. For example, $\alpha <: \beta$ would lead to replacing the unsolved declaration α with $\alpha = \beta$ in the context (provided β is declared to the left of α). Input contexts thus evolve into output contexts that are “more solved”.

The differences between the declarative and algorithmic systems, particularly manipulations of existential variables, are most prominent in the subtyping rules, so we discuss those first.

3.2 Algorithmic Subtyping

The first four subtyping rules in Figure 9 do not directly manipulate the context, but do illustrate how contexts are propagated.

Rules $\llangle\text{Var}\rrangle$ and $\llangle\text{Unit}\rrangle$ are reflexive rules; neither involves existential variables, so the output context in the conclusion is the same as the input context Γ. Rule $\llangle\text{Exvar}\rrangle$ concludes that any unsolved existential variable is a subtype of itself, but this gives no clue as to how to solve that existential, so the output context is similarly unchanged.

Rule $\llangle\text{->}\rrangle$ is a bit more interesting: it has two premises, where the first premise has an output context Θ, which is used as the input context to the second (subtyping) premise; the second premise has output context Δ, which is the output of the conclusion. Note that in $\llangle\text{->}\rrangle$’s second premise, we do not simply check that $\Delta_2 \llangle\text{<:}\rrangle B_2$, but apply the first premise’s output Θ to those types:

$$\Theta \vdash [\Theta]A_2 \llangle\text{<:}\rrangle [\Theta]B_2 \vdash \Delta$$

This maintains a general invariant: whenever we try to derive $\Gamma \vdash A <: B \vdash \Delta$, the types A and B are already fully applied under Γ. That is, they contain no existential variables already solved in Γ. On balance, this invariant simplifies the system: the extra applications of Θ in $\llangle\text{<:}\rrangle$ avoid the need for extra rules for replacing solved variables with their solutions.

All the rules discussed so far have been natural extensions of the declarative rules, with $\llangle\text{Exvar}\rrangle$ being a logical way to extend reflexivity to types containing existentials. Rule $\llangle\text{<:}\rrangle$ diverges significantly from the corresponding declarative rule $\llangle\text{<:}\rrangle$. Instead of replacing the type variable α with a guessed τ, rule $\llangle\text{Exvar}\rrangle$ replaces α with a new existential variable $\bar{\alpha}$, which adds to the premise’s input context Γ. $\llangle\text{<:}\rrangle$ is a *scope marker*, introduced by articulation (the step of solving $\bar{\alpha}$ to $\bar{\alpha}_1 \rightarrow \bar{\alpha}_2$, discussed in the next subsection). The output context Δ allows for some additional (existential) variables to appear after $\bar{\alpha}$, in a trailing context Θ. These existential variables could mention $\bar{\alpha}$, or (if they appear between $\bar{\alpha}$ and $\bar{\alpha}$) could be mentioned by $\bar{\alpha}$; since $\bar{\alpha}$ goes out of scope in the conclusion, we drop such “trailing existentials” from the concluding output context, which is simply $\bar{\alpha}$.2

2 Rule $\llangle\text{<:}\rrangle$ enforces that the function domains B_1, A_1 are compared first: Θ is an input to the second premise. But this is an arbitrary choice; the system would behave the same if we chose to check the codomains first.

3 In our setting, it is safe to drop trailing existentials that are unsolved: such variables are unconstrained, and we can treat them as having been instantiated to any well-formed type, such as 1. In a dependently typed setting, we would need to check that at least one solution exists.

Rule $\llangle\text{<:}\rrangle$ is fairly close to the declarative version, but for scoping reasons similar to $\llangle\text{<:}\rrangle$, it also drops Θ, the part of the context to the right of the universal type variable α. (Articulation makes no sense for universal variables, so α can act as its own marker.)

The last two rules are essential: they derive subtypings with an unsolved existential on one side, and an arbitrary type on the other. Rule $\llangle\text{InstiateL}\rrangle$ derives $\alpha <: A$, and $\llangle\text{InstiateR}\rrangle$ derives $A <: \bar{\alpha}$. These rules do not directly change the output context; they just do an “occurs check” $\bar{\alpha} \notin FV(A)$ to avoid circularity, and leave all the real work to the instantiation judgment.

3.3 Instantiation

Two almost-symmetric judgments instantiate unsolved existential variables: $\Gamma \vdash \bar{\alpha} := \Sigma A \vdash \Delta$ and $\Gamma \vdash A \llangle\text{<:}\rrangle \bar{\alpha} \vdash \Delta$. The symbol $\llangle\text{<:}\rrangle$ assigns a variable to its left, but also subtyping: the subtyping rule $\llangle\text{InstiateL}\rrangle$ moves from instantiation $\bar{\alpha} := \Sigma A$, read “instantiate $\bar{\alpha}$ to a subtype of A”, to subtyping $\alpha <: A$. The symmetric judgment $A \llangle\text{<:}\rrangle \bar{\alpha}$ can be read “instantiate $\bar{\alpha}$ to a supertype of A”.

