Lemmas and Proofs for "Complete and Easy Bidirectional Typechecking for Higher-Rank Polymorphism"

Jana Dunfield
Neelakantan R. Krishnaswami

June 2013*

Contents

A Declarative Subtyping 6
A. 1 Properties of Well-Formedness 6
11 Proposition (Weakening) 6
2 Proposition (Substitution) 6
A. 2 Reflexivity 6
3) Lemma (Reflexivity of Declarative Subtyping) 6
A. 3 Subtyping Implies Well-Formedness 6
4] Lemma (Well-Formedness) 6
A. 4 Substitution 6
5) Lemma (Substitution) 6
A. 5 Transitivity 6
6] Lemma (Transitivity of Declarative Subtyping) 6
A. 6 Invertibility of $\leq \forall R$ 6
7 Lemma (Invertibility) 6
A. 7 Non-Circularity and Equality. 6
1 Definition (Subterm Occurrence) 6
8) Lemma (Occurrence). 6
9 Lemma (Monotype Equality) 6
2 Definition (Contextual Size) 6
B Type Assignment 7
10 Lemma (Well-Formedness) 7
1 Theorem (Completeness of Bidirectional Typing) 7
11 Lemma (Subtyping Coercion) 7
12 Lemma (Application Subtyping) 7
2 Theorem (Soundness of Bidirectional Typing) 7
C Robustness of Typing 7
13 Lemma (Type Substitution) 7
3 Definition (Context Subtyping) 7
14 Lemma (Subsumption) 7
3) Theorem (Substitution) 7
4 Theorem (Inverse Substitution) 7
5 Theorem (Annotation Removal) 8

[^0]D Properties of Context Extension 8
D. 1 Syntactic Properties 8
15 Lemma (Declaration Preservation) 8
16 Lemma (Declaration Order Preservation) 8
17 Lemma (Reverse Declaration Order Preservation) 8
18 Lemma (Substitution Extension Invariance) 8
19 Lemma (Extension Equality Preservation) 8
20 Lemma (Reflexivity) 8
21 Lemma (Transitivity) 8
4 Definition (Softness) 8
22 Lemma (Right Softness) 8
23 Lemma (Evar Input) 8
24 Lemma (Extension Order) 8
25 Lemma (Extension Weakening) 9
26 Lemma (Solution Admissibility for Extension) 9
27 Lemma (Solved Variable Addition for Extension) 9
28 Lemma (Unsolved Variable Addition for Extension) 9
29 Lemma (Parallel Admissibility) 9
30 Lemma (Parallel Extension Solution) 9
31 Lemma (Parallel Variable Update) 9
D. 2 Instantiation Extends 9
32 Lemma (Instantiation Extension) 9
D. 3 Subtyping Extends 9
33 Lemma (Subtyping Extension) 9
E Decidability of Instantiation 9
34 Lemma (Left Unsolvedness Preservation) 9
35 Lemma (Left Free Variable Preservation) 9
36 Lemma (Instantiation Size Preservation) 9
7 Theorem (Decidability of Instantiation) 9
F Decidability of Algorithmic Subtyping 10
F. 1 Lemmas for Decidability of Subtyping. 10
37 Lemma (Monotypes Solve Variables) 10
38 Lemma (Monotype Monotonicity) 10
39 Lemma (Substitution Decreases Size) 10
40 Lemma (Monotype Context Invariance) 10
F. 2 Decidability of Subtyping 10
8 Theorem (Decidability of Subtyping) 10
G Decidability of Typing 10
9 Theorem (Decidability of Typing) 10
H Soundness of Subtyping 10
H. 1 Lemmas for Soundness 10
41 Lemma (Uvar Preservation) 10
42 Lemma (Variable Preservation) 10
43 Lemma (Substitution Typing) 10
44 Lemma (Substitution for Well-Formedness) 11
45 Lemma (Substitution Stability) 11
46 Lemma (Context Partitioning) 11
47 Lemma (Softness Goes Away) 11
48 Lemma (Filling Completes) 11
49 Lemma (Stability of Complete Contexts) 11
50 Lemma (Finishing Types) 11
51 Lemma (Finishing Completions) 11
52 Lemma (Confluence of Completeness) 11
H. 2 Instantiation Soundness 11
10 Theorem (Instantiation Soundness) 11
H. 3 Soundness of Subtyping 11
11 Theorem (Soundness of Algorithmic Subtyping) 11
I Typing Extension 11
54 Lemma (Typing Extension) 11
J Soundness of Typing 11
12 Theorem (Soundness of Algorithmic Typing) 11
K Completeness of Subtyping 12
K. 1 Instantiation Completeness 12
13 Theorem (Instantiation Completeness) 12
K. 2 Completeness of Subtyping 12
14 Theorem (Generalized Completeness of Subtyping) 12
L Completeness of Typing 12
15 Theorem (Completeness of Algorithmic Typing) 12
Proofs 13
A^{\prime} Declarative Subtyping 13
1 Proof of Proposition (Weakening) 13
2 Proof of Proposition (Substitution) 13
A' 11 Properties of Well-Formedness 13
A $^{\prime} .2$ Reflexivity 13
3 Proof of Lemma (Reflexivity of Declarative Subtyping) 13
$\mathrm{A}^{\prime} .3$ Subtyping Implies Well-Formedness 13
4 Proof of Lemma (Well-Formedness) 13
$\mathrm{A}^{\prime} .4$ Substitution 13
5 Proof of Lemma (Substitution) 13
A'. 5 Transitivity 14
6 Proof of Lemma (Transitivity of Declarative Subtyping) 14
$\mathrm{A}^{\prime} .6$ Invertibility of $\leq \forall \mathrm{R}$ 15
7 Proof of Lemma (Invertibility) 15
$\mathrm{A}^{\prime} .7$ Non-Circularity and Equality 16
8 Proof of Lemma (Occurrence) 16
9 Proof of Lemma (Monotype Equality) 16
B' Type Assignment 17
10 Proof of Lemma (Well-Formedness) 17
11 Proof of Theorem (Completeness of Bidirectional Typing) 17
11 Proof of Lemma (Subtyping Coercion) 18
12 Proof of Lemma (Application Subtyping) 19
2 Proof of Theorem (Soundness of Bidirectional Typing) 19
\mathbf{C}^{\prime} Robustness of Typing 21
13 Proof of Lemma (Type Substitution) 21
14 Proof of Lemma (Subsumption) 21
3 Proof of Theorem (Substitution) 24
4 Proof of Theorem (Inverse Substitution) 24
5 Proof of Theorem (Annotation Removal) 26
D^{\prime} Properties of Context Extension 27
$\mathrm{D}^{\prime} .1$ Syntactic Properties 27
15 Proof of Lemma (Declaration Preservation) 27
16 Proof of Lemma (Declaration Order Preservation) 27
17 Proof of Lemma (Reverse Declaration Order Preservation) 28
18 Proof of Lemma (Substitution Extension Invariance) 29
19 Proof of Lemma (Extension Equality Preservation) 30
20 Proof of Lemma (Reflexivity) 31
21 Proof of Lemma (Transitivity) 31
22 Proof of Lemma (Right Softness) 33
23 Proof of Lemma (Evar Input) 33
24 Proof of Lemma (Extension Order) 34
25 Proof of Lemma (Extension Weakening) 36
26 Proof of Lemma (Solution Admissibility for Extension) 36
$27 \quad$ Proof of Lemma (Solved Variable Addition for Extension) 36
28 Proof of Lemma (Unsolved Variable Addition for Extension) 36
29 Proof of Lemma (Parallel Admissibility) 36
30 Proof of Lemma (Parallel Extension Solution) 37
31 Proof of Lemma (Parallel Variable Update) 37
D'. 2 Instantiation Extends 37
32 Proof of Lemma (Instantiation Extension) 37
D'. 3 Subtyping Extends 39
33 Proof of Lemma (Subtyping Extension) 39
E^{\prime} Decidability of Instantiation 39
34 Proof of Lemma (Left Unsolvedness Preservation) 39
35 Proof of Lemma (Left Free Variable Preservation) 40
36 Proof of Lemma (Instantiation Size Preservation) 42
7 Proof of Theorem (Decidability of Instantiation) 43
F^{\prime} Decidability of Algorithmic Subtyping 45
$\mathrm{F}^{\prime} .1$ Lemmas for Decidability of Subtyping 45
37 Proof of Lemma (Monotypes Solve Variables) 45
38 Proof of Lemma (Monotype Monotonicity) 46
39 Proof of Lemma (Substitution Decreases Size) 46
40 Proof of Lemma (Monotype Context Invariance) 47
$\mathrm{F}^{\prime} .2$ Decidability of Subtyping 47
8 Proof of Theorem (Decidability of Subtyping) 47
G^{\prime} Decidability of Typing 48
9 Proof of Theorem (Decidability of Typing) 48
H^{\prime} Soundness of Subtyping 49
$H^{\prime} .1$ Lemmas for Soundness 49
42 Proof of Lemma (Variable Preservation) 49
43 Proof of Lemma (Substitution Typing) 49
44 Proof of Lemma (Substitution for Well-Formedness) 50
45 Proof of Lemma (Substitution Stability) 51
46 Proof of Lemma (Context Partitioning) 51
49 Proof of Lemma (Stability of Complete Contexts) 51
50 Proof of Lemma (Finishing Types) 53
51 Proof of Lemma (Finishing Completions) 53
52 Proof of Lemma (Confluence of Completeness) 53
$\mathrm{H}^{\prime} .2$ Instantiation Soundness 53
10 Proof of Theorem (Instantiation Soundness) 53
$\mathrm{H}^{\prime} .3$ Soundness of Subtyping 55
11 Proof of Theorem (Soundness of Algorithmic Subtyping) 55
I^{\prime} Typing Extension 57
54 Proof of Lemma (Typing Extension) 57
J^{\prime} Soundness of Typing 58
12 Proof of Theorem (Soundness of Algorithmic Typing) 58
K^{\prime} Completeness 63
K'. 1 Instantiation Completeness 63
13 Proof of Theorem (Instantiation Completeness) 63
$\mathrm{K}^{\prime} .2$ Completeness of Subtyping 66
14 Proof of Theorem (Generalized Completeness of Subtyping) 66
L^{\prime} Completeness of Typing 71
15 Proof of Theorem (Completeness of Algorithmic Typing) 71

A Declarative Subtyping

A. 1 Properties of Well-Formedness

Proposition 1 (Weakening). If $\Psi \vdash \mathcal{A}$ then $\Psi, \Psi^{\prime} \vdash \mathcal{A}$ by a derivation of the same size.
Proposition 2 (Substitution). If $\Psi \vdash A$ and $\Psi, \alpha, \Psi^{\prime} \vdash B$ then $\Psi, \Psi^{\prime} \vdash[A / \alpha] B$.

A. 2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if $\Psi \vdash A$ then $\Psi \vdash A \leq A$.

A. 3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If $\Psi \vdash A \leq B$ then $\Psi \vdash A$ and $\Psi \vdash B$.

A. 4 Substitution

Lemma 5 (Substitution). If $\Psi \vdash \tau$ and $\Psi, \alpha, \Psi^{\prime} \vdash A \leq B$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] A \leq[\tau / \alpha] B$.

A. 5 Transitivity

Lemma 6 (Transitivity of Declarative Subtyping). If $\Psi \vdash A \leq B$ and $\Psi \vdash B \leq C$ then $\Psi \vdash A \leq C$.

A. 6 Invertibility of $\leq \forall R$

Lemma 7 (Invertibility).
If \mathcal{D} derives $\Psi \vdash A \leq \forall \beta$. B then \mathcal{D}^{\prime} derives $\Psi, \beta \vdash A \leq B$ where $\mathcal{D}^{\prime}<\mathcal{D}$.

A. 7 Non-Circularity and Equality

Definition 1 (Subterm Occurrence).
Let $A \preceq B$ iff A is a subterm of B.
Let $A \prec B$ iff A is a proper subterm of B (that is, $A \preceq B$ and $A \neq B$).
Let $A \supsetneq B$ iff A occurs in B inside an arrow, that is, there exist B_{1}, B_{2} such that $\left(B_{1} \rightarrow B_{2}\right) \preceq B$ and $A \preceq B_{k}$ for some $k \in\{1,2\}$.

Lemma 8 (Occurrence).
(i) If $\Psi \vdash A \leq \tau$ then $\tau \notin A$.
(ii) If $\Psi \vdash \tau \leq B$ then $\tau \not \subset B$.

Lemma 9 (Monotype Equality). If $\Psi \vdash \sigma \leq \tau$ then $\sigma=\tau$.
Definition 2 (Contextual Size). The size of A with respect to a context Γ, written $|\Gamma \vdash A|$, is defined by

$$
\begin{array}{ll}
|\Gamma \vdash \alpha| & =1 \\
\mid \Gamma[\hat{\alpha} \vdash \vdash \hat{\alpha} \mid & =1 \\
|\Gamma[\hat{\alpha}=\tau] \vdash \hat{\alpha}| & =1+|\Gamma[\hat{\alpha}=\tau] \vdash \tau| \\
|\Gamma \vdash \forall \alpha . A| & =1+|\Gamma, \alpha \vdash A| \\
|\Gamma \vdash A \rightarrow B| & =1+|\Gamma \vdash A|+|\Gamma \vdash B|
\end{array}
$$

B Type Assignment

Lemma 10 (Well-Formedness).
If $\Psi \vdash e \Leftarrow A$ or $\Psi \vdash e \Rightarrow A$ or $\Psi \vdash A \bullet e \Rightarrow C$ then $\Psi \vdash A$ (and in the last case, $\Psi \vdash C$).
Theorem 1 (Completeness of Bidirectional Typing).
If $\Psi \vdash e$: A then there exists e^{\prime} such that $\Psi \vdash e^{\prime} \Rightarrow A$ and $\left|e^{\prime}\right|=e$.
Lemma 11 (Subtyping Coercion). If $\Psi \vdash A \leq B$ then there exists f which is $\beta \eta$-equal to the identity such that $\Psi \vdash \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$.

Lemma 12 (Application Subtyping). If $\Psi \vdash A \bullet e \nRightarrow C$ then there exists B such that $\Psi \vdash A \leq B \rightarrow C$ and $\Psi \vdash e \Leftarrow$ B by a smaller derivation.

Theorem 2 (Soundness of Bidirectional Typing). We have that:

- If $\Psi \vdash e \Leftarrow A$, then there is an e^{\prime} such that $\Psi \vdash e^{\prime}: A$ and $e^{\prime}={ }_{\beta \eta}|e|$.
- If $\Psi \vdash e \Rightarrow A$, then there is an e^{\prime} such that $\Psi \vdash e^{\prime}: A$ and $e^{\prime}={ }_{\beta \eta}|e|$.

C Robustness of Typing

Lemma 13 (Type Substitution).
Assume $\Psi \vdash \tau$.

- If $\Psi, \alpha, \Psi^{\prime} \vdash e^{\prime} \Leftarrow C$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] e^{\prime} \Leftarrow[\tau / \alpha] C$.
- If $\Psi, \alpha, \Psi^{\prime} \vdash e^{\prime} \Rightarrow C$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] e^{\prime} \Rightarrow[\tau / \alpha] C$.
- If $\Psi, \alpha, \Psi^{\prime} \vdash \mathrm{B} \bullet e^{\prime} \Rightarrow \mathrm{C}$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] B \bullet[\tau / \alpha] e^{\prime} \Rightarrow[A / \alpha] C$.

Moreover, the resulting derivation contains no more applications of typing rules than the given one. (Internal subtyping derivations, however, may grow.)

Definition 3 (Context Subtyping). We define the judgment $\Psi^{\prime} \leq \Psi$ with the following rules:

$$
\frac{\Psi^{\prime} \leq \Psi}{. \leq} \text { CtxSubEmpty } \quad \frac{\Psi^{\prime} \leq \Psi}{\Psi^{\prime}, \alpha \leq \Psi, \alpha} \text { CtxSubUvar } \quad \frac{\Psi^{\prime} \leq \Psi \quad \Psi \vdash A^{\prime} \leq A}{\Psi^{\prime}, x: A^{\prime} \leq \Psi, x: A} \text { CtxSubVar }
$$

Lemma 14 (Subsumption). Suppose $\Psi^{\prime} \leq \Psi$. Then:
(i) If $\Psi \vdash e \Leftarrow A$ and $\Psi \vdash A \leq A^{\prime}$ then $\Psi^{\prime} \vdash e \Leftarrow A^{\prime}$.
(ii) If $\Psi \vdash e \Rightarrow A$ then there exists A^{\prime} such that $\Psi \vdash A^{\prime} \leq A$ and $\Psi^{\prime} \vdash e \Rightarrow A^{\prime}$.
(iii) If $\Psi \vdash C \bullet e \Longrightarrow A$ and $\Psi \vdash C^{\prime} \leq C$
then there exists A^{\prime} such that $\Psi \vdash A^{\prime} \leq A$ and $\Psi^{\prime} \vdash C^{\prime} \bullet e \Longrightarrow A^{\prime}$.
Theorem 3 (Substitution).
Assume $\Psi \vdash e \Rightarrow A$.
(i) If $\Psi, x: A \vdash e^{\prime} \Leftarrow C$ then $\Psi \vdash[e / x] e^{\prime} \Leftarrow \mathrm{C}$.
(ii) If $\Psi, x: A \vdash e^{\prime} \Rightarrow C$ then $\Psi \vdash[e / x] e^{\prime} \Rightarrow C$.
(iii) If $\Psi, x: A \vdash B \bullet e^{\prime} \Rightarrow C$ then $\Psi \vdash B \bullet[e / x] e^{\prime} \Rightarrow C$.

Theorem 4 (Inverse Substitution).
Assume $\Psi \vdash e \Leftarrow A$.
(i) If $\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow C$ then $\Psi, x: A \vdash e^{\prime} \Leftarrow C$.
(ii) If $\Psi \vdash[(e: A) / x] e^{\prime} \Rightarrow C$ then $\Psi, x: A \vdash e^{\prime} \Rightarrow C$.
(iii) If $\Psi \vdash \mathrm{B} \bullet[(e: A) / x] e^{\prime} \Rightarrow C$ then $\Psi, x: A \vdash B \bullet e^{\prime} \Rightarrow C$.

Theorem 5 (Annotation Removal). We have that:

- If $\Psi \vdash((\lambda x . e): A) \Leftarrow C$ then $\Psi \vdash \lambda x . e \Leftarrow C$.
- If $\Psi \vdash((): A) \Leftarrow \mathrm{C}$ then $\Psi \vdash() \Leftarrow \mathrm{C}$.
- If $\Psi \vdash e_{1}\left(e_{2}: A\right) \Rightarrow C$ then $\Psi \vdash e_{1} e_{2} \Rightarrow C$.
- If $\Psi \vdash(x: A) \Rightarrow A$ then $\Psi \vdash x \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash\left(\left(e_{1} e_{2}\right): A\right) \Rightarrow A$ then $\Psi \vdash e_{1} e_{2} \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash((e: B): A) \Rightarrow A$ then $\Psi \vdash(e: B) \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash((\lambda x . e): \sigma \rightarrow \tau) \Rightarrow \sigma \rightarrow \tau$ then $\Psi \vdash \lambda x . e \Rightarrow \sigma \rightarrow \tau$.

Theorem 6 (Soundness of Eta).
If $\Psi \vdash \lambda x$. $e x \Leftarrow A$ and $x \notin F V(e)$, then $\Psi \vdash e \Leftarrow A$.

D Properties of Context Extension

D. 1 Syntactic Properties

Lemma 15 (Declaration Preservation). If $\Gamma \longrightarrow \Delta$, and u is a variable or marker $\rightharpoonup_{\hat{\alpha}}$ declared in Γ, then u is declared in Δ.
Lemma 16 (Declaration Order Preservation). If $\Gamma \longrightarrow \Delta$ and u is declared to the left of v in Γ, then u is declared to the left of v in Δ.

Lemma 17 (Reverse Declaration Order Preservation). If $\Gamma \longrightarrow \Delta$ and u and v are both declared in Γ and u is declared to the left of v in Δ, then u is declared to the left of v in Γ.
Lemma 18 (Substitution Extension Invariance). If $\Theta \vdash A$ and $\Theta \longrightarrow \Gamma$ then $[\Gamma] A=[\Gamma]([\Theta] A)$ and $[\Gamma] A=[\Theta]([\Gamma] A)$.
Lemma 19 (Extension Equality Preservation).
If $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma] A=[\Gamma] B$ and $\Gamma \longrightarrow \Delta$, then $[\Delta] A=[\Delta] B$.
Lemma 20 (Reflexivity). If Γ is well-formed, then $\Gamma \longrightarrow \Gamma$.
Lemma 21 (Transitivity). If $\Gamma \longrightarrow \Delta$ and $\Delta \longrightarrow \Theta$, then $\Gamma \longrightarrow \Theta$.
Definition 4 (Softness). A context Θ is soft iff it consists only of $\hat{\alpha}$ and $\hat{\alpha}=\tau$ declarations.
Lemma 22 (Right Softness). If $\Gamma \longrightarrow \Delta$ and Θ is soft (and (Δ, Θ) is well-formed) then $\Gamma \longrightarrow \Delta, \Theta$.
Lemma 23 (Evar Input).
If $\Gamma, \hat{\alpha} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{0}, \Delta_{\hat{\alpha}}, \Theta\right)$ where $\Gamma \longrightarrow \Delta_{0}$, and $\Delta_{\hat{\alpha}}$ is either $\hat{\alpha}$ or $\hat{\alpha}=\tau$, and Θ is soft.
Lemma 24 (Extension Order).
(i) If $\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.

Moreover, if Γ_{R} is soft then Δ_{R} is soft.
(ii) If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{\mathrm{L}}, \hat{\alpha}, \Delta_{\mathrm{R}}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$. Moreover, if Γ_{R} is soft then Δ_{R} is soft.
(iii) If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\Delta_{\mathrm{L}}, \Theta, \Delta_{\mathrm{R}}$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and Θ is either $\hat{\alpha}$ or $\hat{\alpha}=\tau$ for some τ.
(iv) If $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$.
(v) If $\Gamma_{\mathrm{L}}, x: A, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{\mathrm{L}}, x: A^{\prime}, \Delta_{\mathrm{R}}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and $\left[\Delta_{\mathrm{L}}\right] A=\left[\Delta_{\mathrm{L}}\right] A^{\prime}$. Moreover, Γ_{R} is soft if and only if Δ_{R} is soft.

Lemma 25 (Extension Weakening). If $\Gamma \vdash \mathcal{A}$ and $\Gamma \longrightarrow \Delta$ then $\Delta \vdash \mathcal{A}$.
Lemma 26 (Solution Admissibility for Extension). If $\Gamma_{L} \vdash \tau$ then $\Gamma_{L}, \hat{\alpha}, \Gamma_{R} \longrightarrow \Gamma_{L}, \hat{\alpha}=\tau, \Gamma_{R}$.
Lemma 27 (Solved Variable Addition for Extension). If $\Gamma_{L} \vdash \tau$ then $\Gamma_{L}, \Gamma_{R} \longrightarrow \Gamma_{L}, \hat{\alpha}=\tau, \Gamma_{R}$.
Lemma 28 (Unsolved Variable Addition for Extension). We have that $\Gamma_{L}, \Gamma_{R} \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}$.
Lemma 29 (Parallel Admissibility).
If $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \Delta_{\mathrm{R}}$ then:
(i) $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}, \Delta_{\mathrm{R}}$
(ii) If $\Delta_{\mathrm{L}} \vdash \tau^{\prime}$ then $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.
(iii) If $\Gamma_{\mathrm{L}} \vdash \tau$ and $\Delta_{\mathrm{L}} \vdash \tau^{\prime}$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$, then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.

Lemma 30 (Parallel Extension Solution).
If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$ and $\Gamma_{\mathrm{L}} \vdash \tau$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$ then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.
Lemma 31 (Parallel Variable Update).
If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau_{0}, \Delta_{\mathrm{R}}$ and $\Gamma_{\mathrm{L}} \vdash \tau_{1}$ and $\Delta_{\mathrm{L}} \vdash \tau_{2}$ and $\left[\Delta_{\mathrm{L}}\right] \tau_{0}=\left[\Delta_{\mathrm{L}}\right] \tau_{1}=\left[\Delta_{\mathrm{L}}\right] \tau_{2}$
then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau_{1}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau_{2}, \Delta_{\mathrm{R}}$.

D. 2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If $\Gamma \vdash \hat{\alpha}: \leqq \tau \dashv \Delta$ or $\Gamma \vdash \tau \leqq: \hat{\alpha} \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.

D. 3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If $\Gamma \vdash A<: B \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.

E Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If $\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$, then $\hat{\beta} \in$ unsolved (Δ).
Lemma 35 (Left Free Variable Preservation). If $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] B)$ and $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma] B)$, then $\hat{\beta} \notin \mathrm{FV}([\Delta] \mathrm{B})$.
Lemma 36 (Instantiation Size Preservation). If $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$, then $|[\Gamma] \mathrm{B}|=|[\Delta] \mathrm{B}|$, where $|\mathrm{C}|$ is the plain size of the term C .

This lemma lets us show decidability by taking the size of the type argument as the induction metric. Theorem 7 (Decidability of Instantiation). If $\Gamma=\Gamma_{0}[\hat{\alpha}]$ and $\Gamma \vdash A$ such that $[\Gamma] A=A$ and $\hat{\alpha} \notin \mathrm{FV}(A)$, then:
(1) Either there exists Δ such that $\Gamma_{0}[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A \dashv \Delta$, or not.
(2) Either there exists Δ such that $\Gamma_{0}[\hat{\alpha}] \vdash \mathcal{A} \leqq: \hat{\alpha} \dashv \Delta$, or not.

F Decidability of Algorithmic Subtyping

F. 1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If $\Gamma \vdash \hat{\alpha}: \leqq \tau \dashv \Delta$ or $\Gamma \vdash \tau \leqq: \hat{\alpha} \dashv \Delta$, then if $[\Gamma] \tau=\tau$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \tau)$, then \mid unsolved $(\Gamma)|=|\operatorname{unsolved}(\Delta)|+1$.

Lemma 38 (Monotype Monotonicity). If $\Gamma \vdash \tau_{1}<: \tau_{2} \dashv \Delta$ then \mid unsolved $(\Delta)|\leq|u n s o l v e d(\Gamma)|$.
Lemma 39 (Substitution Decreases Size). If $\Gamma \vdash \mathcal{A}$ then $|\Gamma \vdash[\Gamma] A| \leq|\Gamma \vdash A|$.
Lemma 40 (Monotype Context Invariance).
If $\Gamma \vdash \tau<: \tau^{\prime} \dashv \Delta$ where $[\Gamma] \tau=\tau$ and $[\Gamma] \tau^{\prime}=\tau^{\prime}$ and \mid unsolved $(\Gamma)|=|$ unsolved $(\Delta) \mid$ then $\Gamma=\Delta$.

F. 2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma] A=A$ and $[\Gamma] B=B$, it is decidable whether there exists Δ such that $\Gamma \vdash A<: \mathrm{B} \dashv \Delta$.

G Decidability of Typing

Theorem 9 (Decidability of Typing).
(i) Synthesis: Given a context Γ and a term e, it is decidable whether there exist a type A and a context Δ such that $\Gamma \vdash e \Rightarrow A \dashv \Delta$.
(ii) Checking: Given a context Γ, a term e, and a type B such that $\Gamma \vdash B$, it is decidable whether there is a context Δ such that $\Gamma \vdash e \Leftarrow \mathrm{~B} \dashv \Delta$.
(iii) Application: Given a context Γ, a term e, and a type \mathcal{A} such that $\Gamma \vdash \mathcal{A}$, it is decidable whether there exist a type C and a context Δ such that $\Gamma \vdash A \bullet e \Longrightarrow C \dashv \Delta$.

