
Bidirectional Typing

JANA DUNFIELD, Queen’s University, Canada
NEEL KRISHNASWAMI, University of Cambridge, United Kingdom

Bidirectional typing combines two modes of typing: type checking, which checks that a program satisfies

a known type, and type synthesis, which determines a type from the program. Using checking enables

bidirectional typing to support features for which inference is undecidable; using synthesis enables bidirectional

typing to avoid the large annotation burden of explicitly typed languages. In addition, bidirectional typing

improves error locality. We highlight the design principles that underlie bidirectional type systems, survey

the development of bidirectional typing from the prehistoric period before Pierce and Turner’s local type

inference to the present day, and provide guidance for future investigations.

ACM Reference Format:
Jana Dunfield and Neel Krishnaswami. 2020. Bidirectional Typing. 1, 1 (November 2020), 37 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Type systems serve many purposes. They allow programming languages to reject nonsensical

programs. They allow programmers to express their intent, and to use a type checker to verify

that their programs are consistent with that intent. Type systems can also be used to automatically

insert implicit operations, and even to guide program synthesis.

Automated deduction and logic programming give us a useful lens through which to view type

systems: modes [Warren 1977]. When we implement a typing judgment, say Γ ⊢ 𝑒 : 𝐴, is each of

the meta-variables (Γ, 𝑒 , 𝐴) an input, or an output? If the typing context Γ, the term 𝑒 and the type

𝐴 are inputs, we are implementing type checking. If the type 𝐴 is an output, we are implementing

type inference. (If only 𝑒 is input, we are implementing typing inference [Jim 1995; Wells 2002]; if 𝑒

is output, we are implementing program synthesis.) The status of each meta-variable—input or

output—is its mode.
As a general rule, outputs make life more difficult. In complexity theory, it is often relatively

easy to check that a given solution is valid, but finding (synthesizing) a solution may be complex or

even undecidable. This general rule holds for type systems: synthesizing types may be convenient

for the programmer, but computationally intractable.

To go beyond the specific feature set of traditional Damas–Milner typing, it might seem necessary

to abandon synthesis
1
. Instead, however, we can combine synthesis with checking. In this approach,

bidirectional typing, language designers are not forced to choose between a rich set of typing

features and a reasonable volume of type annotations: implementations of bidirectional type

systems alternate between treating the type as input, and treating the type as output.

The practice of bidirectional typing has, at times, exceeded its foundations: the first commonly

cited paper on bidirectional typing appeared in 1997 but mentioned that the idea was known as

“folklore” (see Section 10). Over the next few years, several bidirectional systems appeared, but the

1
We choose to say synthesis instead of inference. This is less consistent with one established usage, “type inference”, but

more consistent with another, “program synthesis”.

Authors’ addresses: Jana Dunfield, Queen’s University, School of Computing, Goodwin Hall 557, Kingston, ON, K7L 3N6,

Canada, jd169@queensu.ca; Neel Krishnaswami, University of Cambridge, Computer Laboratory, William Gates Building,

Cambridge, CB3 0FD, United Kingdom, nk480@cl.cam.ac.uk.

2020. XXXX-XXXX/2020/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2020.

ar
X

iv
:1

90
8.

05
83

9v
2

 [
cs

.P
L

]
 1

4
N

ov
 2

02
0

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Jana Dunfield and Neel Krishnaswami

principles used to design them were not always made clear. Some work did present underlying

design principles—but within the setting of some particular type system with other features of

interest, rather than focusing on bidirectional typing as such. For example, Dunfield and Pfenning

[2004] gave a broadly applicable design recipe for bidirectional typing, but their focus was on an

idea—typing rules that decompose evaluation contexts—that has been applied more narrowly.

Our survey has two main goals:

(1) to collect and clearly explain the design principles of bidirectional typing, to the extent they

have been discovered; and

(2) to provide an organized summary of past research related to bidirectional typing.

We begin by describing a tiny bidirectional type system (Section 2). Section 3 presents some

design criteria for bidirectional type systems. Section 4 describes a modified version of the recipe

of Dunfield and Pfenning [2004], and relates it to our design criteria. Section 5 discusses work on

combining (implicit) polymorphismwith bidirectional typing, and Section 6 surveys other variations

on bidirectional typing. Sections 7–8 give an account of connections between bidirectional typing

and topics such as proof theory, focusing and polarity, and call-by-push-value. Section 9 cites other

work that uses bidirectional typing. We conclude with historical notes (Section 10) and a summary

of notation (Section 11).

2 BIDIRECTIONAL SIMPLY TYPED LAMBDA CALCULUS
To develop our first bidirectional type system, we start with a (non-bidirectional) simply typed

lambda calculus (STLC). This STLC is not the smallest possible calculus: we include a term ()
of type unit, to elucidate the process of bidirectionalization. We also include a gratuitous “type

equality” rule.

Our non-bidirectional STLC (Figure 1, left side) has six rules deriving the judgment Γ ⊢ 𝑒 : 𝐴:

a variable rule, a type equality rule, a rule for type annotations, an introduction rule for unit, an
introduction rule for→ and an elimination rule for→.

These rules are standard except for the type equality rule TypeEq, which says that if 𝑒 has type

𝐴 and 𝐴 equals 𝐵, then 𝑒 has type 𝐵. If this rule does not disturb you, you may skip to the next

paragraph. If we had polymorphism, we could motivate this rule by arguing that ∀𝛼. 𝛼 → 𝛼 should

be considered equal to ∀𝛽. 𝛽 → 𝛽 . Our language of types, however, has only unit and → and

so admits no nontrivial equalities. The role of TypeEq is retrospective: it is the type assignment

version of a necessary bidirectional rule, allowing us to tell a more uniform story of making type

assignment bidirectional. For now, we only note that the type equality rule is sound: for example,

if we have derived Γ ⊢ 𝑒 : unit→ unit then Γ ⊢ 𝑒 : unit→ unit, which was already derived.

Given these six STLC typing rules, we produce each bidirectional rule in turn (treating the type

equality rule last). Some of our design choices will become clear only in the light of the “recipe” in

Section 4, but the recipe would not be clear without seeing a bidirectional type system first.

(1) The variable rule Var has no typing premise, so our only decision is whether the conclusion

should synthesize 𝐴 or check against 𝐴. The information that 𝑥 has type 𝐴 is in Γ, so we

synthesize 𝐴. A checking rule would require that the type be known from the enclosing term,

a very strong restriction: even 𝑓 𝑥 would require a type annotation.

(2) From the annotation rule Anno we produce Anno⇒, which synthesizes its conclusion: we

have the type𝐴 in (𝑒 : 𝐴), so we do not need𝐴 to be given as input. In the premise, we check

𝑒 against 𝐴; synthesizing 𝐴 would prevent the rule from typing a non-synthesizing 𝑒 , which

would defeat the purpose of the annotation.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :3

Expressions 𝑒 ::= 𝑥 | _𝑥. 𝑒 | 𝑒 𝑒 | ()
Types 𝐴, 𝐵,𝐶 ::= unit | 𝐴→ 𝐴

Typing contexts Γ ::= · | Γ, 𝑥 : 𝐴

Γ ⊢ 𝑒 : 𝐴 Under context Γ,
expression 𝑒 has type 𝐴

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Var

Γ ⊢ 𝑒 : 𝐴 𝐴 = 𝐵

Γ ⊢ 𝑒 : 𝐵
TypeEq

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ (𝑒 : 𝐴) : 𝐴

Anno

Γ ⊢ () : unit
unitI

Γ, 𝑥 : 𝐴1 ⊢ 𝑒 : 𝐴2

Γ ⊢ (_𝑥. 𝑒) : 𝐴1 → 𝐴2

→I

Γ ⊢ 𝑒1 : 𝐴→ 𝐵 Γ ⊢ 𝑒2 : 𝐴
Γ ⊢ 𝑒1 𝑒2 : 𝐵

→E

Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ 𝑒 ⇒ 𝐴

Under Γ, expression 𝑒 checks against type 𝐴

Under Γ, expression 𝑒 synthesizes type 𝐴

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 ⇒ 𝐴

Var⇒

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 = 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
Sub⇐

Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ (𝑒 : 𝐴)⇒ 𝐴
Anno⇒

Γ ⊢ ()⇐ unit
unitI⇐

Γ, 𝑥 : 𝐴1 ⊢ 𝑒 ⇐ 𝐴2

Γ ⊢ (_𝑥. 𝑒) ⇐ 𝐴1 → 𝐴2

→I⇐

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
→E⇒

Fig. 1. A simply typed _-calculus (: judgment) and a bidirectional version (⇒ and⇐ judgments)

(3) Unit introduction unitI checks. At this point in the paper, we prioritize internal consistency:

checking () is consistent with the introduction rule for→ (discussed next), and with the

introduction rule for products.

(4) Arrow introduction→I checks. This decision is better motivated: to synthesize 𝐴1 → 𝐴2

for _𝑥. 𝑒 we would have to synthesize a type for the body 𝑒 . That raises two issues. First, by

requiring that the body synthesize, we would need a second rule to handle _s whose body

checks but does not synthesize. Second, if we are synthesizing 𝐴1 → 𝐴2 that means we don’t
know 𝐴1 yet, which prevents us from building the context Γ, 𝑥 : 𝐴1. (Placeholder mechanisms,

which allow building Γ, 𝑥 : 𝛼 and “solving” 𝛼 later, are described in Section 5.)

Since the conclusion is checking, we know 𝐴2, so we might as well check in the premise.

(5) For arrow elimination→E, the principal judgment is the premise Γ ⊢ 𝑒1 : 𝐴 → 𝐵, because

that premise contains the connective being eliminated. We make that judgment synthesize;

this choice is the one suggested by our “recipe”, and happens to work nicely: If 𝑒1 synthesizes

𝐴→ 𝐵, we have 𝐴 and can check the argument (so the rule will work even when 𝑒2 cannot

synthesize), and we have 𝐵 so we can synthesize 𝐵 in the conclusion. (It is possible to have

the premise typing 𝑒1 be a checking judgment. In that case, the argument 𝑒2 must synthesize,
because we need to know what 𝐴 is to check 𝑒1 against 𝐴 → 𝐵. Similarly, the conclusion

must be checking, because we need to know 𝐵; see Section 6.5.1.)

(6) Finally, we come to the type equality rule TypeEq. Where the type assignment premise

Γ ⊢ 𝑒 : 𝐴 and conclusion Γ ⊢ 𝑒 : 𝐵 are identical (since 𝐴 is exactly equal to 𝐵), the duplication

of these identical premises enables us to give them different directions in the bidirectional

, Vol. 1, No. 1, Article . Publication date: November 2020.

:4 Jana Dunfield and Neel Krishnaswami

system. Either (1) the conclusion should synthesize (and the premise check), or (2) the

conclusion should check (and the premise synthesize).

Option (1) cannot be implemented: If the conclusion synthesizes 𝐵, that means 𝐵 is not an
input; we don’t know 𝐵, which means we also don’t know 𝐴 for checking.

Option (2) works: If we want to check 𝑒 against a known 𝐵 in the conclusion, and 𝑒 synthesizes

a type 𝐴, we verify that 𝐴 = 𝐵.

Neither Sub⇐ nor Anno⇒ is tied to an operational feature (as, for instance,→E⇒ is tied to

functions); Anno⇒ is tied to a syntactic form, but (supposing a type erasure semantics) not to

any operational feature. Moreover, Sub⇐ and Anno⇒ have a certain symmetry: Sub⇐ moves

from a checking conclusion to a synthesizing premise, while Anno⇒ moves from a synthesizing

conclusion to a checking premise.

3 ELEMENTS OF BIDIRECTIONAL TYPING
From a rules-crafting perspective, bidirectionality adds a degree of design freedom to every judgment

(premises and conclusion) in a rule: should a particular premise or conclusion synthesize a type, or

check against a known type? Covering all possibilities with rules that have every combination of

synthesis and checking judgments would lead to an excessive number of rules. For example, the

following eight rules are superficially valid bidirectional versions of the standard→-elimination

rule.

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

What criteria should guide the designer in crafting a manageable set of rules with good practical

(and theoretical) properties?

3.1 First Criterion: Mode-correctness
The first criterion comes from logic programming [Warren 1977]. We want to avoid having to

guess types: in an ideal world, whenever we synthesize a type, the type should come from known

information—rather than, say, enumerating all possible types. A rule is mode-correct if there is a
strategy for recursively deriving the premises such that two conditions hold:

(1) The premises are mode-correct: for each premise, every input meta-variable is known (from

the inputs to the rule’s conclusion and the outputs of earlier premises).

(2) The conclusion is mode-correct: if all premises have been derived, the outputs of the conclusion

are known.

Our last rule, in which every judgment is checking (⇐), is not mode-correct: In the first premise

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵, the context Γ and term 𝑒1 are known from the inputs Γ and 𝑒1 𝑒2 in the conclusion

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵. However, the type 𝐴→ 𝐵 cannot be constructed, because 𝐴 is not known. For the

same reason, the second premise Γ ⊢ 𝑒2 ⇐ 𝐴 is not mode-correct. (The conclusion is mode-correct

because all the meta-variables are inputs.)

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :5

Only four of the above eight rules are mode-correct:

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

The mode-correctness of the fourth rule seems questionable: if we insist on recursively deriving

the first premise Γ ⊢ 𝑒1 ⇐ 𝐴 → 𝐵 before the second premise Γ ⊢ 𝑒2 ⇒ 𝐴, it is not mode-correct,

but if we swap the premises and view the rule as

Γ ⊢ 𝑒2 ⇒ 𝐴 Γ ⊢ 𝑒1 ⇐ 𝐴→ 𝐵

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵

it is mode-correct: the subterm 𝑒2 synthesizes 𝐴, and 𝐵 is an input in the conclusion, so 𝐴→ 𝐵 is

known and 𝑒1 can be checked against it.

This seems disturbing: the order of premises should not affect the meaning of the rule, in the sense

that a rule determines a set of possible derivations. But mode-correctness is not about meaning in

that sense; rather, it is about a particular strategy for applying the rule. For any one strategy, we

can say whether the strategy is mode-correct; then we can say that a rule is mode-correct if there

exists some strategy that is mode-correct. The set of strategies is the set of permutations of the

premises. So the rule above has two strategies, one for each of the two permutations of its premises;

since one of the strategies is mode-correct, the rule is mode-correct.

A bidirectional type system that is not mode-correct cannot be directly implemented, defeating

the goal that the derivability of a typing judgment should be decidable. Thus, mode-correctness is

necessary. However, mode-correctness alone does not always lead to a practical algorithm: if more

than one rule is potentially applicable, a direct implementation requires backtracking. When the

inputs (the context, the term, and—if in the checking direction—the type) match the conclusion of

only one rule, the system is syntax-directed: we can “read off” an implementation from the rules.

3.2 Second Criterion: Completeness (Annotatability)
The empty set of rules satisfies the first criterion: every rule is mode-correct, because there are no

rules.

Our second criterion rejects the empty system. A bidirectional system is complete with respect to
a type assignment system if every use of a rule in the type assignment system can be “matched”

by some rule in the bidirectional system. This matching is approximate, because applying the

bidirectional rule might require that we change the term—generally, by adding type annotations

(sometimes called ascriptions).

For example, forgetting to include an→-elimination rule in a bidirectional type system would

make the system incomplete: it would reject all function applications. In general, completeness is

easy to achieve, provided we begin with a type assignment system and “bidirectionalize” each rule.

Because the move from a type assignment derivation to a bidirectional derivation may require

adding annotations, the related theorem is sometimes called annotatability instead of completeness.

A separate criterion considers the quantity and quality of the required annotations (Section 3.4).

Requiring that every type connective have at least one introduction rule and at least one elimi-

nation rule would be too strict: the empty type ⊥ should not have an introduction rule, and the

, Vol. 1, No. 1, Article . Publication date: November 2020.

:6 Jana Dunfield and Neel Krishnaswami

top type ⊤ and the unit type do not require elimination rules. (We might choose to include an

elimination rule for ⊤, but our criteria for bidirectional systems should not force this choice.)

3.3 Third Criterion: Size
Our third criterion refers to the number of typing rules. This is not always a reliable measure; by

playing games with notation, one can inflate or deflate the number of typing rules. But the measure

can be used effectively when comparing two systems in an inclusion relationship: a system of two

rules R1 and R2 is clearly smaller than a system that has R1, R2, and a third rule R3. Smaller systems

tend to be easier to work with: for example, in a meta-theoretic proof that considers cases of the

rule concluding a given derivation, each new rule leads to an additional proof case.

3.4 Fourth Criterion: Annotation Character
A bidirectional system that required an annotation on every subterm would satisfy completeness.