The first instantiation rule in Figure 10 $\llangle\text{InstLSolve}\rrangle$, sets $\bar{\alpha}$ to τ in the output context: its conclusion is $\Gamma,\bar{\alpha},\Gamma \vdash \alpha \llangle\text{<:}\rrangle \tau \vdash \Gamma,\bar{\alpha},\Gamma^\prime$. The premise $\Gamma \vdash \tau$ checks that the monotype τ is well-formed under the prefix context Γ. To check the soundness of this rule, we can take the conclusion $\bar{\alpha} := \tau$, substitute our new solution for $\bar{\alpha}$, and check that the resulting subtyping makes sense. Since $\Gamma,\bar{\alpha} = \tau, \Gamma^\prime[\bar{\alpha} = \tau$, we ask whether $\tau <: \tau$ makes sense, and of course it does through reflexivity.

Rule $\llangle\text{InstLArr}\rrangle$ can be applied when the type A in $\bar{\alpha} := \Sigma A$ has the form $A_1 \rightarrow A_2$. It follows that $\bar{\alpha}$’s solution must have the form $\cdots \rightarrow \cdots$, so we “articulate” $\bar{\alpha}$, giving it the solution $\bar{\alpha}_1 \rightarrow \bar{\alpha}_2$ where the $\bar{\alpha}_2$ are fresh existentials. We insert their declarations just before $\bar{\alpha}$—they must be to the left of $\bar{\alpha}$ so they can be mentioned in its solution, but they must be close enough to $\bar{\alpha}$ that they appear to the right of the marker $\bar{\alpha}$ introduced by $\llangle\text{<:}\rrangle$. Note that the first premise $A_1, \bar{\alpha}_1$ switches to the other instantiation judgment. Also, the second premise $\Theta \vdash \bar{\alpha}_2 := \Sigma \Theta A_2 \vdash \Delta$ applies Θ to A_2, to apply any solutions found in the first premise.

The other rules are somewhat subtle. Rule $\llangle\text{InstLReach}\rrangle$ derives

$$\Gamma[\bar{\alpha}]B \vdash \alpha := \bar{\alpha} \llangle\text{<:}\rrangle \bar{\alpha}_2 \vdash \Gamma[\bar{\alpha}]B = \bar{\alpha}$$

where, as explained in Section 3.1, $\Gamma[\bar{\alpha}]B$ denotes a context where some unsolved existential variable $\bar{\alpha}$ is declared to the left of $\bar{\alpha}$. In this situation, we cannot use $\llangle\text{InstLSolve}\rrangle$ to set $\bar{\alpha}$ to $\bar{\alpha}_2$ because $\bar{\alpha}_2$ is not well-formed under the part of the context to the left of $\bar{\alpha}$. Instead, we set $\bar{\alpha}_2$ to $\bar{\alpha}$.

Rule $\llangle\text{InstRArr}\rrangle$ is the instantiation version of $\llangle\text{<:}\rrangle$. Since our polymorphism is predicative, we can’t assign $\forall B$ to $\bar{\alpha}$, but we can decompose the quantifier in the same way that subtyping does.

The rules for the second judgment $A \llangle\text{<:}\rrangle \bar{\alpha}$ are similar: $\llangle\text{InstRSolve}\rrangle$, $\llangle\text{InstRReach}\rrangle$ and $\llangle\text{InstRArr}\rrangle$ are direct analogues of the first three $\llangle\text{<:}\rrangle A$ rules, and $\llangle\text{InstRArr}\rrangle$ is the instantiation version of $\llangle\text{<:}\rrangle$.3

Example. The interplay between instantiation and quantifiers is delicate. For example, consider the problem of instantiating $\bar{\beta}$ to a supertype of $\forall \alpha. \alpha$. In this case, the type $\forall \alpha. \alpha$ is so polymorphic that it places no constraints at all on $\bar{\beta}$. Therefore, it seems we are at risk of being forced to make a necessarily incomplete choice—but the instantiation judgment’s ability to “change its mind” about which variable to instantiate saves the day.
Under input context Γ, type A is a subtype of B, with output context Δ

\[
\Gamma \vdash A <: B \vdash \Delta
\]

Under input context Γ, instantiate α such that $\alpha <: A$, with output context Δ

\[
\Gamma \vdash \alpha \vdash \alpha \vdash \Delta
\]

Under input context Γ, e checks against input type A, with output context Δ

\[
\Gamma \vdash e \check{\vdash} A \vdash \Delta
\]

Under input context Γ, e synthesizes output type A, with output context Δ

\[
\Gamma \vdash A \bullet e \check{\Rightarrow} C \vdash \Delta
\]
Here, we introduce a new variable $\hat{\alpha}$ to go under the universal quantifier; then, instantiation applies InstRReach to set $\hat{\alpha}$, not β. Hence, $\hat{\beta}$ is, correctly, not constrained by this subtyping problem.

Thus, instantiation does not necessarily solve any existential variable. However, instantiation to any monotone τ will solve an existential variable—that is, for input context Γ and output Δ, we have $\text{unsolved}(\Delta) < \text{unsolved}(\Gamma)$. This will be critical for decidability of subtyping (Section 5.2).

Another example. In Figure 12 we show a derivation that uses quantifier instantiation (InstRAll), articulation (InstRArr) and “reaching” (InstRLreach), as well as InstRSolve. In the output context $\Delta = \Gamma[\beta_2, \beta_1 = \beta_2, \hat{\beta} = \beta_1 = \beta_2]$, note that $\hat{\alpha}$ is solved to β_1, and $\hat{\beta}$ is solved to β_1. Thus, $\Delta[\hat{\alpha} = \beta_1 = \beta_1]$, which is a monomorphic approximation of $\forall \beta. \beta \rightarrow \beta$.