H Soundness of Subtyping

Definition 5 (Filling). The filling of a context $|\Gamma|$ solves all unsolved variables:

$$
\begin{array}{ll}
|\cdot| & =\cdot \\
|\Gamma, x: A| & =|\Gamma|, x: A \\
|\Gamma, \alpha| & =|\Gamma|, \alpha \\
|\Gamma, \hat{\alpha}=\tau| & =|\Gamma|, \hat{\alpha}=\tau \\
|\Gamma, \Delta \hat{\alpha}| & =|\Gamma|, \hat{\alpha} \\
|\Gamma, \hat{\alpha}| & =|\Gamma|, \hat{\alpha}=1
\end{array}
$$

H. 1 Lemmas for Soundness

Lemma 41 (Uvar Preservation).
If $\alpha \in \Omega$ and $\Delta \longrightarrow \Omega$ then $\alpha \in[\Omega] \Delta$.
Proof. By induction on Ω, following the definition of context application.
Lemma 42 (Variable Preservation).
If $(x: A) \in \Delta$ or $(x: A) \in \Omega$ and $\Delta \longrightarrow \Omega$ then $(x:[\Omega] A) \in[\Omega] \Delta$.
Lemma 43 (Substitution Typing). If $\Gamma \vdash A$ then $\Gamma \vdash[\Gamma] A$.

Lemma 44 (Substitution for Well-Formedness). If $\Omega \vdash$ A then $[\Omega] \Omega \vdash[\Omega]$ A.
Lemma 45 (Substitution Stability).
For any well-formed complete context $\left(\Omega, \Omega_{Z}\right)$, if $\Omega \vdash$ A then $[\Omega] A=\left[\Omega, \Omega_{Z}\right]$ A.
Lemma 46 (Context Partitioning).
If $\Delta, \hat{\alpha}, \Theta \longrightarrow \Omega, \hat{\alpha}, \Omega_{Z}$ then there is a Ψ such that $\left[\Omega,{ }_{\wedge}, \Omega_{Z}\right]\left(\Delta,{ }_{\hat{\alpha}}, \Theta\right)=[\Omega] \Delta, \Psi$.
Lemma 47 (Softness Goes Away).
If $\Delta, \Theta \longrightarrow \Omega, \Omega_{Z}$ where $\Delta \longrightarrow \Omega$ and Θ is soft, then $\left[\Omega, \Omega_{z}\right](\Delta, \Theta)=[\Omega] \Delta$.
Proof. By induction on Θ, following the definition of $[\Omega] \Gamma$.
Lemma 48 (Filling Completes). If $\Gamma \longrightarrow \Omega$ and (Γ, Θ) is well-formed, then $\Gamma, \Theta \longrightarrow \Omega,|\Theta|$.
Proof. By induction on Θ, following the definition of $|-|$ and applying the rules for \longrightarrow.
Lemma 49 (Stability of Complete Contexts).
If $\Gamma \longrightarrow \Omega$ then $[\Omega] \Gamma=[\Omega] \Omega$.
Lemma 50 (Finishing Types).
If $\Omega \vdash A$ and $\Omega \longrightarrow \Omega^{\prime}$ then $[\Omega] A=\left[\Omega^{\prime}\right] A$.
Lemma 51 (Finishing Completions).
If $\Omega \longrightarrow \Omega^{\prime}$ then $[\Omega] \Omega=\left[\Omega^{\prime}\right] \Omega^{\prime}$.
Lemma 52 (Confluence of Completeness).
If $\Delta_{1} \longrightarrow \Omega$ and $\Delta_{2} \longrightarrow \Omega$ then $[\Omega] \Delta_{1}=[\Omega] \Delta_{2}$.

H. 2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given $\Delta \longrightarrow \Omega$ and $[\Gamma] \mathrm{B}=\mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}(\mathrm{B})$:
(1) If $\Gamma \vdash \hat{\alpha}: \leq \mathrm{B} \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B}$.
(2) If $\Gamma \vdash \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] \mathrm{B} \leq[\Omega] \hat{\alpha}$.

H. 3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If $\Gamma \vdash \mathrm{A}<: \mathrm{B} \dashv \Delta$ where $[\Gamma] \mathrm{A}=\mathrm{A}$ and $[\Gamma] \mathrm{B}=\mathrm{B}$ and $\Delta \longrightarrow \Omega$ then $[\Omega] \Delta \vdash[\Omega] \mathrm{A} \leq[\Omega] \mathrm{B}$.
Corollary 53 (Soundness, Pretty Version). If $\Psi \vdash A<: B \dashv \Delta$, then $\Psi \vdash A \leq B$.

I Typing Extension

Lemma 54 (Typing Extension).
If $\Gamma \vdash e \Leftarrow A \dashv \Delta$ or $\Gamma \vdash e \Rightarrow A \dashv \Delta$ or $\Gamma \vdash A \bullet e \Rightarrow C \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.

J Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given $\Delta \longrightarrow \Omega$:
(i) If $\Gamma \vdash e \Leftarrow A \dashv \Delta$ then $[\Omega] \Delta \vdash e \Leftarrow[\Omega] A$.
(ii) If $\Gamma \vdash e \Rightarrow A \dashv \Delta$ then $[\Omega] \Delta \vdash e \Rightarrow[\Omega] A$.
(iii) If $\Gamma \vdash A \bullet e \nRightarrow C \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] A \bullet e \Rightarrow[\Omega] C$.

K Completeness of Subtyping

K. 1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given $\Gamma \longrightarrow \Omega$ and $A=[\Gamma] A$ and $\hat{\alpha} \in$ unsolved (Γ) and $\hat{\alpha} \notin \operatorname{FV}(A)$:
(1) If $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathcal{A}$
then there are Δ, Ω^{\prime} such that $\Omega \longrightarrow \Omega^{\prime}$ and $\Delta \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash \hat{\alpha}: \leqq A \dashv \Delta$.
(2) If $[\Omega] \Gamma \vdash[\Omega] A \leq[\Omega] \hat{\alpha}$
then there are Δ, Ω^{\prime} such that $\Omega \longrightarrow \Omega^{\prime}$ and $\Delta \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash A \leqq: \hat{\alpha} \dashv \Delta$.

K. 2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If $\Gamma \longrightarrow \Omega$ and $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Omega] \Gamma \vdash$ $[\Omega] A \leq[\Omega] \mathrm{B}$ then there exist Δ and Ω^{\prime} such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash[\Gamma] A<:[\Gamma] B \dashv \Delta$.

Corollary 55 (Completeness of Subtyping). If $\Psi \vdash A \leq B$ then there is a Δ such that $\Psi \vdash A<: B \dashv \Delta$.

L Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given $\Gamma \longrightarrow \Omega$ and $\Gamma \vdash A$:
(i) If $[\Omega] \Gamma \vdash e \Leftarrow[\Omega] A$
then there exist Δ and Ω^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash \mathrm{e} \Leftarrow[\Gamma] A \dashv \Delta$.
(ii) If $[\Omega] \Gamma \vdash e \Rightarrow A$
then there exist Δ, Ω^{\prime}, and A^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash e \Rightarrow A^{\prime} \dashv \Delta$ and $A=\left[\Omega^{\prime}\right] A^{\prime}$.
(iii) If $[\Omega] \Gamma \vdash[\Omega] A \bullet e \Rightarrow C$
then there exist Δ, Ω^{\prime}, and C^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash[\Gamma] A \bullet e \Rightarrow \mathrm{C}^{\prime} \dashv \Delta$ and $\mathrm{C}=\left[\Omega^{\prime}\right] \mathrm{C}^{\prime}$.

Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A $^{\prime}$ Declarative Subtyping

Proposition 1 (Weakening). If $\Psi \vdash \mathcal{A}$ then $\Psi, \Psi^{\prime} \vdash \mathcal{A}$ by a derivation of the same size.
Proposition 2 (Substitution). If $\Psi \vdash A$ and $\Psi, \alpha, \Psi^{\prime} \vdash B$ then $\Psi, \Psi^{\prime} \vdash[A / \alpha] B$.
The proofs of these two propositions are routine inductions.

$A^{\prime} .1$ Properties of Well-Formedness

A' 2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if $\Psi \vdash A$ then $\Psi \vdash A \leq A$.
Proof. By induction on A.

- Case $A=1$: \quad Apply rule \leq Unit.
- Case $A=\alpha$: Apply rule \leq Var.
- Case $A=A_{1} \rightarrow A_{2}:$

$\Psi \vdash A_{1} \leq A_{1}$	By i.h.
$\Psi \vdash A_{2} \leq A_{2}$	By i.h.
$\Psi \vdash A_{1} \rightarrow A_{2} \leq A_{1} \rightarrow A_{2}$	By $\leq \rightarrow$

- Case $A=\forall \alpha . A_{0}$:

$\Psi, \alpha \vdash A_{0} \leq A_{0}$	By i.h.
$\Psi, \alpha \vdash \alpha$	By DeclUvarWF
$\Psi, \alpha \vdash[\alpha / \alpha] A_{0} \leq A_{0}$	By def. of substitution
$\Psi, \alpha \vdash \forall \alpha . A_{0} \leq A_{0}$	By $\leq \forall \mathrm{L}$
$\Psi \vdash \forall \alpha . A_{0} \leq \forall \alpha . A_{0}$	
By $\leq \forall R$	

A'. 3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If $\Psi \vdash A \leq B$ then $\Psi \vdash A$ and $\Psi \vdash B$.
Proof. By induction on the given derivation. All 5 cases are straightforward.

A'. 4 Substitution

Lemma 5 (Substitution). If $\Psi \vdash \tau$ and $\Psi, \alpha, \Psi^{\prime} \vdash A \leq B$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] A \leq[\tau / \alpha] B$.
Proof. By induction on the given derivation.

- Case

$$
\frac{\beta \in\left(\Psi, \alpha, \Psi^{\prime}\right)}{\Psi, \alpha, \Psi^{\prime} \vdash \beta \leq \beta} \leq \operatorname{Var}
$$

It is given that $\Psi \vdash \tau$.
Either $\beta=\alpha$ or $\beta \neq \alpha$. In the former case: We need to show $\Psi, \Psi^{\prime} \vdash[\tau / \alpha] \alpha \leq[\tau / \alpha] \alpha$, that is, $\Psi, \Psi^{\prime} \vdash \tau \leq \tau$, which follows by Lemma 3 (Reflexivity of Declarative Subtyping). In the latter case: We need to show $\Psi, \Psi^{\prime} \vdash[\tau / \alpha] \beta \leq[\tau / \alpha] \beta$, that is, $\Psi, \Psi^{\prime} \vdash \beta \leq \beta$. Since $\beta \in\left(\Psi, \alpha, \Psi^{\prime}\right)$ and $\beta \neq \alpha$, we have $\beta \in\left(\Psi, \Psi^{\prime}\right)$, so applying $\leq \operatorname{Var}$ gives the result.

- Case

$$
\overline{\Psi, \alpha, \Psi^{\prime} \vdash 1 \leq 1} \leq \text { Unit }
$$

For all τ, substituting $[\tau / \alpha] 1=1$, and applying \leq Unit gives the result.

- Case

$$
\text { Case } \begin{array}{ll}
\frac{\Psi, \alpha, \Psi^{\prime} \vdash B_{1} \leq A_{1} \quad \Psi, \alpha, \Psi^{\prime} \vdash A_{2} \leq B_{2}}{\Psi, \alpha, \Psi^{\prime} \vdash A_{1} \rightarrow A_{2} \leq B_{1} \rightarrow B_{2}} \leq & \\
\Psi, \alpha, \Psi^{\prime} \vdash B_{1} \leq A_{1} & \text { Subderivation } \\
\Psi, \Psi^{\prime} \vdash[\tau / \alpha] B_{1} \leq[\tau / \alpha] A_{1} & \text { By i.h. } \\
\Psi, \alpha, \Psi^{\prime} \vdash A_{2} \leq B_{2} & \text { Subderivation } \\
\Psi, \Psi^{\prime} \vdash[\tau / \alpha] A_{2} \leq[\tau / \alpha] B_{2} & \text { By i.h. } \\
\Psi, \Psi^{\prime} \vdash\left([\tau / \alpha] A_{1}\right) \rightarrow\left([\tau / \alpha] A_{2}\right) \leq\left([\tau / \alpha] B_{1}\right) \rightarrow\left([\tau / \alpha] B_{2}\right) & \text { By } \leq \rightarrow \\
\Psi, \Psi^{\prime} \vdash[\tau / \alpha]\left(A_{1} \rightarrow A_{2}\right) \leq[\tau / \alpha]\left(B_{1} \rightarrow B_{2}\right) & \text { By definition of subst. }
\end{array}
$$

$$
\text { - Case } \frac{\Psi, \alpha, \Psi^{\prime} \vdash \sigma \quad \Psi, \alpha, \Psi^{\prime} \vdash[\sigma / \beta] A_{0} \leq \mathrm{B}}{\Psi, \alpha, \Psi^{\prime} \vdash \forall \beta . A_{0} \leq \mathrm{B}} \leq \forall \mathrm{L}
$$

$\Psi, \alpha, \Psi^{\prime} \vdash[\sigma / \beta] A_{0} \leq B \quad$ Subderivation
$\Psi, \Psi^{\prime} \vdash[\tau / \alpha][\sigma / \beta] A_{0} \leq[\tau / \alpha] B \quad$ By i.h.
$\Psi, \Psi^{\prime} \vdash[[\tau / \alpha] \sigma / \beta][\tau / \alpha] A_{0} \leq[\tau / \alpha] B \quad$ By distributivity of substitution

$$
\Psi, \alpha, \Psi^{\prime} \vdash \sigma
$$

$$
\Psi \vdash \tau
$$

$\Psi, \Psi^{\prime} \vdash[\tau / \alpha] \sigma$
$\Psi, \Psi^{\prime} \vdash \forall \beta .[\tau / \alpha] A_{0} \leq[\tau / \alpha] B$
$\Psi, \Psi^{\prime} \vdash[\tau / \alpha]\left(\forall \beta . A_{0}\right) \leq[\tau / \alpha] B$
Premise
Given
By Proposition 2
By $\leq \forall \mathrm{L}$
By definition of substitution

- Case

$$
\frac{\Psi, \alpha, \Psi^{\prime}, \beta \vdash A \leq B_{0}}{\Psi, \alpha, \Psi^{\prime} \vdash A \leq \forall \beta . B_{0}} \leq \forall \mathrm{R}
$$

$\Psi, \alpha, \Psi^{\prime}, \beta \vdash A \leq B_{0} \quad$ Subderivation
$\Psi, \Psi^{\prime}, \beta \vdash[\tau / \alpha] A \leq[\tau / \alpha] B_{0} \quad$ By i.h.
$\Psi, \Psi^{\prime} \vdash[\tau / \alpha] A \leq \forall \beta .[\tau / \alpha] B_{0} \quad$ By $\leq \forall R$

* $\Psi, \Psi^{\prime} \vdash[\tau / \alpha] A \leq[\tau / \alpha]\left(\forall \beta . B_{0}\right)$

By definition of substitution

A'. 5 Transitivity

To prove transitivity, we use a metric that adapts ideas from a proof of cut elimination by Pfenning (1995).

Lemma 6 (Transitivity of Declarative Subtyping). If $\Psi \vdash A \leq B$ and $\Psi \vdash B \leq C$ then $\Psi \vdash A \leq C$.
Proof. By induction with the following metric:

$$
\left\langle \# \forall(\mathrm{~B}), \quad \mathcal{D}_{1}+\mathcal{D}_{2}\right\rangle
$$

where $\langle\ldots\rangle$ denotes lexicographic order, the first part $\# \forall(\mathrm{~B})$ is the number of quantifiers in B , and the second part is the (simultaneous) size of the derivations $\mathcal{D}_{1}:: \Psi \vdash A \leq B$ and $\mathcal{D}_{2}:: \Psi \vdash B \leq C$. We need to consider the number of quantifiers first in one case: when $\leq \forall \mathrm{R}$ concluded \mathcal{D}_{1} and $\leq \forall \mathrm{L}$ concluded \mathcal{D}_{2}, because in that case, the derivations on which the i.h. must be applied are not necessarily smaller.

- Case

$$
\frac{\alpha \in \Psi}{\Psi \vdash \alpha \leq \alpha} \leq \operatorname{Var} \quad \frac{\alpha \in \Psi}{\Psi \vdash \alpha \leq \alpha} \leq \operatorname{Var}
$$

Apply rule \leq Var.

- Case \leq Unit / \leq Unit: \quad Similar to the \leq Var / \leq Var case.
- Case $\frac{\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad \Psi \vdash \mathrm{~A}_{2} \leq \mathrm{B}_{2}}{\Psi \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \leq \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \leq \rightarrow \quad \frac{\Psi \vdash \mathrm{C}_{1} \leq \mathrm{B}_{1} \quad \Psi \vdash \mathrm{~B}_{2} \leq \mathrm{C}_{2}}{\Psi \vdash \mathrm{~B}_{1} \rightarrow \mathrm{~B}_{2} \leq \mathrm{C}_{1} \rightarrow \mathrm{C}_{2}} \leq \rightarrow$

By i.h. on the 3 rd and 1 st subderivations, $\Psi \vdash C_{1} \leq A_{1}$.
By i.h. on the 2nd and 4th subderivations, $\Psi \vdash A_{2} \leq C_{2}$.
By $\leq \rightarrow, \Psi \vdash A_{1} \rightarrow A_{2} \leq C_{1} \rightarrow C_{2}$.
If $\leq \forall \mathrm{L}$ concluded \mathcal{D}_{1} :

- Case
$\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] A_{0} \leq B}{\Psi \vdash \forall \alpha . A_{0} \leq \mathrm{B}} \leq \forall \mathrm{L}$
$\Psi \vdash \tau \quad$ Premise
$\Psi \vdash[\tau / \alpha] A_{0} \leq \mathrm{B} \quad$ Subderivation
$\Psi \vdash \mathrm{B} \leq \mathrm{C} \quad$ Given $\left(\mathcal{D}_{2}\right)$
$\Psi \vdash[\tau / \alpha] A_{0} \leq C \quad$ By i.h.
* $\Psi \vdash \forall \alpha . A_{0} \leq \mathrm{C} \quad$ By $\leq \forall \mathrm{L}$

If $\leq \forall R$ concluded \mathcal{D}_{2} :

- Case

$$
\text { Case } \begin{array}{cll}
& \Psi, \beta \vdash \mathrm{B} \leq \mathrm{C} \\
\Psi \vdash \mathrm{~B} \leq \forall \beta . C & & \\
\Psi \vdash \tau & & \text { Premise } \\
\Psi, \beta \vdash \mathrm{B} \leq \mathrm{C} & \text { Subderivation } \\
\Psi \vdash A \leq \mathrm{B} & \text { Given }\left(\mathcal{D}_{1}\right) \\
\Psi, \beta \vdash A \leq \mathrm{B} & \text { By Proposition } 1 \\
\Psi, \beta \vdash A \leq C & \text { By i.h. } \\
\Psi \vdash A \leq \forall \beta . C & \text { By } \leq \forall \mathrm{L}
\end{array}
$$

The only remaining possible case is $\leq \forall \mathrm{R} / \leq \forall \mathrm{L}$.

- Case

$$
\begin{aligned}
& \frac{\Psi, \beta \vdash A \leq B_{0}}{\Psi \vdash A \leq \forall \beta . B_{0}} \leq \forall R \quad \frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \beta] B_{0} \leq C}{\Psi \vdash \forall \beta . \mathrm{B}_{0} \leq \mathrm{C}} \leq \forall \mathrm{L} \\
& \Psi, \beta \vdash A \leq B_{0} \quad \text { Subderivation of } \mathcal{D}_{1} \\
& \Psi \vdash \tau \quad \text { Premise of } \mathcal{D}_{2} \\
& \Psi \vdash[\tau / \beta] A \leq[\tau / \beta] B_{0} \quad \text { By Lemma } 5 \text { Substitution } \\
& {[\tau / \beta] A=A \quad \beta \text { cannot appear in } A} \\
& \Psi \vdash A \leq[\tau / \beta] B_{0} \quad \text { By above equality } \\
& \Psi \vdash[\tau / \beta] \mathrm{B}_{0} \leq \mathrm{C} \quad \text { Subderivation of } \mathcal{D}_{2} \\
& \text { * } \Psi \vdash \mathrm{A} \leq \mathrm{C}
\end{aligned}
$$

A'. 6 Invertibility of $\leq \forall R$

Lemma 7 (Invertibility).
If \mathcal{D} derives $\Psi \vdash A \leq \forall \beta$. B then \mathcal{D}^{\prime} derives $\Psi, \beta \vdash A \leq B$ where $\mathcal{D}^{\prime}<\mathcal{D}$.
Proof. By induction on the given derivation \mathcal{D}.

- Cases \leq Var, \leq Unit, $\leq \rightarrow$: Impossible: the supertype cannot have the form $\forall \beta$. B.
- Case $\frac{\Psi, \beta \vdash A \leq B}{\Psi \vdash A \leq \forall \beta . B} \leq \forall R$

The subderivation is exactly what we need, and is strictly smaller than \mathcal{D}.

- Case

$$
\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] A_{0} \leq \forall \beta . \mathrm{B}}{} \frac{\Psi \vdash \mathrm{C}}{} \begin{gathered}
\\
\Psi \vdash \forall \alpha . A_{0} \leq \forall \beta . \mathrm{B}
\end{gathered}
$$

By i.h., \mathcal{D}_{0}^{\prime} derives $\Psi, \beta \vdash[\tau / \alpha] A_{0} \leq B$ where $\mathcal{D}_{0}^{\prime}<\mathcal{D}_{0}$.
By $\leq \forall \mathrm{L}, \mathcal{D}^{\prime}$ derives $\Psi, \beta \vdash \forall \alpha$. $A_{0} \leq \mathrm{B}$; since $\mathcal{D}_{0}^{\prime}<\mathcal{D}_{0}$, we have $\mathcal{D}^{\prime}<\mathcal{D}$.

A'. 7 Non-Circularity and Equality

Lemma 8 (Occurrence).
(i) If $\Psi \vdash A \leq \tau$ then $\tau \mathcal{R} A$.
(ii) If $\Psi \vdash \tau \leq B$ then $\tau \mathbb{R} B$.

Proof. By induction on the given derivation.

- Cases \leq Var, \leq Unit: (i), (ii): Here A and B have no subterms at all, so the result is immediate.
- Case

$$
\frac{\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad \Psi \vdash \mathrm{~A}_{2} \leq \mathrm{B}_{2}}{\Psi \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \leq \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \leq \rightarrow
$$

(i) Here, $A=A_{1} \rightarrow A_{2}$ and $\tau=B_{1} \rightarrow B_{2}$.

$$
B_{1} \nprec A_{1} \quad \text { By i.h. (ii) }
$$

$B_{1} \rightarrow B_{2} \npreceq A_{1} \quad$ Suppose $B_{1} \rightarrow B_{2} \preceq A_{1}$. Then $B_{1} \supsetneq A_{1}$: contradiction.
$B_{2} \nprec A_{2}$ Byi.h. (i)
$\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2} \npreceq \mathrm{~A}_{2} \quad$ Similar
Suppose (for a contradiction) that $B_{1} \rightarrow B_{2} \supsetneq A_{1} \rightarrow A_{2}$.
Now $B_{1} \rightarrow B_{2} \preceq A_{1}$ or $B_{1} \rightarrow B_{2} \preceq A_{2}$.
But above, we showed that both were false: contradiction.
Therefore, $\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2} \nprec \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2}$.
Therefore, $B_{1} \rightarrow B_{2} \not A_{1} \rightarrow A_{2}$.
(ii) Here, $A=\tau$ and $B=B_{1} \rightarrow B_{2}$.

Symmetric to the previous case.

- Case

$$
\frac{\Psi \vdash \tau^{\prime} \quad \Psi \vdash\left[\tau^{\prime} / \alpha\right] A_{0} \leq \tau}{\Psi \vdash \forall \alpha \cdot A_{0} \leq \tau} \leq \forall \mathrm{L}
$$

In part (ii), this case cannot arise, so we prove part (i).
By i.h. (i), $\tau \nprec\left[\tau^{\prime} / \alpha\right] A_{0}$.
It follows from the definition of \supsetneq that $\tau \nless \forall \alpha$. A_{0}.

- Case

$$
\frac{\Psi, \beta \vdash \tau \leq B_{0}}{\Psi \vdash \tau \leq \forall \beta . B_{0}} \leq \forall R
$$

In part (i), this case cannot arise, so we prove part (ii).
Similar to the $\leq \forall \mathrm{L}$ case.
Lemma 9 (Monotype Equality). If $\Psi \vdash \sigma \leq \tau$ then $\sigma=\tau$.

Proof. By induction on the given derivation.

- Case \leq Var: \quad Immediate.
- Case \leq Unit: Immediate.
- Case $\frac{\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad \Psi \vdash \mathrm{~A}_{2} \leq \mathrm{B}_{2}}{\Psi \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \leq \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \leq \rightarrow$

By i.h. on each subderivation, $B_{1}=A_{1}$ and $A_{2}=B_{2}$. Therefore $A_{1} \rightarrow A_{2}=B_{1} \rightarrow B_{2}$.

- Case $\leq \forall \mathrm{L}$: Here $\sigma=\forall \alpha$. A_{0}, which is not a monotype, so this case is impossible.
- Case $\leq \forall$ R: Here $\tau=\forall \beta$. B_{0}, which is not a monotype, so this case is impossible.

B $^{\prime}$ Type Assignment

Lemma 10 (Well-Formedness).
If $\Psi \vdash e \Leftarrow A$ or $\Psi \vdash e \Rightarrow A$ or $\Psi \vdash A \bullet e \Rightarrow C$ then $\Psi \vdash A$ (and in the last case, $\Psi \vdash C$).
Proof. By induction on the given derivation.
In all cases, we apply the induction hypothesis to all subderivations.

- In the DeclVar and Decl \rightarrow l cases, we use our standard assumption that every context appearing in a derivation is well-formed.
- In the $\mathrm{Decl} \rightarrow \mathrm{l} \Rightarrow$ case, we use inversion on the $\Psi \vdash \sigma \rightarrow \tau$ premise.
- In the Decl \forall App case, we use the property that if $\Psi \vdash[\tau / \alpha] A_{0}$ then $\Psi \vdash \forall \alpha$. A_{0}.
- In the DeclAnno case, we use its premise.

Theorem 1 (Completeness of Bidirectional Typing).
If $\Psi \vdash e$: A then there exists e^{\prime} such that $\Psi \vdash e^{\prime} \Rightarrow A$ and $\left|e^{\prime}\right|=e$.
Proof. By induction on the derivation of $\Psi \vdash e: A$.

- Case

$$
\frac{x: A \in \Psi}{\Psi \vdash x: A} A V a r
$$

Immediate, by rule DeclVar.

- Case

$$
\frac{\Psi, x: A \vdash e: B}{\Psi \vdash \lambda x \cdot e: A \rightarrow B} A \rightarrow I
$$

By inversion, we have $\Psi, x: A \vdash e: B$.
By induction, we have $\Psi, x: A \vdash e^{\prime} \Rightarrow \mathrm{B}$, where $\left|e^{\prime}\right|=e$.
By Lemma 3 Reflexivity of Declarative Subtyping, $\Psi \vdash \mathrm{B} \leq \mathrm{B}$.
By rule DeclSub, $\Psi, x: A \vdash e^{\prime} \Leftarrow$ B.
By rule Decl $\rightarrow \mathrm{I}, \Psi \vdash \lambda x . \mathrm{e}^{\prime} \Leftarrow \mathrm{A} \rightarrow \mathrm{B}$.
By Lemma 10 Well-Formedness), $\Psi \vdash A \rightarrow B$.
By rule DeclAnno, $\Psi \vdash\left(\left(\lambda x . e^{\prime}\right): A \rightarrow B\right) \Rightarrow A \rightarrow B$.
By definition, $\left|\left(\left(\lambda x . e^{\prime}\right): A \rightarrow B\right)\right|=\left|\lambda x . e^{\prime}\right|=\lambda x .\left|e^{\prime}\right|=\lambda x$. e.

- Case

$$
\frac{\Psi \vdash e_{1}: A \rightarrow B \quad \Psi \vdash e_{2}: A}{\Psi \vdash e_{1} e_{2}: \mathrm{B}} \mathrm{~A} \rightarrow \mathrm{E}
$$

By induction, $\Psi \vdash e_{1}^{\prime} \Rightarrow A \rightarrow B$ and $\left|e_{1}^{\prime}\right|=e_{1}$.
By induction, $\Psi \vdash e_{2}^{\prime} \Rightarrow A$ and $\left|e_{2}^{\prime}\right|=e_{2}$.
By Lemma 3 Reflexivity of Declarative Subtyping), $\Psi \vdash A \leq A$.
By rule DeclSub, $\Psi \vdash e_{2}^{\prime} \Leftarrow A$.
By rule Decl $\rightarrow \mathrm{App}, \Psi \vdash \mathrm{A} \rightarrow \mathrm{B} \bullet \mathrm{e}_{2}^{\prime} \Longrightarrow \mathrm{B}$.
By rule Decl $\rightarrow \mathrm{E}, \Psi \vdash e_{1}^{\prime} e_{2}^{\prime} \Rightarrow \mathrm{B}$.
By definition, $\left|e_{1}^{\prime} e_{2}^{\prime}\right|=\left|e_{1}^{\prime}\right|\left|e_{2}^{\prime}\right|=e_{1} e_{2}$.