To rule out such a system, we need another criterion. We call it annotation character, an umbrella

term for attributes that are sometimes in conflict:

(i) Annotations should be lightweight: they should constitute a small portion of the program text.

(ii) Annotations should be predictable: programmers should be able to easily determine whether a

subterm needs an annotation. That is, there should be a clear annotation discipline.
(iii) Annotations should be stable: a small change to a program should have a small effect on

annotation requirements.

(iv) Annotations should be legible: the form of annotation should be easy to understand.

Attribute (i) is the easiest to measure, but that doesn’t make it the most important.

Attribute (ii) is harder to measure, because it depends on the definition of “easily” (alternatively,

on the definition of “clear”). In the absence of empirical studies comparing bidirectional type

systems with different annotation disciplines, we can form some hypotheses:

(1) A discipline that needs only local information is preferable to one that needs global information.

That is, we want to know whether a subterm needs annotation from the “neighbourhood” of

that subterm, not by looking at the whole program. The Pfenning recipe (Section 4) leads to

an annotation discipline in which the syntactic forms of the subterm (e.g. that it is a pair) and

the subterm’s immediate context (its parent in the syntax tree) suffice to determine whether

the subterm needs an annotation. (The subterm alone is not enough: a subterm that cannot

synthesize does not require an annotation if it is being checked, and whether the subterm is

checked depends on its position in the program.)

In an annotation discipline that needs only local information, a change to one part of a program

cannot affect the need for annotations in distant parts of the program. Hence, such a discipline

is stable (attribute (iii)).
(2) A discipline that requires all non-obvious type annotations, and no obvious type annotations, is

preferable. Unfortunately, it is not easy to agree on which type annotations are obvious.

(3) A discipline that needs obvious type annotations in certain situations is acceptable, if those

situations are rare. For example, we might tolerate annotations on every while loop in SML

because SML programmers rarely use while.
These hypotheses can be found, in a different form, in earlier work. The term local type inference

[Pierce and Turner 2000] implies that bidirectional typing should focus on (or even be restricted

to) local information, suggesting that annotation disciplines should not need global information.

Hypotheses (2) and (3) correspond to this explanation, from the same paper:

The job of a partial type inference algorithm should be to eliminate especially those

type annotations that are both common and silly—i.e., those that can be neither justified

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :7

on the basis of their value as checked documentation nor ignored because they are

rare. [Pierce and Turner 2000, §1.1; emphasis in original]

4 A BIDIRECTIONAL RECIPE
Fortunately, we have a methodical approach that produces bidirectional systems that satisfy many

of the above criteria.

We call this approach
2
the Pfenning recipe [Dunfield and Pfenning 2004]. It yields a set of bidirec-

tional typing rules that is small (our second criterion) and whose annotation discipline is moderately

lightweight and highly predictable (attributes of our fourth criterion). Some disadvantages of the

recipe—particularly in terms of a lightweight annotation discipline—can be mitigated, in exchange

for a larger set of rules. Thus, the foremost virtue of the recipe is that it gives a starting point for
a practical system: it tells you what the ground floor of the building (type system) should look

like, allowing a taller building if desired. Even if the recipe is not followed completely, some of its

steps are useful in designing bidirectional systems; we use this opportunity to explain those steps.

Another virtue of the recipe is that it guarantees a subformula property, which can be of practical

as well as theoretical interest; see Section 7.1.

Nonetheless, this recipe is not the only way to design a bidirectional type system. This fact is

demonstrated by the wide variety of systems that do not exactly follow the recipe, and by the

existence of systems that diverge radically from it (Section 6.5).

4.1 Introduction and Elimination Rules
This part of the recipe pertains to each rule that is an introduction rule (introducing a type connective

that occurs in the conclusion) or an elimination rule (eliminating a type connective that occurs in a

premise).

Step 1: Find the principal judgment. The principal connective of an introduction (resp. elimination)

rule is the connective that is being introduced (resp. eliminated). The principal judgment of a rule is
the judgment containing the principal connective; in an introduction rule, the principal judgment

is usually
3
the conclusion, and in an elimination rule, the principal judgment is (as far as we know)

always the first premise.

Step 2: Bidirectionalize the principal judgment. This is the magic ingredient! If the rule is an

introduction rule, make the principal judgment checking. If the rule is an elimination rule, make the

principal judgment synthesizing.

Step 3: Bidirectionalize the other judgments. The direction of the principal judgment provides

guidance for the other directions. The first question is, in what order should we bidirectionalize the

other judgments? If the principal judgment is the conclusion (often true for introduction rules), the

only judgments left are the premises, but if the principal judgment is a premise (probably the first

2
Our presentation of the recipe is intended as a more detailed explanation of the original, with one exception. The exception

is that, instead of (implicitly) advocating that a case expression (sum elimination) have a single rule with a checking

conclusion, our version of the recipe allows for two rules: one checking, one synthesizing.
3
In an introduction rule in which the introduced connective is only available in a lexically scoped subterm, the principal

connective is added to the context in a premise. In such a rule, the premise with the extended context—not the conclusion—is

the principal judgment. An example is a rule typing a product introduction for a “let-pair” construct: the (highlighted) third

premise is the principal judgment, because it contains the introduced connective ×.

Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2 Γ, 𝑥 : 𝐴1 ×𝐴2 ⊢ 𝑒 : 𝐵

Γ ⊢ let𝑥 = ⟨𝑒1, 𝑒2 ⟩ in𝑒 : 𝐵

, Vol. 1, No. 1, Article . Publication date: November 2020.

:8 Jana Dunfield and Neel Krishnaswami

premise), we have a choice. The better choice seems to be to bidirectionalize the premises, then the

conclusion: this maximizes the chance of having enough information to synthesize the type of the

conclusion.

The second question is, which directions should we choose? Here we are guided by our criteria of

annotatability and annotation character: the bidirectional system should be complete with respect to

“ground truth” (roughly, the given type assignment system) without needing too many annotations.

Therefore, we should utilize known information: If we already know the type of a judgment—the

judgment should be checking. Thus, if the conclusion checks against a type 𝐴 and a premise also

has type 𝐴, the premise should be checking. Similarly, if an earlier premise synthesizes 𝐵 then

a later premise having type 𝐵 should be checking. Choosing to synthesize would ignore known

information, restricting the system’s power for no reason.

Step 3, continued. Unfortunately, what should count as “ground truth” is not always clear. It may

not be exactly the set of type assignment rules. In our experience, most type assignment rules can

be taken as ground truth and transformed by the recipe with satisfactory results, but certain type

assignment rules must be viewed more critically. Consider a standard sum-elimination rule, on a

pattern-matching term case(𝑒, inj
1
𝑥1. 𝑒1, inj

2
𝑥2. 𝑒2) where 𝑥1 is bound in 𝑒1 and 𝑥2 is bound in 𝑒2:

Γ ⊢ 𝑒 : (𝐴1 +𝐴2)
Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 : 𝐵
Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 : 𝐵

Γ ⊢ case(𝑒, inj
1
𝑥1. 𝑒1, inj

2
𝑥2. 𝑒2) : 𝐵

+Elim

If we erase the terms from this rule and rewrite + as ∨, we get a logical or-elimination rule:

Γ ⊢ (𝐴1 ∨𝐴2)
Γ, 𝐴1 ⊢ 𝐵
Γ, 𝐴2 ⊢ 𝐵

Γ ⊢ 𝐵
∨Elim

This rule is an instance of a fundamental logical principle: reasoning by cases. In a mathematical

proof, reasoning by cases works the same regardless of the goal we want to prove: whether we

want to conclude “formula 𝐵 is true” or “kind ^ is well-formed” or “real number 𝑥 is negative” or

“machine 𝐻 halts”, our proof can consider the two cases (𝐴1 is true; 𝐴2 is true) of the disjunctive

formula 𝐴1 ∨𝐴2. So the ground principle from which ∨Elim is instantiated allows for a conclusion

J that has any form:

Γ ⊢ (𝐴1 ∨𝐴2)
Γ, 𝐴1 ⊢ J
Γ, 𝐴2 ⊢ J

Γ ⊢ J
∨Elim-general

Instantiating J to “formula 𝐵 is true” results in ∨Elim, while instantiating J to “machine 𝐻 halts”

would result in

Γ ⊢ (𝐴1 ∨𝐴2)
Γ, 𝐴1 ⊢ 𝐻 halts

Γ, 𝐴2 ⊢ 𝐻 halts

Γ ⊢ 𝐻 halts

∨Elim-halting-goal

If we consider ∨Elim-general to be the basis of +Elim, we see that ∨Elim-general should give rise

to two bidirectional rules, because a bidirectional system has two judgment forms.

Γ ⊢ 𝑒 ⇒ (𝐴1 +𝐴2)
Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 ⇐ 𝐵

Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 ⇐ 𝐵

Γ ⊢ case(𝑒, inj
1
𝑥1. 𝑒1, inj

2
𝑥2. 𝑒2) ⇐ 𝐵

Γ ⊢ 𝑒 ⇒ (𝐴1 +𝐴2)
Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 ⇒ 𝐵

Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 ⇒ 𝐵

Γ ⊢ case(𝑒, inj
1
𝑥1. 𝑒1, inj

2
𝑥2. 𝑒2) ⇒ 𝐵

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :9

The original recipe [Dunfield and Pfenning 2004] resulted in only one typing rule for case, the
checking rule; if you can only have one rule, the checking rule is more general and nicely matches

the checking premise of→Intro. Note that whether we have one rule or two, we are still following

Steps 1 and 2 of the recipe: in both versions of the rule, the principal judgment synthesizes. The

complication is that making the principal judgment synthesize does not determine the directions

of the conclusion and the other premises.

Similar considerations arise in typing a let-expression, with one additional wrinkle: a let-

expression is not an elimination form. Thus, we seem to have no guidance at all, beyond mode-

correctness. Whether the conclusion checks or synthesizes, we do not yet know the type 𝐴 of the

let-bound expression, so the first premise must synthesize (similar to a case expression):

Γ ⊢ 𝑒 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒 ′ : 𝐵
Γ ⊢ let𝑥 = 𝑒 in 𝑒 ′ : 𝐵

Now we have the same choice as in case elimination: if a let-expression represents a general

reasoning principle, then we may want two rules, one where the second premise and conclusion

are checking, and one where they synthesize. If we prioritize a small number of rules, the checking

rule is more general than the synthesis rule alone. (It is actually possible to design a system where

𝑒 is checked; we explore that territory in Section 6.5.)

Dunfield and Pfenning [2004] claimed that annotations were needed only on redexes, but that

claim was false. The claim holds for elimination forms that do not bind variables, but fails with

elimination forms that do bind variables, like case expressions. If we, instead, have both rules

for case expressions, using a variable-binding elimination to derive the principal judgment of

a variable-binding elimination does not incur an annotation (so, unlike in the original recipe,

case(case(𝑥, · · ·), · · ·) can be typed if all arms of the inner case can synthesize). However, some

combinations of binding and non-binding elimination do incur annotations despite having no

redexes.
4
We discuss the details in Section 4.5.4.

4.2 Annotation
Assume we have, in the given type assignment system, the following annotation rule. (If we had no

concern for ease of implementation, we might not need such a rule.)

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ (𝑒 : 𝐴) : 𝐴

This is not an introduction or elimination rule, so it has no principal connective and thus no principal

judgment. However, the conclusion feels closer to being the principal judgment, because—while

the type 𝐴 is not tied to any particular connective—the type must match the type appearing in the

term (𝑒 : 𝐴). In contrast, the premise Γ ⊢ 𝑒 : 𝐴 imposes no constraints at all.

Thus, we will start by bidirectionalizing the conclusion. Again, the rule is neither an introduction

nor an elimination so we cannot pick a direction based on that. Instead, we follow the principle

in Step 3 (above): we should try to use all available knowledge. We know the type 𝐴 because it

appears in the term (𝑒 : 𝐴), so synthesizing 𝐴 in the conclusion utilizes this knowledge.

Now we turn to the premise, Γ ⊢ 𝑒 : 𝐴. Since 𝐴 is known we should utilize it by checking 𝑒

against 𝐴, resulting in the rule

Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ (𝑒 : 𝐴)⇒ 𝐴

4
Admittedly, the truth of the claim depends on the meaning of “redex”; if we include various commuting conversions in our

notion of reduction, the claim becomes accurate.

, Vol. 1, No. 1, Article . Publication date: November 2020.

:10 Jana Dunfield and Neel Krishnaswami

It doesn’t really matter whether we start with the conclusion or the premise. If we start with the

premise, we notice that 𝐴 is known from (𝑒 : 𝐴) and make the premise checking; then we notice

that 𝐴 is known in the conclusion.

4.3 Variables
A typing rule for variables is neither an introduction nor elimination rule. Instead, it corresponds

to a fundamental principle of deduction: the use of an assumption. Instead of interpreting the

assumption 𝑥 : 𝐴 to mean that 𝑥 has (is assigned) type 𝐴, we interpret 𝑥 : 𝐴 as 𝑥 ⇒ 𝐴: we assume

that 𝑥 synthesizes 𝐴, and so the variable rule is synthesizing:

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 ⇒ 𝐴

Var

It might be more clear for the form of assumptions in Γ to be 𝑥 ⇒ 𝐴 rather than 𝑥 : 𝐴, making

clear that this rule is simply the use of an assumption, but the form 𝑥 : 𝐴 is standard.

Since _ is checked, its argument type is known and can be added to Γ. Assumptions 𝑥 ⇐ 𝐴 arise

in a reversed bidirectional system (Section 6.5).

4.4 Change of Direction (Subsumption)
To see why this part of the recipe is needed, consider the following type assignment derivation.

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Our bidirectional Var rule can synthesize a type for 𝑥 , but cannot derive a checking judgment. So

we cannot synthesize a type for 𝑓 applied to 𝑥 , even though both their types are available in the

typing context:

(𝑓 : 𝐴→ 𝐵) ∈ (𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴)
𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴 ⊢ 𝑓 ⇒ 𝐴→ 𝐵

Var
𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴 ⊢/ 𝑥 ⇐ 𝐴

𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴 ⊢/ 𝑓 𝑥 ⇒ 𝐵
Syn→Elim

We know, from the type of 𝑓 , that 𝑥 needs to have type 𝐴. The var rule can tell us that 𝑥 also

synthesizes that type. So we need a rule that verifies that a fact (𝑥 synthesizes type 𝐴) is consistent

with a requirement (𝑥 needs to check against type 𝐴). One version of that rule would be

Γ ⊢ 𝑒 ⇒ 𝐴

Γ ⊢ 𝑒 ⇐ 𝐴
changedir-0

However, the recipe prefers an equivalent rule:

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 = 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
changedir-1

Since 𝐴 = 𝐵 is only equality, rule changedir-1 has exactly the same power as changedir-0. Rules

changedir-0 and changedir-1 can be implemented in exactly the same way, but the structure of

changedir-1 is closer to that implementation: first, make a recursive call to synthesize 𝐴; second,

check that 𝐴 is equal to the given type 𝐵. (In logic programming terminology, in changedir-1

the premise Γ ⊢ 𝑒 ⇒ 𝐴 has output freeness: the output 𝐴 is unconstrained, with the constraint

imposed later by 𝐴 = 𝐵. In changedir-0, the output 𝐴 is constrained to be exactly the type from the

conclusion.)

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :11

The more significant advantage of changedir-1 is that it can be easily extended to support

subtyping. To turn changedir-1 into a subsumption rule, we only have to replace “=” with a

subtyping relation “<:”:

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 <: 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
Sub

(In a sense, changedir-1 is already a subsumption rule: equality is reflexive and transitive, so it is a

sensible—if extremely limited—subtyping relation. If we choose equality as the definition of <:, the
rule Sub is exactly the rule changedir-1.)

Since 𝐵 is an input, and𝐴 is an output of the first premise, both𝐴 and 𝐵 are known: the subtyping

judgment can be implemented with both types as input, with no need to “guess” the subtype or

supertype.

Subtyping can lead to concerns not addressed solely by the presence of Sub; we discuss these
concerns in Section 4.6.

The rule Sub is not syntax-directed: its subject may be any form of expression. Because its

premise is synthesizing, however, we have some guidance about when to apply it: when there is a

rule whose conclusion can synthesize a type for that form of expression. In some bidirectional type

systems, such as Davies and Pfenning [2000], no expression form has a rule with a synthesizing

conclusion and a rule with a checked conclusion. In such systems, we can classify the expression

forms themselves as checked or synthesizing, and use Sub exactly when checking a synthesizing

form. If we have, say, two rules for case expressions, the situation is more complex. It is generally

best to apply Sub as late as possible (that is, towards the leaves of the derivation), because that

preserves the information provided by the type being checked against.