3.4 Algorithmic Typing

We now turn to the typing rules in Figure 11. Many of these rules follow the declarative rules, with extra context machinery. Rule Var uses an assumption $x : \Lambda$ without generating any new information, so the output context in its conclusion $\Gamma \vdash x : \Lambda \rightarrow \Gamma$ is just the input context. Rule Sub's first premise has an output context Θ used as the input context to the second (subtyping) premise, which has output context Δ, the output of the conclusion. Rule Anne does not directly change the context, but the derivation of its premise might include the use of some rule that does, so we propagate the premise’s output context Δ to the conclusion.

Unit and \forall. In the second row of typing rules, II and IIIme generate no new information and simply propagate the input context.

\forall is more interesting: Like the declarative rule $\text{Decl}l/I$, it adds a universal type variable α to the (input) context. The output context of the premise $\Gamma, \alpha \vdash e : \Lambda \rightarrow \Delta, \alpha, \Theta$ allows for some additional (existential) variables to appear after α, in a trailing context Θ. These existential variables could depend on α; since α goes out of scope in the conclusion, we must drop them from the concluding output context, which is just Δ: the part of the premise’s output context that cannot depend on α.

The application-judgment rule App serves a similar purpose to the subtyping rule $\because \text{Inl}$, but does not place a marker before $\hat{\alpha}$: the variable $\hat{\alpha}$ may appear in the output type C, so $\hat{\alpha}$ must survive in the output context Δ.

Functions. In the third row of typing rules, rule $\because \text{II}$ follows the same scheme: the declarations Θ following $x : \Lambda$ are dropped in the conclusion’s output context.

Rule $\because \text{II}$ corresponds to $\text{Decl}l/I$, one of the guessing rules, so we create new existential variables $\hat{\alpha}$ (for the function domain) and $\hat{\beta}$ (for the codomain) and check the function body against β. As in App, we do not place a marker before $\hat{\alpha}$, because $\hat{\alpha}$ and $\hat{\beta}$ appear in the output type $(\lambda x. e \Rightarrow \hat{\alpha} \rightarrow \hat{\beta})$.

Rule $\because \text{E}$ is the expected analogue of $\text{Decl}l/E$; like other rules with two premises, it applies the intermediate context Θ.

On the last row of typing rules, App derives $\hat{\alpha} \cdot e \Rightarrow \hat{\alpha} \rightarrow \hat{\beta}$, where $\hat{\alpha}$ is unsolved in the input context. Here we have an application judgment, which is supposed to synthesize a type τ for an application $e_1 e$ where e_1 has type $\hat{\alpha}$. We know that e_1 should have function type; similarly to $\text{InstLArr}/\text{InstRArr}$, we introduce $\hat{\alpha}_1$ and $\hat{\beta}_1$ and add $\hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\beta}_1$ to the context. (Rule App is the only algorithmic typing rule that does not correspond to a declarative rule.)

Finally, rule $\because \text{App}$ is analogous to $\text{Decl}l/I$.

4. Context Extension

We motivated the algorithmic rules by saying that they evolved input contexts to output contexts that were “more solved”. To state and prove the metatheoretic results of decidability, soundness and completeness (Sections 5–7), we introduce a context extension judgment $\Gamma \rightarrow \Delta$. This judgment captures a notion of information increase from an input context Γ to an output context Δ, and relates algorithmic contexts Γ and Δ to completely solved extensions Ω, which correspond via the context application described in Section 4.1 to declarative contexts Ψ.

The judgment $\Gamma \rightarrow \Delta$ is read “Γ is extended by Δ” (or Δ extends Γ). Another reading is that Δ carries at least as much information as Γ. A third reading is that $\Gamma \rightarrow \Delta$ means that Δ is entailed by Δ: all positive information derivable from Γ (say, that existential variable $\hat{\alpha}$ is in scope) can also be derived from Δ (which may have more information, say, that $\hat{\alpha}$ is equal to a particular type). This reading is realized by several key lemmas: for instance, extension preserves well-formedness: if $\Gamma \vdash \Lambda$ and $\Gamma \rightarrow \Delta$, then $\Delta \vdash \Lambda$.

The rules derived the context extension judgment (Figure 13) say that the empty context extends the empty context (---ID); a term variable typing $x : \Lambda'$ extends $x : \Lambda$ if applying the extending context Δ to Λ' and Λ yields the same type (---Var); universal type variables must match (---$Uvar$); scope markers must match (---$Marker$); and, existential variables may:

• appear unsolved in both contexts (---$Unsolved$),
• appear solved in both contexts, if applying the extending context Δ makes the solutions τ and τ' equal (---$Solved$),
• get solved by the extending context (---$Solve$),

Extension does not allow solutions to disappear: information must increase. It does allow solutions to change, but only if the change preserves or increases information. The extension

\[(\hat{\alpha}, \hat{\beta} = \hat{\alpha}) \rightarrow (\hat{\alpha} = 1, \hat{\beta} = \hat{\alpha})\]

directly increases information about $\hat{\alpha}$, and indirectly increases information about $\hat{\beta}$. Perhaps more interestingly, the extension

\[(\hat{\alpha} = 1, \hat{\beta} = \hat{\alpha}) \rightarrow (\hat{\alpha} = 1, \hat{\beta} = 1)\]

also holds: while the solution $\hat{\beta}$ in Ω is different, in the sense that Ω contains $\hat{\beta} = 1$ while Δ contains $\hat{\beta} = \hat{\alpha}$, applying Ω to the two solutions gives the same thing: applying Ω to Δ's solution of $\hat{\beta}$ gives $\Omega[\hat{\beta}] = \Omega[\hat{\alpha}] = 1 = 1$, while applying Ω to Ω's own solution for $\hat{\beta}$ also gives 1, because $|\Omega[\hat{\beta}] = 1$.