- Case

$$
\frac{\Psi, \alpha \vdash e: A}{\Psi \vdash e: \forall \alpha \cdot A} A \forall I
$$

By induction, $\Psi, \alpha \vdash e^{\prime} \Rightarrow A$ where $\left|e^{\prime}\right|=e$.
By Lemma 3 (Reflexivity of Declarative Subtyping), $\Psi, \alpha \vdash A \leq A$.
By rule DeclSub, $\Psi, \alpha \vdash e^{\prime} \Leftarrow A$.
By rule Decl $\forall \mathrm{I}, \Psi \vdash e^{\prime} \Leftarrow \forall \alpha$. A.
By Lemma 10 (Well-Formedness), $\Psi \vdash \forall \alpha$. A.
By rule DeclAnno, $\Psi \vdash\left(e^{\prime}: \forall \alpha . A\right) \Rightarrow \forall \alpha$. A.
By definition, $\mid e^{\prime}: \forall \alpha$. $A\left|=\left|e^{\prime}\right|=e\right.$.

- Case

$$
\frac{\Psi \vdash e: \forall \alpha . A \quad \Psi \vdash \tau}{\Psi \vdash e:[\tau / \alpha] A} A \forall E
$$

By induction, $\Psi \vdash e^{\prime} \Rightarrow \forall \alpha$. A where $\left|e^{\prime}\right|=e$.
By Lemma 3 (Reflexivity of Declarative Subtyping), $\Psi \vdash[\tau / \alpha] A \leq[\tau / \alpha] A$.
By $\leq \forall \mathrm{L}, \Psi \vdash \forall \alpha$. $\mathrm{A} \leq[\tau / \alpha] \mathrm{A}$.
By rule DeclSub, $\Psi \vdash e^{\prime} \Leftarrow[\tau / \alpha] A$.
By Lemma 10 Well-Formedness), $\Psi \vdash[\tau / \alpha] A$.
By rule DeclAnno, $\Psi \vdash\left(e^{\prime}:[\tau / \alpha] A\right) \Leftarrow[\tau / \alpha] A$.
By definition, $\left|e^{\prime}:[\tau / \alpha] A\right|=\left|e^{\prime}\right|=e$.
Lemma 11 (Subtyping Coercion). If $\Psi \vdash A \leq B$ then there exists f which is $\beta \eta$-equal to the identity such that $\Psi \vdash \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$.

Proof. By induction on the derivation of $\Psi \vdash A \leq B$.

- Case

$$
\frac{\alpha \in \Psi}{\Psi \vdash \alpha \leq \alpha} \leq \mathrm{Var}
$$

Choose $\mathrm{f}=\lambda \mathrm{x}$. χ.
Clearly $\Psi \vdash \lambda x . x: \alpha \rightarrow \alpha$.

- Case

$$
\overline{\Psi \vdash 1 \leq 1} \leq \text { Unit }
$$

Choose $\mathrm{f}=\lambda \mathrm{x}$. x .
Clearly $\Psi \vdash \lambda x . x: 1 \rightarrow 1$.

- Case

$$
\frac{\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad \Psi \vdash \mathrm{~A}_{2} \leq \mathrm{B}_{2}}{\Psi \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \leq \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \leq \rightarrow
$$

By induction, we have $g: B_{1} \rightarrow A_{1}$, which is $\beta \eta$-equal to the identity.
By induction, we have $k: A_{2} \rightarrow B_{2}$, which is $\beta \eta$-equal to the identity.
Let f be $\lambda \mathrm{h} . \mathrm{k} \circ \mathrm{h} \circ \mathrm{g}$.
It is easy to verify that $\Psi \vdash \mathrm{f}:\left(\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}\right) \rightarrow\left(\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}\right)$.
Since k and g are identities, $f={ }_{\beta \eta} \lambda h$. h.

- Case

$$
\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] A \leq \mathrm{B}}{\Psi \vdash \forall \alpha . A \leq \mathrm{B}} \leq \forall \mathrm{L}
$$

By induction, $g:[\tau / \alpha] A \rightarrow B$.
Let $f \triangleq \lambda x$. $g x$.
f is an eta-expansion of g, which is $\beta \eta$-equal to the identity. Hence f is too.
Also, $\lambda x . \mathrm{g} x:(\forall \alpha . A) \rightarrow B$, using the Decl $\forall E$ rule on x.

- Case

$$
\frac{\Psi, \beta \vdash A \leq B}{\Psi \vdash A \leq \forall \beta . B} \leq \forall R
$$

By induction, we have g such that $\Psi, \beta \vdash g: A \rightarrow B$.
Let $\mathrm{f} \triangleq \lambda x$. gx .
Use the following derivation:

$$
\begin{aligned}
& \text { WEAKEN } \frac{\vdots}{\Psi, \beta \vdash g: A \rightarrow B} \\
& \frac{\frac{\Psi, x: A, \beta \vdash g: A \rightarrow B}{\Psi, x: A, \beta \vdash g x: B}}{\frac{\Psi, x: A \vdash g x: \forall \beta . B}{\Psi \vdash \lambda x . g x: A \rightarrow \forall \beta . B}}
\end{aligned}
$$

Lemma 12 (Application Subtyping). If $\Psi \vdash A \bullet e \nRightarrow C$ then there exists B such that $\Psi \vdash A \leq B \rightarrow C$ and $\Psi \vdash \mathrm{e} \Leftarrow \mathrm{B}$ by a smaller derivation.

Proof. By induction on the given derivation \mathcal{D}.

- Case

$$
\begin{aligned}
& \frac{\Psi \vdash e \Leftarrow \mathrm{~B}}{\Psi \vdash \mathrm{~B} \rightarrow \mathrm{C} \bullet \mathrm{e} \Rightarrow \mathrm{C}} \text { Decl } \rightarrow \mathrm{App} \\
& \mathcal{D}^{\prime}:: \Psi \vdash e \Leftarrow \mathrm{~B} \quad \text { Subderivation } \\
& \quad \mathcal{D}^{\prime}<\mathcal{D} \quad \mathcal{D}^{\prime} \text { is a subderivation of } \mathcal{D} \\
& \text { * } \Psi \vdash \underbrace{\mathrm{B} \rightarrow \mathrm{C}}_{\mathrm{A}} \leq \mathrm{B} \rightarrow \mathrm{C} \quad \text { By Lemma } 3 \text { Reflexivity of Declarative Subtyping }
\end{aligned}
$$

- Case $\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] A_{0} \bullet e \Rightarrow C}{\Psi \vdash \forall \alpha . A_{0} \bullet e \Rightarrow C}$ Decl $\forall A p p$

$$
\begin{array}{cll}
\Psi \vdash \tau & \text { Subderivation } \\
\Psi \vdash[\tau / \alpha] A_{0} \bullet e \Rightarrow C & \text { Subderivation } \\
& \Psi \vdash[\tau / \alpha] A_{0} \leq \mathrm{B} \rightarrow \mathrm{C} & \text { By i.h. } \\
\mathcal{D}^{\prime}:: \Psi \vdash e \Leftarrow \mathrm{~B} & \prime \prime \\
\mathcal{D}^{\prime}<\mathcal{D} & \prime \prime \\
\Psi \vdash \forall \alpha . A_{0} \leq \mathrm{B} \rightarrow \mathrm{C} & \text { By } \leq \forall \mathrm{L}
\end{array}
$$

Theorem 2 (Soundness of Bidirectional Typing). We have that:

- If $\Psi \vdash e \Leftarrow A$, then there is an e^{\prime} such that $\Psi \vdash e^{\prime}: A$ and $e^{\prime}={ }_{\beta \eta}|e|$.
- If $\Psi \vdash e \Rightarrow A$, then there is an e^{\prime} such that $\Psi \vdash e^{\prime}: A$ and $e^{\prime}={ }_{\beta \eta}|e|$.

Proof.

- Case

$$
\frac{(x: A) \in \Psi}{\Psi \vdash x \Rightarrow A} \text { DeclVar }
$$

By rule $A V a r, \Psi \vdash x: A$.
Note $x={ }_{\beta \eta} x$.

- Case $\frac{\Psi \vdash e \Rightarrow A \quad \Psi \vdash A \leq B}{\Psi \vdash e \Leftarrow B}$ DeclSub

By induction, $\Psi \vdash e^{\prime}: A$ and $e^{\prime}={ }_{\beta \eta}|e|$.
By Lemma 11 Subtyping Coercion), $f: A \rightarrow B$ such that $f={ }_{\beta \eta}$ id.
By $A \rightarrow E, \Psi \vdash f e^{\prime}: B$.
Note $\mathrm{f} e^{\prime}={ }_{\beta \eta}$ id $e^{\prime}={ }_{\beta \eta} e^{\prime}={ }_{\beta \eta}|e|$.

- Case

$$
\frac{\Psi \vdash A \quad \Psi \vdash e \Leftarrow A}{\Psi \vdash(e: A) \Rightarrow A} \text { DeclAnno }
$$

By induction, $\Psi \vdash e^{\prime}: A$ such that $e^{\prime}={ }_{\beta \eta}|e|$.
Note $e^{\prime}={ }_{\beta \eta}|e|=|e: A|$.

- Case

$$
\overline{\Psi \vdash() \Leftarrow 1} \text { Decl1 }
$$

By AUnit, $\Psi \vdash(): 1$.
Note () $=\beta_{\beta \eta}$ ().

- Case

$$
\overline{\Psi \vdash() \Rightarrow 1} \text { Decl11 } \Rightarrow
$$

By AUnit, $\Psi \vdash(): 1$.
Note () $=\beta_{\eta \eta}$ ().

- Case

$$
\frac{\Psi, \alpha \vdash e \Leftarrow A}{\Psi \vdash e \Leftarrow \forall \alpha . A} \text { Decl } \forall \mathrm{I}
$$

By induction, $\Psi, \alpha \vdash e^{\prime}: A$ such that $e^{\prime}={ }_{\beta \eta}|e|$.
By rule $A \forall I, \Psi \vdash e^{\prime}: \forall \alpha$. A.

- Case

$$
\frac{\Psi, x: A \vdash e \Leftarrow \mathrm{~B}}{\Psi \vdash \lambda x . e \Leftarrow A \rightarrow B} \text { Decl } \rightarrow \mathrm{I}
$$

By induction, $\Psi, x: A \vdash e^{\prime}: B$ such that $e^{\prime}={ }_{\beta \eta}|e|$.
By $\mathrm{A} \rightarrow \mathrm{I}, \Psi \vdash \lambda x . e^{\prime}: A \rightarrow B$.
Note $\lambda x . e^{\prime}={ }_{\beta \eta} \lambda x .|e|=|\lambda x . e|$.

- Case

$$
\frac{\Psi \vdash \sigma \rightarrow \tau \quad \Psi, x: \sigma \vdash e \Leftarrow \tau}{\Psi \vdash \lambda x . e \Rightarrow \sigma \rightarrow \tau} \text { Decl } \rightarrow \mathrm{l} \Rightarrow
$$

By induction, $\Psi, x: \sigma \vdash e^{\prime}: \tau$ such that $e^{\prime}={ }_{\beta \eta}|e|$.
By $\mathrm{A} \rightarrow \mathrm{I}, \Psi \vdash \lambda \chi . e^{\prime}: \sigma \rightarrow \tau$.
Note $\lambda x . e^{\prime}={ }_{\beta \eta} \lambda x .|e|=|\lambda x . e|$.

- Case $\frac{\Psi \vdash e_{1} \Rightarrow A \quad \Psi \vdash A \bullet e_{2} \Rightarrow C}{\Psi \vdash e_{1} e_{2} \Rightarrow C}$ Decl $\rightarrow \mathrm{E}$

By induction, $\Psi \vdash e_{1}^{\prime}: A$ such that $e_{1}^{\prime}={ }_{\beta \eta}\left|e_{1}\right|$.
By Lemma 12 Application Subtyping), there is a B such that

1. $\Psi \vdash A \leq B \rightarrow C$, and
2. $\Psi \vdash e_{2} \Leftarrow B$, which is no bigger than $\Psi \vdash A \bullet e_{2} \Rightarrow C$.

By Lemma 11 Subtyping Coercion, we have f such that $\Psi \vdash f: A \rightarrow B \rightarrow C$ and $f={ }_{\beta \eta}$ id.
By induction, we get $\Psi \vdash e_{2}^{\prime}: B$ and $e_{2}^{\prime}={ }_{\beta \eta}\left|e_{2}\right|$.
By $A \rightarrow E$ twice, $\Psi \vdash \mathrm{f} e_{1}^{\prime} e_{2}^{\prime}: \mathrm{C}$.
Note $f e_{1}^{\prime} e_{2}^{\prime}={ }_{\beta \eta}$ id $e_{1}^{\prime} e_{2}^{\prime}={ }_{\beta \eta} e_{1}^{\prime} e_{2}^{\prime}={ }_{\beta \eta}\left|e_{1}\right| e_{2}^{\prime}={ }_{\beta \eta}\left|e_{1}\right|\left|e_{2}\right|=\left|e_{1} e_{2}\right|$.

C $^{\prime}$ Robustness of Typing

Lemma 13 (Type Substitution).
Assume $\Psi \vdash \tau$.

- If $\Psi, \alpha, \Psi^{\prime} \vdash e^{\prime} \Leftarrow C$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] e^{\prime} \Leftarrow[\tau / \alpha] C$.
- If $\Psi, \alpha, \Psi^{\prime} \vdash e^{\prime} \Rightarrow C$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] e^{\prime} \Rightarrow[\tau / \alpha] C$.
- If $\Psi, \alpha, \Psi^{\prime} \vdash \mathrm{B} \bullet e^{\prime} \Rightarrow \mathrm{C}$ then $\Psi,[\tau / \alpha] \Psi^{\prime} \vdash[\tau / \alpha] B \bullet[\tau / \alpha] e^{\prime} \Rightarrow[A / \alpha] C$.

Moreover, the resulting derivation contains no more applications of typing rules than the given one. (Internal subtyping derivations, however, may grow.)

Proof. By induction on the given derivation.
In the DeclVar case, split on whether the variable being typed is in Ψ or Ψ^{\prime}; the former is immediate, and in the latter, use the fact that $(x: C) \in \Psi^{\prime}$ implies $(x:[\tau / \alpha] \mathrm{C}) \in[\tau / \alpha] \Psi^{\prime}$.

In the DeclSub case, use the i.h. and Lemma 5 (Substitution).
In the DeclAnno case, we are substituting in the annotation in the term, as well as in the type; we also need Proposition 2.

In $\operatorname{Decl} \rightarrow \mathrm{I}$, $\operatorname{Decl} \rightarrow I \Rightarrow$ and Decl $\forall \mathrm{I}$, we add to the context in the premise, which is why the statement is generalized for nonempty Ψ^{\prime}.

Lemma 14 (Subsumption). Suppose $\Psi^{\prime} \leq \Psi$. Then:
(i) If $\Psi \vdash e \Leftarrow A$ and $\Psi \vdash A \leq A^{\prime}$ then $\Psi^{\prime} \vdash e \Leftarrow A^{\prime}$.
(ii) If $\Psi \vdash e \Rightarrow A$ then there exists A^{\prime} such that $\Psi \vdash A^{\prime} \leq A$ and $\Psi^{\prime} \vdash e \Rightarrow A^{\prime}$.
(iii) If $\Psi \vdash C \bullet e \Rightarrow A$ and $\Psi \vdash C^{\prime} \leq C$ then there exists A^{\prime} such that $\Psi \vdash A^{\prime} \leq A$ and $\Psi^{\prime} \vdash C^{\prime} \bullet e \Rightarrow A^{\prime}$.

Proof. By mutual induction: in (i), by lexicographic induction on the derivation of the checking judgment, then of the subtyping judgment; in (ii), by induction on the derivation of the synthesis judgment; in (iii), by lexicographic induction on the derivation of the application judgment, then of the subtyping judgment.

For part (i), checking:

- Case

$\Psi \vdash e \Rightarrow B \quad$ Subderivation
$\Psi^{\prime} \vdash e \Rightarrow B^{\prime} \quad$ By i.h.
$\Psi \vdash \mathrm{B}^{\prime} \leq \mathrm{B} \quad$ "
$\Psi \vdash B \leq A \quad$ Subderivation
$\Psi \vdash A \leq A^{\prime} \quad$ Given
$\Psi \vdash B^{\prime} \leq A^{\prime} \quad$ By Lemma 6 Transitivity of Declarative Subtyping (twice)
$\Psi^{\prime} \vdash B^{\prime} \leq A^{\prime} \quad$ By weakening
* $\Psi^{\prime} \vdash \mathrm{e} \Leftarrow A^{\prime} \quad$ By DeclSub
- Case

$$
\begin{array}{cl}
\overline{\Psi \vdash() \Leftarrow 1} \text { Decl1I } \\
\Psi^{\prime} \vdash() \Rightarrow 1 & \\
& \text { By Decl1I } \Rightarrow \\
\Psi \vdash 1 \leq A^{\prime} & \text { Given } \\
\Psi^{\prime} \vdash 1 \leq A^{\prime} & \text { By weakening } \\
\Psi^{\prime} \vdash() \Leftarrow A^{\prime} & \\
\text { By DecISub }
\end{array}
$$

- Case $\frac{\Psi, \alpha \vdash e \Leftarrow A_{0}}{\Psi \vdash e \Leftarrow \forall \alpha . A_{0}}$ Decl $\forall I$

We consider cases of $\Psi \vdash \forall \alpha$. $A_{0} \leq A^{\prime}$:

- Case

$$
\text { Case } \begin{aligned}
& \frac{\Psi, \beta \vdash \forall \alpha . A_{0} \leq \mathrm{B}}{\Psi \vdash \forall \alpha \cdot A_{0} \leq \forall \beta . \mathrm{B}} \leq \forall \mathrm{R} \\
& \Psi, \beta \vdash \forall \alpha \cdot A_{0} \leq \mathrm{B} \\
& \text { Subderivation } \\
& \Psi \vdash e \Leftarrow \forall \alpha . A_{0}
\end{aligned} \quad \text { Given } 1 \text { (i) }
$$

- Case $\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] A_{0} \leq A^{\prime}}{\Psi \vdash \forall \alpha . A_{0} \leq A^{\prime}} \leq \forall \mathrm{L}$

$$
\begin{array}{rlrl}
\Psi, \alpha \vdash e \Leftarrow A_{0} & & \text { Subderivation } \\
\Psi \vdash e \Leftarrow[\tau / \alpha] A_{0} & & \text { By Lemma } 13 \\
\Psi \vdash[\tau / \alpha] A_{0} \leq A^{\prime} & & \text { Subderivation } \\
& \text { Type Substitution) } \\
\Psi^{\prime} \vdash e \Leftarrow A^{\prime} & & \text { By i.h. (i) }
\end{array}
$$

- Case

$$
\frac{\Psi, x: A_{1} \vdash e_{0} \Leftarrow A_{2}}{\Psi \vdash \lambda x . e_{0} \Leftarrow A_{1} \rightarrow A_{2}} \text { Decl } \rightarrow \mathrm{I}
$$

We consider cases of $\Psi \vdash A_{1} \rightarrow A_{2} \leq A^{\prime}:$

```
- Case \(\frac{\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad \Psi \vdash \mathrm{~A}_{2} \leq \mathrm{B}_{2}}{\Psi \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2} \leq \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \leq \rightarrow\)
            \(\Psi \leq \Psi^{\prime} \quad\) Given
            \(\Psi \vdash \mathrm{B}_{1} \leq \mathrm{A}_{1} \quad\) Subderivation
        \(\Psi^{\prime}, x: \mathrm{B}_{1} \leq \Psi, x: \mathrm{A}_{1} \quad\) By CtxSubVar
        \(\Psi^{\prime}, x: \mathrm{B}_{1} \vdash e_{0} \Leftarrow \mathrm{~B}_{2} \quad\) By i.h. (i)
    * \(\quad \Psi^{\prime} \vdash \lambda x . e_{0} \Leftarrow \mathrm{~B}_{1} \rightarrow \mathrm{~B}_{2} \quad\) By Decl \(\rightarrow\) I
```

- Case

$$
\begin{array}{ll}
\frac{\Psi, \beta \vdash A_{1} \rightarrow A_{2} \leq B^{\prime}}{\Psi \vdash A_{1} \rightarrow A_{2} \leq \forall \beta . B^{\prime}} \leq \forall R & \\
\Psi, \beta \vdash A_{1} \rightarrow A_{2} \leq \mathrm{B}^{\prime} & \text { Subderivation } \\
\Psi, \beta \vdash \lambda x . e_{0} \Leftarrow A_{1} \rightarrow A_{2} & \\
\text { By weakening } \\
\Psi^{\prime}, \beta \vdash \lambda x \cdot \mathrm{e}_{0} \Leftarrow \mathrm{~B}^{\prime} & \text { By i.h. (i) } \\
\Psi^{\prime} \vdash \lambda x . \mathrm{e}_{0} \Leftarrow \forall \beta . \mathrm{B}^{\prime} & \text { By Decl } \forall \mathrm{l}
\end{array}
$$

For part (ii), synthesis:

- Case

$$
\frac{(x: A) \in \Psi}{\Psi \vdash x \Rightarrow A} \text { DeclVar }
$$

By inversion on $\Psi^{\prime} \leq \Psi$, we have $\left(x: A^{\prime}\right) \in \Psi^{\prime}$ where $\Psi \vdash A^{\prime} \leq A$.
By DeclVar, $\Psi^{\prime} \vdash x \Rightarrow A^{\prime}$.

- Case

$$
\frac{\Psi \vdash A \quad \Psi \vdash e_{0} \Leftarrow A}{\Psi \vdash\left(e_{0}: A\right) \Rightarrow A} \text { DeclAnno }
$$

> Let $A^{\prime}=A$.
> $\Psi \vdash A \quad$ Subderivation
> $\Psi^{\prime} \vdash A \quad$ By weakening
> $\Psi \vdash e_{0} \Leftarrow A \quad$ Subderivation
> $\Psi^{\prime} \vdash e_{0} \Leftarrow A \quad$ By i.h.
> - $\quad \Psi^{\prime} \vdash\left(e_{0}: A\right) \Rightarrow A^{\prime} \quad$ By DeclAnno and $A^{\prime}=A$
> * $\Psi \vdash A^{\prime} \leq A \quad$ By Lemma 3 Reflexivity of Declarative Subtyping)

- Case
$\overline{\Psi \vdash() \Rightarrow 1}$ Decl11 \Rightarrow
Let $A^{\prime}=1$.
- $\quad \Psi^{\prime} \vdash() \Rightarrow 1 \quad$ By Decl1 \Rightarrow
* $\quad \Psi \vdash 1 \leq 1 \quad$ By \leq Unit
- Case
$\frac{\Psi \vdash \sigma \rightarrow \tau \quad \Psi, x: \sigma \vdash e_{0} \Leftarrow \tau}{\Psi \vdash \lambda x . e_{0} \Rightarrow \sigma \rightarrow \tau}$ Decl $\rightarrow \mathrm{I} \Rightarrow$
Let $A^{\prime}=\sigma \rightarrow \tau$.
$\Psi^{\prime} \leq \Psi \quad$ Given
$\Psi \vdash \sigma \leq \sigma \quad$ By Lemma 3 (Reflexivity of Declarative Subtyping)
$\Psi^{\prime}, x: \sigma \leq \Psi, x: \sigma \quad$ By CtxSubVar
$\Psi, x: \sigma \vdash e_{0} \Leftarrow \tau \quad$ Subderivation
$\Psi \vdash \tau \leq \tau \quad$ By Lemma 3 (Reflexivity of Declarative Subtyping)
$\Psi^{\prime}, x: \sigma \vdash e_{0} \Leftarrow \tau \quad$ By i.h. (i) with τ
$\Psi \vdash A^{\prime} \leq \sigma \rightarrow \tau \quad$ By Lemma 3 (Reflexivity of Declarative Subtyping)
E
$\Psi^{\prime} \vdash \lambda x . e_{0} \Rightarrow A^{\prime} \quad$ By Decl $\rightarrow I \Rightarrow$
- Case
$\frac{\Psi \vdash e_{1} \Rightarrow C \quad \Psi \vdash C \bullet e_{2} \Rightarrow A}{\Psi \vdash e_{1} e_{2} \Rightarrow A}$ Decl $\rightarrow \mathrm{E}$
$\Psi \vdash e_{1} \Rightarrow C \quad$ Subderivation
$\Psi^{\prime} \vdash e_{1} \Rightarrow C^{\prime} \quad$ By i.h. (ii)
$\Psi \vdash \mathrm{C}^{\prime} \leq \mathrm{C}$
$\Psi \vdash C \bullet e_{2} \Rightarrow A$
Subderivation
$\Psi \vdash A^{\prime} \leq A$
By i.h. (iii)
$\Psi^{\prime} \vdash C^{\prime} \bullet e_{2} \Rightarrow A^{\prime}$
* $\Psi^{\prime} \vdash e_{1} e_{2} \Rightarrow A^{\prime} \quad$ By Decl $\rightarrow E$

For part (iii), application:

- Case
$\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] C_{0} \bullet e \Rightarrow A}{\Psi \vdash \forall \alpha . C_{0} \bullet e \Longrightarrow A}$ Decl $\forall A p p$
$\Psi \vdash \mathrm{C}^{\prime} \leq \forall \alpha . \mathrm{C}_{0} \quad$ Given
$\Psi, \alpha \vdash C^{\prime} \leq C_{0} \quad$ By Lemma 7 Invertibility)
$\Psi \vdash[\tau / \alpha] \mathrm{C}^{\prime} \leq[\tau / \alpha] \mathrm{C}_{0} \quad$ By Lemma 5 (Substitution)
$\Psi \vdash \mathrm{C}^{\prime} \leq[\tau / \alpha] \mathrm{C}_{0} \quad \alpha$ cannot appear in C^{\prime}
$\Psi \vdash[\tau / \alpha] C_{0} \bullet e \Rightarrow A \quad$ Subderivation
* $\Psi^{\prime} \vdash C^{\prime} \bullet e \Rightarrow A^{\prime} \quad$ By i.h. (iii)
* $\Psi^{\prime} \vdash A^{\prime} \leq A$
- Case
$\frac{\Psi \vdash e \Leftarrow C_{0}}{\Psi \vdash C_{0} \rightarrow A \bullet e \Rightarrow A}$ Decl \rightarrow App
$\Psi \vdash C^{\prime} \leq \mathrm{C}_{0} \rightarrow A \quad$ Given

- Case $\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \beta] B \leq C_{0} \rightarrow A}{\Psi \vdash \forall \beta . B \leq C_{0} \rightarrow A} \leq \forall \mathrm{L}$
$\Psi \vdash[\tau / \beta] B \leq C_{0} \rightarrow A \quad$ Subderivation
$\Psi^{\prime} \vdash[\tau / \beta] B \bullet e \Rightarrow A^{\prime} \quad$ By i.h. (iii)
(8)
$\Psi \vdash A^{\prime} \leq A$
$\Psi \vdash \tau \quad$ Subderivation
$\Psi^{\prime} \vdash \tau \quad$ By weakening
* $\Psi^{\prime} \vdash \forall \beta$. B • $e \nRightarrow A^{\prime} \quad$ By Decl \forall App

Theorem 3 (Substitution).
Assume $\Psi \vdash e \Rightarrow A$.
(i) If $\Psi, x: A \vdash e^{\prime} \Leftarrow C$ then $\Psi \vdash[e / x] e^{\prime} \Leftarrow C$.
(ii) If $\Psi, x: A \vdash e^{\prime} \Rightarrow C$ then $\Psi \vdash[e / x] e^{\prime} \Rightarrow C$.
(iii) If $\Psi, x: A \vdash B \bullet e^{\prime} \Rightarrow C$ then $\Psi \vdash B \bullet[e / x] e^{\prime} \Rightarrow C$.