4.5 Assessing the Recipe
When we design a bidirectional system according to the recipe, which criteria are satisfied?

4.5.1 First criterion: Mode-correctness. All rules are mode-correct:

• The variable, annotation and subsumption rules are “pre-cooked” and it is straightforward to

verify they are mode-correct.

• In the introduction and elimination rules, the judgment directions are chosen to be mode-

correct.

4.5.2 Second criterion: Size. For each type assignment rule, the recipe produces exactly one rule.

Producing less than one rule is unacceptable, because it would be incomplete with respect to the

type assignment system.

If the original type assignment system did not have a subsumption rule, the recipe adds one, but

this is unavoidable (see the example in Section 4.4). (An alternative would be to duplicate rules and

vary the direction of their premises, but for most type systems, that would lead to more than one

additional rule.)

Similarly, the annotation rule is needed to enable a term whose rule has a checking conclusion

to be used in a synthesizing position. For example, we cannot type the term (_𝑥 . 𝑒)𝑒 ′ because the
first premise of Syn→Elim is synthesizing and the conclusion of Chk→Intro is checking. We need

the annotation rule to allow us to type the annotated term

(
(_𝑥. 𝑒) : 𝐴→ 𝐵

)
𝑒 ′.

Thus, it is not only impossible to remove a single rule, but there is no alternative approach that

can, in general, produce a smaller set of rules. (We assume that the type assignment system is our

“ground truth”: we cannot use a prolix type assignment system to argue that its bidirectionalization

is too big.)

, Vol. 1, No. 1, Article . Publication date: November 2020.

:12 Jana Dunfield and Neel Krishnaswami

4.5.3 Third criterion: Annotatability. We write 𝑒 ′ ⊒ 𝑒 to mean that 𝑒 ′ is a “more annotated”

version of 𝑒 . For example, (𝑥 : 𝐴) ⊒ 𝑥 and 𝑥 ⊒ 𝑥 . Annotatability says that, if Γ ⊢ 𝑒 : 𝐴 (in the type

assignment system), then (1) there exists 𝑒 ′ ⊒ 𝑒 such that Γ ⊢ 𝑒 ′⇐ 𝐴, and (2) there exists 𝑒 ′′ ⊒ 𝑒

such that Γ ⊢ 𝑒 ′′⇒ 𝐴. We prove this by induction on the type assignment derivation of Γ ⊢ 𝑒 : 𝐴,
considering cases of the type assignment rule concluding that derivation.

Each type assignment rule has a single corresponding bidirectional rule. If the conclusion of

that bidirectional rule is checking, proving part (1) is completely straightforward: Applying the

induction hypothesis to the derivation of each premise (of the type assignment rule) yields a set of

annotated subterms; combining these annotated subterms gives us our 𝑒 ′, which is typed by the

bidirectional rule. This approach also works if we are proving part (2) and the conclusion of the

bidirectional rule is synthesizing.
Going “into the wind”—proving part (1) with a synthesis rule, or part (2) with a checking

rule—needs only a little more work:

• If the conclusion of the bidirectional rule corresponding to the type assignment rule is

synthesis and we want to prove part (1), we can show part (2) as above to derive

Γ ⊢ 𝑒 ′⇒ 𝐴

Now we want to find 𝑒 ′′ such that Γ ⊢ 𝑒 ′′ ⇐ 𝐴. Assuming subtyping is reflexive (a condition

satisfied even by weak subtyping relations, including equality), we can derive 𝐴 <: 𝐴 and

use subsumption, giving Γ ⊢ 𝑒 ′⇐ 𝐴. In this case, 𝑒 ′ and 𝑒 ′′ are the same.

• If the conclusion of the bidirectional rule corresponding to the type assignment rule is

checking and we want to prove part (2), we can show part (1):

Γ ⊢ 𝑒 ′′⇐ 𝐴

Now we want to find 𝑒 ′ such that Γ ⊢ 𝑒 ′⇒ 𝐴. We cannot reuse 𝑒 ′′, because Γ ⊢ 𝑒 ′′⇐ 𝐴 was

derived using a checking rule; since the recipe produces only one corresponding bidirectional

rule, we have no rule that can derive Γ ⊢ 𝑒 ′′⇒ 𝐴. We must add an annotation:

𝑒 ′ = (𝑒 ′′ : 𝐴)

The last step is to use our annotation rule, deriving Γ ⊢ (𝑒 ′ : 𝐴)⇒ 𝐴.

4.5.4 Fourth criterion: Annotation character. Our notion of annotation character (Section 3.4)

posits that annotations should be (i) lightweight, (ii)–(iii) predictable and stable (with a clear

annotation discipline), and (iv) legible.

We also argued that a good annotation discipline should require only local information. On this

point, the recipe does well: an annotation is required on a subterm if and only if an introduction

form meets an elimination form.

To see why, let’s consider how the recipe treats introduction and elimination forms. Introduction

rules type introduction forms, like _; elimination rules type elimination forms, like function

application. Following the recipe, the principal judgment in an elimination form is synthesizing, so

eliminating a variable never requires an annotation. For example, 𝑓 𝑥 needs no annotation, because

𝑓 synthesizes. Nor does (𝑓 𝑥) 𝑦 need an annotation, because 𝑓 𝑥 synthesizes. Variable-binding

elimination forms, like case, can also be nested without annotation: the type of the outer case is
propagated to the inner case. For example, the type int is propagated from the conclusion to the

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :13

inner case:
Γ ⊢ 𝑦 ⇒ (bool + bool) + int
Γ, 𝑥1 : (bool + bool) ⊢ case(𝑥1, inj

1
𝑥11. 0, inj

2
𝑥22. 1) ⇐ int

Γ, 𝑥2 : int ⊢ 𝑥2 ⇐ int

Γ ⊢
(
case(𝑦, inj

1
𝑥1. case(𝑥1, inj

1
𝑥11. 0, inj

2
𝑥22. 1), inj

2
𝑥2 . 𝑥2)

)
⇐ int

+Elim

However, we need an annotation at the boundary between introduction and elimination: in

(_𝑥. 𝑒1)𝑒2, the introduction form _ meets the elimination form (· · ·)𝑒2. Since the first premise

of Syn→Elim is synthesizing, and the conclusion of Chk→Intro is checking, an annotation is

needed around (_𝑥. 𝑒1).
Similarly, in case(inj

1
𝑒, · · ·), the introduction form inj meets the elimination case, so inj

1
𝑒

needs an annotation.

In those two examples, we introduced and immediately eliminated the same type (→ in the first

example and + in the second). An introduction that is not immediate also requires an annotation.(
case(𝑦, inj

1
𝑥1. (_𝑧1 . 𝑒1), inj

2
𝑥2. (_𝑧2. 𝑒2))

)
𝑧

Because the case expression appears as the function part of the application (· · ·)𝑧, it needs to
synthesize a type (so we can derive the first premise of Syn→Elim). But the case arms _𝑧1. 𝑒1 and

_𝑧2. 𝑒2, being introduction forms, do not synthesize. Therefore, we need a type annotation around

the case, or—more verbosely—two annotations, one around each _.5 Note that if we push the

application to 𝑧 into each arm, we get a term where eliminations immediately follow introductions

(and, therefore, need annotations):

case(𝑦, inj
1
𝑥1 . (_𝑧1. 𝑒1)𝑧,

inj
2
𝑥2 . (_𝑧2. 𝑒2)𝑧)

4.6 Subtyping and Principal Types
In this section, we examine subtyping in a bidirectional system with intersection types. While

intersection types are not the most common thing to find in a type system, they are closely related

to parametric polymorphism: If a value has type 𝐴1 ∧𝐴2, it has type 𝐴1 and type 𝐴2; if a value has

type ∀𝛼.𝐴, it has the type [𝐵/𝛼]𝐴 for any type 𝐵. An intersection type can be seen as a polymorphic

type ranging over only two possibilities; the polymorphic type ∀𝛼. 𝐴 can be seen as an infinite

intersection.

A typing rule is stationary [Leivant 1986, p. 55] if the subject of the premise(s) is the same as the

subject of the conclusion—in contrast to (perhaps more familiar) rules where each premise types a

proper subterm of the subject of the conclusion. In the stationary rules we consider, the subject is

any expression 𝑒 . Thus, these rules are not syntax-directed; if the conclusion of a rule types 𝑒 , the

rule is potentially applicable at every step of type checking.

Our rule Sub is stationary, as are the following rules for intersection types 𝐴 ∧ 𝐵 and (implicit)

parametric polymorphism ∀𝛼. 𝐴: the premises type the same 𝑒 as the conclusion.

Γ ⊢ 𝑒 : 𝐴1 Γ ⊢ 𝑒 : 𝐴2

Γ ⊢ 𝑒 : 𝐴1 ∧𝐴2

∧Intro
Γ ⊢ 𝑒 : 𝐴1 ∧𝐴2

Γ ⊢ 𝑒 : 𝐴1

∧Elim1

Γ ⊢ 𝑒 : 𝐴1 ∧𝐴2

Γ ⊢ 𝑒 : 𝐴2

∧Elim2

Γ, 𝛼 type ⊢ 𝑒 : 𝐴
Γ ⊢ 𝑒 : ∀𝛼. 𝐴

Γ ⊢ 𝑒 : ∀𝛼. 𝐴 Γ ⊢ 𝐵 type

Γ ⊢ 𝑒 : [𝐵/𝛼]𝐴
5
In the original recipe, the only option would be an annotation around the case. Since the original recipe had only one rule

for case, which had a checking conclusion, annotating the individual arms would have no effect: typing could not “pass

through” the case to notice the annotations.

, Vol. 1, No. 1, Article . Publication date: November 2020.

:14 Jana Dunfield and Neel Krishnaswami

With typing rules like these, it makes sense for subtyping to allow𝐴1∧𝐴2 <: 𝐴1: the presence of

∧Elim1means that every term having type𝐴1∧𝐴2 also has type𝐴1. Similarly,𝐴1∧𝐴2 <: 𝐴2 because

of ∧Elim2. Observe that both subtyping and Gentzen’s rule notation are forms of implication ⊃: by
treating types as propositions, 𝐴 <: 𝐵 becomes 𝐴 ⊃ 𝐵; a rule is read as premises ⊃ conclusion. So
we can translate ∧Elim1:

Γ ⊢ 𝑒 : 𝐴1 ∧𝐴2

Γ ⊢ 𝑒 : 𝐴1

∧Elim1 becomes 𝐴1 ∧𝐴2 ⊃ 𝐴1 becomes

𝐴1 ∧𝐴2 <: 𝐴1

The rule ∧Elim2 can be treated similarly.

However, the rule ∧Intro cannot be translated in this way: the two premises mean that the rule

cannot be read as “· · · implies · · · ”, but only as “· · · and · · · together imply · · · ”. A subtyping

judgment 𝐴 <: 𝐵 can be read as the sequent 𝐴 ⊢ 𝐵, but it is a limited sequent calculus: in addition

to allowing only one succedent 𝐵 (which is a common restriction in sequent calculi), subtyping

allows only one antecedent 𝐴. The subtyping rule we would like to construct would need two
antecedents, 𝐴1 and 𝐴2, which don’t fit:

Γ ⊢ 𝑒 : 𝐴1 Γ ⊢ 𝑒 : 𝐴2

Γ ⊢ 𝑒 : 𝐴1 ∧𝐴2

∧Intro becomes 𝐴1 and 𝐴2 ⊃ 𝐴1 ∧𝐴2 becomes

𝐴1, 𝐴2 <: 𝐴1 ∧𝐴2

The subtyping relation induced by “translating” only the stationary typing rules is weaker (smaller)

than we might desire: it yields shallow subtyping. For example, to derive the following through

subsumption, we would need (𝐴→ (𝐵1∧𝐵2)) <: (𝐴→ 𝐵2) because the type of 𝑔 does not literally
match 𝐴 → 𝐵2. But the rules for→ are not stationary, letting us forget to add a subtyping rule

for→: in the subderivation typing 𝑔, we need 𝑔 to have type 𝐴 → 𝐵2 but it has only the type

𝐴→ (𝐵1 ∧ 𝐵2).
. . . ⊢ 𝑓 : (𝐴→ 𝐵2) → 𝐶 · · · ⊢/ 𝑔 : 𝐴→ 𝐵2

𝑓 : (𝐴→ 𝐵2) → 𝐶, 𝑔 : (𝐴→ (𝐵1 ∧ 𝐵2)) ⊢/ 𝑓 𝑔 : 𝐶
→Elim

Note that if we [-expand 𝑔 to _𝑥. 𝑔 𝑥 , the term can be typed with only shallow subtyping:

. . . ⊢ 𝑓 : (𝐴→ 𝐵2) → 𝐶

. . . , 𝑥 : 𝐴 ⊢ 𝑔 : 𝐴→ (𝐵1 ∧ 𝐵2) . . . , 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

. . . , 𝑥 : 𝐴 ⊢ 𝑔 𝑥 : 𝐵1 ∧ 𝐵2

→Elim

. . . , 𝑥 : 𝐴 ⊢ 𝑔 𝑥 : 𝐵2

∧Elim2

. . . ⊢ (_𝑥. 𝑔 𝑥) : 𝐴→ 𝐵2

→Intro

𝑓 : (𝐴→ 𝐵2) → 𝐶, 𝑔 : (𝐴→ (𝐵1 ∧ 𝐵2)) ⊢ 𝑓 (_𝑥. 𝑔 𝑥) : 𝐶
→Elim

The technique of [-expanding to simulate deep subtyping, e.g. for intersection and union types

[Dunfield 2014], is (as far as we know) due to Barendregt et al. [1983]; they showed that putting a

𝛽[-expansion rule in a type system made subsumption admissible (see their Lemma 4.2).

Whether we choose a subtyping relation that is shallow or deep, we can “optimize” a type

assignment system by dropping stationary rules that are encompassed by subsumption. For exam-

ple, ∧Elim1 and ∧Elim2 are admissible by using Sub with the appropriate subtyping rules. This

engineering optimization is not uniform: since ∧Intro cannot be translated, we end up with a type

system that has an introduction rule for ∧, but buries the elimination rules inside subtyping.

Fortunately (if we dislike non-uniform optimizations), in the bidirectional version of intersection

typing, the bidirectional versions of ∧Elim1 and ∧Elim2 are not admissible:

Γ ⊢ 𝑒 ⇒ 𝐴1 ∧𝐴2

Γ ⊢ 𝑒 ⇒ 𝐴1

∧Elim1

Γ ⊢ 𝑒 ⇒ 𝐴1 ∧𝐴2

Γ ⊢ 𝑒 ⇒ 𝐴2

∧Elim2

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :15

These rules have a synthesizing conclusion, which means that Sub cannot simulate them.

It is worth noting, however, that these rules are mode-correct, but not syntax-directed. With

stationary synthesis rules, a term can synthesize many possible types—in this example, 𝑒 can

synthesize any of 𝐴1 ∧𝐴2, 𝐴1, and 𝐴2. This is not inherently a bad thing—after all, the whole point

of an intersection type discipline is to allow ascribing many types to the same term. However,

managing this nondeterminism requires some care both in the design of the type system, and its

implementation.

4.6.1 Principal synthesis. A type assignment system has principal types if there always exists a
“best type”—a type that represents all possible types. In systems with subtyping, the best type is the

smallest type, so the principal typing property says that if 𝑒 is well-typed, there is a principal type

𝐴 such that 𝑒 has type 𝐴 and 𝐴 <: 𝐵, for all types 𝐵 of 𝑒:

Definition 1. A type assignment system has principal types if, for all terms 𝑒 well-typed under Γ,
there exists a type 𝐴 such that Γ ⊢ 𝑒 : 𝐴 and for all 𝐵 such that Γ ⊢ 𝑒 : 𝐵, we have 𝐴 <: 𝐵.
A type inference system has principal inference if it implements a type assignment system that

has principal types (Definition 1) and always infers the principal type. We temporarily write 𝑒 ⇒ 𝐴

for type inference, to ease the transition to principal synthesis (Definition 3). The definition says

that if we can infer 𝐴, then 𝐴 is principal.

Definition 2. A type inference system has principal inference if, given Γ ⊢ 𝑒 ⇒ 𝐴, for all 𝐵 such that
Γ ⊢ 𝑒 : 𝐵, we have 𝐴 <: 𝐵.
That is, every type 𝐵 that can be assigned to 𝑒 is a supertype of the inferred type 𝐴. (In Damas–

Hindley–Milner inference [Hindley 1969; Damas and Milner 1982], this property is stated for

type schemes; an inferred type scheme for 𝑒 is principal when it can be instantiated to every

(monomorphic) type of 𝑒 .)