Extension is quite rigid, however, in two senses. First, if a declaration appears in Γ, it appears in all extensions of Γ. Second, extension preserves order. For example, if $\hat{\beta}$ is declared after $\hat{\alpha}$ in Γ, then $\hat{\beta}$ will also be declared after $\hat{\alpha}$ in every extension of Γ. This holds for every variety of declaration. This rigidity aids in enforcing type variable scoping and dependencies, which are nontrivial in a setting with higher-rank polymorphism.

This combination of rigidity (in demanding that the order of declarations be preserved) with flexibility (in how existential type variable solutions are expressed) manages to satisfy scoping and dependency relations and gives enough room to maneuver in the algorithm and metatheory.

4.1 Context Application

A complete context Ω (Figure 6) has no unsolved variables, so applying it to a (well-formed) type yields a type $[\Omega]A$ with no existen-
This operation of context application depend on the instantiation rules (Figure 10), showing that the typ-

tication judgment always get smaller, even in rule InstLArr: the second premise applies the intermediate context \(\Theta \) to \(A_2 \), but the lemma tells us that this application cannot make \(A_2 \) larger, and \(A_2 \) is smaller than the conclusion’s type \((A_1 \rightarrow A_2)\).

Now we can prove decidability of instantiation, assuming that \(\alpha \) is unsolved in the input context \(\Gamma \), that \(A \) is well-formed under \(\Gamma \), that \(A \) is fully applied (\(|\Gamma|A = A\)), and that \(\alpha \) does not occur in \(A \). These conditions are guaranteed when instantiation is invoked, because the typing rule Sub applies the input substitution, and the subtyping rules apply the substitution where needed—in exactly one place: the second premise of \(\leftarrow \). The proof is based on the (substituted) types in the premises being smaller than the (substituted) type in the conclusion.

Theorem 7 (Decidability of Instantiation).
If \(\Gamma \vdash \alpha \) and \(\Gamma \vdash A \) such that \(|\Gamma|A = A \) and \(\alpha \notin \text{FV}(A) \), then:
1. Either there exists \(\Delta \) such that \(\Gamma_{\alpha} \vdash \alpha \land \exists A \rightarrow \Delta \), or not.
2. Either there exists \(\Delta \) such that \(\Gamma_{\alpha} \vdash \alpha \land \exists \alpha \rightarrow \Delta \), or not.

5.2 Decidability of Algorithmic Subtyping
To prove decidability of the subtyping system in Figure 9 measure judgments \(\Gamma \vdash A \prec B \rightarrow \Delta \) lexicographically by

\((S1) \) the number of \(\forall \) quantifiers in \(A \) and \(B \);

\((S2) \) the number of unsolved existentials in \(\Gamma \);

\((S3) \) \(|\Gamma|A \rightarrow |\Gamma|B| \).

Part (S3) uses contextual size, which penalizes solved variables (\(^\ast \)):

Definition (Contextual Size).

\[
|\Gamma| + |\alpha| = 1
\]

\[
|\Gamma[\alpha]| + |\alpha| = 1
\]

\[
|\Gamma[\alpha[\tau]]| + |\alpha[\tau]| = 1 + |\Gamma[\alpha[\tau]]| + |\Gamma[\alpha]| (*)
\]

\[
|\Gamma[\forall \alpha. A]| = 1 + |\Gamma[\alpha]\vdash A|
\]

\[
|\Gamma[\alpha] \rightarrow B| = 1 + |\Gamma[\alpha] + |\Gamma|B|
\]

For example, if \(\Gamma = (\beta, \alpha \vdash \beta) \) then \(|\Gamma| + |\alpha| = |\Gamma| + 1| + |\Gamma[\alpha]| = 1 + 1 = 2 \), whereas the plain size of \(\alpha \) is simply 1.
The connection between (S1) and (S2) may be clarified by examining rule \(\leftarrow \rightarrow \), whose conclusion says that \(A_1 \rightarrow A_2 \) is a subtype of \(B_1 \rightarrow B_2 \). If \(A_2 \) or \(B_2 \) is polymorphic, then the first premise on \(A_1 \rightarrow A_2 \) is smaller by (S1). Otherwise, the first premise has the same input context as the conclusion, so it has the same (S2), but is smaller by (S3). If \(B_1 \) or \(A_1 \) is polymorphic, then the second premise is smaller by (S1). Otherwise, we use the property that instantiating a monotype always solves an existential:

Lemma (Monotypes Solve Variables). If \(\Gamma \vdash \alpha \triangleq A \rightarrow \Delta \) or \(\Gamma \vdash \cdots \triangleq \Delta \), then if \(|\Gamma|^\alpha = \tau \) and \(\alpha \notin \text{FV}(\Gamma[t]) \), we have \(|\text{unsolved}(\Gamma)| = |\text{unsolved}(\Delta)| + 1\).