Proof. By a straightforward mutual induction on the given derivation.
Theorem 4 (Inverse Substitution).
Assume $\Psi \vdash e \Leftarrow A$.
(i) If $\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow C$ then $\Psi, x: A \vdash e^{\prime} \Leftarrow C$.
(ii) If $\Psi \vdash[(e: A) / x] e^{\prime} \Rightarrow C$ then $\Psi, x: A \vdash e^{\prime} \Rightarrow C$.
(iii) If $\Psi \vdash B \bullet[(e: A) / x] e^{\prime} \Rightarrow C$ then $\Psi, x: A \vdash B \bullet e^{\prime} \Rightarrow C$.

Proof. By mutual induction on the given derivation.
(i) We have $\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow C$.

- Case $\frac{\Psi \vdash[(e: A) / x] e^{\prime} \Rightarrow B \quad \Psi \vdash B \leq C}{\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow C}$ DeclSub

By i.h. (ii), $\Psi, x: A \vdash e^{\prime} \Rightarrow B$. By DeclSub, $\Psi, x: A \vdash e^{\prime} \Leftarrow C$.

- Case

$$
\overline{\Psi \vdash() \Leftarrow \underbrace{1}_{\mathrm{C}}} \text { Decl1। }
$$

We have $[(e: A) / x] e^{\prime}=()$. Therefore $e^{\prime}=()$, and the result follows by Decl1I.

- Case $\frac{\Psi, \alpha \vdash[(e: A) / x] e^{\prime} \Leftarrow C^{\prime}}{\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow \forall \alpha . \mathrm{C}^{\prime}}$ Decl $\forall \mathrm{I}$

By i.h. (i), $\Psi, \alpha, x: A \vdash e^{\prime} \Leftarrow C^{\prime}$.
By exchange, $\Psi, x: A, \alpha \vdash e^{\prime} \Leftarrow C^{\prime}$.
By Decl $\forall \mathrm{I}, \Psi, x: A \vdash e^{\prime} \Leftarrow \forall \alpha$. C^{\prime}.

- Case

$$
\frac{\Psi, y: C_{1} \vdash e^{\prime \prime} \Leftarrow C_{2}}{\Psi \vdash \lambda y \cdot e^{\prime \prime} \Leftarrow C_{1} \rightarrow C_{2}} \text { Decl } \rightarrow \text { I }
$$

We have $[(e: A) / x] e^{\prime}=\lambda y . e^{\prime \prime}$.
By the definition of substitution, $e^{\prime}=\lambda y \cdot e_{0}$ and $e^{\prime \prime}=[(e: A) / x] e_{0}$.

$$
\begin{array}{cl}
\Psi, y: C_{1} \vdash e^{\prime \prime} \Leftarrow \mathrm{C}_{2} & \text { Subderivation } \\
\Psi, y: C_{1} \vdash[(e: A) / x] e_{0} \Leftarrow C_{2} & \text { By above equality } \\
\Psi, y: C_{1}, x: A \vdash e_{0} \Leftarrow \mathrm{C}_{2} & \text { By i.h. (i) } \\
\Psi, x: A, y: C_{1} \vdash e_{0} \Leftarrow \mathrm{C}_{2} & \text { By exchange } \\
\Psi, x: A \vdash \underbrace{y \cdot e_{0}}_{e^{\prime}} \Leftarrow \underbrace{C_{1} \rightarrow C_{2}}_{\mathrm{C}} & \text { By Decl } \rightarrow \mathrm{l}
\end{array}
$$

(ii) We have $\Psi \vdash[(e: A) / x] e^{\prime} \Rightarrow C$.

- Case $e^{\prime}=x$:

Note $[(e: A) / x] x=(e: A)$.
Hence $\Psi \vdash(e: A) \Rightarrow C$; by inversion, $C=A$.
By Lemma 10 (Well-Formedness), $\Psi \vdash \mathrm{C}$, which is $\Psi \vdash \mathrm{A}$.
By DeclAnno, $\Psi \vdash(e: A) \Rightarrow A$.
By DeclVar, $\Psi, x: A \vdash \underbrace{x}_{e^{\prime}} \Rightarrow A$.

- Case $e^{\prime} \neq x$:

We now proceed by cases on the derivation of $\Psi \vdash[(e: A) / x] e^{\prime} \Rightarrow C$.

- Case

$$
\frac{(y: C) \in \Psi}{\Psi \vdash y \Rightarrow C} \text { DeclVar }
$$

Since $[(e: A) / x] e^{\prime}=y$, we know that $e^{\prime}=y$.
By DeclVar, $\Psi, x: A \vdash y \Rightarrow C$.

- Case

$$
\frac{\Psi \vdash e^{\prime \prime} \Leftarrow \mathrm{C}}{\Psi \vdash \underbrace{\left(e^{\prime \prime}: C\right)}_{[(e: A) / x] e^{\prime}} \Rightarrow \mathrm{C}} \text { DeclAnno }
$$

We know $[(e: A) / x] e^{\prime}=\left(e^{\prime \prime}: C\right)$ and $e^{\prime} \neq x$.
Hence there is e_{0} such that $e^{\prime}=\left(e_{0}: C\right)$ and $[(e: A) / x] e_{0}=e^{\prime \prime}$.
$\Psi \vdash e^{\prime \prime} \Leftarrow C \quad$ Subderivation
$\Psi \vdash[(e: A) / x] e_{0} \Leftarrow C \quad$ By above equality

$$
\begin{aligned}
& \Psi, x: A \vdash e_{0} \Leftarrow C \\
& \Psi, x: A \vdash C \\
& \Psi, x: A \vdash\left(e_{0}: C\right) \Rightarrow C \\
& \Psi, x: A \vdash e^{\prime} \Rightarrow C
\end{aligned}
$$

By i.h. (i)

By Lemma 10 Well-Formedness)
By DeclAnno
By above equality

- Case

$$
\overline{\Psi \vdash() \Rightarrow 1} \text { Decl1 } \Rightarrow
$$

Since $[(e: A) / x] e^{\prime}=()$, it follows that $e^{\prime}=()$.
By $\operatorname{Decl} 11 \Rightarrow, \Psi, x: A \vdash() \Rightarrow 1$.

- Case

$$
\frac{\Psi \vdash \sigma \rightarrow \tau \quad \Psi, y: \sigma \vdash e^{\prime \prime} \Leftarrow \tau}{\Psi \vdash \lambda y \cdot e^{\prime \prime} \Rightarrow \sigma \rightarrow \tau} \text { Decl } \rightarrow \mathrm{l} \Rightarrow
$$

We have $[(e: A) / x] e^{\prime}=\lambda y . e^{\prime \prime}$.
By definition of substitution, there exists e_{0} such that $e^{\prime}=\lambda y \cdot e_{0}$ and $e^{\prime \prime}=[(e: A) / x] e_{0}$.
So $\Psi, y: \sigma \vdash[(e: A) / x] e_{0} \Leftarrow \tau$.
By i.h. (i), $\Psi, y: \sigma, x: A \vdash e_{0} \Leftarrow \tau$.
By exchange and Decl $\rightarrow \mathrm{I}, \Psi, x: A \vdash \lambda y . e_{0} \Leftarrow \sigma \rightarrow \tau$.
Hence Decl $\rightarrow I \Rightarrow, \Psi, x: A \vdash e^{\prime} \Rightarrow \sigma \rightarrow \tau$.

- Case $\frac{\Psi \vdash e_{1} \Rightarrow \mathrm{~B} \quad \Psi \vdash \mathrm{~B} \bullet \mathrm{e}_{2} \Rightarrow \mathrm{C}}{\Psi \vdash \underbrace{e_{1} e_{2}} \Rightarrow \mathrm{C}}$ Decl $\rightarrow \mathrm{E}$

$$
[(e: A) / x] e^{\prime}
$$

Note that $[(e: A) / x] e^{\prime}=e_{1} e_{2}$.
So there exist $e_{1}^{\prime}, e_{2}^{\prime}$ such that $e^{\prime}=e_{1}^{\prime} e_{2}^{\prime}$ and $[(e: A) / x] e_{k}^{\prime}=e_{k}$ for $k \in\{1,2\}$.
Applying these equalities to each subderivation gives

$$
\Psi \vdash[(e: A) / x] e_{1}^{\prime} \Rightarrow B \text { and } \Psi \vdash B \bullet[(e: A) / x] e_{2}^{\prime} \Rightarrow C
$$

By i.h. (ii) and (iii), $\Psi, x: A \vdash e_{1}^{\prime} \Rightarrow B$ and $\Psi, x: A \vdash B \bullet e_{2}^{\prime} \Rightarrow C$. By Decl $\rightarrow \mathrm{E}, \Psi, x: A \vdash e_{1}^{\prime} e_{2}^{\prime} \Rightarrow \mathrm{C}$, which is $\Psi, x: A \vdash e^{\prime} \Rightarrow \mathrm{C}$.
(iii) We have $\Psi \vdash[(e: A) / x] e^{\prime} \bullet A \Rightarrow C$.

- Case

$$
\frac{\Psi \vdash \tau \quad \Psi \vdash[\tau / \alpha] \mathrm{B} \bullet[(e: A) / x] e^{\prime} \Rightarrow C}{\Psi \vdash \forall \alpha . B \bullet[(e: A) / x] e^{\prime} \Rightarrow C} \text { Decl } \Rightarrow A p p
$$

Follows by i.h. (iii) and Decl \forall App.

- Case

$$
\frac{\Psi \vdash[(e: A) / x] e^{\prime} \Leftarrow \mathrm{B}}{\Psi \vdash \mathrm{~B} \rightarrow \mathrm{C} \bullet[(e: A) / \mathrm{x}] \mathrm{e}^{\prime} \Rightarrow \mathrm{C}} \text { Decl } \rightarrow \mathrm{App}
$$

Follows by i.h. (i) and $\mathrm{Decl} \rightarrow$ App.
Theorem 5 (Annotation Removal). We have that:

- If $\Psi \vdash((\lambda x . e): A) \Leftarrow C$ then $\Psi \vdash \lambda x . e \Leftarrow C$.
- If $\Psi \vdash((): A) \Leftarrow C$ then $\Psi \vdash() \Leftarrow C$.
- If $\Psi \vdash e_{1}\left(e_{2}: A\right) \Rightarrow C$ then $\Psi \vdash e_{1} e_{2} \Rightarrow C$.
- If $\Psi \vdash(x: A) \Rightarrow A$ then $\Psi \vdash x \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash\left(\left(e_{1} e_{2}\right): A\right) \Rightarrow A$ then $\Psi \vdash e_{1} e_{2} \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash((e: B): A) \Rightarrow A$ then $\Psi \vdash(e: B) \Rightarrow B$ and $\Psi \vdash B \leq A$.
- If $\Psi \vdash((\lambda x . e): \sigma \rightarrow \tau) \Rightarrow \sigma \rightarrow \tau$ then $\Psi \vdash \lambda x . e \Rightarrow \sigma \rightarrow \tau$.

Proof. All of these follow directly from inversion and Lemma 14 (Subsumption). The one exception is the third, which additionally requires a small induction on the application judgment.

Theorem 6 (Soundness of Eta).
If $\Psi \vdash \lambda$. $e x \Leftarrow A$ and $x \notin \mathrm{FV}(e)$, then $\Psi \vdash e \Leftarrow A$.
Proof. By induction on the derivation of $\Psi \vdash \lambda$. e $x \Leftarrow A$. There are three non-impossible cases:

- Case $\frac{\Psi, x: B \vdash e x \Leftarrow C}{\Psi \vdash \lambda x . e x \Leftarrow \mathrm{~B} \rightarrow \mathrm{C}}$ Decl $\rightarrow \mathrm{I}$

We have $\Psi, x: B \vdash e x \Leftarrow C$.
By inversion on DeclSub, we get $\Psi, x: B \vdash e x \Rightarrow C^{\prime}$ and $\Psi \vdash \mathrm{C}^{\prime} \leq \mathrm{C}$.
By inversion on Decl $\rightarrow \mathrm{E}$, we get $\Psi, x: B \vdash e \Rightarrow A^{\prime}$ and $\Psi, x: B \vdash A^{\prime} \bullet x \Rightarrow C^{\prime}$.
By thinning, we know that $\Psi \vdash e \Rightarrow A^{\prime}$.
By Lemma 12 Application Subtyping, we get B^{\prime} so $\Psi, x: B \vdash A^{\prime} \leq B^{\prime} \rightarrow C^{\prime}$ and $\Psi, x: B \vdash x \Leftarrow$ B^{\prime}.
By inversion, we know that $\Psi, x: \mathrm{B} \vdash \mathrm{x} \Rightarrow \mathrm{B}$ and $\Psi \vdash \mathrm{B} \leq \mathrm{B}^{\prime}$.
$\mathrm{By} \leq \rightarrow, \Psi, x: \mathrm{B} \vdash \mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime} \leq \mathrm{B} \rightarrow \mathrm{C}$.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), $\Psi, x: B \vdash A^{\prime} \leq B \rightarrow C$.
Hence $\Psi \vdash A^{\prime} \leq \mathrm{B} \rightarrow \mathrm{C}$.
By DeclSub, $\Psi \vdash e \Leftarrow \mathrm{~B} \rightarrow \mathrm{C}$.

- Case

$$
\frac{\Psi, \alpha \vdash \lambda x . e x \Leftarrow \mathrm{~B}}{\Psi \vdash \lambda \text { x.e } x \Leftarrow \forall \alpha . \mathrm{B}} \text { Decl } \mid \forall I
$$

By induction, $\Psi, \alpha \vdash \lambda x$. e $x \Leftarrow \mathrm{~B}$.
By Decl $\forall I, \Psi \vdash \lambda x$. e $x \Leftarrow \forall \alpha$. B.

- Case

$$
\frac{\Psi \vdash \lambda x . e x \Rightarrow B \quad \Psi \vdash B \leq A}{\Psi \vdash \lambda x . e x \Leftarrow A} \text { DeclSub }
$$

We have $\Psi \vdash \lambda$ x. e $x \Rightarrow B$ and $\Psi \vdash B \leq A$.
By inversion on Decl $\rightarrow I \Rightarrow, \Psi, x: \sigma \vdash e x \Leftarrow \tau$ and $B=\sigma \rightarrow \tau$.
By inversion on DeclSub, we get $\Psi, x: \sigma \vdash e x \Rightarrow C_{2}$ and $\Psi \vdash C_{2} \leq \tau$.
By inversion on Decl $\rightarrow \mathrm{E}$, we get $\Psi, x: \sigma \vdash e \Rightarrow \mathrm{C}$ and $\Psi, x: \sigma \vdash \mathrm{C} \bullet x \Rightarrow \mathrm{C}_{2}$.
By thinning, we know that $\Psi \vdash e \Rightarrow \mathrm{C}$.
By Lemma 12 Application Subtyping), we get C_{1} such that $\Psi, x: \sigma \vdash C \leq C_{1} \rightarrow C_{2}$ and $\Psi, x: \sigma \vdash$ $x \Leftarrow \mathrm{C}_{1}$.
By inversion on DeclSub, $\Psi, x: \sigma \vdash x \Rightarrow \sigma$ and $\Psi \vdash \sigma \leq C_{1}$.
By $\leq \rightarrow, \Psi, x: \sigma \vdash \mathrm{C}_{1} \rightarrow \mathrm{C}_{2} \leq \sigma \rightarrow \tau$.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), $\Psi, x: \sigma \vdash \mathrm{C} \leq \sigma \rightarrow \tau$.
Hence $\Psi \vdash C \leq \sigma \rightarrow \tau$.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), $\Psi \vdash C \leq A$.
By DeclSub, $\Psi \vdash e \Leftarrow$ A.

D ${ }^{\prime}$ Properties of Context Extension

D'. 1 Syntactic Properties

Lemma 15 (Declaration Preservation). If $\Gamma \longrightarrow \Delta$, and u is a variable or marker ${ }_{\hat{\alpha}}$ declared in Γ, then u is declared in Δ.

Proof. By a routine induction on $\Gamma \longrightarrow \Delta$.
Lemma 16 (Declaration Order Preservation). If $\Gamma \longrightarrow \Delta$ and u is declared to the left of v in Γ, then u is declared to the left of v in Δ.

Proof. By induction on the derivation of $\Gamma \longrightarrow \Delta$.

- Case

$$
\longrightarrow \cdot \longrightarrow \mathrm{ID}
$$

This case is impossible.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, x: A \longrightarrow \Delta, x: A} \longrightarrow \operatorname{Var}
$$

There are two cases, depending on whether or not $v=x$.

- Case $v=\mathrm{x}$:

Since u is declared to the left of v, u is declared in Γ. By Lemma 15 (Declaration Preservation, u is declared in Δ.
Hence u is declared to the left of x in $\Delta, x: A$.

- Case $v \neq x$:

Then v is declared in Γ, and u is declared to the left of v in Γ. By induction, u is declared to the left of v in Δ. Hence u is declared to the left of v in $\Delta, x: A$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \alpha \longrightarrow \Delta, \alpha} \longrightarrow \text { Uvar }
$$

This case is similar to the $\longrightarrow \operatorname{Var}$ case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \hat{\alpha} \longrightarrow \Delta, \hat{\alpha}} \longrightarrow \text { Unsolved }
$$

This case is similar to the \longrightarrow Var case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \hat{\alpha}=\tau \longrightarrow \Delta, \hat{\alpha}=\tau^{\prime}} \longrightarrow \text { Solved }
$$

This case is similar to the $\longrightarrow \operatorname{Var}$ case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \stackrel{\alpha}{ } \longrightarrow \Delta, \downarrow \hat{\alpha}} \longrightarrow \text { Marker }
$$

This case is similar to the \longrightarrow Var case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \hat{\alpha} \longrightarrow \Delta, \hat{\alpha}=\tau} \longrightarrow \text { Solve }
$$

This case is similar to the \longrightarrow Var case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \hat{\alpha}} \longrightarrow \text { Add }
$$

By induction, u is declared to the left of v in Δ.
Therefore u is declared to the left of v in $\Delta, \hat{\alpha}$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \hat{\alpha}=\tau} \longrightarrow \text { AddSolved }
$$

By induction, u is declared to the left of v in Δ.
Therefore u is declared to the left of v in $\Delta, \hat{\alpha}=\tau$.
Lemma 17 (Reverse Declaration Order Preservation). If $\Gamma \longrightarrow \Delta$ and u and v are both declared in Γ and u is declared to the left of v in Δ, then u is declared to the left of v in Γ.

Proof. It is given that u and v are declared in Γ. Either u is declared to the left of v in Γ, or v is declared to the left of u. Suppose the latter (for a contradiction). By Lemma (16 (Declaration Order Preservation), v is declared to the left of u in Δ. But we know that u is declared to the left of v in Δ : contradiction. Therefore u is declared to the left of v in Γ.

Lemma 18 (Substitution Extension Invariance). If $\Theta \vdash A$ and $\Theta \longrightarrow \Gamma$ then $[\Gamma] A=[\Gamma]([\Theta] A)$ and $[\Gamma] A=[\Theta]([\Gamma] A)$.

Proof. To show that $[\Gamma] A=[\Theta][\Gamma] A$, observe that $\Theta \vdash A$, and that by definition of $\Theta \longrightarrow \Gamma$, every solved variable in Θ is solved in Γ. Therefore $[\Theta]([\Gamma] A)=[\Gamma] A$, since unsolved $([\Gamma] A)$ contains no variables that Θ solves.

To show that $[\Gamma] A=[\Gamma][\Theta] A$, we proceed by induction on $|\Gamma \vdash A|$.

- Case

$$
\frac{\alpha \in \Theta}{\Theta \vdash \alpha}
$$

Note that $[\Gamma] \alpha=\alpha=[\Theta] \alpha$, so $[\Gamma] \alpha=[\Gamma][\Theta] \alpha$.

- Case

$$
\frac{\Theta \vdash A \quad \Theta \vdash B}{\Theta \vdash A \rightarrow B}
$$

By induction, $[\Gamma] A=[\Gamma][\Theta] A$.
By induction, $[\Gamma] \mathrm{B}=[\Gamma][\Theta] \mathrm{B}$.
Then

$$
\begin{aligned}
{[\Gamma](A \rightarrow B) } & =[\Gamma] A \rightarrow[\Gamma] B & & \text { By definition of substitution } \\
& =[\Gamma][\Theta] A \rightarrow[\Gamma][\Theta] \mathrm{B} & & \text { By induction hypothesis (twice) } \\
& =[\Gamma]([\Theta] A \rightarrow[\Theta] \mathrm{B}) & & \text { By definition of substitution } \\
& =[\Gamma][\Theta](A \rightarrow B) & & \text { By definition of substitution }
\end{aligned}
$$

- Case

$$
\frac{\Theta, \alpha \vdash A}{\Theta \vdash \forall \alpha . A}
$$

By inversion, we have $\Theta, \alpha \vdash A$.
By rule \longrightarrow Uvar, $\Theta, \alpha \longrightarrow \Gamma, \alpha$.
By induction, $[\Gamma, \alpha] A=[\Gamma, \alpha][\Theta, \alpha] A$.
By definition, $[\Gamma] A=[\Gamma][\Theta] A$.
Then

$$
\begin{aligned}
{[\Gamma] \forall \alpha . A } & =\forall \alpha \cdot[\Gamma] A & & \text { By definition } \\
& =\forall \alpha \cdot[\Gamma][\Theta] A & & \text { By conclusion above } \\
& =[\Gamma](\forall \alpha \cdot[\Theta] A) & & \text { By definition } \\
& =[\Gamma][\Theta](\forall \alpha . A) & & \text { By definition } \\
& =[\Gamma, \alpha][\Theta, \alpha](\forall \alpha . A) & & \text { By definition }
\end{aligned}
$$

- Case

$$
\underbrace{\Theta_{0}, \hat{\alpha}, \Theta_{1}}_{\Theta} \vdash \hat{\alpha}
$$

Note that $[\Theta] \hat{\alpha}=\hat{\alpha}$.
Hence $[\Gamma][\Theta] \hat{\alpha}=[\Gamma] \hat{\alpha}$.

- Case

$$
\overline{\Theta_{0}, \hat{\alpha}=\tau, \Theta_{1} \vdash \hat{\alpha}}
$$

From $\Theta \longrightarrow \Gamma$, By a nested induction we get $\Gamma=\Gamma_{0}, \hat{\alpha}=\tau^{\prime}, \Gamma_{1}$, and $[\Gamma] \tau^{\prime}=[\Gamma] \tau$.
Note that $|\Theta \vdash \tau|<|\Theta \vdash \hat{\alpha}|$.
By induction, $[\Gamma] \tau=[\Gamma][\Theta] \tau$.
Hence

$$
\begin{aligned}
{[\Gamma] \hat{\alpha} } & =[\Gamma] \tau^{\prime} & & \text { By definition } \\
& =[\Gamma] \tau & & \text { From the extension judgment } \\
& =[\Gamma][\Theta] \tau \tau & & \text { From the induction hypothesis } \\
& =[\Gamma][\Theta] \hat{\alpha} & & \text { By definition }
\end{aligned}
$$

Lemma 19 (Extension Equality Preservation).
If $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma] A=[\Gamma] B$ and $\Gamma \longrightarrow \Delta$, then $[\Delta] A=[\Delta] B$.
Proof. By induction on the derivation of $\Gamma \longrightarrow \Delta$.

- Case

We have $[\Gamma] A=[\Gamma] B$, but $\Gamma=\Delta$, so $[\Delta] A=[\Delta] B$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, x: C \longrightarrow \Delta^{\prime}, x: C} \longrightarrow \mathrm{Var}
$$

We have $\left[\Gamma^{\prime}, x: C\right] A=\left[\Gamma^{\prime}, x: C\right] B$.
By definition of substitution, $\left[\Gamma^{\prime}\right] A=\left[\Gamma^{\prime}\right] B$.
By i.h., $\left[\Delta^{\prime}\right] A=\left[\Delta^{\prime}\right] B$.
By definition of substitution, $\left[\Delta^{\prime}, x: C\right] A=\left[\Delta^{\prime}, x: C\right] B$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \alpha \longrightarrow \Delta^{\prime}, \alpha} \longrightarrow \text { Uvar }
$$

We have $\left[\Gamma^{\prime}, \alpha\right] A=\left[\Gamma^{\prime}, \alpha\right] B$.
By definition of substitution, $\left[\Gamma^{\prime}\right] A=\left[\Gamma^{\prime}\right] B$.
By i.h., $\left[\Delta^{\prime}\right] A=\left[\Delta^{\prime}\right] B$.
By definition of substitution, $\left[\Delta^{\prime}, \alpha\right] A=\left[\Delta^{\prime}, \alpha\right] B$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Unsolved }
$$

Similar to the \longrightarrow Uvar case.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \nabla_{\hat{\alpha}} \longrightarrow \Delta^{\prime}, \nabla_{\hat{\alpha}}} \longrightarrow \text { Marker }
$$

Similar to the \longrightarrow Uvar case.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Add }
$$

We have $[\Gamma] A=[\Gamma] B$.
By i.h., $\left[\Delta^{\prime}\right] A=\left[\Delta^{\prime}\right]$ B.
By definition of substitution, $\left[\Delta^{\prime}, \widehat{\alpha}\right] A=\left[\Delta^{\prime}, \widehat{\alpha}\right] B$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { AddSolved }
$$

We have $[\Gamma] A=[\Gamma] B$.
By i.h., $\left[\Delta^{\prime}\right] A=\left[\Delta^{\prime}\right]$ B.
We implicitly assume that Δ is well-formed, so $\hat{\alpha} \notin \operatorname{dom}\left(\Delta^{\prime}\right)$.
Since $\Gamma \longrightarrow \Delta^{\prime}$ and $\hat{\alpha} \notin \operatorname{dom}\left(\Delta^{\prime}\right)$, it follows that $\hat{\alpha} \notin \operatorname{dom}(\Gamma)$.
We have $\Gamma \vdash A$ and $\Gamma \vdash B$, so $\hat{\alpha} \notin(F V(A) \cup F V(B))$.
Therefore, by definition of substitution, $\left[\Delta^{\prime}, \hat{\alpha}=\tau\right] A=\left[\Delta^{\prime}, \hat{\alpha}=\tau\right] B$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime} \quad\left[\Delta^{\prime}\right] \tau=\left[\Delta^{\prime}\right] \tau^{\prime}}{\Gamma^{\prime}, \hat{\alpha}=\tau \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau^{\prime}} \longrightarrow \text { Solved }
$$

We have $\left[\Gamma^{\prime}, \hat{\alpha}=\tau\right] A=\left[\Gamma^{\prime}, \hat{\alpha}=\tau\right] \mathrm{B}$.

By definition, $\left[\Gamma^{\prime}, \hat{\alpha}=\tau\right] A=\left[\Gamma^{\prime}, \hat{\alpha}=\tau\right] \tau$, but we implicitly assume that Γ is well-formed, so $\hat{\alpha} \notin \mathrm{FV}(\tau)$, so actually $\left[\Gamma^{\prime}, \hat{\alpha}=\tau\right] A=\left[\Gamma^{\prime}\right] \tau$.
Combined with similar reasoning for B, we get

$$
\left[\Gamma^{\prime}\right][\tau / \hat{\alpha}] A=\left[\Gamma^{\prime}\right][\tau / \hat{\alpha}] B
$$

By i.h., $\left[\Delta^{\prime}\right][\tau / \hat{\alpha}] A=\left[\Delta^{\prime}\right][\tau / \hat{\alpha}]$ B.
By distributivity of substitution, $\left[\left[\Delta^{\prime}\right] \tau / \hat{\alpha}\right]\left[\Delta^{\prime}\right] A=\left[\left[\Delta^{\prime}\right] \tau / \hat{\alpha}\right]\left[\Delta^{\prime}\right] \mathrm{B}$.
Using the premise $\left[\Delta^{\prime}\right] \tau=\left[\Delta^{\prime}\right] \tau^{\prime}$, we get $\left[\left[\Delta^{\prime}\right] \tau^{\prime} / \hat{\alpha}\right]\left[\Delta^{\prime}\right] A=\left[\left[\Delta^{\prime}\right] \tau^{\prime} / \hat{\alpha}\right]\left[\Delta^{\prime}\right] B$.
By distributivity of substitution (in the other direction), $\left[\Delta^{\prime}\right]\left[\tau^{\prime} / \hat{\alpha}\right] A=\left[\Delta^{\prime}\right]\left[\tau^{\prime} / \hat{\alpha}\right] B$.
It follows from the definition of substitution that $\left[\Delta^{\prime}, \hat{\alpha}=\tau^{\prime}\right] A=\left[\Delta^{\prime}, \hat{\alpha}=\tau^{\prime}\right] B$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { Solve }
$$

We have $\left[\Gamma^{\prime}, \hat{\alpha}\right] A=\left[\Gamma^{\prime}, \hat{\alpha}\right] B$.
By definition of substitution, $\left[\Gamma^{\prime}\right] A=\left[\Gamma^{\prime}\right] B$.
By i.h., $\left[\Delta^{\prime}\right][\tau / \hat{\alpha}] A=\left[\Delta^{\prime}\right][\tau / \hat{\alpha}] B$.
It follows from the definition of substitution that $\left[\Delta^{\prime}, \hat{\alpha}=\tau\right] A=\left[\Delta^{\prime}, \hat{\alpha}=\tau\right] B$.
Lemma 20 (Reflexivity). If Γ is well-formed, then $\Gamma \longrightarrow \Gamma$.
Proof. By induction on the structure of Γ.