We can adapt Definition 2 to bidirectional type systems by using checking, rather than type

assignment, to define “all possible types”.

Definition 3. A bidirectional type system has principal synthesis if, given Γ ⊢ 𝑒 ⇒ 𝐴, for all 𝐵 such
that Γ ⊢ 𝑒 ⇐ 𝐵, we have 𝐴 <: 𝐵.

Principal synthesis is sometimes easy: if a bidirectional system has uniqueness of both synthesis

and checking, that is, if Γ ⊢ 𝑒 ⇒ 𝐴 and Γ ⊢ 𝑒 ⇒ 𝐵 then 𝐴 = 𝐵 (and respectively for checking), then

𝐴 <: 𝐵 because 𝐴 = 𝐵. (In a system in which synthesis always produces the same type 𝐴1, and

checking always works against only a single type 𝐴2 for a given term, it had better be the case that

𝐴1 = 𝐴2!)

For many sophisticated type systems, principal synthesis either does not hold or requires some

extra design work. In common formulations of intersection types, such as the one in Section 4.6,

synthesis and checking are not unique. For example, if we synthesize 𝑥 : (𝐴1 ∧𝐴2) ⊢ 𝑥 ⇒ 𝐵, the

point of the intersection type is to allow either the behaviour 𝐴1 or 𝐴2, so it must be possible to

derive both

𝑥 : (𝐴1 ∧𝐴2) ⊢ 𝑥 ⇒ 𝐴1 and 𝑥 : (𝐴1 ∧𝐴2) ⊢ 𝑥 ⇒ 𝐴2

as well as 𝑥 : (𝐴1 ∧𝐴2) ⊢ 𝑥 ⇒ 𝐴1 ∧𝐴2. Saying that synthesis should only produce 𝐴1 ∧𝐴2 is not

compatible with the recipe: If 𝑥 is a function, the rule→Elim needs to synthesize a function type;

we are not checking 𝑥 against a known type, so we cannot rely on subtyping (which has only a

checking conclusion) to eliminate the intersection.

Non-uniqueness means that a straightforward implementation of the rules must do backtrack-

ing search, trying all three types 𝐴1, 𝐴2 and 𝐴1 ∧ 𝐴2, even when the choice is irrelevant. Some

, Vol. 1, No. 1, Article . Publication date: November 2020.

:16 Jana Dunfield and Neel Krishnaswami

backtracking is difficult to avoid with intersection types, but naively trying all three choices in all

circumstances is excessive.

To address this, the first author’s implementation of a bidirectional intersection and union type

system split the synthesis judgment into two: one judgment that “maintains principality”, and one

that “wants an ordinary type”. The “maintains principality” judgment lacked rules like ∧Elim1

and ∧Elim2; the “ordinary type” judgment included such rules. The choice of synthesis judgment

depended on the rule. The premise of a let rule, synthesizing a type for the let-bound expression,

used the “maintains principality” judgment to ensure that the variable typing added in the body of

the let was principal. So, for example, if the let-bound expression was simply a variable 𝑥 of type

𝐴1 ∧𝐴2, the typing in the body would also have 𝐴1 ∧𝐴2, with no backtracking between choices of

∧Elim1 and ∧Elim2. However, the premise of→Elim used the “wants an ordinary type” judgment,

because we may need to apply rules like ∧Elim1 to expose the→ connective. See Dunfield [2007,

§6.7.1 on pp. 186–187].

Davies [2005, §2.10.2] includes a bidirectional typing (sort checking) system with a principal

synthesis property. It appears that Davies asserts the property (page 41) without formally stating

or proving it, but from our reading of the rules on page 42, it holds as follows: Principal synthesis is

achieved through an auxiliary judgment that, when applying a function of type (𝑅1 → 𝑆1) ∧ · · · ∧
(𝑅𝑛 → 𝑆𝑛), gathers all the components 𝑅𝑖 → 𝑆𝑖 such that the function argument checks against 𝑅𝑖 ,

and synthesizes the intersection of all such 𝑆𝑖 . (Davies [2005, §3.10] also discusses a principal sorts

property in a non-bidirectional type inference setting, but this is less relevant to our survey.)

5 POLYMORPHISM
Damas–Milner type inference [Damas and Milner 1982] allows only prefix polymorphism: the

quantifiers in a type must appear on the outside, allowing ∀𝛼. (∀𝛽. 𝛼 → 𝛽 → 𝛼) but not ∀𝛼. 𝛼 →
(∀𝛽.𝛽 → 𝛼) and∀𝛽.(∀𝛼.𝛼 → 𝛼) → 𝛽 → 𝛽 . This restriction is called prefix or prenex polymorphism.

In their terminology, types contain no quantifiers at all; only type schemes can have quantifiers (on

the outside). Polymorphism can be introduced only on let expressions.
If programs must indicate both where and how to introduce and eliminate polymorphism,

polymorphism is fully explicit. Adding fully explicit polymorphism to a bidirectional system is

straightforward: since the term is an input, both the introduction and elimination rules can use the

information in the term. However, fully explicit polymorphism is often considered unusable, mostly

because of the explicit eliminations: it is burdensome to say how to instantiate every quantifier.

Explicit introduction of polymorphism can readily cope with less restrictive forms of polymor-

phism: higher-rank polymorphism, which allows quantifiers to be nested anywhere in a type

(including to the left of arrows, as in the type ∀𝛽. (∀𝛼. 𝛼 → 𝛼) → 𝛽 → 𝛽 mentioned above), and

even impredicative polymorphism which allows quantifiers to be instantiated with polymorphic

types.

Making eliminations implicit is not easy. Following the recipe, eliminations synthesize, so given

𝑒 ⇒ (∀𝛼. 𝛼 → 𝛼) we should derive 𝑒 ⇒ [𝜏/𝛼] (𝛼 → 𝛼), that is, 𝑒 ⇒ (𝜏 → 𝜏). Unfortunately,
the instantiation 𝜏 (we write 𝜏 , rather than 𝐴, for monotypes—types containing no quantifiers) is

decidedly not an input.

This instantiation problem has been tackled from several directions. The first widely known paper

on bidirectional typing [Pierce and Turner 2000] considered the problem in a setting with subtyping,

and answered it by local constraint solving (hence the title Local Type Inference) around function

applications. Subtyping leads to considering the upper and lower bounds of a type, rather than

equations on types. Pierce and Turner restricted instantiation to prefix polymorphism, though their

source language allowed impredicative polymorphism if the programmer explicitly instantiates the

quantifier.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :17

Their bidirectional rules are quite different from what our recipe might produce in their setting.

They have three rules for _-abstractions: S-Abs synthesizes the type of a _ with an explicit argument

type, C-Abs-Inf checks a _ without an explicit argument type, and C-Abs checks a _ with an explicit

argument type. They have two rules for applications with explicit quantifier instantiation: S-

App synthesizes, with the same directionality as our→-elimination rule, and C-App checks the

application against a type𝑈 by synthesizing a type 𝑆 → 𝑅 for the function and checking that 𝑅 is

a subtype of𝑈 . (Here, we elide substituting the explicit instantiation type 𝑇 .) Applications with

inferred instances also have two rules: S-App-InfSpec synthesizes, with a premise that forces the

chosen instantiation to produce the best synthesized result type; C-App-UInfSpec checks, and lacks

that premise because the needed result type of the application is known. Hosoya and Pierce [1999]

discuss the annotation burden of local type inference for several example programs.

One can argue that all type systems have subtyping, where some systems have only trivial

subtyping (𝐴 is a subtype of 𝐵 iff 𝐴 = 𝐵). A more moderate perspective is that “most” type

systems have subtyping: even in prefix polymorphism, types that are “more polymorphic” can be

considered subtypes. By the substitution principle of Liskov and Wing [1994], ∀𝛼. 𝛼 → 𝛼 should be

a subtype of unit→ unit: any program context that expects an identity function on unit—of type
unit→ unit—should be satisfied by a polymorphic identity function of type ∀𝛼. 𝛼 → 𝛼 . (In many

systems, including Damas–Milner, types cannot contain quantifiers—only type schemes can—but

the perspective could be adapted to subtyping on type schemes, and is conceptually useful in any

case.) In systems with higher-rank polymorphism, the perspective that polymorphism is a form

of subtyping is salient: since quantifiers can appear to the left of arrows, we may want to pass a

“more polymorphic” argument to a function that expects something less polymorphic.

5.1 “Complete and Easy” Polymorphism
In this subsection, we explain the key elements of our technique [Dunfield and Krishnaswami

2013], discuss some typing rules, and describe its history in more detail.

5.1.1 Greedy instantiation. The key idea taken from Cardelli [1993] was that, when eliminating

a polymorphic type, we can treat the first plausible solution as the solution. For example, if we are

calling a function of type ∀𝛼. 𝛼 → 𝛼 → 𝛼 (assuming parametricity, such a function can only return

one of its arguments) and pass as the first argument something of type Cat, we instantiate 𝛼 to

Cat. This works perfectly well when the second argument has the same type, or when the second

argument is of a subtype of Cat (e.g. Tabby), but fails when the second argument is of a larger type.

If the first argument has type Tabby but the second argument has type Cat, the second argument

will fail to check against Tabby, since not all cats are tabbies.
In its original setting, this “greedy” method’s vulnerability to argument order was rather unfor-

tunate. In a setting of predicative higher-rank polymorphism without other forms of subtyping,

however, it can work nicely. The “tabby-first problem” cannot arise because the only way a type

can become strictly smaller is by being strictly more polymorphic, and if the first argument is poly-

morphic we would be instantiating 𝛼 with a polymorphic type, which would violate predicativity.

5.1.2 Systems and judgments. The paper focused on two bidirectional type systems: a declarative
system whose ∀-elimination rule “guesses” types, and an algorithmic system which instead uses

greedy instantiation.

Our declarative system followed a looser version of the Pfenning recipe: in addition to the rules

produced by the recipe, the declarative system included synthesizing introduction rules for unit and
→. A subsumption rule, DeclSub, used a declarative subtyping relation ≤ whose “∀-left” rule—the
rule concluding (∀𝛼. 𝐴) ≤ 𝐵—guessed a monotype 𝜏 to use in the premise [𝜏/𝛼]𝐴 ≤ 𝐵.

, Vol. 1, No. 1, Article . Publication date: November 2020.

:18 Jana Dunfield and Neel Krishnaswami

We also incorporated an application judgment, written

Ψ ⊢ 𝑒 • 𝐴⇒⇒ 𝐶

meaning that under the declarative context Ψ, if a function of type 𝐴 is applied to an argument

𝑒 , the entire application will have result type 𝐶 . The rules for this judgment eliminate ∀𝛼. 𝐴 by

substituting an unsolved type variable 𝛼 for 𝛼 .

5.1.3 Ordered typing contexts. Rather than passing along a “bag of constraints”, we can store the

(solved and unsolved) type variables (written 𝛼 , ˆ𝛽 , etc.) in an ordered context. Issues of circularity

and scope still need care, but the way to handling them is clarified: if 𝛼 appears to the left of
ˆ𝛽 and

we need to constrain them to be equal, we must solve
ˆ𝛽 to 𝛼 , not the other way around. Forcing

this single order avoids backtracking.

In our algorithmic system, the three typing judgments—checking, synthesis and application—

included an output context Δ. For example, if the input context Γ = (𝛼, 𝑥 : 𝛼), meaning that 𝛼 is an

unsolved existential variable and 𝑥 has type 𝛼 , checking 𝑥 against unit will solve 𝛼 :

𝛼, 𝑥 : 𝛼 ⊢ 𝑥 ⇐ unit ⊣ 𝛼 = unit, 𝑥 : 𝛼

More generally, in a derivation of Γ ⊢ · · · ⊣ Δ, the output context Δ gains information: any solutions
present in Γ are also present in Δ, but unsolved 𝛼 in Γ may gain solutions in Δ.

We made this idea of information gain precise by defining context extension: whenever a judgment

Γ ⊢ · · · ⊣ Δ is derivable, the output context Δ is an extension of Γ, written Γ −→ Δ. As in the

𝑥 ⇐ unit example, information about existential type variables may increase in Δ; also, new
existential variables (unsolved or solved) may appear in Δ. However, the “ordinary” program

variable typings 𝑥 : 𝐴 must not change.

5.1.4 Contexts as substitutions. In our paper, we allowed contexts to be used as substitutions: if Δ
contains 𝛼 = unit, then [Δ]𝛼 = unit. This usage pervaded the system. For instance, the subsumption

rule applies Θ, the output context of the first premise, to the inputs in the second premise:

Γ ⊢ 𝑒 ⇒ 𝐴 ⊣ Θ Θ ⊢ [Θ]𝐴 <: [Θ]𝐵 ⊣ Δ
Γ ⊢ 𝑒 ⇐ 𝐵 ⊣ Δ

Sub

Such applications—found in all our rules with more than one premise—guarantee that whenever the

input types in a judgment do not contain existential variables already solved in the input context,

the output types do not contain existential variables that are solved in the output context. That
is, all types are “solved” as much as possible. While this property made the rules a little more

complicated, it seemed to make the system easier to work with.

5.1.5 Historical notes and other approaches. The first author combined the two key elements,

greedy instantiation and ordered contexts, in a workshop paper [Dunfield 2009]; the idea of using

ordered contexts is due to Brigitte Pientka. Unfortunately, key proofs in the paper were severely

flawed. Despite these flaws, the second author liked the key ideas and wanted to use them in a type

system with higher kinds and inverse types. We haven’t built that system yet, but the “preliminary”

step of shoring up the workshop paper became its own paper [Dunfield and Krishnaswami 2013].

Gundry et al. [2010] offer a reformulation of Algorithm W that is based on information increase

over ordered contexts.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :19

We know of several languages that have used our approach or a variant of it: Discus
6
, PureScript

7
,

and Hackett
8
. Xie et al. [2018] extended the approach and its metatheory; their work is discussed

in Section 9.2.

The first implementation of higher-rank polymorphism to see widespread use was in GHC

Haskell, and was documented in Peyton Jones et al. [2007]. The techniques introduced in this paper

were quite similar to ours [Dunfield and Krishnaswami 2013], but as usual we did not understand

the closeness of the relationship until after we reinvented our own version. They specified their

algorithm in the Hindley–Milner style: in their specification, variables are automatically instantiated

when used and re-generalized as needed, via generalization and specialization rules that are

not syntax-directed. Their algorithm eagerly instantiates quantifiers, re-generalizing let-bound

expressions; it uses subtyping (specialization) only at bidirectional mode switches. Our algorithm is

lazy, never instantiating a quantifier unless it has to. Eisenberg et al. [2016] extended the algorithm

of Peyton Jones et al. [2007] with explicit quantifier instantiations. Implementing this approach

required lazy instantiation so that the algorithm could delay instantiation until user applications

had been processed.

Zhao et al. [2019] give a new machine-checked formalization of type inference, using our

declarative specification [Dunfield and Krishnaswami 2013]. However, they give a new algorithm

for easier machine verification, in a “worklist” style: Type inference is broken into subproblems

just as with other bidirectional systems, but instead of writing the type inference algorithm as

a simple recursion on the structure of the syntax, the problems are pushed onto a stack as the

syntax is decomposed. This technique avoids the need for an output context—as type checking

refines the values of the existential variables, this is automatically propagated to all the remaining

subproblems. By associating contexts with judgments on the worklist, rather than threading a

context through the derivation, they avoid the need for our “scope markers”. The larger tradeoffs

are not entirely clear, but we can say that our algorithm solves problems in a more predictable

order, while their approach is potentially more powerful: it enables the algorithm to defer solving

problems until more information is available.

5.2 Extensions to Polymorphism
Peyton Jones et al. [2007], our 2013 system, and Zhao et al. [2019] support predicative polymor-

phism, where quantifiers can be instantiated only with monotypes. Inferring instantiations for

impredicative polymorphism is undecidable in general. Building on the approach of Peyton Jones

et al. [2007], Serrano et al. [2020] support guarded impredicativity, where the quantifier occurs

inside a type constructor.

Another extension to polymorphism is generalized algebraic datatypes (GADTs), in which

datatypes are not uniformly polymorphic: the type arguments can depend on the constructor [Xi

et al. 2003]. Pottier and Régis-Gianas [2006] use bidirectional typing to produce GADT-related

annotations, which provide the missing information for non-bidirectional type inference. OutsideIn

[Vytiniotis et al. 2011] and Dunfield and Krishnaswami [2019] also use bidirectional typing for

GADTs. Both use unification to propagate equality information. Our paper has a declarative

specification, though our proofs that our algorithm is sound and complete are quite involved.

OutsideIn is more liberal about when it can unify two types without an annotation, which makes it

more powerful than our system However, formulating a specification for OutsideIn remains an

open problem.