A couple of other lemmas are worth mentioning: subtyping on two monotypes cannot increase the number of unsolved existentials, and applying a substitution \(\Gamma \) to a type does not increase the type’s size with respect to \(\Gamma \).

Lemma (Monotype Monotonicity). If \(\Gamma \vdash \tau_1 < \tau_2 < \Delta \) then \(|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Gamma)|\).

Lemma (Substitution Decreases Size). If \(\Gamma \vdash A \) then \(|\Gamma| + |\Gamma[A]| \leq |\Gamma| - |A|\).

5.3 Decidability of Algorithmic Typing

Theorem 8 (Decidability of Subtyping).

Given a context \(\Gamma \) and types \(A, B \) such that \(\Gamma \vdash A \) and \(\Gamma \vdash B \) and \(|\Gamma[A]| = A \) and \(|\Gamma[B]| = B \), it is decidable whether there exists \(\Delta \) such that \(\Gamma \vdash A \triangleleft B \triangleleft \Delta \).

Theorem 9 (Decidability of Typing).

(i) **Synthesis:** Given a context \(\Gamma \) and a term \(e \), it is decidable whether there exist a type \(A \) and a context \(\Delta \) such that \(\Gamma \vdash e \Rightarrow A \triangleleft \Delta \).

(ii) **Checking:** Given a context \(\Gamma \), a term \(e \), and a type \(B \) such that \(\Gamma \vdash B \), it is decidable whether there is a context \(\Delta \) such that \(\Gamma \vdash e \Leftarrow B \triangleleft \Delta \).

(iii) **Application:** Given a context \(\Gamma \), a term \(e \), and a type \(A \) such that \(\Gamma \vdash A \), it is decidable whether there exist a type \(C \) and a context \(\Delta \) such that \(\Gamma \vdash A \bullet e \Rightarrow C \triangleleft \Delta \).

The following induction measure suffices to prove decidability:

\[
\begin{align*}
\Rightarrow & ~ e, \quad \Rightarrow, \quad |\Gamma| + |A| \\
\Rightarrow & ~ e, \quad \Rightarrow, \quad |\Gamma| + |B|
\end{align*}
\]

where \(\{\ldots\} \) denotes lexicographic order, and where (when comparing two judgments typing the same term \(e \)) the synthesis judgment (top line) is considered smaller than the checking judgment (second line), which in turn is considered smaller than the application judgment (bottom line). That is, \(\Rightarrow \ll \ll \Rightarrow \). In Sub, this makes the synthesis premise smaller than the checking conclusion; in \(\rightarrow \text{App} \) and \(\notin \text{App} \), this makes the checking premise smaller than the application conclusion.

Since we have no explicit introduction form for polymorphism, the rule \(\forall \text{ VI} \) has the same term \(e \) in its premise and conclusion, and both the premise and conclusion are the same kind of judgment (checking). The rule \(\forall \text{ App} \) is similar (with application judgments in premise and conclusion). Therefore, given two judgments on the same term, and that are both checking judgments or both application judgments, we use the size of the input type expression—which does get smaller in \(\forall \text{ VI} \) and \(\forall \text{ App} \).

6. Soundness

We want the algorithmic specifications of subtyping and typing to be sound with respect to the declarative specifications. Roughly, given a derivation of an algorithmic judgment with input context \(\Gamma \) and output context \(\Delta \), and some complete context \(\Omega \) that extends \(\Delta \) (which therefore extends \(\Gamma \)), applying \(\Omega \) throughout the given algorithmic judgment should yield a derivable declarative judgment. Let’s make that rough outline concrete for instantiation, showing that the action of the instantiation rules is consistent with declarative subtyping:

Theorem 10 (Instantiation Soundness).

Given \(\Delta \rightarrow \Omega \) and \(|\Gamma|^\Delta = B \) and \(\alpha \notin \text{FV}(\Gamma[t]) \):

1. If \(\Gamma \vdash \alpha \triangleleft B \triangleleft \Delta \) then \(|\Omega|^\Delta = B \triangleleft |\Delta| \).
2. If \(\Gamma \vdash B \triangleleft \Delta \triangleleft \Delta \) then \(|\Omega|^\Delta = B \triangleleft |\Delta| \).

Note that the declarative derivation is under \(|\Omega|^\Delta \), which is \(\Omega \) applied to the algorithmic output context \(\Delta \).

With instantiation soundness, we can prove the expected soundness property for subtyping:

Theorem 11 (Soundness of Algorithmic Subtyping).

If \(\Gamma \vdash A \triangleleft B \triangleleft \Delta \) where \(|\Gamma|^\Delta = A \) and \(|\Gamma|^\Delta = B \) and \(\Delta \rightarrow \Omega \) then \(|\Omega|^\Delta = A \triangleleft B \triangleleft \Omega \).

Finally, knowing that subtyping is sound, we can prove that typing is sound:

Theorem 12 (Soundness of Algorithmic Typing).

(i) If \(\Gamma \vdash e \Rightarrow A \triangleleft \Delta \) then \(|\Omega|^\Delta = A \triangleleft |\Delta| \).