- Case $\Gamma=: \quad$ Apply rule $\longrightarrow I D$.
- Case $\Gamma=\left(\Gamma^{\prime}, \alpha\right): \quad$ By i.h., $\Gamma^{\prime} \longrightarrow \Gamma^{\prime}$. By rule \longrightarrow Uvar, we get $\Gamma^{\prime}, \alpha \longrightarrow \Gamma^{\prime}, \alpha$.
- Case $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}\right): \quad$ By i.h., $\Gamma^{\prime} \longrightarrow \Gamma^{\prime}$. By rule \longrightarrow Unsolved, we get $\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Gamma^{\prime}, \hat{\alpha}$.
- Case $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}=\tau\right)$:

By i.h., $\Gamma^{\prime} \longrightarrow \Gamma^{\prime}$.
Clearly, $\left[\Gamma^{\prime}\right] \tau=\left[\Gamma^{\prime}\right] \tau$, so we can apply \longrightarrow Solved to get $\Gamma^{\prime}, \hat{\alpha}=\tau \longrightarrow \Gamma^{\prime}, \hat{\alpha}=\tau$.

- Case $\Gamma=\left(\Gamma^{\prime},{ }_{\hat{\alpha}}\right): \quad$ By i.h., $\Gamma^{\prime} \longrightarrow \Gamma^{\prime}$. By rule \longrightarrow Marker, we get $\Gamma^{\prime},{ }_{\hat{\alpha}} \longrightarrow \Gamma^{\prime},{ }_{\alpha}$.

Lemma 21 (Transitivity). If $\Gamma \longrightarrow \Delta$ and $\Delta \longrightarrow \Theta$, then $\Gamma \longrightarrow \Theta$.
Proof. By induction on the derivation of $\Delta \longrightarrow \Theta$.

- Case $\longrightarrow I D:$

In this case $\Theta=\Delta$.
Hence $\Gamma \longrightarrow \Delta$ suffices.

- Case

$$
\frac{\Delta^{\prime} \longrightarrow \Theta^{\prime}}{\Delta^{\prime}, \alpha \longrightarrow \Theta^{\prime}, \alpha} \longrightarrow \text { Uvar }
$$

We have $\Delta=\left(\Delta^{\prime}, \alpha\right)$ and $\Theta=\left(\Theta^{\prime}, \alpha\right)$.
By inversion on $\Gamma \longrightarrow \Delta$, we have $\Gamma=\left(\Gamma^{\prime}, \alpha\right)$ and $\Gamma^{\prime} \longrightarrow \Delta^{\prime}$.
By i.h., $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
Applying rule $\longrightarrow U$ var gives $\Gamma^{\prime}, \alpha \longrightarrow \Theta^{\prime}, \alpha$.

- Case

$$
\frac{\Delta^{\prime} \longrightarrow \Theta^{\prime}}{\Delta^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}} \longrightarrow \text { Uvar }
$$

We have $\Delta=\left(\Delta^{\prime}, \hat{\alpha}\right)$ and $\Theta=\left(\Theta^{\prime}, \hat{\alpha}\right)$.
Either of two rules could have derived $\Gamma \longrightarrow \Delta$:

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Unsolved }
$$

Here we have $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}\right)$ and $\Gamma^{\prime} \longrightarrow \Delta^{\prime}$.
By i.h., $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
Applying rule \longrightarrow Unsolved gives $\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Add }
$$

By i.h., $\Gamma \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow Add, we get $\Gamma \longrightarrow \Theta^{\prime}, \hat{\alpha}$.

- Case

$$
\frac{\Delta^{\prime} \longrightarrow \Theta^{\prime} \quad\left[\Theta^{\prime}\right] \tau_{1}=\left[\Theta^{\prime}\right] \tau_{2}}{\Delta^{\prime}, \hat{\alpha}=\tau_{1} \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau_{2}} \longrightarrow \text { Solved }
$$

In this case $\Delta=\left(\Delta^{\prime}, \hat{\alpha}=\tau_{1}\right)$ and $\Theta=\left(\Theta^{\prime}, \hat{\alpha}=\tau_{2}\right)$.
One of three rules must have derived $\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau$:

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime} \quad\left[\Delta^{\prime}\right] \tau_{0}=\left[\Delta^{\prime}\right] \tau_{1}}{\Gamma^{\prime}, \hat{\alpha}=\tau_{0} \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau_{1}} \longrightarrow \text { Solved }
$$

Here, $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}=\tau_{0}\right)$ and $\Delta=\left(\Delta^{\prime}, \hat{\alpha}=\tau_{1}\right)$.
By i.h., we have $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
The premises of the respective \longrightarrow derivations give us $\left[\Delta^{\prime}\right] \tau_{0}=\left[\Delta^{\prime}\right] \tau_{1}$ and $\left[\Theta^{\prime}\right] \tau_{1}=\left[\Theta^{\prime}\right] \tau_{2}$.
We know that $\Gamma^{\prime} \vdash \tau_{0}$ and $\Delta^{\prime} \vdash \tau_{1}$ and $\Theta^{\prime} \vdash \tau_{2}$.
By extension weakening (Lemma 25 (Extension Weakening), $\Theta^{\prime} \vdash \tau_{0}$.
By extension weakening (Lemma 25 (Extension Weakening), $\Theta^{\prime} \vdash \tau_{1}$.
Since $\left[\Delta^{\prime}\right] \tau_{0}=\left[\Delta^{\prime}\right] \tau_{1}$, we know that $\left[\Theta^{\prime}\right]\left[\Delta^{\prime}\right] \tau_{0}=\left[\Theta^{\prime}\right]\left[\Delta^{\prime}\right] \tau_{1}$.
By Lemma 18 Substitution Extension Invariance, $\left[\Theta^{\prime}\right]\left[\Delta^{\prime}\right] \tau_{0}=\left[\Theta^{\prime}\right] \tau_{0}$.
By Lemma 18 Substitution Extension Invariance, $\left[\Theta^{\prime}\right]\left[\Delta^{\prime}\right] \tau_{1}=\left[\Theta^{\prime}\right] \tau_{1}$.
So $\left[\Theta^{\prime}\right] \tau_{0}=\left[\Theta^{\prime}\right] \tau_{1}$.
Hence by transitivity of equality, $\left[\Theta^{\prime}\right] \tau_{0}=\left[\Theta^{\prime}\right] \tau_{1}=\left[\Theta^{\prime}\right] \tau_{2}$.
By rule \longrightarrow Solved, $\Gamma^{\prime}, \hat{\alpha}=\tau \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau_{2}$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau_{1}} \longrightarrow \text { AddSolved }
$$

By induction, we have $\Gamma \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow AddSolved, we get $\Gamma \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau_{2}$.

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau_{1}} \longrightarrow \text { Solve }
$$

We have $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}\right)$.
By induction, $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow Solve, we get $\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau_{2}$.

- Case

$$
\frac{\Delta^{\prime} \longrightarrow \Theta^{\prime}}{\Delta^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}} \longrightarrow \text { Marker }
$$

In this case we know $\Delta=\left(\Delta^{\prime}, \hat{\alpha}\right)$ and $\Theta=\left(\Theta^{\prime}, \hat{\alpha}\right)$.
Since $\Delta=\left(\Delta^{\prime}, \hat{\alpha}\right)$, only \longrightarrow Marker could derive $\Gamma \longrightarrow \Delta$, so by inversion, $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}\right)$ and $\Gamma^{\prime} \longrightarrow \Delta^{\prime}$.
By induction, we have $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
Applying rule \longrightarrow Marker gives $\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \stackrel{\alpha}{\alpha}$.

- Case

$$
\frac{\Delta \longrightarrow \Theta^{\prime}}{\Delta \longrightarrow \Theta^{\prime}, \hat{\alpha}} \longrightarrow \text { Add }
$$

In this case, we have $\Theta=\left(\Theta^{\prime}, \hat{\alpha}\right)$.
By induction, we get $\Gamma \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow Add, we get $\Gamma \longrightarrow \Theta^{\prime}, \hat{\alpha}$.

- Case

$$
\frac{\Delta \longrightarrow \Theta^{\prime}}{\Delta \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { AddSolved }
$$

In this case, we have $\Theta=\left(\Theta^{\prime}, \hat{\alpha}=\tau\right)$.
By induction, we get $\Gamma \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow AddSolved, we get $\Gamma \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau$.

- Case

$$
\frac{\Delta^{\prime} \longrightarrow \Theta^{\prime}}{\Delta^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { Solve }
$$

In this case, we have $\Delta=\left(\Delta^{\prime}, \hat{\alpha}\right)$ and $\Theta=\left(\Theta^{\prime}, \hat{\alpha}=\tau\right)$.
One of two rules could have derived $\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}$:

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Unsolved }
$$

In this case, we have $\Gamma=\left(\Gamma^{\prime}, \hat{\alpha}\right)$ and $\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ and $\Delta^{\prime} \longrightarrow \Theta^{\prime}$.
By induction, we have $\Gamma^{\prime} \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow Solve, we get $\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma \longrightarrow \Delta^{\prime}, \hat{\alpha}} \longrightarrow \text { Add }
$$

In this case, we have $\Gamma \longrightarrow \Delta^{\prime}$ and $\Delta^{\prime} \longrightarrow \Theta^{\prime}$.
By induction, we have $\Gamma \longrightarrow \Theta^{\prime}$.
By rule \longrightarrow Solve, we get $\Gamma \longrightarrow \Theta^{\prime}, \hat{\alpha}=\tau$.
Lemma 22 (Right Softness). If $\Gamma \longrightarrow \Delta$ and Θ is soft (and (Δ, Θ) is well-formed) then $\Gamma \longrightarrow \Delta, \Theta$.
Proof. By induction on Θ, applying rules \longrightarrow Add and \longrightarrow AddSolved as needed.
Lemma 23 (Evar Input).
If $\Gamma, \hat{\alpha} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{0}, \Delta_{\hat{\alpha}}, \Theta\right)$ where $\Gamma \longrightarrow \Delta_{0}$, and $\Delta_{\hat{\alpha}}$ is either $\hat{\alpha}$ or $\hat{\alpha}=\tau$, and Θ is soft.
Proof. By induction on the given derivation.

- Cases $\longrightarrow I D, \longrightarrow$ Var, \longrightarrow Uvar, \longrightarrow Solved, \longrightarrow Marker: Impossible: the left-hand context cannot have the form $\Gamma, \widehat{\alpha}$.
- Case

$$
\frac{\Gamma \longrightarrow \Delta_{0}}{\Gamma, \hat{\alpha} \longrightarrow \underbrace{\Delta_{0}, \hat{\alpha}}_{\Delta}} \longrightarrow \text { Unsolved }
$$

Let $\Theta=\cdot$, which is vacuously soft. Therefore $\Delta=\left(\Delta_{0}, \hat{\alpha}\right)=\left(\Delta_{0}, \hat{\alpha}, \Theta\right)$; the subderivation is the rest of the result.

- Case

$$
\frac{\Gamma \longrightarrow \Delta_{0}}{\Gamma, \hat{\alpha} \longrightarrow \underbrace{\Delta_{0}, \hat{\alpha}=\tau}_{\Delta}} \longrightarrow \text { Solve }
$$

Let $\Theta=\cdot$, which is vacuously soft. Therefore $\Delta=\left(\Delta_{0}, \hat{\alpha}\right)=\left(\Delta_{0}, \hat{\alpha}=\tau, \Theta\right)$; the subderivation is the rest of the result.

- Case

$$
\frac{\Gamma, \hat{\alpha} \longrightarrow \Delta_{0}}{\Gamma, \hat{\alpha} \longrightarrow \underbrace{\Delta_{0}, \hat{\beta}}_{\Delta}} \longrightarrow \text { Add }
$$

Suppose $\widehat{\beta}=\hat{\alpha}$.
We have $\Gamma, \hat{\alpha} \longrightarrow \Delta_{0}$. By Lemma 15 Declaration Preservation), $\hat{\alpha}$ is declared in Δ_{0}.
But then $\left(\Delta_{0}, \widehat{\beta}\right)=\left(\Delta_{0}, \hat{\alpha}\right)$ with multiple $\hat{\alpha}$ declarations,
which violates the implicit assumption that Δ is well-formed. Contradiction.
Therefore $\widehat{\beta} \neq \hat{\alpha}$.
By i.h., $\Delta^{\prime}=\left(\Delta_{0}, \Delta_{\hat{\alpha}}, \Theta^{\prime}\right)$ where $\Gamma \longrightarrow \Delta_{0}$ and Θ^{\prime} is soft.
Let $\Theta=\left(\Theta^{\prime}, \widehat{\beta}\right)$. Therefore $\left(\Delta^{\prime}, \hat{\beta}\right)=\left(\Delta_{0}, \Delta_{\hat{\alpha}}, \Theta^{\prime}, \hat{\beta}\right)$. As Θ^{\prime} is soft, $\left(\Theta^{\prime}, \hat{\beta}\right)$ is soft. Since $\Delta=\left(\Delta^{\prime}, \hat{\beta}\right)$, this gives $\Delta=\left(\Delta_{0}, \Delta_{\hat{\alpha}}, \Theta\right)$.

- Case \longrightarrow AddSolved: \quad Similar to the case for \longrightarrow Add.

Lemma 24 (Extension Order).
(i) If $\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.

Moreover, if Γ_{R} is soft then Δ_{R} is soft.
(ii) If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{\mathrm{L}}, \hat{\alpha}, \Delta_{\mathrm{R}}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.

Moreover, if Γ_{R} is soft then Δ_{R} is soft.
(iii) If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\Delta_{\mathrm{L}}, \Theta, \Delta_{\mathrm{R}}$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and Θ is either $\hat{\alpha}$ or $\hat{\alpha}=\tau$ for some τ.
(iv) If $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta$ then $\Delta=\Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$.
(v) If $\Gamma_{L}, x: A, \Gamma_{R} \longrightarrow \Delta$ then $\Delta=\left(\Delta_{L}, x: A^{\prime}, \Delta_{R}\right)$ where $\Gamma_{L} \longrightarrow \Delta_{L}$ and $\left[\Delta_{L}\right] A=\left[\Delta_{L}\right] A^{\prime}$. Moreover, Γ_{R} is soft if and only if Δ_{R} is soft.

Proof. (i) By induction on the derivation of $\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta$.

- Case

$$
\longrightarrow \cdot \longrightarrow \mathrm{ID}
$$

This case is impossible since $\left(\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}\right)$ cannot have the form \cdot.

- Cases \longrightarrow Uvar:

We have two cases, depending on whether or not the rightmost variable is α.

- Case

$$
\frac{\Gamma \longrightarrow \Delta^{\prime}}{\Gamma, \alpha \longrightarrow \Delta^{\prime}, \alpha} \longrightarrow U \mathrm{var}
$$

Let $\Delta_{\mathrm{L}}=\Delta^{\prime}$, and let $\Delta_{\mathrm{R}}=\cdot$ (which is soft).
We have $\Gamma \longrightarrow \Delta^{\prime}$, which is $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \underbrace{\Gamma_{\mathrm{R}}^{\prime}, \beta}_{\Gamma_{\mathrm{R}}} \longrightarrow \underbrace{\Delta^{\prime}, \beta}_{\Delta}} \longrightarrow \text { Uvar }
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}, \beta\right)$.
(Since $\beta \in \Gamma_{R}$, it cannot be the case that Γ_{R} is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \underbrace{\Gamma_{\mathrm{R}}^{\prime}, x: A}_{\Gamma_{\mathrm{R}}} \longrightarrow \underbrace{\Delta^{\prime}, x: A}_{\Delta}} \longrightarrow \operatorname{Var}
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{L}, \alpha, \Delta_{R}^{\prime}, x: A\right)$.
(Since $x: A \in \Gamma_{R}$, it cannot be the case that Γ_{R} is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \underbrace{\Gamma_{\mathrm{R}}^{\prime}, \hat{\alpha}}_{\Gamma_{\mathrm{R}}} \longrightarrow \underbrace{\Delta^{\prime}, \hat{\alpha}}_{\Delta}} \longrightarrow \text { Unsolved }
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}, \hat{\alpha}\right)$.
(If Γ_{R} is soft, by i.h. Δ_{R}^{\prime} is soft, so $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}\right)$ is soft.)

- Case

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime},{ }_{\hat{\beta}}\right)$.
(Since $\hat{\beta} \in \Gamma_{R}$, it cannot be the case that Γ_{R} is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Delta^{\prime} \quad\left[\Delta^{\prime}\right] \tau=\left[\Delta^{\prime}\right] \tau^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \underbrace{\Gamma_{\mathrm{R}}^{\prime}, \hat{\alpha}=\tau}_{\Gamma_{\mathrm{R}}} \longrightarrow \underbrace{\Delta^{\prime}, \hat{\alpha}=\tau^{\prime}}_{\Delta^{\prime}}} \longrightarrow \text { Solved }
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}, \hat{\alpha}=\tau^{\prime}\right)$.
(If Γ_{R} is soft, by i.h. Δ_{R}^{\prime} is soft, so $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}=\tau\right)$ is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \underbrace{\Gamma_{\mathrm{R}}^{\prime}, \hat{\alpha}}_{\Gamma_{\mathrm{R}}} \longrightarrow \underbrace{\Delta^{\prime}, \hat{\alpha}=\tau^{\prime}}_{\Delta}} \longrightarrow \text { Solve }
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Therefore $\Delta=\left(\Delta_{L}, \alpha, \Delta_{R}, \hat{\alpha}=\tau\right)$.
(If Γ_{R} is soft, by i.h. Δ_{R}^{\prime} is soft, so $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}=\tau\right)$ is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \underbrace{\Delta^{\prime}, \hat{\alpha}}_{\Delta}} \longrightarrow \mathrm{Add}
$$

By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Therefore $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}, \hat{\alpha}\right)$.
(If Γ_{R} is soft, by i.h. Δ_{R}^{\prime} is soft, so $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}\right)$ is soft.)

- Case

$$
\frac{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta^{\prime}}{\Gamma_{\mathrm{L}}, \alpha, \Gamma_{\mathrm{R}} \longrightarrow \Delta^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { AddSolved }
$$

In this case, we know that $\Delta=\left(\Delta^{\prime}, \hat{\alpha}=\tau\right)$.
By i.h., $\Delta^{\prime}=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}\right)$ where $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$.
Hence $\Delta=\left(\Delta_{\mathrm{L}}, \alpha, \Delta_{\mathrm{R}}^{\prime}, \hat{\alpha}=\tau\right)$.
(If Γ_{R} is soft, by i.h. Δ_{R}^{\prime} is soft, so $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}=\tau\right)$ is soft.)
(ii) Similar to the proof of (i), except that the \longrightarrow Marker and \longrightarrow Uvar cases are swapped.
(iii) Similar to (i), with $\Theta=\hat{\alpha}$ in the \longrightarrow Unsolved case and $\Theta=(\hat{\alpha}=\tau)$ in the \longrightarrow Solve case.
(iv) Similar to (iii).
(v) Similar to (i), but using the equality premise of \longrightarrow Var.

Lemma 25 (Extension Weakening). If $\Gamma \vdash A$ and $\Gamma \longrightarrow \Delta$ then $\Delta \vdash A$.
Proof. By a straightforward induction on $\Gamma \vdash A$.
In the UvarWF case, we use Lemma 24 (Extension Order) (i). In the EvarWF case, use Lemma 24 (Extension Order) (iii). In the SolvedEvarWF case, use Lemma 24 (Extension Order) (iv).

In the other cases, apply the i.h. to all subderivations, then apply the rule.
Lemma 26 (Solution Admissibility for Extension). If $\Gamma_{L} \vdash \tau$ then $\Gamma_{L}, \hat{\alpha}, \Gamma_{R} \longrightarrow \Gamma_{L}, \hat{\alpha}=\tau, \Gamma_{R}$.
Proof. By induction on Γ_{R}.

- Case $\Gamma_{\mathrm{R}}=:$:

By Lemma 20 Reflexivity) (reflexivity), $\Gamma_{\mathrm{L}} \longrightarrow \Gamma_{\mathrm{L}}$.
Applying rule \longrightarrow Solve gives $\Gamma_{\mathrm{L}}, \hat{\alpha} \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}=\tau$.

- Case $\Gamma_{\mathrm{R}}=\left(\Gamma_{\mathrm{R}}^{\prime}, x: A\right)$:

By i.h., $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}^{\prime} \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}}^{\prime}$.
Applying rule $\longrightarrow V$ ar gives $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}^{\prime}, x: A \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}}^{\prime}, x: A$.

- Case $\Gamma_{R}=\left(\Gamma_{R}^{\prime}, \alpha\right)$: By i.h. and rule $\longrightarrow U v a r$.
- Case $\Gamma_{R}=\left(\Gamma_{R}^{\prime}, \widehat{\beta}\right):$ By i.h. and rule \longrightarrow Add.
- Case $\Gamma_{R}=\left(\Gamma_{R}^{\prime}, \hat{\beta}=\tau^{\prime}\right):$ By i.h. and rule \longrightarrow AddSolved.
- Case $\Gamma_{R}=\left(\Gamma_{R}^{\prime},{ }_{\beta}\right):$ By i.h. and rule \longrightarrow Marker.

Lemma 27 (Solved Variable Addition for Extension). If $\Gamma_{\mathrm{L}} \vdash \tau$ then $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}}$.
Proof. By induction on Γ_{R}. The proof is exactly the same as the proof of Lemma 26 Solution Admissibility for Extension), except that in the $\Gamma_{\mathrm{R}}=\cdot$, we apply rule \longrightarrow AddSolved instead of \longrightarrow Solve.

Lemma 28 (Unsolved Variable Addition for Extension). We have that $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}$.
Proof. By induction on Γ_{R}. The proof is exactly the same as the proof of Lemma 26 Solution Admissibility for Extension), except that in the $\Gamma_{R}=\cdot$ case, we apply rule \longrightarrow Add instead of \longrightarrow Solve.

Lemma 29 (Parallel Admissibility). If $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \Delta_{\mathrm{R}}$ then:
(i) $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}, \Delta_{\mathrm{R}}$
(ii) If $\Delta_{\mathrm{L}} \vdash \tau^{\prime}$ then $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.
(iii) If $\Gamma_{\mathrm{L}} \vdash \tau$ and $\Delta_{\mathrm{L}} \vdash \tau^{\prime}$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$, then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.

Proof. By induction on Δ_{R}. As always, we assume that all contexts mentioned in the statement of the lemma are well-formed. Hence, $\hat{\alpha} \notin \operatorname{dom}\left(\Gamma_{L}\right) \cup \operatorname{dom}\left(\Gamma_{R}\right) \cup \operatorname{dom}\left(\Delta_{L}\right) \cup \operatorname{dom}\left(\Delta_{R}\right)$.
(i) We proceed by cases of Δ_{R}. Observe that in all the extension rules, the right-hand context gets smaller, so as we enter subderivations of $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \Delta_{R}$, the context Δ_{R} becomes smaller.
The only tricky part of the proof is that to apply the i.h., we need $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$. So we need to make sure that as we drop items from the right of Γ_{R} and Δ_{R}, we don't go too far and start decomposing Γ_{L} or Δ_{L} ! It's easy to avoid decomposing Δ_{L} : when $\Delta_{\mathrm{R}}=\cdot$, we don't need to apply the i.h. anyway. To avoid decomposing Γ_{L}, we need to reason by contradiction, using Lemma 15 Declaration Preservation).

- Case $\Delta_{R}=:$:

We have $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$. Applying \longrightarrow Unsolved to that derivation gives the result.

- Case $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\beta}\right)$: We have $\hat{\beta} \neq \hat{\alpha}$ by the well-formedness assumption.

The concluding rule of $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \Delta_{\mathrm{R}}^{\prime}, \widehat{\beta}$ must have been \longrightarrow Unsolved or \longrightarrow Add. In both cases, the result follows by i.h. and applying \longrightarrow Unsolved or \longrightarrow Add.
Note: In \longrightarrow Add, the left-hand context doesn't change, so we clearly maintain $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$. In \longrightarrow Unsolved, we can correctly apply the i.h. because $\Gamma_{\mathrm{R}} \neq$. Suppose, for a contradiction, that $\Gamma_{\mathrm{R}}=$. Then $\Gamma_{\mathrm{L}}=\left(\Gamma_{\mathrm{L}}^{\prime}, \hat{\beta}\right)$. It was given that $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$, that is, $\Gamma_{\mathrm{L}}^{\prime}, \widehat{\beta} \longrightarrow \Delta_{\mathrm{L}}$. By Lemma 15 (Declaration Preservation), Δ_{L} has a declaration of $\widehat{\beta}$. But then $\Delta=\left(\Delta_{\mathrm{L}}, \Delta_{\mathrm{R}}^{\prime}, \widehat{\beta}\right)$ is not well-formed: contradiction. Therefore $\Gamma_{\mathrm{R}} \neq \cdot$

- Case $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\beta}=\tau\right)$: We have $\hat{\beta} \neq \hat{\alpha}$ by the well-formedness assumption.

The concluding rule must have been \longrightarrow Solved, \longrightarrow Solve or \longrightarrow AddSolved. In each case, apply the i.h. and then the corresponding rule. (In \longrightarrow Solved and \longrightarrow Solve, use Lemma 15 (Declaration Preservation) to show $\Gamma_{\mathrm{R}} \neq \cdot$.)

- Case $\Delta_{R}=\left(\Delta_{R}^{\prime}, \alpha\right)$: The concluding rule must have been $\longrightarrow U v a r$. The result follows by i.h. and applying \longrightarrow Uvar.
- Case $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\beta}\right): \quad$ Similar to the previous case, with rule \longrightarrow Marker.
- Case $\Delta_{R}=\left(\Delta_{R}^{\prime}, x: A\right): \quad$ Similar to the previous case, with rule $\longrightarrow V a r$.
(ii) Similar to part (i), except that when $\Delta_{R}=\cdot$, apply rule \longrightarrow Solve.
(iii) Similar to part (i), except that when $\Delta_{R}=\cdot$, apply rule \longrightarrow Solved, using the given equality to satisfy the second premise.

Lemma 30 (Parallel Extension Solution).
If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$ and $\Gamma_{\mathrm{L}} \vdash \tau$ and $\left[\Delta_{\mathrm{L}}\right] \tau=\left[\Delta_{\mathrm{L}}\right] \tau^{\prime}$ then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau^{\prime}, \Delta_{\mathrm{R}}$.

Proof. By induction on Δ_{R}.

In the case where $\Delta_{R}=\left(\Delta_{R}^{\prime}, \hat{\alpha}=\tau^{\prime}\right)$, we know that rule \longrightarrow Solve must have concluded the derivation (we can use Lemma 15 Declaration Preservation) to get a contradiction that rules out \longrightarrow AddSolved); then we have a subderivation $\Gamma_{\mathrm{L}} \longrightarrow \Delta_{\mathrm{L}}$, to which we can apply \longrightarrow Solved.

Lemma 31 (Parallel Variable Update).
If $\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau_{0}, \Delta_{\mathrm{R}}$ and $\Gamma_{\mathrm{L}} \vdash \tau_{1}$ and $\Delta_{\mathrm{L}} \vdash \tau_{2}$ and $\left[\Delta_{\mathrm{L}}\right] \tau_{0}=\left[\Delta_{\mathrm{L}}\right] \tau_{1}=\left[\Delta_{\mathrm{L}}\right] \tau_{2}$ then $\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau_{1}, \Gamma_{\mathrm{R}} \longrightarrow \Delta_{\mathrm{L}}, \hat{\alpha}=\tau_{2}, \Delta_{\mathrm{R}}$.