6http://blog.discus-lang.org/2017/10/the-disciplined-disciple-compiler-v051.html
7http://www.purescript.org/
8https://github.com/lexi-lambda/hackett

, Vol. 1, No. 1, Article . Publication date: November 2020.

http://blog.discus-lang.org/2017/10/the-disciplined-disciple-compiler-v051.html
http://www.purescript.org/
https://github.com/lexi-lambda/hackett

:20 Jana Dunfield and Neel Krishnaswami

6 VARIATIONS ON BIDIRECTIONAL TYPING
When discussing work that uses different notation from ours, e.g. ↓ and ↑ instead of⇐ and⇒, we

replace the original notation with ours. See Section 11.

6.1 Mixed-direction Types
Instead of distinguishing checking from synthesis at the judgment level, Odersky et al. [2001] make

a distinction in type syntax: (1) inherited types
∨𝐴 serve the purpose of the checking judgment,

and (2) synthesized types ∧𝐴 serve the purpose of the synthesis judgment. In their system, general
types combine inherited and synthesized types. For example, in

∨ (∧int→ ∨bool) the outermost ∨
denotes that the connective→ is inherited (in our terminology, checked), the ∧ that precedes int
denotes that the domain of the function is synthesized, and the ∨ that precedes bool denotes that
the range of the function is inherited (checked). Their subtyping judgment does not synthesize

nontrivial supertypes:
∨int <: ∧⊤ is not derivable, but ∨int <: ∧int is derivable (the supertype is

trivial, being equal to the subtype). When the supertype is inherited (checked), as in
∨int <: ∨⊤,

subtyping for Odersky et al. corresponds to the bidirectional subsumption rule.

Another approach to pushing these distinctions into the type syntax can be found in the work

on boxy types [Vytiniotis et al. 2006]. The type syntax of boxy types is simpler than in the work of

Odersky et al. [2001], since it does not permit arbitrary interleaving of checked and synthesized

type components of a type: inferred types occur in boxes, and boxes are not allowed to nest. In

addition, the treatment of variables does not follow the basic bidirectional recipe; instead, variables

are checked, which is more similar to the backwards approach to bidirectional typing we discuss in

Section 6.5.

6.2 Directional Logic Programming
One lesson that can already be drawn is that the flow of information through the typing judgments

is a key choice in the design of bidirectional systems, and that it is often desirable to go beyond the

simple view of modes as either inputs or outputs: for example, Odersky et al. [2001] track whether

each part of a type is an input or output. So describing bidirectional typing algorithms can require

a more subtle notion of mode.

Reddy [1993] adapts ideas from classical linear logic to characterize directional logic programs. Di-

rectional logic programming subsumes moded logic programming. For example, a ternary predicate

𝑝 in regular multi-sorted predicate logic might be given the type:

𝑝 : List(Int) × Int × Bool→ prop

This says that a proposition of the form 𝑝 (𝑋,𝑌, 𝑍) has three arguments, with 𝑋 a list of integers, 𝑌

an integer, and 𝑍 a boolean. With an ordinary mode system, each of these three arguments must

be classified entirely as an input or output.

However, in directional logic programming, modes become part of the structure of the sorts,

which permits giving sorts like:

𝑝 : List(Int⊥) ⊗ Int ⊗ Bool⊥ → prop

Now, in a predicate occurrence of the form 𝑝 (𝑋,𝑌, 𝑍), the argument 𝑌 is an input integer, and

𝑍 is an output boolean, with the an output of sort 𝜏 marked as 𝜏⊥. The argument 𝑋 has the sort

List(Int⊥), meaning that the list is structurally an input (so its length is known) but its elements

are outputs: the type Int denotes an integer that is an input, while Int⊥ denotes an integer that is

an output.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :21

The notation 𝐴⊥ corresponds to negation, and the classical nature of the sort structure arises

from the fact that outputting an output 𝐴⊥⊥ is the same as an input 𝐴—i.e., the user must supply a

box which will be filled with an 𝐴.

This more fine-grained structure lets us give sort declarations which capture the fact that (for

example) the boxes in boxy types are outputs but the rest of the type is an input.

6.3 Mode Annotations
Davies [2005, pp. 242–243] describes mode annotations that would allow programmers to declare

which functions should be typed using synthesis (instead of checking) and whether the entire

application should be checking (instead of synthesizing). As far as we know, mode annotations

were never implemented.

Davies motivated this annotation form for polymorphic functions like “higher-order case”, which

takes as arguments an instance of a datatype (bits) and a series of functions corresponding to

case arms. That is, the “first-class” case expression

case(𝑒bits, 𝑒bnil-case ||𝑥 . 𝑒b0-case ||𝑦. 𝑒b1-case)

is written bcase 𝑒bits (_(). 𝑒bnil-case) (_𝑥 . 𝑒b0-case) (_𝑦. 𝑒b1-case).
We can declare the type and mode of the function bcase:

val bcase : bits → (unit → 𝛼) → (bits → 𝛼) → (bits → 𝛼) → 𝛼

mode bcase : inf → chk→ chk→ chk→ chk

The second line is a mode annotation. It says that the first argument of bcase should synthesize (be
inf erred), the remaining three arguments should be checked, and the entire application should be

checked (the last chk). Synthesizing the type of the first argument corresponds to the synthesizing

principal judgment of the elimination rule +Elim; checking the other arguments corresponds to the

checking premises of +Elim; checking the entire application corresponds to the checking conclusion

of +Elim.

One can view mode annotations as instructions for transforming a type𝐴→ 𝐵 into a “decorated”

type—something like Odersky et al. [2001], but where the connective itself is decorated. The recipe’s

elimination rule→Elim would correspond to a type
⇒→⇐⇒, matching the scheme

pr1→pr2
conc where

pr1 is the first premise, pr2 is the second premise and conc is the conclusion. Not all such decorations
would be mode correct.

6.4 Simultaneous Input and Output
Another way to blend input and output was developed by Pottier and Régis-Gianas [2006] for

type inference for GADTs [Xi et al. 2003]. The overall structure of their system is unusual (their

bidirectional algorithm produces shapes, which are then given to a non-bidirectional type inference

algorithm); for brevity, we explain the idea in a more ordinary setting involving types, not shapes.

The basic idea is to combine synthesis and checking judgments into a single judgment with two

types: Γ ⊢ 𝑒 ⇐ 𝐴⇒ 𝐵 means “check 𝑒 against 𝐴, synthesizing 𝐵”, where 𝐵 is a subtype of 𝐴. The

system thus operates in both checking and synthesis modes simultaneously.

A similar idea is used in the program synthesis work of Polikarpova et al. [2016], round-trip
type checking: combines a checking judgment Γ ⊢ 𝑒 ⇐ 𝐴 with a type strengthening judgment

Γ ⊢ 𝑒 ⇐ 𝐴⇒ 𝐵.

For example, the strengthening rule for variables [Polikarpova et al. 2016, Fig. 4] checks against a

given type 𝐴, but utilizes Γ’s refinement type {𝑏 | 𝜓 } (base type 𝑏 such that the constraint𝜓 holds)

, Vol. 1, No. 1, Article . Publication date: November 2020.

:22 Jana Dunfield and Neel Krishnaswami

to produce a strengthened type {𝑏 | a = 𝑥}.

Γ(𝑥) = {𝑏 | 𝜓 } Γ ⊢ {𝑏 | 𝜓 } <: 𝐴

Γ ⊢ 𝑥 ⇐ 𝐴⇒ {𝑏 | a = 𝑥}
VarSc

Synthesis becomes a special case of strengthening: Γ ⊢ 𝑒 ⇒ 𝐵 can be written Γ ⊢ 𝑒 ⇐ top⇒ 𝐵.

Since every type is a subtype of top, the synthesized type 𝐵 is stronger than the goal type (top).

6.5 Backwards Bidirectional Typing
In the basic Pfenning recipe, the principal judgment in an introduction rule is checked, and the

principal judgment in an elimination rule synthesizes. However, Zeilberger [2015] observed that in a

multiplicative linear type theory, bidirectional typing works precisely as well if you did it backwards,

changing all occurrences of synthesis to checking, and vice versa. Zeilberger’s observation was

made in the context of a theorem relating graph theory and type theory, but it is a sufficiently

striking result that it is worth spelling out in its own right. We will not precisely replicate his

system, but we will discuss our divergences when relating it to other bidirectional type systems.

First, we give the syntax of multiplicative linear logic.

Types 𝐴 ::= 1 | 𝐴 ⊗ 𝐵 | 𝐴 ⊸ 𝐵

Terms 𝑒 ::= 𝑥 | _𝑥 . 𝑒 | 𝑒 𝑒 ′
| () | let () = 𝑒 in 𝑒 ′

| ⟨𝑒, 𝑒 ′⟩ | let ⟨𝑥,𝑦⟩ = 𝑒 in 𝑒 ′

Contexts Γ ::= · | Γ, 𝑥 ⇐ 𝐴

The types of MLL are the unit type 1, the tensor product 𝐴 ⊗ 𝐵, and the linear function space

𝐴 ⊸ 𝐵. Unit and tensor are introduced by () and ⟨𝑒, 𝑒 ′⟩, and are eliminated by pattern matching.

Functions are introduced by _𝑥. 𝑒 and eliminated using applications 𝑒 𝑒 ′.
Contexts are a bit unusual—they pair together variables and their types as usual, but instead of

treating a variable as a placeholder for a synthesizing term, we treat variables as placeholders for

checking terms. This will have substantial implications for the mode discipline of the algorithm,

but we will defer discussion of this point until the whole system is presented.

Now we give the typing rules, starting with those for the unit type.

· ⊢ ()⇒ 1

Δ ⊢ 𝑒 ′⇒ 𝐴 Γ ⊢ 𝑒 ⇐ 1

Γ,Δ ⊢ let () = 𝑒 in 𝑒 ′⇒ 𝐴

The introduction rule says that in an empty context, the unit value () synthesizes the type 1. The
pattern-matching style elimination let () = 𝑒 in 𝑒 ′ first synthesizes a type 𝐴 for the body 𝑒 ′, and
then checks that the scrutinee 𝑒 has the unit type 1.

Thus, we synthesize a type for the continuation first, before checking the type of the data we

are eliminating; this is the exact reverse of the Pfenning recipe. For the unit type, this is a mere

curiosity, but it gets more interesting with the tensor product type 𝐴1 ⊗ 𝐴2.

Γ ⊢ 𝑒1 ⇒ 𝐴1 Δ ⊢ 𝑒2 ⇒ 𝐴2

Γ,Δ ⊢ ⟨𝑒1, 𝑒2⟩ ⇒ 𝐴1 ⊗ 𝐴2

Γ, 𝑥1 ⇐ 𝐴1, 𝑥2 ⇐ 𝐴2 ⊢ 𝑒 ′⇒ 𝐶 Δ ⊢ 𝑒 ⇐ 𝐴1 ⊗ 𝐴2

Γ,Δ ⊢ let ⟨𝑥1, 𝑥2⟩ = 𝑒 in 𝑒 ′⇒ 𝐶

The synthesis rule for pairs remains intuitive, though it reverses the direction given by the Pfenning

recipe: for a pair ⟨𝑒1, 𝑒2⟩, we first synthesize 𝐴1 for 𝑒1 and 𝐴2 for 𝑒2, then conclude that the pair has

type 𝐴1 ⊗ 𝐴2.

However, the elimination rule typing let ⟨𝑥1, 𝑥2⟩ = 𝑒 in 𝑒 ′ is startling. First, it synthesizes the
type 𝐶 for the continuation 𝑒 ′; we learn from having typed 𝑒 ′ that 𝑥1 and 𝑥2 need to have types 𝐴1

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :23

and 𝐴2 respectively. This gives us the information we need to check 𝑒 against 𝐴1 ⊗ 𝐴2. The linear

function type 𝐴1 ⊸ 𝐴2 has a similar character:

Γ, 𝑥 ⇐ 𝐴 ⊢ 𝑒 ⇒ 𝐵

Γ ⊢ _𝑥 . 𝑒 ⇒ 𝐴 ⊸ 𝐵

Γ ⊢ 𝑒 ′⇒ 𝐴 Δ ⊢ 𝑒 ⇐ 𝐴 ⊸ 𝐵

Γ,Δ ⊢ 𝑒 𝑒 ′⇐ 𝐵

Here, to synthesize a type for the introduction form _𝑥. 𝑒 , we synthesize 𝐵 for the body 𝑒 , and then

look up what type 𝐴 the argument 𝑥 needs to have in order for the body 𝑒 to be well typed. To

check that an application 𝑒 𝑒 ′ has the type 𝐵, we synthesize 𝐴 for the argument 𝑒 ′, and then check

the function 𝑒 against 𝐴 ⊸ 𝐵.

The rule for product elimination suggests a reversed rule for let-expressions, which allows us to

defer checking the bound expression 𝑒 until we know what type it needs to have.

Γ, 𝑥 ⇐ 𝐴 ⊢ 𝑒 ′⇐ 𝐵 Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ let𝑥 = 𝑒 in 𝑒 ′⇐ 𝐵

Again, the checking/synthesis modes are reversed from most bidirectional type systems. We can

see how this reversal plays out for variables below:

𝑥 ⇐ 𝐴 ⊢ 𝑥 ⇐ 𝐴

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 = 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵

Here, when we check that the variable 𝑥 has type 𝐴, the context must be such that it requires 𝑥 to

have the type 𝐴. However, the switch between checking and synthesis is standard.

Relative to most bidirectional systems, the information flow in the variable rule (as well as for

pattern matching for pairs and lambda-abstraction for functions) is strange. Usually, the context

would give the type of each variable. However, in this case the context is told the type of each

variable. This system of rules is still well-moded in the logic programming sense, but the moding is

more exotic than simple inputs or outputs. Within a given context, the variables are inputs, but

their types are outputs. Following Reddy [1993], the moding of checking and synthesis might be

given as

mode check : (List (Var ⊗ Type⊥) ⊗ Term ⊗ Type)→ prop
mode synth : (List (Var ⊗ Type⊥) ⊗ Term ⊗ Type⊥)→ prop

This mode declaration says that for both checking and synthesis, the spine of the context and the

variable names are inputs, but the ascribed type for each variable is an output. Similarly, the term

is an input in both judgments, but the type is an input in check but an output in synth.
We can relatively easily prove a substitution theorem for the backwards system:

Theorem 1. (Backwards Substitution) If Δ ⊢ 𝑒 ⇐ 𝐴, then
(1) If Γ, 𝑥 ⇐ 𝐴,Θ ⊢ 𝑒 ′⇐ 𝐶 then Γ,Δ,Θ ⊢ [𝑒/𝑥]𝑒 ′⇐ 𝐶 .
(2) If Γ, 𝑥 ⇐ 𝐴,Θ ⊢ 𝑒 ′⇒ 𝐶 then Γ,Δ,Θ ⊢ [𝑒/𝑥]𝑒 ′⇒ 𝐶

Unfortunately, we do not presently know how to nicely characterize the set of terms that is

typable under this discipline, unlike the characterization for the Pfenning recipe that annotation-free

terms are the 𝛽-normal terms.

6.5.1 Applications of Backwards Bidirectional Typing. When designing a bidirectional type

system, what approach should we use—the Pfenning recipe, its pure reversal (as presented above),

or something else? The most popular answer seems to be “something else”: Many practical systems

synthesize types for literals (unit, booleans, etc.) and for pairs, which—being introduction forms—

can only be checked under the strict Pfenning recipe. However, a number of papers have used

, Vol. 1, No. 1, Article . Publication date: November 2020.

:24 Jana Dunfield and Neel Krishnaswami

reversed rules in more subtle ways. Which approach to take depends on the choice of tradeoffs: for

example, we can require fewer annotations if we complicate the flow of type information.

Drawing inspiration from relevance logic, which requires variables to be used at least once (as

opposed to the exactly-once constraint of linear logic), Chlipala et al. [2005] require a let-bound

variable to be used at least once. This allows them to reverse the typing rule for let-expressions,

reducing the annotation burden of the basic Pfenning recipe: no annotation is needed on the

let-bound expression. Their typing contexts contain checking variables, whose moding is similar to

the variables in our backwards bidirectional system. Such a variable must occur at least once in a

checking position; that occurrence determines the type of the variable, which can be treated as

synthesizing in all other occurrences.

Xie and Oliveira [2018] present another bidirectional type system for polymorphism. Their rule

for function application is very similar to the backwards rule presented here, with the idea that

backwards typing means that applications like (_𝑥. 𝑒) 𝑒 ′ do not need a type annotation at the redex.

This requires fewer annotations on let-bindings, as in the work of Chlipala et al. [2005], but with

support for polymorphism.