(ii) If \(\Gamma \vdash e \Rightarrow A \triangleleft \Delta \triangleleft \Omega \) then \(|\Omega|^\Delta = A \triangleleft |\Delta| \).

(iii) If \(\Gamma \vdash A \bullet e \Rightarrow C \triangleleft \Delta \) then \(|\Omega|^\Delta = A \bullet e \Rightarrow |\Omega|^\Delta \).

The proofs need several lemmas, including this one:

Lemma (Typing Extension).

If \(\Gamma \vdash e \Rightarrow A \triangleleft \Delta \) or \(\Gamma \vdash e \Rightarrow A \triangleleft \Delta \) and \(\Gamma \vdash A \bullet e \Rightarrow C \triangleleft \Delta \) then \(\Gamma \vdash A \bullet e \Rightarrow C \triangleleft \Delta \).

7. Completeness

Completeness of the algorithmic system is something like soundness in reverse: given a declarative derivation of \(|\Omega|^\Delta = |\Omega| \) and \(\Delta \rightarrow \cdot \cdot \cdot \Delta \), we want to get an algorithmic derivation of \(\Gamma \rightarrow \cdot \cdot \cdot \Delta \).

For soundness, the output context \(\Delta \) such that \(\Delta \rightarrow \Omega \) was given; \(\Gamma \rightarrow \Omega \) followed from Typing Extension (the above lemma) and transitivity of extension. For completeness, only \(\Gamma \) is given, so we have \(\Gamma \rightarrow \Omega \) in the antecedent. Then we might expect to show, along with \(\Gamma \rightarrow \cdot \cdot \cdot \Delta \), that \(\Delta \rightarrow \Omega \). But this is not general enough: the algorithmic rules generate fresh existential variables, so \(\Delta \) may have existentials that are not found in \(\Gamma \), nor in \(\Omega \). In completeness, we are given a declarative derivation, which contains no existentials; the completeness proof must build up the completing context \(\Omega \) along with the algorithmic derivation. Thus, completeness will produce an \(\Omega' \) which extends both the given \(\Omega \) and the output context of the algorithmic derivation: \(\Omega \rightarrow \Omega' \) and \(\Delta \rightarrow \Omega' \). (By transitivity, we also get \(\Gamma \rightarrow \Omega' \).)

As with soundness, we have three main completeness results, for instantiation, subtyping and typing:

Theorem 13 (Instantiation Completeness).

Given \(\Gamma \rightarrow \Omega \) and \(A = |\Gamma|^A \) and \(\alpha \notin \text{unsolved}(\Gamma) \) and \(\alpha \notin \text{FV}(\Gamma[A]) \):

1. If \(|\Omega|^\Delta = |\Omega| A \) then there are \(\Delta, \Omega' \) such that \(\Omega \rightarrow \Omega' \) and \(\Delta \rightarrow \Omega' \) and \(\Gamma \vdash \alpha \triangleleft A \triangleleft \Delta \).

2. If \(|\Omega|^\Delta = |\Omega| A \) then there are \(\Delta, \Omega' \) such that \(\Omega \rightarrow \Omega' \) and \(\Delta \rightarrow \Omega' \) and \(\Gamma \vdash \alpha \triangleleft A \triangleleft \Delta \).

Theorem 14 (Generalized Completeness of Subtyping).

If \(\Gamma \rightarrow \Omega \) and \(\Gamma \vdash A \) and \(\Gamma \vdash B \) and \(|\Gamma|^\Delta = |\Omega|^B \) then there exist \(\Delta, \Omega' \) such that \(\Delta \rightarrow \Omega' \) and \(\Omega \rightarrow \Omega' \) and \(\Gamma \vdash \alpha \triangleleft A \triangleleft \Delta \).
Theorem 15 (Completeness of Algorithmic Typing). Given $\Gamma \vdash \Omega$ and $\Gamma \vdash A$:

(i) If $[\Omega]\Gamma \vdash e \iff [\Omega]A$ then there exist Δ and Ω' such that $\Delta \to \Omega'$ and $\Omega \to \Omega'$ and $\Gamma \vdash e \iff [\Gamma]A \to \Delta$.

(ii) If $[\Omega]\Gamma \vdash e \Rightarrow A$ then there exist Δ, Ω', and A' such that $\Delta \to \Omega'$ and $\Omega \to \Omega'$ and $\Gamma \vdash e \Rightarrow A' \to \Delta$ and $A = (\Omega')A'$.

(iii) If $[\Omega]\Gamma \vdash [\Omega]A \bullet e \Rightarrow C$ then there exist Δ, Ω', and C' such that $\Delta \to \Omega'$ and $\Omega \to \Omega'$ and $\Gamma \vdash [\Gamma]A \bullet e \Rightarrow C' \to \Delta$ and $C = [\Omega']C'$.

8. Design Variations

The rules we give infer monomorphic types, but require annotations for all polymorphic bindings. In this section, we consider alternatives to this choice.