Proof. By induction on Δ_{R}. Similar to the proof of Lemma 30 (Parallel Extension Solution), but applying \longrightarrow Solved at the end.

D'. 2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If $\Gamma \vdash \hat{\alpha}: \leqq \tau \dashv \Delta$ or $\Gamma \vdash \tau \leqq: \hat{\alpha} \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.
Proof. By induction on the given instantiation derivation.

- Case

$$
\frac{\Gamma \vdash \tau}{\Gamma, \hat{\alpha}, \Gamma^{\prime} \vdash \hat{\alpha}: \leqq \tau \dashv \Gamma, \hat{\alpha}=\tau, \Gamma^{\prime}} \text { InstLSolve }
$$

By Lemma 26 Solution Admissibility for Extension , $\Gamma, \hat{\alpha}, \Gamma^{\prime} \longrightarrow \Gamma, \hat{\alpha}=\tau, \Gamma^{\prime}$.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\alpha}: \leq \hat{\beta} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstLReach }
$$

$\Gamma[\hat{\alpha}][\hat{\beta}]=\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\beta}, \Gamma_{2}$ for some $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$.
By the definition of well-formedness, $\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash \hat{\alpha}$.
Therefore, by Lemma 26 Solution Admissibility for Extension), $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\beta}, \Gamma_{2} \longrightarrow \Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\beta}=\hat{\alpha}, \Gamma_{2}$.

- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leqq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A_{1} \rightarrow A_{2} \dashv \Delta} \text { InstLArr }
$$

By Lemma 28 Unsolved Variable Addition for Extension), we can insert an (unsolved) $\hat{\alpha}_{2}$, giving $\Gamma[\widehat{\alpha}] \longrightarrow \Gamma\left[\hat{\alpha}_{2}, \widehat{\alpha}\right]$.
By Lemma 28 (Unsolved Variable Addition for Extension) again, $\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}\right] \longrightarrow \Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}\right]$.
By Lemma 26 (Solution Admissibility for Extension), we can solve $\hat{\alpha}$, giving $\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}\right] \longrightarrow$ $\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]$.
Then by transitivity (Lemma 21 (Transitivity)), $\Gamma[\hat{\alpha}] \longrightarrow \Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]$.
By i.h. on the first subderivation, $\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \longrightarrow \Gamma^{\prime}$.
By i.h. on the second subderivation, $\Gamma^{\prime} \longrightarrow \Delta$.
By transitivity (Lemma 21 (Transitivity)), $\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \longrightarrow \Delta$.
By transitivity (Lemma 21 (Transitivity)), $\Gamma[\hat{\alpha}] \longrightarrow \Delta$.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \beta \vdash \hat{\alpha}: \leqq \mathrm{B} \dashv \Delta, \beta, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq \forall \beta . \mathrm{B} \dashv \Delta} \text { InstLAllR }
$$

By induction, $\Gamma[\hat{\alpha}], \beta \longrightarrow \Delta, \beta, \Delta^{\prime}$.
By Lemma 24 Extension Order) (i), we have $\Gamma[\hat{\alpha}] \longrightarrow \Delta$.

- Case

$$
\frac{\Gamma \vdash \tau}{\Gamma, \hat{\alpha}, \Gamma^{\prime} \vdash \tau \leqq: \hat{\alpha} \dashv \Gamma, \hat{\alpha}=\tau, \Gamma^{\prime}} \text { InstRSolve }
$$

By Lemma 26 Solution Admissibility for Extension, we can solve $\hat{\alpha}$, giving $\Gamma, \hat{\alpha}, \Gamma^{\prime} \longrightarrow \Gamma, \hat{\alpha}=\tau, \Gamma^{\prime}$.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\beta} \leqq: \hat{\alpha} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstRReach }
$$

$\Gamma[\hat{\alpha}][\hat{\beta}]=\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\beta}, \Gamma_{2}$ for some $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$.
By the definition of well-formedness, $\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash \hat{\alpha}$.
Hence by Lemma 26 Solution Admissibility for Extension, we can solve $\widehat{\beta}$, giving $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \widehat{\beta}, \Gamma_{2} \longrightarrow$ $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \widehat{\beta}=\hat{\alpha}, \Gamma_{2}$.

- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash \hat{\alpha}_{1}: \leqq A_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash\left[\Gamma^{\prime}\right] A_{2} \leqq: \hat{\alpha}_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash A_{1} \rightarrow A_{2} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRArr }
$$

Because the contexts here are the same as in InstLArr, this is the same as the InstLArr case.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \hat{\beta}, \hat{\beta} \vdash[\hat{\beta} / \beta] \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta,{ }_{\hat{\beta}}, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \forall \beta . \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRAIIL }
$$

By i.h., $\Gamma[\hat{\alpha}],{ }_{\hat{\beta}}, \hat{\beta} \longrightarrow \Delta, \stackrel{\hat{\beta}}{ }, \Delta^{\prime}$.
By Lemma 24 (Extension Order) (ii), $\Gamma[\hat{\alpha}] \longrightarrow \Delta$.

D'. 3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If $\Gamma \vdash A<: B \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.
Proof. By induction on the given derivation.
For cases <:Var, <: Unit, <: Exvar, we have $\Delta=\Gamma$, so Lemma 20 Reflexivity) suffices.

- Case

$$
\frac{\Gamma \vdash \mathrm{B}_{1}<: \mathrm{A}_{1} \dashv \Theta \quad \Theta \vdash[\Omega] \mathrm{A}_{2}<:[\Omega] \mathrm{B}_{2} \dashv \Delta}{\Gamma \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2}<: \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2} \dashv \Delta}<: \rightarrow
$$

By IH on each subderivation, $\Gamma \longrightarrow \Theta$ and $\Theta \longrightarrow \Delta$.
By Lemma 21 (Transitivity) (transitivity), $\Gamma \longrightarrow \Delta$, which was to be shown.

- Case

$$
\frac{\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A<: \mathrm{B} \dashv \Delta, \stackrel{\alpha}{\alpha}, \Theta}{\Gamma \vdash \forall \alpha . \hat{A}<: \mathrm{B} \dashv \Delta}<: \forall \mathrm{L}
$$

By IH, $\Gamma, \hat{\alpha}, \hat{\alpha} \longrightarrow \Delta, \stackrel{\alpha}{ }, \Theta$.
By Lemma 24 Extension Order) (ii) with $\Gamma_{\mathrm{L}}=\Gamma$ and $\Gamma_{\mathrm{L}}^{\prime}=\Delta$ and $\Gamma_{\mathrm{R}}=\hat{\alpha}$ and $\Gamma_{\mathrm{R}}^{\prime}=\Theta$, we obtain

$$
\Gamma \longrightarrow \Delta
$$

- Case

$$
\frac{\Gamma, \beta \vdash A<: B \dashv \Delta, \beta, \Theta}{\Gamma \vdash A<: \forall \beta . B \dashv \Delta}<: \forall R
$$

By IH, we have $\Gamma, \beta \longrightarrow \Delta, \beta, \Theta$.
By Lemma 24 (Extension Order) (i), we obtain $\Gamma \longrightarrow \Delta$, which was to be shown.

- Cases <: InstantiateL, <: InstantiateR: In each of these rules, the premise has the same input and output contexts as the conclusion, so Lemma 32 (Instantiation Extension) suffices.

E^{\prime} Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If $\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$, then $\hat{\beta} \in$ unsolved (Δ).
Proof. By induction on the given derivation.

- Case

$$
\frac{\Gamma_{0} \vdash \tau}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \tau \dashv \Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}} \text { InstLSolve }
$$

Immediate, since to the left of $\hat{\alpha}$, the contexts Δ and Γ are the same.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\alpha}: \leq \hat{\beta} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstLReach }
$$

Immediate, since to the left of $\hat{\alpha}$, the contexts Δ and Γ are the same.

- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leqq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A_{1} \rightarrow A_{2} \dashv \Delta} \text { InstLArr }
$$

We have $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$. Therefore $\hat{\beta} \in \operatorname{unsolved}\left(\Gamma_{0}, \hat{\alpha}_{2}\right)$.
Clearly, $\hat{\alpha}_{2} \in \operatorname{unsolved}\left(\Gamma_{0}, \hat{\alpha}_{2}\right)$.
We have two subderivations:

$$
\begin{array}{r}
\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \\
\hat{\alpha}_{2}, \Gamma_{1} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Gamma^{\prime} \tag{2}\\
\Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leqq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta
\end{array}
$$

By induction on (1), $\widehat{\beta} \in$ unsolved (Γ^{\prime}).
Also by induction on (1), with $\hat{\alpha}_{2}$ playing the role of $\widehat{\beta}$, we get $\hat{\alpha}_{2} \in$ unsolved $\left(\Gamma^{\prime}\right)$.
Since $\hat{\beta} \in \Gamma_{0}$, it is declared to the left of $\hat{\alpha}_{2}$ in $\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{1}$.
Hence by Lemma 16 (Declaration Order Preservation), $\hat{\beta}$ is declared to the left of $\hat{\alpha}_{2}$ in Γ^{\prime}. That is, $\Gamma^{\prime}=\left(\Gamma_{0}^{\prime}, \hat{\alpha}_{2}, \Gamma_{1}^{\prime}\right)$, where $\widehat{\beta} \in$ unsolved $\left(\Gamma_{0}^{\prime}\right)$.
By induction on (2), $\widehat{\beta} \in$ unsolved (Δ).

- Case

$$
\frac{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \beta \vdash \hat{\alpha}: \leqq \mathrm{B} \dashv \Delta, \beta, \Delta^{\prime}}{\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash \hat{\alpha}: \leqq \forall \beta . \mathrm{B} \dashv \Delta} \text { InstLAlIR }
$$

We have $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$.
By induction, $\widehat{\beta} \in \operatorname{unsolved}\left(\Delta, \beta, \Delta^{\prime}\right)$.
Note that $\hat{\beta}$ is declared to the left of β in $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \beta$.
By Lemma 16 Declaration Order Preservation), $\hat{\beta}$ is declared to the left of β in $\left(\Delta, \beta, \Delta^{\prime}\right)$, that is, in Δ. Since $\stackrel{\overparen{\beta}}{ } \in \operatorname{unsolved}\left(\Delta, \beta, \Delta^{\prime}\right)$, we have $\stackrel{\beta}{\beta} \in$ unsolved (Δ).

- Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.
- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash \hat{\alpha}_{1}: \leqq A_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash\left[\Gamma^{\prime}\right] A_{2} \leqq: \hat{\alpha}_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash A_{1} \rightarrow A_{2} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRArr }
$$

Similar to the InstLArr case.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \wedge, \hat{\gamma} \vdash[\hat{\gamma} / \beta] \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta, \stackrel{\gamma}{ }, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \forall \beta . \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRAIIL }
$$

We have $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$.
By induction, $\widehat{\beta} \in \operatorname{unsolved}\left(\Delta, \stackrel{\gamma}{\wedge}, \Delta^{\prime}\right)$.
Note that $\widehat{\beta}$ is declared to the left of $>_{\hat{\nu}}$ in $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\gamma}, \hat{\gamma}$.
By Lemma 16 (Declaration Order Preservation), $\widehat{\beta}$ is declared to the left of $\boldsymbol{\wedge}_{\hat{\gamma}}$ in $\Delta,>\hat{\gamma}, \Delta^{\prime}$.
Hence $\hat{\beta}$ is declared in Δ, and we know it is in unsolved $\left(\Delta, \stackrel{\gamma}{ }, \Delta^{\prime}\right)$, so $\hat{\beta} \in \operatorname{unsolved}(\Delta)$.
Lemma 35 (Left Free Variable Preservation). If $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$ and $\hat{\beta} \in$ unsolved $\left(\Gamma_{0}\right)$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma] \mathrm{B})$, then $\hat{\beta} \notin \mathrm{FV}([\Delta] \mathrm{B})$.
Proof. By induction on the given instantiation derivation.

- Case

$$
\frac{\Gamma_{0} \vdash \tau}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \tau \dashv \underbrace{\Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}}_{\Delta}} \text { InstLSolve }
$$

We have $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$. Since Δ differs from Γ only in $\hat{\alpha}$, it must be the case that $[\Gamma] \mathrm{B}=[\Delta] \mathrm{B}$. It is given that $\widehat{\beta} \notin \mathrm{FV}([\Gamma] B)$, so $\widehat{\beta} \notin \mathrm{FV}([\Delta] B)$.

- Case

$$
\underbrace{\overline{\Gamma^{\prime}[\hat{\alpha}][\hat{\gamma}]}}_{\Gamma} \vdash \hat{\alpha}: \leqq \hat{\gamma} \dashv \underbrace{\Gamma^{\prime}[\hat{\alpha}][\hat{\gamma}=\hat{\alpha}]}_{\Delta} \text { InstLReach }
$$

Since Δ differs from Γ only in solving $\hat{\gamma}$ to $\hat{\alpha}$, applying Δ to a type will not introduce a $\hat{\beta}$. We have $\widehat{\beta} \notin F V([\Gamma] B)$, so $\hat{\beta} \notin F V([\Delta] B)$.

- Case

$$
\frac{\Gamma_{0} \vdash \tau}{\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash \tau \leqq: \hat{\alpha} \dashv \Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}} \text { InstRSolve }
$$

Similar to the InstLSolve case.

- Case

$$
\overline{\Gamma^{\prime}[\hat{\alpha}][\hat{\gamma}] \vdash \hat{\gamma} \leqq: \hat{\alpha} \dashv \Gamma^{\prime}[\hat{\alpha}][\hat{\gamma}=\hat{\alpha}]} \text { InstRReach }
$$

Similar to the InstLReach case.

- Case

$$
\frac{\overbrace{\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{1}}^{\Gamma^{\prime}} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Delta \quad \Delta \vdash \hat{\alpha}_{2}: \leqq[\Delta] A_{2} \dashv \Delta}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq A_{1} \rightarrow A_{2} \dashv \Delta} \text { InstLArr }
$$

We have $\Gamma \vdash B$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] B)$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma] \mathrm{B})$.
By weakening, we get $\Gamma^{\prime} \vdash \mathrm{B}$; since $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$ and Γ^{\prime} only adds a solution for $\hat{\alpha}$, it follows that $\left[\Gamma^{\prime}\right] \mathrm{B}=[\Gamma] \mathrm{B}$.
Therefore $\hat{\alpha}_{1} \notin \mathrm{FV}\left(\left[\Gamma^{\prime}\right] B\right)$ and $\hat{\alpha}_{2} \notin \mathrm{FV}\left(\left[\Gamma^{\prime}\right] B\right)$ and $\hat{\beta} \notin \mathrm{FV}\left(\left[\Gamma^{\prime}\right] B\right)$.
Since we have $\hat{\beta} \in \Gamma_{0}$, we also have $\hat{\beta} \in\left(\Gamma_{0}, \hat{\alpha}_{2}\right)$.
By induction on the first premise, $\widehat{\beta} \notin \mathrm{FV}([\Delta] \mathrm{B})$.
Also by induction on the first premise, with $\hat{\alpha}_{2}$ playing the role of $\hat{\beta}$, we have $\hat{\alpha}_{2} \notin \mathrm{FV}([\Delta] \mathrm{B})$.
Note that $\hat{\alpha}_{2} \in$ unsolved $\left(\Gamma_{0}, \hat{\alpha}_{2}\right)$.
By Lemma 34 Left Unsolvedness Preservation), $\hat{\alpha}_{2} \in$ unsolved (Δ).
Therefore Δ has the form $\left(\Delta_{0}, \hat{\alpha}_{2}, \Delta_{1}\right)$.
Since $\widehat{\beta} \neq \hat{\alpha}_{2}$, we know that $\widehat{\beta}$ is declared to the left of $\hat{\alpha}_{2}$ in $\Gamma_{0}, \hat{\alpha}_{2}$, so by Lemma 16 Declaration Order Preservation, $\widehat{\beta}$ is declared to the left of $\hat{\alpha}_{2}$ in Δ. Hence $\widehat{\beta} \in \Delta_{0}$.
Furthermore, by Lemma 32 (Instantiation Extension), we have $\Gamma^{\prime} \longrightarrow \Delta$.
Then by Lemma 25 (Extension Weakening), we have $\Delta \vdash B$. Using induction on the second premise, $\widehat{\beta} \notin \mathrm{FV}([\Delta] B)$.

- Case

$$
\frac{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \gamma \vdash \hat{\alpha}: \leqq \mathrm{C} \dashv \Delta, \gamma, \Delta^{\prime}}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \forall \gamma . \mathrm{C} \dashv \Delta} \operatorname{InstLAIIR}
$$

We have $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$ and $\hat{\beta} \in \Gamma_{0}$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma] \mathrm{B})$.
By weakening, $\Gamma, \gamma \vdash \mathrm{B}$; by the definition of substitution, $[\Gamma, \gamma] \mathrm{B}=[\Gamma] \mathrm{B}$.
Substituting equals for equals, $\hat{\alpha} \notin \mathrm{FV}([\Gamma, \gamma] \mathrm{B})$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma, \gamma] \mathrm{B})$.
By induction, $\hat{\beta} \notin \mathrm{FV}\left(\left[\Delta, \gamma, \Delta^{\prime}\right] \mathrm{B}\right)$.
Since $\hat{\beta}$ is declared to the left of γ in (Γ, γ), we can use Lemma 16 (Declaration Order Preservation) to show that $\widehat{\beta}$ is declared to the left of γ in $\left(\Delta, \gamma, \Delta^{\prime}\right)$, that is, in Δ.
We have $\Gamma \vdash \mathrm{B}$, so $\gamma \notin \mathrm{FV}(\mathrm{B})$. Thus each free variable u in B is in Γ, to the left of γ in (Γ, γ).
Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in Δ.
Therefore $\left[\Delta, \gamma, \Delta^{\prime}\right] \mathrm{B}=[\Delta] \mathrm{B}$.
Earlier, we obtained $\widehat{\beta} \notin \mathrm{FV}\left(\left[\Delta, \gamma, \Delta^{\prime}\right] B\right)$, so substituting equals for equals, $\widehat{\beta} \notin \mathrm{FV}([\Delta] B)$.

- Case

$$
\frac{\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{1} \vdash \hat{\alpha}_{1}: \leqq A_{1} \dashv \Delta \quad \Gamma^{\prime} \vdash[\Delta] A_{2} \leqq: \hat{\alpha}_{2} \dashv \Delta}{\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash A_{1} \rightarrow A_{2} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRArr }
$$

Similar to the InstLArr case.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \wedge_{\gamma}, \hat{\gamma} \vdash[\hat{\gamma} / \gamma] \mathrm{C} \leqq: \hat{\alpha} \dashv \Delta, \wedge \hat{\gamma}, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \forall \gamma . \mathrm{C} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRAIIL }
$$

We have $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$ and $\hat{\beta} \in \Gamma_{0}$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma] \mathrm{B})$.
By weakening, $\Gamma, \wedge \hat{\gamma}, \hat{\gamma} \vdash \mathrm{B}$; by the definition of substitution, $[\Gamma, \wedge, \hat{\gamma}] \mathrm{B}=[\Gamma] \mathrm{B}$.

Substituting equals for equals, $\hat{\alpha} \notin \mathrm{FV}([\Gamma, \widehat{\gamma}, \hat{\gamma}] \mathrm{B})$ and $\hat{\beta} \notin \mathrm{FV}([\Gamma, \wedge, \hat{\gamma}] \mathrm{B})$.
By induction, $\widehat{\beta} \notin \mathrm{FV}\left(\left[\Delta, \uparrow, \Delta^{\prime}\right] \mathrm{B}\right)$.
Note that $\hat{\beta}$ is declared to the left of $\wedge_{\hat{\nu}}$ in $\Gamma_{,}, \hat{\gamma}$.
By Lemma 16 Declaration Order Preservation,,$\widehat{\beta}$ is declared to the left of $\wedge_{\hat{\gamma}}$ in Δ, Δ^{\prime}.
So $\hat{\beta}$ is declared in Δ.
Now, note that each free variable u in B is in Γ, which is to the left of $\boldsymbol{\nu}_{\hat{\gamma}}$ in $\Gamma_{\hat{\gamma}}, \hat{\gamma}$.
Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in Δ.
Therefore $\left[\Delta, \hat{\gamma}, \Delta^{\prime}\right] \mathrm{B}=[\Delta] \mathrm{B}$.
Earlier, we obtained $\widehat{\beta} \notin \operatorname{FV}\left(\left[\Delta, \wedge^{\prime}, \Delta^{\prime}\right] \mathrm{B}\right)$, so substituting equals for equals, $\widehat{\beta} \notin \mathrm{FV}([\Delta] \mathrm{B})$.
Lemma 36 (Instantiation Size Preservation). If $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash \hat{\alpha}: \leqq A \dashv \Delta$ or $\overbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}^{\Gamma} \vdash A \leqq: \hat{\alpha} \dashv \Delta$, and $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$, then $|[\Gamma] \mathrm{B}|=|[\Delta] \mathrm{B}|$, where $|\mathrm{C}|$ is the plain size of the term C .

Proof. By induction on the given derivation.

- Case

$$
\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \tau \dashv \Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1} \quad \text { InstLSolve }
$$

Since Δ differs from Γ only in solving $\hat{\alpha}$, and we know $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$, we have $[\Delta] \mathrm{B}=[\Gamma] \mathrm{B}$; therefore $|[\Delta] \mathrm{B}=[\Gamma] \mathrm{B}|$.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\alpha}: \leq \hat{\beta} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstLReach }
$$

Here, Δ differs from Γ only in solving $\widehat{\beta}$ to $\hat{\alpha}$. However, $\hat{\alpha}$ has the same size as $\hat{\beta}$, so even if $\widehat{\beta} \in \mathrm{FV}([\Gamma] B)$, we have $|[\Delta] \mathrm{B}=[\Gamma] \mathrm{B}|$.

- Case

$$
\frac{\overbrace{\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{1}}^{\Gamma^{\prime}} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Theta \quad \Theta \vdash \hat{\alpha}_{2}: \leqq[\Theta] A_{2} \dashv \Delta}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq A_{1} \rightarrow A_{2} \dashv \Delta} \text { InstLArr }
$$

We have $\Gamma \vdash B$ and $\hat{\alpha} \notin \operatorname{FV}([\Gamma] B)$. Since $\hat{\alpha}_{1}, \hat{\alpha}_{2} \notin \operatorname{dom}(\Gamma)$, we have $\hat{\alpha}, \hat{\alpha}_{1}, \hat{\alpha}_{2} \notin \mathrm{FV}([\Gamma] B)$. It follows that $\left[\Gamma^{\prime}\right] B=[\Gamma] B$.
By weakening, $\Gamma^{\prime} \vdash \mathrm{B}$.
By induction on the first premise, $\left|\left[\Gamma^{\prime}\right] \mathrm{B}\right|=|[\Theta] \mathrm{B}|$.
By Lemma 16 (Declaration Order Preservation), since $\hat{\alpha}_{2}$ is declared to the left of $\hat{\alpha}_{1}$ in Γ^{\prime}, we have that $\hat{\alpha}_{2}$ is declared to the left of $\hat{\alpha}_{1}$ in Θ.
By Lemma 34 Left Unsolvedness Preservation), since $\hat{\alpha}_{2} \in$ unsolved $\left(\Gamma^{\prime}\right)$, it is unsolved in Θ : that is, $\Theta=\left(\Theta_{0}, \hat{\alpha}_{2}, \Theta_{1}\right)$.
By Lemma 32 (Instantiation Extension), we have $\Gamma^{\prime} \longrightarrow \Theta$.
By Lemma 25 (Extension Weakening), $\Theta \vdash$ B.
Since $\hat{\alpha}_{2} \notin \mathrm{FV}\left(\left[\Gamma^{\prime}\right] B\right)$, Lemma 35 (Left Free Variable Preservation) gives $\hat{\alpha}_{2} \notin \mathrm{FV}([\Theta] \mathrm{B})$.
By induction on the second premise, $|[\Theta] \mathrm{B}|=|[\Delta] \mathrm{B}|$, and by transitivity of equality, $|[\Gamma] \mathrm{B}|=|[\Delta] \mathrm{B}|$.

- Case

$$
\frac{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \beta \vdash \hat{\alpha}: \leqq A_{0} \dashv \Delta, \beta, \Delta^{\prime}}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \forall \beta \cdot A_{0} \dashv \Delta} \text { InstLAIIR }
$$

We have $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$.
By weakening, $\Gamma, \beta \vdash B$.
From the definition of substitution, $[\Gamma] B=[\Gamma, \beta] B$. Hence $\hat{\alpha} \notin F V([\Gamma, \beta] B)$.
The input context of the premise is $\left(\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \beta\right)$, which is (Γ, β), so by induction, $|[\Gamma, \beta] B|=\left|\left[\Delta, \beta, \Delta^{\prime}\right] B\right|$.
Suppose u is a free variable in B. Then u is declared in Γ, and so occurs before β in Γ, β.

By Lemma 16 (Declaration Order Preservation), u is declared before β in $\Delta, \beta, \Delta^{\prime}$.
So every free variable u in B is declared in Δ.
Hence $\left[\Delta, \beta, \Delta^{\prime}\right] B=[\Delta] B$.
We have $[\Gamma] B=[\Gamma, \beta] B$, so $|[\Gamma] B|=|[\Gamma, \beta] B|$; by transitivity of equality, $|[\Gamma] B|=|[\Delta] B|$.

- Case

$$
\frac{\Gamma_{0} \vdash \tau}{\Gamma_{0}, \hat{\alpha}, \Gamma_{1} \vdash \tau \leqq: \hat{\alpha} \dashv \Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}} \text { InstRSolve }
$$

Similar to the InstLSolve case.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\beta} \leqq: \hat{\alpha} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstRReach }
$$

Similar to the InstLReach case.

- Case

$$
\frac{\overbrace{\Gamma_{0}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{1}}^{\Gamma^{\prime}} \vdash \hat{\alpha}_{1}: \leqq A_{1} \dashv \Theta \quad \Theta \vdash[\Theta] A_{2} \leqq: \hat{\alpha}_{2} \dashv \Delta}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash A_{1} \rightarrow A_{2} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRArr }
$$

Similar to the InstLArr case.

- Case

$$
\frac{\Gamma^{\prime}[\hat{\alpha}], \wedge_{\hat{\beta}}, \hat{\beta} \vdash[\hat{\beta} / \beta] A_{0} \leqq: \hat{\alpha} \dashv \Delta, \wedge_{\hat{\beta}}, \Delta^{\prime}}{\Gamma^{\prime}[\hat{\alpha}] \vdash \forall \beta . A_{0} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRAIIL }
$$

We have $\Gamma \vdash \mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B})$.
By weakening, $\Gamma, \hat{\beta}, \hat{\beta} \vdash B$.
From the definition of substitution, $[\Gamma] B=[\Gamma, \hat{\beta}, \hat{\beta}] B$. Hence $\hat{\alpha} \notin F V([\Gamma, \hat{\beta}, \hat{\beta}] B)$.
By induction, $|[\Gamma, \hat{\beta}, \hat{\beta}] \mathrm{B}|=\left|\left[\Delta,{ }_{\hat{\beta}}, \Delta^{\prime}\right] \mathrm{B}\right|$.
Suppose u is a free variable in B.
Then u is declared in Γ, and so occurs before $\hat{\beta}$ in $\Gamma, \hat{\beta}, \hat{\beta}$.
By Lemma 16 (Declaration Order Preservation), u is declared before $\hat{\beta}$ in $\Delta, \Delta_{\hat{\beta}}$,
So every free variable u in B is declared in Δ.
Hence $\left[\Delta,{ }_{\hat{\beta}}, \Delta^{\prime}\right] \mathrm{B}=[\Delta] \mathrm{B}$.
Since $[\Gamma] B=[\Gamma, \hat{\beta}, \hat{\beta}] B$, we have $|[\Gamma] B|=|[\Gamma, \hat{\beta}, \hat{\beta}] B|$; by transitivity of equality, $|[\Gamma] B|=|[\Delta] B|$.
Theorem 7 (Decidability of Instantiation). If $\Gamma=\Gamma_{0}[\hat{\alpha}]$ and $\Gamma \vdash A$ such that $[\Gamma] A=A$ and $\hat{\alpha} \notin \mathrm{FV}(A)$, then:
(1) Either there exists Δ such that $\Gamma_{0}[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A \dashv \Delta$, or not.
(2) Either there exists Δ such that $\Gamma_{0}[\hat{\alpha}] \vdash A \leqq: \hat{\alpha} \dashv \Delta$, or not.