Zeilberger [2015] (and its follow-up work Zeilberger [2018]) did not use any type annotations at

all. Instead, his bidirectional system was used to deduce a type scheme for the linear lambda terms,

in the style of ML type inference, to find a simple proof of the fact every linearly typed term has a

most general type, and moreover that the structure of its 𝛽-normal, [-long form is determined by

this type scheme.

Intersection types can reconcile multiple occurrences of the same variable at different types; it

appears that the type inference algorithm of Dolan [2016] can be viewed as calculating intersections

via a computable lattice operation on types.

7 PROOF THEORY, NORMAL FORMS, AND TYPE ANNOTATIONS
7.1 Subformula Property
In cut-free sequent calculi, every formula (proposition) that appears in a derivation is a subformula

of some formula in the conclusion. For example, in the following sequent calculus derivation,

the formulas (𝑃 ∧𝑄) ∧ 𝑅 and 𝑃 ∧𝑄 are subformulas (subterms) of the conclusion’s assumption

(𝑃 ∧𝑄) ∧ 𝑅.

(𝑃 ∧𝑄) ∧ 𝑅 ⊢ (𝑃 ∧𝑄) ∧ 𝑅
(𝑃 ∧𝑄) ∧ 𝑅 ⊢ 𝑃 ∧𝑄
(𝑃 ∧𝑄) ∧ 𝑅 ⊢ 𝑄

Through the Curry–Howard correspondence, a property of formulas becomes a property of types,

but the property is still called the subformula property, to avoid confusion with “subtype”.

A consequence of the subformula property is that if a connective appears in a formula, such as

the ∧ in 𝑃 ∧𝑄 in the middle step, the connective must appear in the conclusion. This consequence

is useful in a number of type systems, because it ensures that problematic type connectives appear

only with the programmer’s permission. Bidirectional type systems based on the recipe in Section

4 only synthesize types that are (subformulas of) annotations: to eliminate an→, the function

subterm must synthesize by reason of being a variable, an annotation, or an elimination form. The

type of a variable flows from an annotation on the binding form (e.g. a _ inside an annotation) or

from the synthesizing premise of an elimination rule (e.g. the premise typing the scrutinee of a

case).
Consider, for example, intersection and union types. Efficient type-checking for intersections

and unions is difficult [Reynolds 1996; Dunfield 2007]; intersections and unions that come “out of

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :25

nowhere” in the middle of a derivation—without being requested via a type annotation—would

aggravate this difficulty. Another example is found in type systems that encode multiple evaluation

strategies: if a programmer generally prefers call-by-value, but occasionally wants to use call-by-

name, the subformula property implies that call-by-name connectives appear only when requested

[Dunfield 2015]. Risky connectives abound in gradual type systems: unknown or uncertain types

should appear only with the programmer’s permission, because they permit more dynamic failures

than other type connectives do [Jafery and Dunfield 2017].

In type inference, all of typing is in a single judgment. Without a checking judgment, there is

no goal type; to increase typing power, one must put more and more “cleverness” into inference.

Certain kinds of cleverness destroy the subformula property: automatic generalization, for example,

creates “for all” connectives out of nowhere.
9
If we relax the recipe by including synthesis rules for

(), integer literals and similar constructs, we break the subformula property: () synthesizes unit
when the programmer never wrote unit. However, a weaker—and still interesting—version of the

property may hold, since every type appearing in a derivation is either a subformula of a type in

the conclusion or the “obvious” type of a literal constant. That is, we can view () as a request for

the type unit. Note that if we think of () and integer literals as constants whose type is given in a

primordial context, so that instead of Γ ⊢ 𝑒 : 𝐴 we have

() : unit, 0 : int, −1 : int, 1 : int, −2 : int, . . . , Γ ⊢ 𝑒 : 𝐴

then the full subformula property holds. In effect, the author of the primordial context (the language

designer) has requested that () and all the integer literals be permitted. Other conveniences, such

as synthesizing the types of monomorphic functions, can also be justified (with a little more work;

one must think of _ as a sort of polymorphic constant).

In bidirectional systems, the goal in the checking judgment can steer typing and avoid a measure

of cleverness. Thus, while the subformula property is not enjoyed by every imaginable bidirectional

type system, bidirectionality seems to make the property easier to achieve.

7.2 Verifications and Uses
In the linear simply typed lambda calculus of Cervesato and Pfenning [2003], typing is presented

using two judgments: a pre-canonical judgment that “validates precisely the well-typed terms. . . in

[-long form” and a pre-atomic judgment that “handles intermediate stages of their [the terms’]

construction”. As suggested by the word “validates”, the pre-canonical judgment corresponds to

checking, and the pre-atomic judgment corresponds to synthesis.

Their notation differs from most of the early papers on bidirectional typing: they write pre-

canonical judgments as 𝑀 ⇑ 𝑎 and pre-atomic judgments as 𝑀 ↓ 𝑎, which is almost exactly the

reverse of (for example) DML [Xi and Pfenning 1999], which used ↑ for synthesis and ↓ for checking.
(Both notations are reasonable: computer scientists usually write trees with the root at the top,

so Xi’s arrows match the flow of type information through a syntax tree; Gentzen put the root

of a derivation tree at the bottom, so Cervesato and Pfenning’s arrows match the flow of type

information through the typing derivation.)

This division into validation (checking) and handling intermediate values (synthesis) persists,

with different terminology, in Frank Pfenning’s teaching on verifications and uses: A verification of

a proposition checks that it is true; a use of an assumption decomposes the assumed proposition.

We are not aware of a published paper describing verifications and uses, but the idea appears in

9
It can be argued that automatic generalization is acceptable, because “for all” is less problematic. One might still want a

weaker version of the subformula property, saying that every type is either a subformula or related by generalization (and

instantiation).

, Vol. 1, No. 1, Article . Publication date: November 2020.

:26 Jana Dunfield and Neel Krishnaswami

Expressions 𝑒 ::= 𝑥 | _𝑥. 𝑒 | 𝑒 𝑒
Types 𝐴, 𝐵,𝐶 ::= 𝑏 | 𝐴→ 𝐴

Typing contexts Γ ::= · | Γ, 𝑥 : 𝐴

Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ 𝑒 ⇒ 𝐴

Under Γ, expression 𝑒 checks against type 𝐴

Under Γ, expression 𝑒 synthesizes type 𝐴

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 ⇒ 𝐴

Var⇒

Γ ⊢ 𝑒 ⇒ 𝑏 𝑏 = 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
Sub⇐

Γ, 𝑥 : 𝐴1 ⊢ 𝑒 ⇐ 𝐴2

Γ ⊢ (_𝑥 . 𝑒) ⇐ 𝐴1 → 𝐴2

→I⇐
Γ ⊢ 𝑒1 ⇒ 𝐴→ 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
→E⇒

Fig. 2. A bidirectional type system characterizing 𝛽-normal, [-long normal forms

many of Pfenning’s lecture notes. The earliest seems to be Pfenning [2004, p. 29], with similar

notation to Cervesato and Pfenning [2003]:

𝐴 ⇑ Proposition 𝐴 has a normal deduction, and

𝐴 ↓ Proposition 𝐴 is extracted from a hypothesis.

Later lecture notes introduce the terminology of verifications and uses, writing ↑ and ↓ respectively
[Pfenning 2009, 2017]. Verification is related [Pfenning 2017, p. 2] to “intercalation” in proof search

[Sieg and Byrnes 1998].

8 FOCUSING, POLARIZED TYPE THEORY, AND BIDIRECTIONAL TYPE SYSTEMS
A widespread folklore belief among researchers is that bidirectional typing arises from polarized
formulations of logic. This belief is natural, helpful, and (surprisingly) wrong.

8.1 Bidirectional Typing and the Initial Cartesian Closed Category
The naturalness of the connection can be seen from Figure 2, which gives a bidirectional type

system that precisely characterizes 𝛽-normal, [-long terms. The only necessary changes from

Figure 1 were:

• The annotation rule was removed. Since annotations are only required at 𝛽-redexes, the

omission of this rule forces all typable terms to be 𝛽-normal.

• The mode-switch rule from synthesis to checking is restricted to allow mode switches only

at base type. This makes it impossible to partially apply a function in the checking mode:

if 𝑓 : 𝑏 → 𝑏 → 𝑏 and 𝑥 : 𝑏, then 𝑓 𝑥 𝑥 checks but 𝑓 𝑥 does not. If a partial application is

desired, it must be [-expanded to _𝑦. 𝑓 𝑥 𝑦.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :27

Together, these two restrictions ensure that only 𝛽-normal, [-long terms typecheck. Moreover,

this characterization is easy to extend to products:

Γ ⊢ ()⇐ 1 (No unit elimination rule)

Γ ⊢ 𝑒1 ⇐ 𝐴1 Γ ⊢ 𝑒2 ⇐ 𝐴2

Γ ⊢ (𝑒1, 𝑒2) ⇐ 𝐴1 ×𝐴2

Γ ⊢ 𝑒 ⇒ 𝐴1 ×𝐴2 𝑖 ∈ {1, 2}
Γ ⊢ 𝜋𝑖 (𝑒) ⇒ 𝐴𝑖

This type system now characterizes normal forms in the STLC with units and products. Recall

that the lambda calculus with units, pairs, and functions is a syntax for the initial cartesian closed

category, when terms are quotiented by the 𝛽[theory for each type [Lambek 1985].

Since this bidirectional system requires 𝛽-normal, [-long terms, we can see it as a calculus that

presents the initial model of Cartesian closed categories without any quotienting. Morphisms are

well-typed terms, and two morphisms are equal when they are 𝛼-equivalent.

All that remains is to show that identities and composition are definable. In the ordinary presen-

tation of the initial CCC, a morphism is a term with a free variable, and composition is substitution.

In the bidirectional system, however, a morphism 𝐴 → 𝐵 is a checking term 𝑥 : 𝐴 ⊢ 𝑒 ⇐ 𝐵,

and substituting a checking term for a variable does not preserve the 𝛽-normal, [-long property.

However, if we use hereditary substitution [Pfenning and Davies 2001; Watkins et al. 2003; Nanevski

et al. 2008]—a definition of substitution that also inspects the structure of the term being substituted

and “re-normalizes” as it goes—then we restore the property that substitution preserves 𝛽-normal,

[-long terms.

This means that the bidirectional type system constitutes a term model for the initial CCC, as

follows:

(1) The objects of the term are the types of the programming language.

(2) Morphisms 𝑋 → 𝑌 are terms 𝑥 : 𝑋 ⊢ 𝑒 ⇐ 𝑌 .

(3) The identity morphism id : 𝑋 → 𝑋 is the [-expansion of the single free variable.

(4) Composition of morphisms is given by hereditary substitution.

The usual presentation of the term model requires quotienting terms by 𝛽[-equivalence, but the

term model built from the bidirectional system has the property that equality of morphisms is just

𝛼-equivalence. By interpreting a non-normal term into this category, any two 𝛽[-equal terms will

have the same denotation.

8.2 Adding Problems with Sums
This construction is so beautiful that it is essentially irresistible to add sums to the language.

Unfortunately, doing so introduces numerous difficulties. These are most simply illustrated by

using the basic bidirectional recipe of Dunfield and Pfenning [2004], which yields an introduction

and elimination rule for sum types as follows:

Γ ⊢ 𝑒 ⇐ 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢ inj𝑖 𝑒 ⇐ 𝐴1 +𝐴2

Γ ⊢ 𝑒 ⇒ 𝐴1 +𝐴2 Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 ⇐ 𝐶 Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 ⇐ 𝐶

Γ ⊢ case(𝑒, inj
1
𝑥1. 𝑒1, inj

2
𝑥2 . 𝑒2) ⇐ 𝐶

These rules say that both the injection and case rules have a checking conclusion, but that the

scrutinee 𝑒 in the case must synthesize a sum type. As we noted in Section 4.1, this imposes some

restrictions on which terms are typeable. For example, because the rule for case has a checking
conclusion, we cannot use a case in function position without a type annotation:

𝑎 : ((𝑏 → 𝐴) + (𝑏 → 𝐴)), 𝑥 : 𝑏 ⊢/ case(𝑎, inj
1
𝑓 . 𝑓 , inj

2
𝑔. 𝑔) 𝑥 ⇐ 𝐴

, Vol. 1, No. 1, Article . Publication date: November 2020.

:28 Jana Dunfield and Neel Krishnaswami

Instead of applying an argument to a case expression of function type, we must push the arguments

into the branches:

𝑎 : ((𝑏 → 𝐴) + (𝑏 → 𝐴)), 𝑥 : 𝑏 ⊢ case(𝑎, inj
1
𝑓 . 𝑓 𝑥, inj

2
𝑔. 𝑔 𝑥) ⇐ 𝐴

If we intend to type only normal forms, this seems desirable: these rules are prohibiting certain

term forms that correspond to commuting conversions of allowed terms. The need for commuting

conversions has never been popular with logicians: witness Girard’s lament [Girard 1989, p. 79] that

“one tends to think that natural deduction should be modified to correct such atrocities.” However,

the simple bidirectional system does not completely eliminate the need for commuting conversions.

For example, consider the term

𝑓 : 𝑏 → 𝑏, 𝑥 : 𝑏 + 𝑏 ⊢ 𝑓
(
case(𝑥, inj

1
𝑦.𝑦, inj

2
𝑧. 𝑧)

)
⇒ 𝑏

This term is equivalent to the previous one by a commuting conversion, but both terms are still

typable.

Note that allowing the case form to synthesize a type (as in Section 4.1) allows more terms to

typecheck, which is the opposite of what we want (in this section, anyway). In practice, it can be

difficult to support an unannotated case form which synthesizes its type. Concretely, if the arm

𝑒1 synthesizes the type 𝐶1 and the arm 𝑒2 synthesizes the type 𝐶2, we have to check that they are

equal. However, in the general case (e.g., in dependent type theory) equality is relative to the context,
and the context is different in each branch (with Γ, 𝑥1 : 𝐴1 in one branch and Γ, 𝑥2 : 𝐴2 in the other).

This is why dependent type theories like Coq end up requiring case expressions to be annotated

with a return type: this resolves the problem by having the programmer solve it herself.

8.3 A Polarized Type Theory
At this point, we can make the following pair of observations:

(1) The simple bidirectional system for the simply typed lambda calculus with products has the

property that two terms are 𝛽[-equal if and only if they are the same: it fully characterizes

𝛽[-equality.

(2) Adding sum types to the bidirectional system breaks this property: two terms equivalent up

to (some) commuting conversions may both be typable.

To restore this property, two approaches come to mind. The first approach is to find even more

restrictive notions of normal form which prohibit the commuting conversions. We will not pursue

this direction in this article, but see Scherer [2017] and Ilik [2017] for examples of this approach.

The second approach is to find type theories in which the commuting conversions no longer
preserve equality. By adding (abstract) effects to the language, terms that used to be equivalent can

now be distinguished, ensuring that term equality once again coincides with semantic equality.

This is the key idea embodied in what is variously called polarized type theory, focalization, or
call-by-push-value [Levy 2001].

Now, we give a polarized type theory resembling those of Simmons [2014] and Espírito Santo

[2017]. Our main change is to adjust the proof term assignment to look more familiar to functional

programmers.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :29

Positive types 𝑃,𝑄 ::= unit | 𝑃 ×𝑄 | 𝑃 +𝑄 | ↓𝑁
Negative types 𝑁,𝑀 ::= 𝑃 → 𝑁 | ↑𝑃
Values 𝑣 ::= 𝑢 | () | (𝑣, 𝑣) | inj𝑖 𝑣 | {𝑡}
Spines 𝑠 ::= · | 𝑣 𝑠

Terms 𝑡 ::= return 𝑣 | _−−−−−−→𝑝𝑖 → 𝑡𝑖 | match 𝑥 · 𝑠 of [−−−−−−→𝑝𝑖 → 𝑡𝑖]
Patterns 𝑝 ::= () | (𝑝, 𝑝 ′) | inj𝑖 𝑝 | {𝑥}
Contexts Γ,Δ ::= · | Γ, 𝑥 : 𝑁 | Γ, 𝑢 : 𝑃

Typing values Γ ⊢ 𝑣 ⇐ 𝑃

Typing spines Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀

Typing terms Γ � 𝑡 ⇐ 𝑁

Typing patterns 𝑝 : 𝑃 ; Δ

The key idea in polarized type theory is to divide types into two categories: positive types 𝑃
(sums, strict products, and suspended computations) and negative types 𝑁 (basically, functions).

Positive types are eliminated by pattern matching, and negative types are eliminated by supplying

arguments. Negative types can be embedded into positive types using the “downshift” type ↓𝑁
(representing suspended computations); positive types can be embedded into negative types using

the “upshift” ↑𝑃 (denoting computations producing 𝑃 ’s).