Eliminating type inference. To eliminate type inference from the declarative system, it suffices to drop the Decl→I⇒ and DeclI⇒ rules. The corresponding alterations to the algorithmic system are a little more delicate: simply deleting the 1⇒ and I⇒ rules breaks completeness. To see why, suppose that we have a variable α of type $\forall x. \alpha \to \alpha$, and consider the application $f \alpha$. Our algorithm will introduce a new existential variable $\hat{\alpha}$ for α, and then check $\hat{\alpha}$ against α. Without the I⇒ rule, typechecking will fail. To restore completeness, we need to modify these two rules. Instead of being synthesis rules, we will change them to checking rules that check values against an unknown existential variable.

$$\Gamma[\hat{\alpha}] \vdash \alpha \iff \Gamma[\hat{\alpha}] = \Gamma$$

$$\Gamma[\hat{\alpha}, \hat{\alpha}_1, \alpha = \hat{\alpha}_1 \to \hat{\alpha}_2, x : \hat{\alpha}_1 \vdash e \equiv \hat{\alpha}_2 \to \Delta, x : \hat{\alpha}_1, \Delta' \equiv \Gamma[\hat{\alpha}] \vdash \lambda x. e \equiv \psi.$$

With these two rules replacing 1⇒ and I⇒, we have a complete algorithm for the no-inference bidirectional system.

Full Damas-Milner type inference. Another alternative is to increase the amount of type inference done. For instance, a natural question is whether we can extend the bidirectional approach to subsume the inference done by the algorithm of Damas and Milner (1982). This appears feasible: we can alter the I⇒ rule to support ML-style type inference:

$$\Gamma, \bullet \alpha, \hat{\alpha}, \beta, x : \hat{\alpha} \vdash e \equiv \beta \to \Delta, \bullet, \alpha', \Delta' \equiv \Gamma \vdash \lambda x. e \Rightarrow \forall \hat{\alpha}. ([\hat{\alpha} \to \beta] \equiv \alpha = \text{unsolved}(\Delta')) \to I \Rightarrow'$$

In this rule, we introduce a marker α into the context, and then check the function body against the type β. Then, our output type substitutes away all the solved existential variables to the right of the marker $\bullet \alpha$, and generalizes over all of the unsolved variables to the right of the marker. Using an ordered context gives precise control over the scope of the existential variables, making it easy to express polymorphic generalization.

The above is only a sketch; we have not defined the corresponding declarative system, nor proved completeness.

9. Related Work and Discussion

9.1 Type Inference for System F

Because type inference for System F is undecidable (Wells 1999), designing type inference algorithms for first-class polymorphism inherently involves navigating a variety of design tradeoffs. As a result, there have been a wide variety of proposals for extending type systems beyond the Damas-Milner “sweet spot”. The main tradeoff appears to be a “two-out-of-three” choice: language designers can keep any two of: (1) the η-law for functions, (2) impredicative instantiation, and (3) the standard type language of System F.

As discussed in Section 2 for typability under η-reductions, it is necessary for subtyping to instantiate deeply: that is, we must allow instantiation of quantifiers to the right of an arrow. However, Tiuryn and Urzyczyn (1996) and Chrzàszcz (1998) showed that the subtyping relation for impredicative System F is undecidable. As a result, if we want η and a complete algorithm, then either the polymorphic instantiations must be predicative, or a different language of types must be used.

Figure 5 summarizes the different choices made by the designers of this and related systems.

Impredicativity and the η-law. The designers of ML3 (Le Botlan and Rémy 2003) [Rémy and Yakobowska 2008] (Le Botlan and Rémy 2009) chose to use a different language of types, one with a form of bounded quantification. This increases the expressivity of types enough to ensure principal types, which means that (1) required annotations are few and predictable, and (2) their system is very robust in the face of program transformations, including η. However, the richness of the ML3 type structure requires a sophisticated metatheory and correspondingly intricate implementation techniques.

Impredicativity and System F types. Much of the other work on higher-rank polymorphism avoids changing the language of types.

The HML system of Leijen (2005) and the FPH system of Vytniotis et al. (2008) both retain the type language of (impredicative) System F. Each of these systems gives as a specification a slightly different extension to the declarative Damas-Milner type system, and handle the issue of inference in slightly different ways. HML is essentially a restriction of ML3, in which the external language of types is limited to System F, but which uses the technology of ML3 internally, as part of type inference. FPH, on the other hand, extends and generalizes work on boxy types (Vytniotis et al. 2006) to control type inference. The differences in expressive power between these two systems are subtle—though speaking, FPH requires slightly more annotations, but has a less complicated specification. However, in both systems, the same heuristic guidance to the programmer applies: place explicit annotations on binders with fancy types.

The η-law and System F types. Peyton Jones et al. (2007) developed an approach for typechecking higher-rank predicative polymorphism that is closely related to ours. They define a bidirectional declarative system similar to our own, but which lacks an application judgment. This complicates the presentation of their system, forcing them to introduce an additional grammatical category of types beyond monotypes and polytypes, and requires many rules to carry an additional subtyping premise. Next, they enrich the subtyping rules of Odersky and Läufer (1996) with the distributivity axiom of Mitchell (1988), which we rejected on ideological grounds: it is a valid coercion, but is not orthogonal (it is a single rule mixing two different type connectives) and does not correspond to a rule in the sequent calculus. They do not prove the soundness and completeness of their Haskell reference implementation, but it appears to implement behavior close to our application judgment.