Proof. By induction on the derivation of $\Gamma \vdash A$.
(1) $\Gamma \vdash \hat{\alpha}: \leqq A \dashv \Delta$ is decidable.

- Case

$$
\underbrace{\overline{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}} \vdash \alpha}_{\Gamma^{\prime}[\alpha]} \text { UvarWF }
$$

If $\alpha \in \Gamma_{\mathrm{L}}$, then by UvarWF we have $\Gamma_{\mathrm{L}} \vdash \alpha$, and by rule InstLSolve we have a derivation.
Otherwise no rule matches, and so no derivation exists.

- Case UnitWF: By rule InstLSolve.
- Case

$$
\underbrace{\overline{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}} \vdash \hat{\beta}}_{\Gamma} \text { EvarWF }
$$

By inversion, we have $\hat{\beta} \in \Gamma$, and $[\Gamma] \hat{\beta}=\widehat{\beta}$. Since $\hat{\alpha} \notin \operatorname{FV}([\Gamma] \hat{\beta})=\operatorname{FV}(\hat{\beta})=\{\hat{\beta}\}$, it follows that $\hat{\alpha} \neq \hat{\beta}$: Either $\hat{\beta} \in \Gamma_{\mathrm{L}}$ or $\hat{\beta} \in \Gamma_{\mathrm{R}}$.
If $\widehat{\beta} \in \Gamma_{L}$, then we have a derivation by InstLSolve.
If $\widehat{\beta} \in \Gamma_{R}$, then we have a derivation by InstLReach.

- Case

$$
\underbrace{\overline{\Gamma^{\prime}[\hat{\beta}=\tau]}}_{\Gamma} \vdash \hat{\beta} \text { SolvedEvarWF }
$$

It is given that $[\Gamma] \hat{\beta}=\hat{\beta}$, so this case is impossible.

- Case

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}}{\underbrace{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}}_{\Gamma} \vdash A_{1} \rightarrow A_{2}} \text { ArrowWF }
$$

By assumption, $[\Gamma]\left(A_{1} \rightarrow A_{2}\right)=A_{1} \rightarrow A_{2}$ and $\hat{\alpha} \notin \mathrm{FV}\left([\Gamma]\left(A_{1} \rightarrow A_{2}\right)\right)$.
If $A_{1} \rightarrow A_{2}$ is a monotype and is well-formed under Γ_{L}, we can apply InstLSolve.
Otherwise, the only rule with a conclusion matching $A_{1} \rightarrow A_{2}$ is InstLArr.
First, consider whether $\Gamma_{\mathrm{L}}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{\mathrm{R}} \vdash \mathrm{A} \leqq: \hat{\alpha}_{1} \dashv-$ is decidable.
By definition of substitution, $[\Gamma]\left(A_{1} \rightarrow A_{2}\right)=\left([\Gamma] A_{1}\right) \rightarrow\left([\Gamma] A_{2}\right)$. Since $[\Gamma]\left(A_{1} \rightarrow A_{2}\right)=A_{1} \rightarrow$ A_{2}, we have $[\Gamma] A_{1}=A_{1}$ and $[\Gamma] A_{2}=A_{2}$.
By weakening, $\Gamma_{\mathrm{L}}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{\mathrm{R}} \vdash A_{1} \rightarrow A_{2}$.
Since $\Gamma \vdash A_{1}$ and $\Gamma \vdash A_{2}$, we have $\hat{\alpha}_{1}, \hat{\alpha}_{2} \notin F V\left(A_{1}\right) \cup F V\left(A_{2}\right)$.
Since $\hat{\alpha} \notin \operatorname{FV}(A) \supseteq \operatorname{FV}\left(A_{1}\right)$, it follows that $\left[\Gamma^{\prime}\right] A_{1}=A_{1}$.
By i.h., either there exists Θ such that $\Gamma_{L}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{R} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Theta$, or not. If not, then no derivation by InstLArr exists.
If so, then we have $\Gamma_{\mathrm{L}}, \hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}, \Gamma_{\mathrm{R}} \vdash \hat{\alpha}_{1}: \leqq \mathcal{A}_{1} \dashv \Theta$.
By Lemma 34 (Left Unsolvedness Preservation), we know that $\hat{\alpha}_{2} \in$ unsolved (Θ).
By Lemma 35 (Left Free Variable Preservation), we know that $\hat{\alpha}_{2} \notin \mathrm{FV}\left([\Theta] A_{2}\right)$.
Clearly, $[\Theta]\left([\Theta] \mathcal{A}_{2}\right)=[\Theta] \mathcal{A}_{2}$.
Hence by i.h., either there exists Δ such that $\Theta \vdash \hat{\alpha}_{2}: \leqq[\Theta] A_{2} \dashv \Delta$, or not.
If not, then no derivation by InstLArr exists.
If it does, then by rule InstLArr, we have $\Gamma \vdash \hat{\alpha}: \leqq A \dashv \Delta$.

- Case

$$
\frac{\Gamma, \alpha \vdash A_{0}}{\Gamma \vdash \forall \alpha . A_{0}} \text { ForallWF }
$$

We have $\forall \alpha . A_{0}=[\Gamma]\left(\forall \alpha . A_{0}\right)$. By definition of substitution, $[\Gamma]\left(\forall \alpha . A_{0}\right)=\forall \alpha$. $[\Gamma] A_{0}$, so $A_{0}=[\Gamma] A_{0}$.
By definition of substitution, $[\Gamma, \alpha] A_{0}=[\Gamma] A_{0}$.
We have $\hat{\alpha} \notin \operatorname{FV}\left([\Gamma]\left(\forall \alpha\right.\right.$. $\left.\left.A_{0}\right)\right)$. Therefore $\hat{\alpha} \notin \operatorname{FV}\left([\Gamma] A_{0}\right)=\operatorname{FV}\left([\Gamma, \alpha] A_{0}\right)$.
By i.h., either there exists Θ such that $\Gamma, \alpha \vdash \hat{\alpha}: \leqq A_{0} \dashv \Theta$, or not.
Suppose $\Gamma, \alpha \vdash \hat{\alpha}: \leqq A_{0} \dashv \Theta$.
By Lemma 32 (Instantiation Extension), $\Gamma \longrightarrow \Theta$;
by Lemma 24 Extension Order) (i), $\Theta=\Delta, \alpha, \Delta^{\prime}$.
Hence by rule InstLAIIR, $\Gamma \vdash \hat{\alpha}: \leqq \forall \alpha . A_{0} \dashv \Delta$.
Suppose not.
Then there is no derivation, since InstLAIIR is the only rule matching $\forall \alpha$. A_{0}.
(2) $\Gamma \vdash A \leqq: \hat{\alpha} \dashv \Delta$ is decidable.

- Case UvarWF:

Similar to the UvarWF case in part (1), but applying rule InstRSolve instead of InstLSolve.

- Case UnitWF: Apply InstRSolve.
- Case

$$
\underbrace{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}}_{\Gamma} \vdash \hat{\beta} \text { EvarWF }
$$

Similar to the EvarWF case in part (1), but applying InstRSolve/InstRReach instead of InstLSolve/InstLReach.

- Case SolvedEvarWF:

Impossible, for exactly the same reasons as in the SolvedEvarWF case of part (1).

- Case

$$
\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}}{\underbrace{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}}_{\Gamma} \vdash A_{1} \rightarrow A_{2}} \text { ArrowWF }
$$

As the ArrowWF case of part (1), except applying InstRArr instead of InstLArr.

- Case

$$
\frac{\Gamma, \beta \vdash \mathrm{B}}{\underbrace{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}}_{\Gamma} \vdash \forall \beta . \mathrm{B}} \text { ForallWF }
$$

By assumption, $[\Gamma](\forall \beta . B)=\forall \beta$. B. With the definition of substitution, we get $[\Gamma] B=B$. Hence $[\Gamma] B=B$.
Hence $[\hat{\beta} / \beta][\Gamma] B=[\hat{\beta} / \beta] B$. Since $\hat{\beta}$ is fresh, $[\hat{\beta} / \beta][\Gamma] B=[\Gamma][\hat{\beta} / \beta] B$.
By definition of substitution, $[\Gamma, \hat{\beta}, \widehat{\beta}][\hat{\beta} / \beta] B=[\Gamma][\hat{\beta} / \beta] B$, which by transitivity of equality is $[\hat{\beta} / \beta] B$.
We have $\hat{\alpha} \notin \operatorname{FV}([\Gamma](\forall \beta . B))$, so $\hat{\alpha} \notin \operatorname{FV}([\Gamma, \hat{\beta}, \widehat{\beta}][\hat{\beta} / \beta] B)$.
Therefore, by induction, either $\Gamma, \hat{\beta}, \hat{\beta} \vdash[\hat{\beta} / \beta] B \leqq: \hat{\alpha} \dashv \Theta$ or not.
Suppose $\Gamma, \hat{\beta}, \hat{\beta} \vdash[\hat{\beta} / \beta] B \leqq: \hat{\alpha} \dashv \Theta$.
By Lemma 32 Instantiation Extension, $\Gamma, \hat{\beta}, \hat{\beta} \longrightarrow \Theta$;
by Lemma $\overline{24}$ Extension Order (i1), $\Theta=\Delta, \wedge_{\hat{\beta}}, \Delta^{\prime}$.
Hence by rule InstRAIIL, $\Gamma \vdash \forall \beta$. $\mathrm{B} \leqq: \hat{\alpha} \dashv \Delta$.
Suppose not.
Then there is no derivation, since InstRAIIL is the only rule matching $\forall \beta$. B.

$F^{\prime} \quad$ Decidability of Algorithmic Subtyping

$\mathrm{F}^{\prime} .1$ Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If $\Gamma \vdash \hat{\alpha}: \leqq \tau \dashv \Delta$ or $\Gamma \vdash \tau \leqq: \hat{\alpha} \dashv \Delta$, then if $[\Gamma] \tau=\tau$ and $\hat{\alpha} \notin \mathrm{FV}([\Gamma] \tau)$, then \mid unsolved $(\Gamma)|=|$ unsolved $(\Delta) \mid+1$.

Proof. By induction on the given derivation.

- Case

$$
\frac{\Gamma_{\mathrm{L}} \vdash \tau}{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \vdash \hat{\alpha}: \leqq \tau \dashv \underbrace{\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}}}_{\Delta}} \text { InstLSolve }
$$

It is evident that $\left|\operatorname{unsolved}\left(\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}\right)\right|=\left|\operatorname{unsolved}\left(\Gamma_{\mathrm{L}}, \hat{\alpha}=\tau, \Gamma_{\mathrm{R}}\right)\right|+1$.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\alpha}: \leqq \hat{\beta} \dashv \Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]} \text { InstLReach }
$$

Similar to the previous case.

- Case

$$
\frac{\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash \tau_{1} \leqq: \hat{\alpha}_{1} \dashv \Theta \quad \Theta \vdash \hat{\alpha}_{2}: \leqq[\Theta] \tau_{2} \dashv \Delta}{\Gamma_{0}[\hat{\alpha}] \vdash \hat{\alpha}: \leqq \tau_{1} \rightarrow \tau_{2} \dashv \Delta} \text { InstLArr }
$$

$$
\mid \text { unsolved }\left(\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]\right)\left|=\left|\operatorname{unsolved}\left(\Gamma_{0}[\hat{\alpha}]\right)\right|+1 \quad\right. \text { Immediate }
$$

$$
\mid \text { unsolved }\left(\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]\right)|=| \text { unsolved }(\Theta) \mid+1 \quad \text { By i.h. }
$$

$$
\mid \text { unsolved }(\Gamma)|=| \text { unsolved }(\Theta) \mid \quad \text { Subtracting } 1
$$

E

$$
=|\operatorname{unsolved}(\Delta)|+1 \quad \text { By i.h. }
$$

- Case $\frac{\Gamma, \beta \vdash \hat{\alpha}: \leqq \mathrm{B} \dashv \Delta, \beta, \Delta^{\prime}}{\Gamma \vdash \hat{\alpha}: \leqq \forall \beta \text {. } \dashv \dashv \Delta}$ InstLAllR

This case is impossible, since a monotype cannot have the form $\forall \beta$. B.

- Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.
- Case InstRArr: Similar to the InstLArr case.
- Case

$$
\frac{\Gamma[\hat{\alpha}], \beta \vdash \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta, \beta, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \forall \beta . \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta} \operatorname{InstRAIIL}
$$

This case is impossible, since a monotype cannot have the form $\forall \beta$. B.
Lemma 38 (Monotype Monotonicity). If $\Gamma \vdash \tau_{1}<: \tau_{2} \dashv \Delta$ then \mid unsolved $(\Delta)|\leq|$ unsolved $(\Gamma) \mid$.
Proof. By induction on the given derivation.

- Cases < : Var, <: Exvar:

In these rules, $\Delta=\Gamma$, so unsolved $(\Delta)=$ unsolved (Γ); therefore |unsolved $(\Delta)|\leq|$ unsolved $(\Gamma) \mid$.

- Case $<: \rightarrow$: We have an intermediate context Θ.

By inversion, $\tau_{1}=\tau_{11} \rightarrow \tau_{12}$ and $\tau_{2}=\tau_{21} \rightarrow \tau_{22}$. Therefore, we have monotypes in the first and second premises.
By induction on the first premise, \mid unsolved $(\Theta)|\leq|u n s o l v e d(\Gamma)|$. By induction on the second premise, \mid unsolved $(\Delta)|\leq|$ unsolved $(\Theta) \mid$. By transitivity of \leq, |unsolved $(\Delta)|\leq|$ unsolved $(\Gamma) \mid$, which was to be shown.

- Cases $<: \forall \mathrm{L},<: \forall \mathrm{R}$: We are given a derivation of subtyping on monotypes, so these cases are impossible.
- Cases < : InstantiateL, < : InstantiateR: The input and output contexts in the premise exactly match the conclusion, so the result follows by Lemma 37 (Monotypes Solve Variables).

Lemma 39 (Substitution Decreases Size). If $\Gamma \vdash A$ then $|\Gamma \vdash[\Gamma] A| \leq|\Gamma \vdash \mathcal{A}|$.
Proof. By induction on $|\Gamma \vdash A|$. If $A=1$ or $A=\alpha$, or $A=\hat{\alpha}$ and $\hat{\alpha} \in \operatorname{unsolved}(\Gamma)$ then $[\Gamma] A=A$. Therefore, $|\Gamma \vdash[\Gamma] A|=|\Gamma \vdash A|$.

If $\mathcal{A}=\hat{\alpha}$ and $(\hat{\alpha}=\tau) \in \Gamma$, then by induction hypothesis, $|\Gamma \vdash[\Gamma] \tau| \leq|\Gamma \vdash \tau|$. Of course $|\Gamma \vdash \tau| \leq$ $|\Gamma \vdash \tau|+1$. By definition of substitution, $[\Gamma] \tau=[\Gamma] \hat{\alpha}$, so

$$
|\Gamma \vdash[\Gamma] \hat{\alpha}| \leq|\Gamma \vdash \tau|+1
$$

By the definition of type size, $|\Gamma \vdash \hat{\alpha}|=|\Gamma \vdash \tau|+1$, so

$$
|\Gamma \vdash[\Gamma] \hat{\alpha}| \leq|\Gamma \vdash \hat{\alpha}|
$$

which was to be shown.
If $A=A_{1} \rightarrow A_{2}$, the result follows via the induction hypothesis (twice).
If $A=\forall \alpha . A_{0}$, the result follows via the induction hypothesis.

Lemma 40 (Monotype Context Invariance).
If $\Gamma \vdash \tau<: \tau^{\prime} \dashv \Delta$ where $[\Gamma] \tau=\tau$ and $[\Gamma] \tau^{\prime}=\tau^{\prime}$ and \mid unsolved $(\Gamma)|=|$ unsolved $(\Delta) \mid$ then $\Gamma=\Delta$.
Proof. By induction on the derivation of $\Gamma \vdash \tau<: \tau^{\prime} \dashv \Delta$.

- Cases <: Var, <:Unit, <: Exvar:

In these rules, the output context is the same as the input context, so the result is immediate.

- Case

$$
\frac{\Gamma \vdash \tau_{1}^{\prime}<: \tau_{1} \dashv \Theta \quad \Theta \vdash[\Theta] \tau_{2}<:[\Theta] \tau_{2}^{\prime} \dashv \Delta}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime} \dashv \Delta}<: \rightarrow
$$

We have that $[\Gamma]\left(\tau_{1} \rightarrow \tau_{2}\right)=\tau_{1} \rightarrow \tau_{2}$. By definition of substitution, $[\Gamma] \tau_{1}=\tau_{1}$ and $[\Gamma] \tau_{2}=\tau_{2}$. Similarly, $[\Gamma] \tau_{1}=\tau_{1}^{\prime}$ and $[\Gamma] \tau_{2}=\tau_{2}^{\prime}$.
By i.h., $\Theta=\Gamma$.
Since Θ is predicative, $[\Theta] \tau_{2}$ and $[\Theta] \tau_{2}^{\prime}$ are monotypes.
Substitution is idempotent: $[\Theta][\Theta] \tau_{2}=[\Theta] \tau_{2}$ and $[\Theta][\Theta] \tau_{2}^{\prime}=[\Theta] \tau_{2}^{\prime}$.
By i.h., $\Delta=\Theta$. Hence $\Delta=\Gamma$.

- Cases $<: \forall \mathrm{L},<: \forall \mathrm{R}$: Impossible, since τ and τ^{\prime} are monotypes.
- Case

$$
\frac{\hat{\alpha} \notin \mathrm{FV}(\mathrm{~A}) \quad \Gamma_{0}[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A \dashv \Delta}{\Gamma_{0}[\hat{\alpha}] \vdash \hat{\alpha}<: A \dashv \Delta}<: \text { InstantiateL }
$$

By Lemma 37 Monotypes Solve Variables), |unsolved $(\Delta)|<|$ unsolved $\left(\Gamma_{0}[\hat{\alpha}]\right) \mid$, but it is given that \mid unsolved $\left(\Gamma_{0}[\hat{\alpha}]\right)|=|$ unsolved $(\Delta) \mid$, so this case is impossible.

- Case < : InstantiateR: Impossible, as for the < : InstantiateL case.

$\mathrm{F}^{\prime} .2$ Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma] A=A$ and $[\Gamma] B=B$, it is decidable whether there exists Δ such that $\Gamma \vdash A<: \mathrm{B} \dashv \Delta$.

Proof. Let the judgment $\Gamma \vdash \mathrm{A}<: \mathrm{B} \dashv \Delta$ be measured lexicographically by
(S1) the number of \forall quantifiers in A and B;
(S2) |unsolved $(\Gamma) \mid$, the number of unsolved existential variables in Γ;
(S3) $|\Gamma \vdash A|+|\Gamma \vdash B|$.
For each subtyping rule, we show that every premise is smaller than the conclusion. The condition that $[\Gamma] A=A$ and $[\Gamma] B=B$ is easily satisfied at each inductive step, using the definition of substitution.

- Rules < : Var, <: Unit and <: Exvar have no premises.
- Case

$$
\frac{\Gamma \vdash \mathrm{B}_{1}<: \mathrm{A}_{1} \dashv \Theta \quad \Theta \vdash[\Theta] \mathrm{A}_{2}<:[\Theta] \mathrm{B}_{2} \dashv \Delta}{\Gamma \vdash \mathrm{~A}_{1} \rightarrow \mathrm{~A}_{2}<: \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2} \dashv \Delta}<: \rightarrow
$$

If A_{2} or B_{2} has a quantifier, then the first premise is smaller by (S1). Otherwise, the first premise shares an input context with the conclusion, so it has the same (S2). The types B_{1} and A_{1} are subterms of the conclusion's types, so the first premise is smaller by (S3).
If B_{1} or A_{1} has a quantifier, then the second premise is smaller by (S1). Otherwise, by Lemma 38 (Monotype Monotonicity) on the first premise, |unsolved $(\Theta)|\leq|$ unsolved $(\Gamma) \mid$.

- If |unsolved $(\Theta)|<|\operatorname{unsolved}(\Gamma)|$, then the second premise is smaller by (S2).
- If \mid unsolved $(\Theta)|=|$ unsolved $(\Gamma) \mid$, we have the same (S2).

However, by Lemma (Monotype Context Invariance), $\Theta=\Gamma$, so $\left|\Theta \vdash[\Theta] A_{2}\right|=\left|\Gamma \vdash[\Gamma] A_{2}\right|$, which by Lemma 39 (Substitution Decreases Size) is less than or equal to $\left|\Gamma \vdash \mathcal{A}_{2}\right|$.
By the same logic, $\left|\Theta \vdash[\Theta] \mathrm{B}_{2}\right| \leq\left|\Gamma \vdash \mathrm{B}_{2}\right|$.
Therefore,

$$
\left|\Theta \vdash[\Theta] A_{2}\right|+\left|\Theta \vdash[\Theta] \mathrm{B}_{2}\right| \leq\left|\Gamma \vdash\left(\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}\right)\right|+\left|\Gamma \vdash\left(\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}\right)\right|
$$

and the second premise is smaller by (S3).

- Cases $<: \forall \mathrm{L},<: \forall \mathrm{R}$: In each of these rules, the premise has one less quantifier than the conclusion, so the premise is smaller by (S1).
- Cases < : InstantiateL, <: InstantiateR: Follows from Theorem7 7

G $^{\prime}$ Decidability of Typing

Theorem 9 (Decidability of Typing).
(i) Synthesis: Given a context Γ and a term e, it is decidable whether there exist a type A and a context Δ such that $\Gamma \vdash e \Rightarrow A \dashv \Delta$.
(ii) Checking: Given a context Γ, a term e, and a type B such that $\Gamma \vdash B$, it is decidable whether there is a context Δ such that $\Gamma \vdash e \Leftarrow \mathrm{~B} \dashv \Delta$.
(iii) Application: Given a context Γ, a term e, and a type A such that $\Gamma \vdash A$, it is decidable whether there exist a type C and a context Δ such that $\Gamma \vdash A \bullet e \Rightarrow C \dashv \Delta$.

Proof. For rules deriving judgments of the form

$$
\begin{aligned}
& \Gamma \vdash e \Rightarrow-\dashv- \\
& \Gamma \vdash e \Leftarrow B \dashv- \\
& \Gamma \vdash A \bullet e \Rightarrow-\dashv-
\end{aligned}
$$

(where we write "-" for parts of the judgments that are outputs), the following induction measure on such judgments is adequate to prove decidability:

$$
\left\langle\begin{array}{lll}
& \Rightarrow & \\
e, & \Leftarrow, & |\Gamma \vdash B| \\
& \nRightarrow & |\Gamma \vdash A|
\end{array}\right\rangle
$$

where $\langle\ldots\rangle$ denotes lexicographic order, and where (when comparing two judgments typing terms of the same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second line), which in turn is considered smaller than the application judgment (bottom line). That is,

$$
\Rightarrow \prec \Leftarrow \prec \Rightarrow
$$

Note that this measure only uses the input parts of the judgments, leading to a straightforward decidability argument.

We will show that in each rule, every synthesis/checking/application premise is smaller than the conclusion.

- Case Var: No premises.
- Case Sub: The first premise has the same subject term e as the conclusion, but the judgment is smaller because the measure considers a synthesis judgment to be smaller than a checking judgment.
The second premise is a subtyping judgment, which by Theorem 8 is decidable.
- Case Anno:

It is easy to show that the judgment $\Gamma \vdash \mathcal{A}$ is decidable.
The second premise types e, but the conclusion types ($e: A$), so the first part of the measure gets smaller.

- Case 1I: No premises.
- Case $\rightarrow \mathrm{I}: \quad$ In the premise, the term is smaller.
- Case $\rightarrow \mathrm{E}: \quad$ In both premises, the term is smaller.
- Case $\forall I$: Both the premise and conclusion type e, and both are checking; however, $|\Gamma, \alpha \vdash A|<$ $|\Gamma \vdash \forall \alpha . A|$, so the premise is smaller.
- Case \rightarrow App: Both the premise and conclusion type e, but the premise is a checking judgment, so the premise is smaller.
- Case Subst \Leftarrow : Both the premise and conclusion type e, and both are checking; however, since we can apply this rule only when Γ has a solution for $\hat{\alpha}$-that is, when $\Gamma=\Gamma_{0}[\hat{\alpha}=\tau]$-we have that $|\Gamma \vdash[\Gamma] \hat{\alpha}|<|\Gamma \vdash \hat{\alpha}|$, making the last part of the measure smaller.
- Case SubstApp: Similar to Subst \Leftarrow.
- Case $\forall A p p$ B \quad Both the premise and conclusion type e, and both are application judgments; however, by the definition of $|\Gamma \vdash-|$, the size of the type in the premise $[\hat{\alpha} / \alpha] \mathcal{A}$ is smaller than $\forall \alpha$. A.
- Case $\hat{\alpha} A p p: \quad$ Both the premise and conclusion type e, but we switch to checking in the premise, so the premise is smaller.
- Case $11 \Rightarrow$: No premises.
- Case $\rightarrow I \Rightarrow$: In the premise, the term is smaller.

\mathbf{H}^{\prime} Soundness of Subtyping

H'. 1 Lemmas for Soundness

Lemma 42 (Variable Preservation). If $(x: A) \in \Delta$ or $(x: A) \in \Omega$ and $\Delta \longrightarrow \Omega$ then $(x:[\Omega] A) \in[\Omega] \Delta$.

Proof. By mutual induction on Δ and Ω.
Suppose $(x: A) \in \Delta$. In the case where $\Delta=\left(\Delta^{\prime}, x: \mathcal{A}\right)$ and $\Omega=\left(\Omega^{\prime}, x: A_{\Omega}\right)$, inversion on $\Delta \longrightarrow \Omega$ gives $\left[\Omega^{\prime}\right] A=\left[\Omega^{\prime}\right] A_{\Omega}$; by the definition of context application, $\left[\Omega^{\prime}, x: A_{\Omega}\right]\left(\Delta^{\prime}, x: A\right)=\left[\Omega^{\prime}\right] \Delta^{\prime}, x$: $\left[\Omega^{\prime}\right] A_{\Omega}$, which contains $x:\left[\Omega^{\prime}\right] A_{\Omega}$, which is equal to $x:\left[\Omega^{\prime}\right] A$. By well-formedness of Ω, we know that $\left[\Omega^{\prime}\right] A=[\Omega]$ A.

Suppose $(x: A) \in \Omega$. The reasoning is similar, because equality is symmetric.
Lemma 43 (Substitution Typing). If $\Gamma \vdash A$ then $\Gamma \vdash[\Gamma] A$.
Proof. By induction on $|\Gamma \vdash A|$ (the size of A under Γ).

- Cases UvarWF, UnitWF: Here $A=\alpha$ or $A=1$, so applying Γ to A does not change it: $A=[\Gamma] A$. Since $\Gamma \vdash A$, we have $\Gamma \vdash[\Gamma] A$, which was to be shown.
- Case EvarWF: In this case $A=\hat{\alpha}$, but $\Gamma=\Gamma_{0}[\hat{\alpha}]$, so applying Γ to A does not change it, and we proceed as in the UnitWF case above.
- Case SolvedEvarWF: In this case $A=\hat{\alpha}$ and $\Gamma=\Gamma_{L}, \hat{\alpha}=\tau, \Gamma_{R}$. Thus $[\Gamma] A=[\Gamma] \alpha=\left[\Gamma_{\mathrm{L}}\right] \tau$. We assume contexts are well-formed, so all free variables in τ are declared in Γ_{L}. Consequently, $\left|\Gamma_{\mathrm{L}} \vdash \tau\right|=|\Gamma \vdash \tau|$, which is less than $|\Gamma \vdash \hat{\alpha}|$. We can therefore apply the i.h. to τ, yielding $\Gamma \vdash[\Gamma] \tau$. By the definition of substitution, $[\Gamma] \tau=[\Gamma] \hat{\alpha}$, so we have $\Gamma \vdash[\Gamma] \hat{\alpha}$.
- Case ArrowWF: In this case $A=A_{1} \rightarrow A_{2}$. By i.h., $\Gamma \vdash[\Gamma] A_{1}$ and $\Gamma \vdash[\Gamma] A_{2}$. By ArrowWF, $\Gamma \vdash\left([\Gamma] A_{1}\right) \rightarrow\left([\Gamma] A_{2}\right)$, which by the definition of substitution is $\Gamma \vdash[\Gamma]\left(A_{1} \rightarrow A_{2}\right)$.
- Case ForallWF: In this case $A=\forall \alpha$. A_{0}. By i.h., $\Gamma, \alpha \vdash[\Gamma, \alpha] A_{0}$. By the definition of substitution, $[\Gamma, \alpha] A_{0}=[\Gamma] A_{0}$, so by ForallWF, $\Gamma \vdash \forall \alpha .[\Gamma] A_{0}$, which by the definition of substitution is $\Gamma \vdash$ $[\Gamma]\left(\forall \alpha . A_{0}\right)$.