The semantics of call-by-push-value offer insight into the design of this calculus: positive

types correspond to objects of a category of values (such as sets and functions), and negative

types correspond to objects of a category of computations (objects are algebras of a signature for

the computations, and morphisms are algebra homomorphisms). Upshift and downshift form an

adjunction between values and computations, and the monads familiar to functional programmers

arise via the composite: 𝑇 (𝑃) ≜ ↓ ↑𝑃 .
While this calculus arises from meditation upon invariants of proof theory, its syntax is much

closer to practical functional programming languages than the pure typed lambda calculus, including

features like clausal definitions and pattern matching. But the price we pay is a proliferation of

judgments. We usually end up introducing separate categories of values (for introducing positive
types) and spines (argument lists for calling functions), as well as terms (how to put values and spines

together in computations, as well as introducing negative types) and patterns (how to eliminate

positive types).

Contexts have two kinds of variables, 𝑥 : 𝑁 for negative variables and 𝑢 : 𝑃 for positive variables.

8.3.1 Typing Values. First, we give the typing rules for values. As in the simple bidirectional

recipe, we have a judgment Γ ⊢ 𝑣 ⇐ 𝑃 for checking the type of positive values.

Γ ⊢ ()⇐ unit

Γ ⊢ 𝑣 ⇐ 𝑃 Γ ⊢ 𝑣 ′⇐ 𝑄

Γ ⊢ (𝑣, 𝑣 ′) ⇐ 𝑃 ×𝑄
Γ ⊢ 𝑣 ⇐ 𝑃𝑖 𝑖 ∈ {1, 2}
Γ ⊢ inj𝑖 𝑣 ⇐ 𝑃1 + 𝑃2

Γ � 𝑡 ⇐ 𝑁

Γ ⊢ {𝑡} ⇐ ↓𝑁
(𝑢 : 𝑄) ∈ Γ 𝑃 ≡ 𝑄

Γ ⊢ 𝑢 ⇐ 𝑃

The rules for units, pairs and sums are unchanged from the simple bidirectional recipe. The rule for

downshift says that if a term 𝑡 checks at a negative type 𝑁 , then the thunked term {𝑡} will check
against the downshifted type ↓𝑁 . Finally, a variable 𝑢 checks at a type 𝑃 if the context says that 𝑢

has a type 𝑄 equal to 𝑃 . (With subtyping, we would instead check that 𝑄 is a subtype of 𝑃 .)

8.3.2 Typing Spines. Before we give the typing rules for all terms, we will give the rules deriving

the spine judgment Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 , read “if spine 𝑠 is applied to a head of type 𝑁 , it will produce a

, Vol. 1, No. 1, Article . Publication date: November 2020.

:30 Jana Dunfield and Neel Krishnaswami

result of type𝑀”. The type 𝑁 is an algorithmic input, and the type𝑀 is an output.

Γ ⊢ · : 𝑁 ≫ 𝑁

Γ ⊢ 𝑣 ⇐ 𝑃 Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀

Γ ⊢ 𝑣 𝑠 : 𝑃 → 𝑁 ≫ 𝑀

The first rule says that an empty argument list does nothing to the type of the head: the result is the

same as the input. The second rule says that a non-empty argument list 𝑣 𝑠 sends the function type

𝑃 → 𝑁 to𝑀 , if 𝑣 is a value of type 𝑃 (i.e., a valid argument to the function), and 𝑠 is an argument

list sending 𝑁 to𝑀 .

8.3.3 Typing Terms. With values and spines in hand, we can talk about terms, in the term typing

judgment Γ � 𝑡 ⇐ 𝑁 , which checks that a term 𝑡 has the type 𝑁 .

Γ ⊢ 𝑣 ⇐ 𝑃

Γ � return 𝑣 ⇐ ↑𝑃

for all 𝑖 < 𝑛.

𝑝𝑖 : 𝑃 ; Δ𝑖

Γ,Δ𝑖 � 𝑡𝑖 ⇐ 𝑁

Γ � _
−−−−−−→
𝑝𝑖 → 𝑡𝑖

𝑖<𝑛 ⇐ 𝑃 → 𝑁

(𝑥 : 𝑀) ∈ Γ
Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑄

for all 𝑖 < 𝑛.

𝑝𝑖 : 𝑄 ; Δ𝑖

Γ,Δ𝑖 � 𝑡𝑖 ⇐ ↑𝑃
Γ �match 𝑥 · 𝑠 of [−−−−−−→𝑝𝑖 → 𝑡𝑖

𝑖<𝑛] ⇐ ↑𝑃
The rule for return 𝑣 says that we embed a value 𝑣 of type 𝑃 into the upshift type ↑𝑃 by immediately

returning it. Lambda abstractions are pattern-style—instead of a single binder _𝑥. 𝑡 , we give a

list of patterns and branches _
−−−−−−→
𝑝𝑖 → 𝑡𝑖 to check at type 𝑃 → 𝑁 . As a result, we need a judgment

𝑝𝑖 : 𝑃 ; Δ𝑖 giving the types of the bindings Δ𝑖 of the pattern 𝑝𝑖 , and then we check each 𝑡𝑖 against

the result type 𝑁 . Then we check each branch 𝑡𝑖 against the type 𝑁 in a context extended by Δ𝑖 .

We face similar issues in the match expressionmatch 𝑥 · 𝑠 of [−−−−−−→𝑝𝑖 → 𝑡𝑖]. First, it finds the variable
𝑥 in the context, applies some arguments to it to find a value result of type ↑𝑄 , and then pattern

matches against type 𝑄 . (In typical bidirectional systems, a synthesis judgment would type 𝑥 · 𝑠 ; in
this polarized system of normal forms, the synthesis judgment is absorbed into the rule for match

expressions.) We check that the spine 𝑠 sends𝑀 to the type ↑𝑄 , and then check that the patterns 𝑝𝑖
yield variables Δ𝑖 at the type 𝑄 , we can check each 𝑡𝑖 against the type ↑𝑃 . Restricting the type at
which we can match forces us to [-expand terms of function type.

Both lambdas and application/pattern-matching use the judgment 𝑝 : 𝑃 ; Δ to find the types of

the bindings. The rules for these are straightforward:

{𝑥} : ↓𝑁 ; 𝑥 : 𝑁 () : unit ; ·
𝑝1 : 𝑃1 ; Δ1 𝑝2 : 𝑃2 ; Δ2

(𝑝1, 𝑝2) : (𝑃1 × 𝑃2) ; Δ1,Δ2

𝑝 : 𝑃𝑖 ; Δ 𝑖 ∈ {1, 2}
inj𝑖 𝑝 : (𝑃1 + 𝑃2) ; Δ 𝑢 : 𝑃 ; 𝑢 : 𝑃

Units yield no variables at type unit, pair patterns (𝑝1, 𝑝2) return the variables of each component,

injections inj𝑖 𝑝 return the variables of the sub-pattern 𝑝 , and thunk patterns {𝑥} at type ↓𝑁 return

that variable 𝑥 at type 𝑁 . Here, we omit a judgment to check whether a set of patterns is complete;

see Krishnaswami [2009] for a polarization-based approach.

Value bindings 𝑢 : 𝑃 bind a value of type 𝑃 to a variable 𝑢, which allows values to be pattern-

matched without being fully decomposed. Hence, our calculus is weakly focused in the sense of

Pfenning and Simmons [2009].

8.4 Discussion
Bidirectional typing integrates very nicely into a perspective based on polarized logic. Indeed, the

“application judgment” in Dunfield and Krishnaswami [2013] can be seen as a special case of the

spine judgment, and even systems not designed from an explicitly bidirectional perspective, such

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :31

as Serrano et al. [2018], have found it beneficial to work with entire argument lists. In our view, this

is because the spine judgment is well-moded, making it easy to manage the flow of information

through the argument list.

This close fit is not limited to argument lists, but also extends to other features where functional

languages go beyond kernel calculi, such as pattern matching. Krishnaswami [2009] shows howML-

style pattern matching arises as the proof terms of a focused calculus, and indeed the type system in

that paper is bidirectional. This system only covered simple types, but the approach scales well. Our

bidirectional type system for generalized algebraic data types [Dunfield and Krishnaswami 2019]

goes much further, including both universal and existential quantification, GADTs, and pattern

matching. Nevertheless, it is built upon essentially the same idea of applying bidirectional typing

to a focused type theory.

However, despite the fact that the standard recipe of bidirectional typing fits beautifully with

focused logics, we should not lose sight of the fact that the essence of bidirectional typing is

the management of information flow. Consequently, these techniques apply more broadly than

polarized calculi, as fundamental as they may be. In Section 6, we saw a number of systems with a

different mode structure, such as the mixed-direction types of Odersky et al. [2001], the strict type

inference of Chlipala et al. [2005], and the backwards bidirectional system of Zeilberger [2015]. All

of these reject the basic bidirectional recipe, but are undeniably bidirectional.

Thus, we would advise designers of new bidirectional systems to seek inspiration from polarized

type theory, but not to restrict themselves to it.

9 OTHER APPLICATIONS OF BIDIRECTIONAL TYPING
9.1 Dependent Types, Refinement Types, and Intersection Types
The DML system [Xi and Pfenning 1999; Xi 1998] used bidirectional typing because type inference

for index refinements (a form of refinement type) is undecidable. DML followed a “relaxed” version

of the Pfenning recipe that allowed some rules that are not strictly necessary, such as an introduction

rule that synthesizes a type for (𝑒1, 𝑒2) if 𝑒1 and 𝑒2 synthesize.
The first datasort refinement system [Freeman and Pfenning 1991] used a form of type inference

similar to abstract interpretation; the later systems SML-CIDRE [Davies and Pfenning 2000; Davies

2005] and Stardust [Dunfield 2007] used bidirectional typing. In SML-CIDRE, type inference was

eschewed in favour of bidirectional typing: type inference finds all behaviours, not only the intended
behaviours. The type annotations in bidirectional typing, especially when following the Pfenning

recipe as SML-CIDRE did, force programmers to write down the behaviours they intend. In Stardust,

the decision to use bidrectional typing was also motivated by the undecidability of type inference

for index refinements.

In contextual modal type theory [Nanevski et al. 2008], typing is bidirectional to make type

checking decidable in the presence of dependent types. That theory is the main foundation for

Beluga, which is bidirectional for the same reason. The original core of Beluga [Pientka 2008;

Pientka and Dunfield 2008] follows the Pfenning recipe, but the full system [Pientka 2013] extends

the recipe, supporting both checking and synthesis for spines (lists of function arguments).

Bidirectional type checking was folklore among programming language developers since the

1980s, and was known and used by developers of proof assistants since the 1990s: Coquand [1996]

presents a type-checking algorithm for a small dependent type system (dependent products, plus let-

expressions), in which “type-checking” (. . . 𝑀 ⇒ 𝑣) and “type inference” (. . . 𝑀 ↦→ 𝑣) “inductively

and simultaneously”. Coquand’s version of a subsumption rule [Coquand 1996, p. 173, third part of

definition] says that 𝑀 checks against 𝑣 if 𝑀 synthesizes 𝑤 and 𝑤 is convertible to 𝑣 . Moreover,

by removing the parts related to dependent typing, we see that Coquand’s rule for _-application

, Vol. 1, No. 1, Article . Publication date: November 2020.

:32 Jana Dunfield and Neel Krishnaswami

(the fifth part of his definition) is essentially our standard rule: to synthesize a type for 𝑀1𝑀2,

synthesize a type for𝑀1 and check𝑀2 against the domain of that type. Strikingly, the Gofer code

in the paper has functions checkExp and inferExp that have the expected type signatures; for

example, checkExp returns a boolean.

Scherer and Abel [2012] give a bidirectional algorithm for judgmental equality in dependent

type theory. They give a non-bidirectional specification of a dependent type system. Then they

give a bidirectional algorithmic system, which defines where to do equality tests and leads to

a nice algorithm for how to do judgmental equality. They prove soundness, completeness, and

decidability of their algorithm using two intricate logical relations; the combination of soundness

and completeness leads to decidability. Judgmental equality is bidirectional: comparison of neutral

terms synthesizes, and comparison of normal terms checks. This cleverly exploits the fact that

off-diagonal cases (e.g., atomic terms compared against a normal terms) can be omitted, as an

atomic term 𝑡 can only equal another term 𝑡 ′ if 𝑡 ′ reduces to another term with the same head

variable as 𝑡 .

McBride [2016] advocates a bidirectional system as the specification of a dependent type system.

Other bidirectional dependent type systems include PiSigma [Altenkirch et al. 2010], intended as a

small core system for dependently typed languages, and Zombie [Sjöberg and Weirich 2015]. As

with subtyping, conversion checking is not syntax-directed and is guided by bidirectionality. Taking

the bidirectional system as the specification simplifies the metatheory in some ways. However,

proving that an algorithmic conversion relation is an equivalence relation, congruent for all the

syntactic forms, still seems to require a sophisticated argument.

Intersection types, originally formulated in undecidable type assignment systems, have motivated

the use of bidirectional typing in several systems, including refinement intersection types [Dunfield

and Pfenning 2004] and unrestricted intersection types [Dunfield 2014; Oliveira et al. 2016] with

polymorphism [Alpuim et al. 2017]. Some of these systems also include union types.

9.2 Gradual Typing
Gradual typestate [Wolff et al. 2011] uses bidirectional typing to structure the flow of information

about access permissions, specified in annotations. Their language, descended from Featherweight

Java, is imperative in flavour; its expression forms are not easy to classify as introductions or

eliminations, making it hard to apply the Pfenning recipe. Our discussion of reasoning by cases

(step 3 in Section 4.1) carries over to their typing rules for let, which allow either (1) the body

of the let to synthesize, and hence the entire let, or (2) the body to be checked, based on a type

against which the entire let is to be checked. (Our judgment form Γ ⊢ · · · ⊣ Δ from Section 5 looks

similar to the gradual typestate judgment Δ ⊢ · · · ⊣ Δ′; moreover, in both settings, the left-hand

context is called the input context and the right-hand context is called the output context. However,

the meaning is completely different. In gradual typestate, the output context describes the state
after running the subject expression, so the output context often has different information than the

input context.)

Gradual sum types [Jafery and Dunfield 2017] are formulated in a functional style, so the Pfenning

recipe works. The subformula property ensures that uncertain types—connectives that relax the

guarantees of static typing—appear only when the programmer asks for them. In their subsumption

rule (ChkCSub), the subtyping judgment is replaced by directed consistency, a relation that contains

subtyping but also allows shifts between more precise (less uncertain, more static) and less precise

(more uncertain, less static) types.

Xie et al. [2018] develop a gradual type system with consistent subtyping (related to directed

consistency) and higher-rank polymorphism. Their bidirectional system closely follows Dunfield

and Krishnaswami [2013], discussed in Section 5.1; this approach leads to a subformula property

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :33

that, as in [Jafery and Dunfield 2017], ensures that the unknown type appears only by programmer

request.

9.3 Other Work
Çiçek et al. [2019] define a relational type system where each judgment has two subject terms

(expressions): Γ ⊢ 𝑒1 ∽ 𝑒2 : 𝜏 relates the terms 𝑒1 and 𝑒2 at type 𝜏 . Their bidirectionalization follows

the Pfenning recipe in its original form, for example, their rule alg-r-if for if expressions has a
checking conclusion.

10 HISTORICAL NOTES
Pierce and Turner’s paper “Local Type Inference”—which appeared as a technical report (1997), at

POPL (1998) and in TOPLAS (2000)—is the earliest frequently cited paper on bidirectional typing,

but Pierce noted that “John Reynolds first acquainted us [BCP] with the idea of bidirectional

typechecking around 1988”.

That year also saw the first version of the report on Forsythe [Reynolds 1988], where Reynolds

noted that Forsythe’s intersection types would require some type information in the source program.

The second version of the report [Reynolds 1996, Appendix C] describes an algorithm that combines

“bottom-up typechecking” and “top-down checking”, but the precise connection to bidirectional

typing is not clear to us.

Lee and Yi [1998] present AlgorithmM, a type inference algorithm used in some versions of

Caml Light (the predecessor of OCaml). In contrast to Algorithm𝑊 [Milner 1978], if we reformulate

AlgorithmM as a set of typing rules, they are all checking rules: there is an input type 𝜌 to check

against. In some situations—for example, when typing a let-bound expression—the input type is a

fresh unification variable, but the input type often carries information. They show thatM can find

type errors earlier than𝑊 , which is consistent with the idea that bidirectional checking provides

better error messages.

Dunfield and Pfenning [2004] has two authors, but the recipe was invented by Frank Pfenning,

so we call it the Pfenning recipe.