History of our approach. Several of the ideas used in the present paper descend from Dunfield (2009), an approach to first-class polymorphism (including impredicativity) also based on ordered contexts with existential variables instantiated via subtyping.
The present work began as an attempt to extend [Dunfield 2009] with type-level computation. During that attempt, we found several shortcomings and problems. The most serious is that the decidability and completeness arguments were not valid. These problems may be fixable, but instead we started over, reusing several of the high-level ideas in different technical forms.

9.2 Other Type Systems

Pierce and Turner (2000) developed bidirectional typechecking for rich subtyping, with specific techniques for instantiating polymorphism within function application (hence, local type inference). Their declarative specification is more complex than ours, and their algorithm depends on computing approximations of upper and lower bounds on types. Colored local type inference [Ödersky et al. 2001] allows different parts of type expressions to be propagated in different directions. Our approach gets a similar effect by manipulating type expressions with existential variables.

9.3 Our Algorithm

One of our main contributions is our new algorithm for type inference, which is remarkable in its simplicity. Three key ideas underpin our algorithm.

Ordered contexts. We move away from the traditional “bag of constraints” model of type inference, and instead embed existential variables and their values directly into an ordered context. Thus, straightforward scoping rules control the free variables of the types each existential variable may be instantiated with, without any need for model-theoretic techniques like skolemization, which fit awkwardly into a type-theoretic discipline. Using an ordered context permits handling quantifiers in a manner resembling the level-based generalization mechanism of Rémy (1992), used also in MLF [Le Botlan and Rémy 2009].

The instantiation judgment. The original inspiration for instantiation comes from the “greedy” algorithm of Cardelli (1993), which eagerly uses type information to solve existential constraints. In that setting—a language with rather ambitious subtyping—the greedy algorithm was incomplete: consider a function of type \(\forall \alpha. \alpha \to \alpha \to \alpha \) applied to a Cat and an Animal; the cat will be checked against an existential \(\exists \), which instantiates \(\exists \) to Cat, but checking the second argument, Animal \(<: \) Cat, fails. (Reversing the order of arguments makes typing succeed!)

In our setting, where subtyping represents the specialization order induced by quantifier instantiation, it is possible to get a complete algorithm, by slightly relaxing the pure greedy strategy. Rather than eagerly setting constraints, we first look under quantifiers (in the InstLAllR and InstRAill rules) to see if there is a feasible monotype instantiation, and we also use the the InstLReach and InstRReach to set the “wrong” existential variable in case we need to equate an existential variable with one to its right in the context. Looking under quantifiers seems forced by our restriction to predicative polymorphism, and “reaching” seems forced by our use of an ordered context, but the combination of these mechanisms fortuitously enables our algorithm to find good upper and lower monomorphic approximations of polymorphic types.

This is surprising, since it is quite contrary to the implementation strategy of MLF (also used by HML and FPH). There, the language of type constraints supports bounds on fully quantified types, and the algorithm incrementally refines these constraints. In contrast, we only ever create equational constraints on existentials (bounds are not needed), and once we have a solution for an existential, our algorithm never needs to revisit its decision.

Distinguishing instantiation as a separate judgment is new in this paper, and beneficial: Dunfield (2009) baked instantiation into the subtyping rules, resulting in a system whose direct implementation required substantial backtracking—over a set of rules including arbitrary application of substitutions. We, instead, maintain an invariant in subtyping and instantiation that the types are always fully applied with respect to an input context, obviating the need for explicit rules to apply substitutions.

Context extension. Finally, we introduce a context-extension judgment as the central invariant in our correctness proofs. This permits us to state many properties important to our algorithm abstractly, without reference to the details of our algorithm.

We are not the only ones to study context-based approaches to type inference. Recently, Gundry et al. (2010) recast the classic Damas-Milner algorithm, which manipulates unstructured sets of equality constraints, as structured constraint solving under ordered contexts. A (semantic) notion of information increase is central to their development, as (syntactic) context extension is to ours. While their formulation supports only ML-style prefix polymorphism, the ultimate goal is a foundation for type inference for dependent types. To some extent, both our algorithm and theirs can be understood in terms of the proof system of Miller (1992) for mixed-prefix unification. We each restrict the unification problem, and then give a proof search algorithm to solve the type inference problem.

Acknowledgments

Thanks to the anonymous ICFP reviewers for their comments, which have (we hope) led to a more correct paper.

References

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. A bi-directional refinement algorithm for the calculus of (co)inductive constructions. Logical Methods in Computer Science, 8(1), 2012.

<table>
<thead>
<tr>
<th>System</th>
<th>η-laws?</th>
<th>Impredicative?</th>
<th>System F type language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>FPH</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>HML</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Peyton Jones et al. (2007)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>This paper</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Figure 15. Comparison of type inference algorithms

<table>
<thead>
<tr>
<th>System</th>
<th>η-laws?</th>
<th>Impredicative?</th>
<th>System F type language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>FPH</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>HML</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Peyton Jones et al. (2007)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>This paper</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

This table compares the features of different type inference systems.

<table>
<thead>
<tr>
<th>System</th>
<th>η-laws?</th>
<th>Impredicative?</th>
<th>System F type language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>FPH</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>HML</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Peyton Jones et al. (2007)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>This paper</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

This table compares the features of different type inference systems.

Martin Odersky and Konstantin Läufer. Putting type annotations to work. In POPL, 1996.

Jerzy Tiuryn and Paweł Urzyczyn. The subtyping problem for second-order types is undecidable. In LICS, 1996.