11 SUMMARY OF BIDIRECTIONAL TYPING NOTATION
Table 1 summarizes some of the symbols that have been used to denote checking and synthesis.

Until about 2008, most authors used vertical arrows (↓ for checking and ↑ for synthesis), though
Pierce and Turner [2000] used

←∈ for checking and

→∈ for synthesis. The arrows were meant to

represent information flow, but vertical arrows are unclear because syntax trees and derivation

trees put the root at opposite ends: does 𝑒 ↑ 𝐴 mean that the type flows from a leaf of a syntax tree

(at the bottom, away from the root), or from the conclusion of a derivation tree?

Horizontal arrows avoid this confusion: nearly all authors write the subject term to the left of

the type in a judgment, so 𝑒 ⇒ 𝐴 means that the type is flowing from the term and 𝑒 ⇐ 𝐴 means

that the type is flowing “into” the term.

The ∋/∈ notation, used by McBride [2016], has the advantage that information always flows left

to right.

12 CONCLUSION
Bidirectional typing is usually straightforward to implement. However, while the bidirectional

approach allows us to prove soundness, completeness and decidability of state-of-the-art typing

algorithms, the proofs are often extremely involved. Moreover, the proofs are about type systems

that focus on a few features of research interest. Since realistic programming languages combine

, Vol. 1, No. 1, Article . Publication date: November 2020.

:34 Jana Dunfield and Neel Krishnaswami

checks against synthesizes

Coquand [1996] ⇒ ↦→

Pierce and Turner [2000]

←∈ →∈

Xi and Pfenning [1999]; Davies and Pfenning [2000]; ↓ ↑
Dunfield and Pfenning [2004];

Polikarpova et al. [2016]; Çiçek et al. [2019]

Chlipala et al. [2005]; Pottier and Régis-Gianas [2006]; ⇓ ⇑
Dunfield [2009]

Peyton Jones et al. [2007] ⊢⇓ ⊢⇑

Davies [2005]

⇐∈ ⇒∈

Nanevski et al. [2008];

Pientka [2008], Pientka and Dunfield [2008];

Wolff et al. [2011]; Dunfield [2012, 2014];

Dunfield and Krishnaswami [2013]; Dunfield [2015];

Oliveira et al. [2016]; Jafery and Dunfield [2017];

Xie and Oliveira [2018]; Xie et al. [2018]

⇐ ⇒

McBride [2016] 𝐴 ∋ 𝑒 𝑒 ∈ 𝐴

Lindley et al. [2017] 𝑒 : 𝐴 𝑒 ⇒ 𝐴

Table 1. Historical and recent notation

many typing features, doing the metatheory for a full-scale type system seems intractable using

current techniques. A key challenge for future research is to discover techniques to simplify

the proofs of soundness, completeness, and decidability, enabling researchers to prove these key

properties for complete programming languages.

Another future research direction is that polarity, focusing and call-by-push-value seem to fit

nicely with bidirectional typing, but are not the same as bidirectional typing. We would like to

understand the actual relationship between these ideas, making it easier to integrate advances in

proof theory into language design.

Designers of bidirectional type systems often employ information flow that goes beyond checking

(where the entire type is input) and synthesis (where the entire type is output). We would like

to have a better understanding of how such information flow interacts with core metatheoretic

properties, such as substitution principles, in order to arrive at broadly applicable design principles

for type system design.

REFERENCES
João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In European Symposium on Programming,

Hongseok Yang (Ed.). Springer, 1–28.

Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and N. Oury. 2010. ΠΣ: Dependent Types without the Sugar. In
FLOPS. Springer, 40–55.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940.
Luca Cardelli. 1993. An Implementation of F<:. Research report 97. DEC/Compaq Systems Research Center.

, Vol. 1, No. 1, Article . Publication date: November 2020.

Bidirectional Typing :35

Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. 2019. Bidirectional Type Checking for Relational

Properties. In Programming Language Design and Implementation (PLDI 2019). ACM Press, 533–547.

Iliano Cervesato and Frank Pfenning. 2003. A Linear Spine Calculus. J. Logic and Computation 13, 5 (2003), 639–688.

Adam Chlipala, Leaf Petersen, and Robert Harper. 2005. Strict bidirectional type checking. InWorkshop on Types in Language
Design and Impl. (TLDI ’05). ACM Press, 71–78.

Thierry Coquand. 1996. An Algorithm for Type-Checking Dependent Types. Science of Computer Programming 26, 1–3

(1996), 167–177.

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In POPL. ACM, 207–212.

Rowan Davies. 2005. Practical Refinement-Type Checking. Ph.D. Dissertation. Carnegie Mellon University. CMU-CS-05-110.

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In ICFP. ACM Press, 198–208.

Stephen Dolan. 2016. Algebraic Subtyping. Ph.D. Dissertation. University of Cambridge.

Jana Dunfield. 2007. A Unified System of Type Refinements. Ph.D. Dissertation. Carnegie Mellon University. CMU-CS-07-129.

Jana Dunfield. 2009. Greedy Bidirectional Polymorphism. In ML Workshop. ACM Press, 15–26. http://research.cs.
queensu.ca/~jana/papers/poly/.

Jana Dunfield. 2012. Elaborating Intersection and Union Types. In ICFP. ACM Press, 17–28.

Jana Dunfield. 2014. Elaborating intersection and union types. J. Functional Programming 24, 2–3 (2014), 133–165.

Jana Dunfield. 2015. Elaborating Evaluation-Order Polymorphism. In ICFP. ACM Press. arXiv:1504.07680 [cs.PL].
Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-Rank

Polymorphism. In ICFP. ACM Press. arXiv:1306.6032 [cs.PL].
Jana Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and Complete Bidirectional Typechecking for Higher-Rank

Polymorphism with Existentials and Indexed Types. PACMPL POPL (Jan. 2019). arXiv:1601.05106 [cs.PL].
Jana Dunfield and Frank Pfenning. 2004. Tridirectional Typechecking. In POPL. ACM Press, 281–292.

Richard A. Eisenberg, StephanieWeirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In European Symposium
on Programming, Vol. 9632. Springer, 229–254.

José Espírito Santo. 2017. The Polarized _-calculus. Electronic Notes in Theoretical Computer Science 332 (2017), 149–168.
11th Workshop on Logical and Semantic Frameworks with Applications (LSFA).

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Programming Language Design and Implementation.
ACM Press, 268–277.

Jean-Yves Girard. 1989. Proofs and Types. Cambridge University Press.

AdamGundry, Conor McBride, and James McKinna. 2010. Type Inference in Context. InMathematically Structured Functional
Programming (MSFP).

R. Hindley. 1969. The principal type-scheme of an object in combinatory logic. Trans. Amer. Math. Soc. 146 (1969), 29–60.
Haruo Hosoya and Benjamin C. Pierce. 1999. How good is local type inference? Technical Report MS-CIS-99-17. University

of Pennsylvania.

Danko Ilik. 2017. The exp-log normal form of types: decomposing extensional equality and representing terms compactly.

In POPL. ACM Press, 387–399.

Khurram A. Jafery and Jana Dunfield. 2017. Sums of Uncertainty: Refinements go gradual. In POPL. ACM Press, 804–817.

Trevor Jim. 1995. What are principal typings and what are they good for? Technical memorandum MIT/LCS/TM-532. MIT.

Neelakantan R. Krishnaswami. 2009. Focusing on pattern matching. In Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM, New York, NY, USA, 366–378. https:
//doi.org/10.1145/1480881.1480927

Joachim Lambek. 1985. Cartesian Closed Categories and Typed Lambda- calculi. In Combinators and Functional Programming
Languages, Thirteenth Spring School of the LITP, Val d’Ajol, France, May 6-10, 1985, Proceedings (Lecture Notes in Computer
Science), Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet (Eds.), Vol. 242. Springer, 136–175. https://doi.
org/10.1007/3-540-17184-3_44

Oukseh Lee and Kwangkeun Yi. 1998. Proofs about a Folklore Let-Polymorphic Type Inference Algorithm. ACM Trans. Prog.
Lang. Sys. 20, 4 (July 1998), 707–723.

Daniel Leivant. 1986. Typing and computational properties of lambda expressions. Theoretical Computer Science 44, 0 (1986),
51–68.

Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen Mary and Westfield College, University of London.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In POPL. ACM Press.

Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Subtyping. ACM Trans. Prog. Lang. Sys. 16, 6 (Nov.
1994), 1811–1841.

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change the World: Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella (Eds.). Springer,

207–233.

Robin Milner. 1978. A theory of type polymorphism in programming. J. Computer and System Sciences 17, 3 (1978), 348–375.

, Vol. 1, No. 1, Article . Publication date: November 2020.

http://research.cs.queensu.ca/~jana/papers/poly/
http://research.cs.queensu.ca/~jana/papers/poly/
http://arxiv.org/abs/1504.07680
http://arxiv.org/abs/1306.6032
http://arxiv.org/abs/1601.05106
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1007/3-540-17184-3_44
https://doi.org/10.1007/3-540-17184-3_44

:36 Jana Dunfield and Neel Krishnaswami

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal Type Theory. ACM Trans. Comput.
Logic 9, 3, Article 23 (June 2008), 49 pages.

Martin Odersky, Matthias Zenger, and Christoph Zenger. 2001. Colored Local Type Inference. In POPL. ACM Press, 41–53.

Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint Intersection Types. In ICFP. ACM Press, 364–377.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. J. Functional Programming 17, 1 (2007), 1–82.

Frank Pfenning. 2004. Sequent Calculus. Lecture notes for 15–317: Constructive Logic, Carnegie Mellon University. (Jan.

2004). www.cs.cmu.edu/∼fp/courses/atp/handouts/ch3-seqcalc.pdf.
Frank Pfenning. 2009. Lecture Notes on Harmony. Lecture notes for 15–317: Constructive Logic, Carnegie Mellon University.

(Sept. 2009). www.cs.cmu.edu/∼fp/courses/15317-f09/lectures/03-harmony.pdf.
Frank Pfenning. 2017. Lecture Notes on Verifications. Lecture notes for 15–317: Constructive Logic, Carnegie Mellon

University. (Sept. 2017). www.cs.cmu.edu/∼crary/317-f18/lectures/05-intercalation.pdf.
Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer

Science 11, 4 (2001), 511–540.
Frank Pfenning and Robert J. Simmons. 2009. Substructural Operational Semantics as Ordered Logic Programming. In LICS.

IEEE, 101–110.

Brigitte Pientka. 2008. A type-theoretic foundation for programming with higher-order abstract syntax and first-class

substitutions. In POPL. ACM Press, 371–382.

Brigitte Pientka. 2013. An insider’s look at LF type reconstruction: everything you (n)ever wanted to know. J. Functional
Programming 23, 1 (2013), 1–37. https://doi.org/10.1017/S0956796812000408

Brigitte Pientka and Jana Dunfield. 2008. Programming with proofs and explicit contexts. In PPDP. ACM Press, 163–173.

Benjamin C. Pierce and David N. Turner. 1997. Local type inference. Technical Report CSCI #493. Indiana University.
Benjamin C. Pierce and David N. Turner. 1998. Local Type Inference. In POPL. ACM Press, 252–265. Full version in ACM

Trans. Prog. Lang. Sys., 22(1):1–44, 2000.
Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Prog. Lang. Sys. 22 (2000), 1–44.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In Programming Language Design and Implementation. ACM Press, 522–538.

François Pottier and Yann Régis-Gianas. 2006. Stratified type inference for generalized algebraic data types. In POPL. ACM
Press, 232–244.

Uday S. Reddy. 1993. A typed foundation for directional logic programming. In Extensions of Logic Programming, E. Lamma

and P. Mello (Eds.). Springer, 282–318.

John C. Reynolds. 1988. Preliminary Design of the programming language Forsythe. Technical Report CMU-CS-88-159.

Carnegie Mellon University. http://doi.library.cmu.edu/10.1184/OCLC/18612825.
John C. Reynolds. 1996. Design of the programming language Forsythe. Technical Report CMU-CS-96-146. Carnegie Mellon

University.

Gabriel Scherer. 2017. Deciding equivalence with sums and the empty type. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna
and Andrew D. Gordon (Eds.). ACM, 374–386. http://dl.acm.org/citation.cfm?id=3009901

Gabriel Scherer and Andreas Abel. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical
Methods in Computer Science 8 (2012).

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at Impredicativity.

Proc. ACM Program. Lang. 4, ICFP, Article 89 (2020). https://doi.org/10.1145/3408971
Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded Impredicative Polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018).
ACM, New York, NY, USA, 783–796. https://doi.org/10.1145/3192366.3192389

Wilfried Sieg and John Byrnes. 1998. Normal Natural Deduction Proofs (in classical logic). Studia Logica 60, 1 (1998), 67–106.
Robert J. Simmons. 2014. Structural Focalization. ACM Trans. Comput. Logic 15, 3 (Sept. 2014).
Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming up to Congruence. In POPL. ACM Press, 369—-382.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular type inference

with local assumptions. J. Functional Programming 21, 4–5 (2011), 333–412.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2006. Boxy Types: Inference for Higher-rank Types and

Impredicativity. In Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP
’06). ACM, New York, NY, USA, 251–262. https://doi.org/10.1145/1159803.1159838

David H. D. Warren. 1977. Applied Logic – its use and implementation as a programming tool. Ph.D. Dissertation. University
of Edinburgh.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. 2003. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101.

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch3-seqcalc.pdf
https://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/03-harmony.pdf
https://www.cs.cmu.edu/~crary/317-f18/lectures/05-intercalation.pdf
https://doi.org/10.1017/S0956796812000408
http://doi.library.cmu.edu/10.1184/OCLC/18612825
http://dl.acm.org/citation.cfm?id=3009901
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/1159803.1159838

Bidirectional Typing :37

J.B. Wells. 2002. The essence of principal typings. In Int’l Coll. Automata, Languages, and Programming. Springer, 913–925.
Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. 2011. Gradual Typestate. In Proceedings of the 25th European

Conference on Object-oriented Programming (ECOOP’11). Springer, 459–483.
Hongwei Xi. 1998. Dependent Types in Practical Programming. Ph.D. Dissertation. Carnegie Mellon University.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In POPL. 224–235.
Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In POPL. ACM Press, 214–227.

Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In European Symposium on
Programming. Springer, 3–30.

Ningning Xie and Bruno C. d. S. Oliveira. 2018. Let Arguments Go First. In European Symposium on Programming. Springer,
272–299.

Noam Zeilberger. 2015. Balanced polymorphism and linear lambda calculus. In TYPES 2015.
Noam Zeilberger. 2018. A Theory of Linear Typings As Flows on 3-valent Graphs. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). ACM, New York, NY, USA, 919–928. https://doi.org/
10.1145/3209108.3209121

Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. A Mechanical Formalization of Higher-ranked Polymorphic

Type Inference. Proc. ACM Program. Lang. 3, ICFP, Article 112 (July 2019), 29 pages. https://doi.org/10.1145/3341716

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/3209108.3209121
https://doi.org/10.1145/3209108.3209121
https://doi.org/10.1145/3341716

	Abstract
	1 Introduction
	2 Bidirectional Simply Typed Lambda Calculus
	3 Elements of Bidirectional Typing
	3.1 First Criterion: Mode-correctness
	3.2 Second Criterion: Completeness (Annotatability)
	3.3 Third Criterion: Size
	3.4 Fourth Criterion: Annotation Character

	4 A Bidirectional Recipe
	4.1 Introduction and Elimination Rules
	4.2 Annotation
	4.3 Variables
	4.4 Change of Direction (Subsumption)
	4.5 Assessing the Recipe
	4.6 Subtyping and Principal Types

	5 Polymorphism
	5.1 ``Complete and Easy'' Polymorphism
	5.2 Extensions to Polymorphism

	6 Variations on Bidirectional Typing
	6.1 Mixed-direction Types
	6.2 Directional Logic Programming
	6.3 Mode Annotations
	6.4 Simultaneous Input and Output
	6.5 Backwards Bidirectional Typing

	7 Proof Theory, Normal Forms, and Type Annotations
	7.1 Subformula Property
	7.2 Verifications and Uses

	8 Focusing, Polarized Type Theory, and Bidirectional Type Systems
	8.1 Bidirectional Typing and the Initial Cartesian Closed Category
	8.2 Adding Problems with Sums
	8.3 A Polarized Type Theory
	8.4 Discussion

	9 Other Applications of Bidirectional Typing
	9.1 Dependent Types, Refinement Types, and Intersection Types
	9.2 Gradual Typing
	9.3 Other Work

	10 Historical Notes
	11 Summary of Bidirectional Typing Notation
	12 Conclusion
	References