Lemma 44 (Substitution for Well-Formedness). If $\Omega \vdash$ A then $[\Omega] \Omega \vdash[\Omega]$ A.
Proof. By induction on $|\Omega \vdash A|$, the size of A under Ω (Definition 2).
We consider cases of the well-formedness rule concluding the derivation of $\Omega \vdash A$.

- Case

$$
\overline{\Omega \vdash 1} \text { UnitWF }
$$

$[\Omega] \Omega \vdash 1 \quad$ By DeclUnitWF
$[\Omega] \Omega \vdash[\Omega] 1 \quad$ By definition of substitution

- Case

- Case

$\Omega \vdash \hat{\alpha} \quad$ Given
$\Omega \longrightarrow \Omega \quad$ By Lemma 20 Reflexivity)
$\Omega \vdash[\Omega] \hat{\alpha} \quad$ By Lemma 43 Substitution Typing,
$|\Omega \vdash[\Omega] \hat{\alpha}|<|\Omega \vdash \hat{\alpha}| \quad$ Follows from definition of type size
$[\Omega] \Omega \vdash[\Omega][\Omega] \hat{\alpha} \quad$ By i.h.
$[\Omega][\Omega] \hat{\alpha}=[\Omega] \hat{\alpha} \quad$ By Lemma 18 (Substitution Extension Invariance)
$[\Omega] \Omega \vdash[\Omega] \hat{\alpha} \quad$ Applying equality
- Case

$$
\underbrace{\overline{\Omega^{\prime}[\hat{\alpha}]}}_{\Omega} \vdash \hat{\alpha} \cdot \text { EvarWF }
$$

Impossible: the grammar for Ω does not allow unsolved declarations.

- Case

$$
\frac{\Omega \vdash A_{1} \quad \Omega \vdash A_{2}}{\Omega \vdash A_{1} \rightarrow A_{2}} \text { ArrowWF }
$$

$$
\begin{array}{rlrl}
& \Omega \vdash A_{1} & \text { Subderivation } \\
\left|\Omega \vdash A_{1}\right|<\left|\Omega \vdash A_{1} \rightarrow A_{2}\right| & & \text { Follows from definition of type size } \\
{[\Omega] \Omega \vdash[\Omega] A_{1}} & \text { By i.h. } \\
{[\Omega] \Omega \vdash[\Omega] A_{2}} & & \text { By similar reasoning on 2nd subderivation } \\
{[\Omega] \Omega \vdash[\Omega] A_{1} \rightarrow[\Omega] A_{2}} & & \text { By DeclArrowWF } \\
{[\Omega] \Omega \vdash[\Omega]\left(A_{1} \rightarrow A_{2}\right)} & & \text { By definition of substitution }
\end{array}
$$

- Case

$$
\frac{\Omega, \alpha \vdash A_{0}}{\Omega \vdash \forall \alpha . A_{0}} \text { ForallWF }
$$

$$
\Omega, \alpha \vdash A_{0} \quad \text { Subderivation }
$$

Let $\Omega^{\prime}=(\Omega, \alpha)$.

$$
\left|\Omega^{\prime} \vdash A_{0}\right|<\left|\Omega \vdash \forall \alpha . A_{0}\right|
$$

Follows from definition of type size

$$
\left[\Omega^{\prime}\right](\Omega, \alpha) \vdash\left[\Omega^{\prime}\right] A_{0}
$$

By i.h.
$[\Omega] \Omega, \alpha \vdash\left[\Omega^{\prime}\right] A_{0} \quad$ By definition of context application
$[\Omega] \Omega, \alpha \vdash[\Omega] A_{0} \quad$ By definition of substitution
$[\Omega] \Omega \vdash \forall \alpha .[\Omega] A_{0}$
By DeclForallWF
$[\Omega] \Omega \vdash[\Omega]\left(\forall \alpha . A_{0}\right) \quad$ By definition of substitution
Lemma 45 (Substitution Stability).
For any well-formed complete context $\left(\Omega, \Omega_{z}\right)$, if $\Omega \vdash$ A then $[\Omega] A=\left[\Omega, \Omega_{z}\right]$ A.
Proof. By induction on Ω_{Z}. If $\Omega_{Z}=$, the result is immediate. Otherwise, use the i.h. and the fact that $\Omega \vdash A$ implies $\operatorname{FV}(A) \cap \operatorname{dom}\left(\Omega_{Z}\right)=\emptyset$.

Lemma 46 (Context Partitioning).
If $\Delta, \hat{\alpha}, \Theta \longrightarrow \Omega, \stackrel{\alpha}{\alpha}, \Omega_{Z}$ then there is a Ψ such that $\left[\Omega,>\hat{\alpha}, \Omega_{Z}\right]\left(\Delta,{ }_{\hat{\alpha}}, \Theta\right)=[\Omega] \Delta, \Psi$.
Proof. By induction on the given derivation.

- Case \longrightarrow ID: Impossible: $\Delta, \hat{\alpha}, \Theta$ cannot have the form \cdot
- Case \longrightarrow Var: We have $\Omega_{Z}=\left(\Omega_{Z}^{\prime}, x: A\right)$ and $\Theta=\left(\Theta^{\prime}, x: A^{\prime}\right)$. By i.h., there is Ψ^{\prime} such that $\left[\Omega,{ }_{\alpha}, \Omega_{Z}^{\prime}\right]\left(\Delta,{ }_{\alpha}, \Theta^{\prime}\right)=[\Omega] \Delta, \Psi^{\prime}$. Then by the definition of context application, $\left[\Omega, \wedge_{\alpha}, \Omega_{Z}^{\prime}, x:\right.$ $A]\left(\Delta, \wedge_{\alpha}, \Theta^{\prime}, x: A^{\prime}\right)=[\Omega] \Delta, \Psi^{\prime}, x:\left[\Omega^{\prime}\right] A$. Let $\Psi=\left(\Psi^{\prime}, x:\left[\Omega^{\prime}\right] A\right)$.
- Case \longrightarrow Uvar: \quad Similar to the \longrightarrow Var case, with $\Psi=\left(\Psi^{\prime}, \alpha\right)$.
- Cases \longrightarrow Unsolved, \longrightarrow Solve, \longrightarrow Marker, \longrightarrow Add, \longrightarrow AddSolved: Broadly similar to the \longrightarrow Uvar case, but since the rightmost context element is soft it disappears in context application, so we let $\Psi=\Psi^{\prime}$.

Lemma 49 (Stability of Complete Contexts).

If $\Gamma \longrightarrow \Omega$ then $[\Omega] \Gamma=[\Omega] \Omega$.
Proof. By induction on the derivation of $\Gamma \longrightarrow \Omega$.

- Case

$$
\longrightarrow \cdot \longrightarrow \mathrm{ID}
$$

In this case, $\Omega=\Gamma=$.
By definition, $[\cdot] \cdot=\cdot$, which gives us the conclusion.

- Case $\frac{\Gamma^{\prime} \longrightarrow \Omega^{\prime} \quad\left[\Omega^{\prime}\right] A_{\Gamma}=\left[\Omega^{\prime}\right] A}{\Gamma^{\prime}, x: A_{\Gamma} \longrightarrow \Omega^{\prime}, x: A} \longrightarrow \operatorname{Var}$

$$
\begin{aligned}
{\left[\Omega^{\prime}\right] \Gamma^{\prime} } & =\left[\Omega^{\prime}\right] \Omega^{\prime} & & \text { By i.h. } \\
{\left[\Omega^{\prime}\right] A_{\Gamma} } & =\left[\Omega^{\prime}\right] A & & \text { Premise }
\end{aligned}
$$

$$
\begin{aligned}
{[\Omega] \Gamma } & =\left[\Omega^{\prime}, x: A\right]\left(\Gamma^{\prime}, x: A_{\Gamma}\right) \\
& =\left[\Omega^{\prime}\right] \Gamma^{\prime}, x:\left[\Omega^{\prime}\right] A_{\Gamma}
\end{aligned}
$$

Expanding Ω and Γ By definition of context application (using $\left[\Omega^{\prime}\right] A_{\Gamma}=\left[\Omega^{\prime}\right] A$)
$=\left[\Omega^{\prime}\right] \Omega^{\prime}, x:\left[\Omega^{\prime}\right] A \quad$ By above equalities
$=[\Omega] \Omega$
By definition of context application

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Omega^{\prime}}{\Gamma^{\prime}, \alpha \longrightarrow \Omega^{\prime}, \alpha} \longrightarrow \text { Uvar }
$$

$[\Omega] \Gamma=\left[\Omega^{\prime}, \alpha\right]\left(\Gamma^{\prime}, \alpha\right) \quad$ Expanding Ω and Γ
$=\left[\Omega^{\prime}\right] \Gamma^{\prime}, \alpha \quad$ By definition of context application
$=\left[\Omega^{\prime}\right] \Omega^{\prime}, \alpha \quad$ By i.h.
$=\left[\Omega^{\prime}, \alpha\right]\left(\Omega^{\prime}, \alpha\right) \quad$ By definition of context application
$=[\Omega] \Omega \quad$ By $\Omega=\left(\Omega^{\prime}, \alpha\right)$

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Omega^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Omega^{\prime}, \hat{\alpha}} \longrightarrow \text { Marker }
$$

Similar to the \longrightarrow Uvar case.

- Case

$$
\begin{aligned}
{[\Omega] \Gamma } & =\left[\Omega^{\prime}, \hat{\alpha}=\tau\right] \Gamma & & \text { Expanding } \Omega \\
& =\left[\Omega^{\prime}\right] \Gamma & & \text { By } \hat{\alpha} \notin \operatorname{dom}(\Gamma) \\
& =\left[\Omega^{\prime}\right] \Omega^{\prime} & & \text { By i.h. } \\
& =\left[\Omega^{\prime}, \hat{\alpha}=\tau\right]\left(\Omega^{\prime}, \hat{\alpha}=\tau\right) & & \text { By definition of context application } \\
& =[\Omega] \Omega & & \text { By } \Omega=\left(\Omega^{\prime}, \hat{\alpha}=\tau\right)
\end{aligned}
$$

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Omega^{\prime} \quad\left[\Omega^{\prime}\right] \tau_{\Gamma}=\left[\Omega^{\prime}\right] \tau}{\Gamma^{\prime}, \hat{\alpha}=\tau_{\Gamma} \longrightarrow \Omega^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { Solved }
$$

$[\Omega] \Gamma=\left[\Omega^{\prime}, \hat{\alpha}=\tau\right]\left(\Gamma^{\prime}, \hat{\alpha}=\tau_{\Gamma}\right)$
$=\left[\Omega^{\prime}\right] \Gamma^{\prime}$
$=\left[\Omega^{\prime}\right] \Omega^{\prime}$
$=\left[\Omega^{\prime}, \hat{\alpha}=\tau\right]\left(\Omega^{\prime}, \hat{\alpha}=\tau\right)$
$=[\Omega] \Omega$

Expanding Ω and Γ
By definition of context application By i.h.
By definition of context application

$$
\operatorname{By} \Omega=\left(\Omega^{\prime}, \hat{\alpha}=\tau\right)
$$

- Case

$$
\frac{\Gamma^{\prime} \longrightarrow \Omega^{\prime}}{\Gamma^{\prime}, \hat{\alpha} \longrightarrow \Omega^{\prime}, \hat{\alpha}=\tau} \longrightarrow \text { Solve }
$$

$$
\begin{aligned}
{[\Omega] \Gamma } & =\left[\Omega^{\prime}, \hat{\alpha}=\tau\right]\left(\Gamma^{\prime}, \hat{\alpha}\right) & & \text { Expanding } \Omega \text { and } \Gamma \\
& =\left[\Omega^{\prime}\right] \Gamma^{\prime} & & \text { By definition of context application } \\
& =\left[\Omega^{\prime}\right] \Omega^{\prime} & & \text { By i.h. } \\
& =\left[\Omega^{\prime}, \hat{\alpha}=\tau\right]\left(\Omega^{\prime}, \hat{\alpha}=\tau\right) & & \text { By definition of context application } \\
& =[\Omega] \Omega & & \text { By } \Omega=\left(\Omega^{\prime}, \hat{\alpha}=\tau\right)
\end{aligned}
$$

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma, \hat{\alpha} \longrightarrow \Delta, \hat{\alpha}} \longrightarrow \text { Unsolved }
$$

Impossible: Ω cannot have the form $\Delta, \hat{\alpha}$.

- Case

$$
\frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \hat{\alpha}} \longrightarrow \mathrm{Add}
$$

Impossible: Ω cannot have the form $\Delta, \hat{\alpha}$.
Lemma 50 (Finishing Types).
If $\Omega \vdash A$ and $\Omega \longrightarrow \Omega^{\prime}$ then $[\Omega] A=\left[\Omega^{\prime}\right] A$.
Proof. By Lemma 18 (Substitution Extension Invariance), $\left[\Omega^{\prime}\right] A=\left[\Omega^{\prime}\right][\Omega]$ A.
If $\operatorname{FEV}(C)=\emptyset$ then $\left[\Omega^{\prime}\right] C=C$.
Since Ω is complete and $\Omega \vdash A$, we have $\operatorname{FEV}([\Omega] A)=\emptyset$. Therefore $\left[\Omega^{\prime}\right][\Omega] A=[\Omega] A$.
Lemma 51 (Finishing Completions).
If $\Omega \longrightarrow \Omega^{\prime}$ then $[\Omega] \Omega=\left[\Omega^{\prime}\right] \Omega^{\prime}$.
Proof. By induction on the given derivation of $\Omega \longrightarrow \Omega^{\prime}$.
Only cases $\longrightarrow I D, \longrightarrow$ Var, \longrightarrow Uvar, \longrightarrow Solved, \longrightarrow Marker and \longrightarrow AddSolved are possible. In all of these cases, we use the i.h. and the definition of context application; in cases \longrightarrow Var and \longrightarrow Solved, we also use the equality in the premise of the respective rule.

Lemma 52 (Confluence of Completeness).
If $\Delta_{1} \longrightarrow \Omega$ and $\Delta_{2} \longrightarrow \Omega$ then $[\Omega] \Delta_{1}=[\Omega] \Delta_{2}$.
Proof.

$$
\begin{array}{cl}
\Delta_{1} \longrightarrow \Omega & \text { Given } \\
{[\Omega] \Delta_{1}=[\Omega] \Omega} & \text { By Lemma } 49 \text { Stability of Complete Contexts } \\
\Delta_{2} \longrightarrow \Omega & \text { Given } \\
{[\Omega] \Delta_{2}=[\Omega] \Omega} & \text { By Lemma } 49 \text { Stability of Complete Contexts } \\
{[\Omega] \Delta_{1}=[\Omega] \Delta_{2}} & \text { By transitivity of equality }
\end{array}
$$

$\mathbf{H}^{\prime} .2$ Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given $\Delta \longrightarrow \Omega$ and $[\Gamma] \mathrm{B}=\mathrm{B}$ and $\hat{\alpha} \notin \mathrm{FV}(\mathrm{B}):$
(1) If $\Gamma \vdash \hat{\alpha}: \leqq \mathrm{B} \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B}$.
(2) If $\Gamma \vdash \mathrm{B} \leqq: \hat{\alpha} \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] \mathrm{B} \leq[\Omega] \hat{\alpha}$.

Proof. By induction on the given instantiation derivation.

- Case

$$
\begin{equation*}
\frac{\Gamma_{0} \vdash \tau}{\underbrace{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}}_{\Gamma} \vdash \hat{\alpha}: \leqq \tau \dashv \underbrace{\Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}}_{\Delta}} \text { InstLSolve } \tag{1}
\end{equation*}
$$

In this case $[\Delta] \hat{\alpha}=[\Delta] \tau$. By reflexivity of subtyping (Lemma 3 Reflexivity of Declarative Subtyping) $),[\Omega] \Delta \vdash[\Delta] \hat{\alpha} \leq[\Delta] \tau$.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\alpha}: \leq \hat{\beta} \dashv \underbrace{\Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]}_{\Delta}} \text { InstLReach }
$$

We have $\Delta=\Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]$. Therefore $[\Delta] \hat{\alpha}=\hat{\alpha}=[\Delta] \hat{\beta}$.
By reflexivity of subtyping (Lemma 3 Reflexivity of Declarative Subtyping)), $[\Omega] \Delta \vdash[\Delta] \hat{\alpha} \leq$ $[\Delta] \hat{\beta}$.

- Case

$$
\begin{aligned}
& \frac{\overbrace{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]}^{\Gamma_{1}} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leqq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq A_{1} \rightarrow A_{2} \dashv \Delta} \text { InstLArr } \\
& {[\Gamma]\left(A_{1} \rightarrow A_{2}\right)=\left[\Gamma_{1}\right]\left(A_{1} \rightarrow A_{2}\right) \quad \hat{\alpha} \notin \mathrm{FV}\left(A_{1} \rightarrow A_{2}\right)} \\
& \hat{\alpha}_{1}, \hat{\alpha}_{2} \notin \operatorname{FV}\left(A_{1}\right) \cup \operatorname{FV}\left(A_{2}\right) \\
& \hat{\alpha}_{1}, \hat{\alpha}_{2} \text { fresh } \\
& \Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta \\
& \text { Subderivation } \\
& \Gamma^{\prime} \longrightarrow \Delta \quad \text { By Lemma } 32 \text { Instantiation Extension) } \\
& \Delta \longrightarrow \Omega \quad \text { Given } \\
& \Gamma^{\prime} \longrightarrow \Omega \quad \text { By Lemma } 21 \text { Transitivity } \\
& \Gamma_{1} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Gamma^{\prime} \\
& {[\Omega] \Delta \vdash[\Omega] A_{1} \leq[\Omega] \hat{\alpha}_{1}} \\
& \Gamma^{\prime} \vdash \hat{\alpha}_{2}: \leq\left[\Gamma^{\prime}\right] A_{2} \dashv \Delta \\
& {[\Omega] \Delta \vdash[\Omega]\left[\Gamma^{\prime}\right] \hat{\alpha}_{2} \leq[\Omega]\left[\Gamma^{\prime}\right] A_{2}} \\
& \Gamma^{\prime} \longrightarrow \Omega \\
& {[\Omega] \Delta \vdash[\Omega] \hat{\alpha}_{2} \leq[\Omega] A_{2}} \\
& {[\Omega] \Delta \vdash[\Omega]\left(\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right) \leq[\Omega] A_{1} \rightarrow[\Omega] A_{2} \quad B y \leq \rightarrow \text { and definition of substitution }}
\end{aligned}
$$

Since $\left(\hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right) \in \Gamma_{1}$ and $\Gamma_{1} \longrightarrow \Delta$, we know that $[\Omega] \hat{\alpha}=[\Omega]\left(\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right)$.
Therefore $[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq[\Omega]\left(\mathcal{A}_{1} \rightarrow A_{2}\right)$.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \beta \vdash \hat{\alpha}: \leqq B_{0} \dashv \Delta, \beta, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq \forall \beta . B_{0} \dashv \Delta} \text { InstLAllR }
$$

We have $\Delta \longrightarrow \Omega$ and $\left[\Gamma[\hat{\alpha}]\left(\forall \beta, B_{0}\right)=\forall \beta\right.$. B_{0} and $\hat{\alpha} \notin F V\left(\forall \beta . B_{0}\right)$.
Hence $\hat{\alpha} \notin \mathrm{FV}\left(\mathrm{B}_{0}\right)$ and by definition, $[\Gamma[\hat{\alpha}], \beta] \mathrm{B}_{0}=\mathrm{B}_{0}$.
By Lemma 48 (Filling Completes), $\Delta, \beta, \Delta^{\prime} \longrightarrow \Omega, \beta,\left|\Delta^{\prime}\right|$.
By induction, $\left[\Omega, \beta,\left|\Delta^{\prime}\right|\right]\left(\Delta, \beta, \Delta^{\prime}\right) \vdash\left[\Omega, \beta,\left|\Delta^{\prime}\right|\right] \hat{\alpha} \leq\left[\Omega, \beta,\left|\Delta^{\prime}\right|\right] \mathrm{B}_{0}$.
Each free variable in $\hat{\alpha}$ and B_{0} is declared in (Ω, β), so $\Omega, \beta,\left|\Delta^{\prime}\right|$ behaves as $[\Omega, \beta]$ on $\hat{\alpha}$ and on B_{B}, yielding $\left.\left[\Omega, \beta, \mid \Delta^{\prime}\right]\right]\left(\Delta, \beta, \Delta^{\prime}\right) \vdash[\Omega, \beta] \hat{\alpha} \leq[\Omega, \beta] \mathrm{B}_{0}$.
By Lemma 46 (Context Partitioning) and thinning, $[\Omega, \beta](\Delta, \beta) \vdash[\Omega, \beta] \hat{\alpha} \leq[\Omega, \beta] B_{0}$.
By the definition of context application, $[\Omega] \Delta, \beta \vdash[\Omega, \beta] \hat{\alpha} \leq[\Omega, \beta] \mathrm{B}_{0}$.
By the definition of substitution, $[\Omega] \Delta, \beta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B}_{0}$.
Since $\hat{\alpha}$ is declared to the left of β, we have $\beta \notin \mathrm{FV}([\Omega] \hat{\alpha})$.
Applying rule $\leq \forall \mathrm{L}$ gives $[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq \forall \beta$. $[\Omega] \mathrm{B}_{0}$.

- Case

$$
\underbrace{\frac{\Gamma_{0} \vdash \tau}{\Gamma_{0}, \hat{\alpha}, \Gamma_{1}} \vdash \tau \leqq: \hat{\alpha} \dashv \underbrace{\Gamma_{0}, \hat{\alpha}=\tau, \Gamma_{1}}_{\Gamma^{\prime}}}_{\Gamma} \text { InstRSolve }
$$

Similar to the InstLSolve case.

- Case

$$
\overline{\Gamma[\hat{\alpha}][\hat{\beta}] \vdash \hat{\beta} \leqq: \hat{\alpha} \dashv \underbrace{\Gamma[\hat{\alpha}][\hat{\beta}=\hat{\alpha}]}_{\Gamma^{\prime}}} \text { InstRReach }
$$

Similar to the InstLReach case.

- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash \hat{\alpha}_{1}: \leqq A_{1} \dashv \Gamma^{\prime} \quad \Gamma^{\prime} \vdash\left[\Gamma^{\prime}\right] A_{2} \leqq: \hat{\alpha}_{2} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash A_{1} \rightarrow A_{2} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRArr }
$$

Similar to the InstLArr case.

- Case

$$
\frac{\Gamma[\hat{\alpha}], \wedge_{\hat{\beta}}, \hat{\beta} \vdash[\hat{\beta} / \beta] \mathrm{B}_{0} \leqq: \hat{\alpha} \dashv \Delta, \wedge_{\hat{\beta}}, \Delta^{\prime}}{\Gamma[\hat{\alpha}] \vdash \forall \beta \cdot \mathrm{B}_{0} \leqq: \hat{\alpha} \dashv \Delta} \text { InstRAllL }
$$

$$
\begin{aligned}
{[\Gamma[\hat{\alpha}]]\left(\forall \beta . \mathrm{B}_{0}\right) } & =\forall \beta . \mathrm{B}_{0} & & \text { Given } \\
{[\Gamma[\hat{\alpha}]] \mathrm{B}_{0} } & =\mathrm{B}_{0} & & \\
{[\Gamma[\hat{\alpha}], \hat{\beta}, \hat{\beta}][\hat{\beta} / \beta] \mathrm{B}_{0} } & =[\hat{\beta} / \beta] \mathrm{B}_{0} & & \\
\Delta & \longrightarrow \Omega & & \text { Given } \\
\Delta, \wedge_{\hat{\beta}}, \Delta^{\prime} & \longrightarrow \Omega, \wedge_{\hat{\beta}},\left|\Delta^{\prime}\right| & & \text { By Lemma } 48 \text { (Filling Completes) } \\
\hat{\alpha} & \notin \mathrm{FV}\left(\forall \beta . \mathrm{B}_{0}\right) & & \text { Given } \\
\hat{\alpha} & \notin \mathrm{FV}\left(\mathrm{~B}_{0}\right) & & \text { By definition of } \mathrm{FV}(-)
\end{aligned}
$$

$$
\begin{array}{cll}
\Gamma[\hat{\alpha}], \hat{\beta}, \hat{\beta} \vdash[\hat{\beta} / \beta] \mathrm{B}_{0} \leqq: \hat{\alpha} \dashv \Delta, \hat{\beta}, \Delta^{\prime} & \text { Subderivation } \\
{\left[\Omega,{ }_{\hat{\beta}},\left|\Delta^{\prime}\right|\right]\left(\Delta, \hat{\beta}, \Delta^{\prime}\right) \vdash\left[\Omega, \hat{\beta}^{\prime},\left|\Delta^{\prime}\right| \mid[\hat{\beta} / \beta] \mathrm{B}_{0} \leq\left[\Omega,{ }_{\hat{\beta}},\left|\Delta^{\prime}\right|\right] \hat{\alpha}\right.} & \text { By i.h. } \\
\Gamma[\hat{\alpha}], \hat{\beta}, \widehat{\beta} \longrightarrow \Delta, \Delta^{\prime} & \text { By Lemma } 32 \text { (Instantiation Extension) }
\end{array}
$$

By Lemma 16 Declaration Order Preservation, $\hat{\alpha}$ is declared before $\hat{\beta}$, that is, in Ω.
Thus, $\left[\Omega, \hat{\hat{\beta}},\left|\Delta^{\prime}\right| \mid \hat{\alpha}=[\Omega] \hat{\alpha}\right.$.
By Lemma 23 (Evar Input), we know that Δ^{\prime} is soft, so by Lemma 47 Softness Goes Away), $\left[\Omega, \wedge_{\hat{\beta}},\left|\Delta^{\prime}\right|\right]\left(\Delta, \hat{\beta}_{\hat{\beta}}, \Delta^{\prime}\right)=\left[\Omega, \hat{\beta}^{\prime}\right]\left(\Delta, \hat{\beta}^{\prime}\right)=[\Omega] \Delta$.
Applying these equalities to the derivation above gives

$$
[\Omega] \Delta \vdash\left[\Omega, \hat{\beta},\left|\Delta^{\prime}\right|\right][\hat{\beta} / \beta] \mathrm{B}_{0} \leq[\Omega] \hat{\alpha}
$$

By distributivity of substitution,

$$
[\Omega] \Delta \vdash\left[\left[\Omega, \hat{\beta},\left|\Delta^{\prime}\right|\right] \hat{\beta} / \beta\right]\left[\Omega,{ }_{\hat{\beta}},\left|\Delta^{\prime}\right|\right] \mathrm{B}_{0} \leq[\Omega] \hat{\alpha}
$$

Furthermore, $\left[\Omega, \hat{\beta},\left|\Delta^{\prime}\right|\right] \mathrm{B}_{0}=[\Omega] \mathrm{B}_{0}$, since B_{0} 's free variables are either β or in Ω, giving

$$
[\Omega] \Delta \vdash\left[\left[\Omega, \wedge_{\hat{\beta}},\left|\Delta^{\prime}\right|\right] \hat{\beta} / \beta\right][\Omega] \mathrm{B}_{0} \leq[\Omega] \hat{\alpha}
$$

Now apply $\leq \forall \mathrm{L}$ and the definition of substitution to get $[\Omega] \Delta \vdash[\Omega]\left(\forall \beta . \mathrm{B}_{0}\right) \leq[\Omega] \hat{\alpha}$.

$\mathbf{H}^{\prime} .3$ Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If $\Gamma \vdash \mathrm{A}<: \mathrm{B} \dashv \Delta$ where $[\Gamma] \mathrm{A}=\mathrm{A}$ and $[\Gamma] \mathrm{B}=\mathrm{B}$ and $\Delta \longrightarrow \Omega$ then $[\Omega] \Delta \vdash[\Omega] \mathrm{A} \leq[\Omega] \mathrm{B}$.
Proof. By induction on the derivation of $\Gamma \vdash A<: \mathrm{B} \dashv \Delta$.

- Case

$\alpha \in \Delta \quad \Delta=\Gamma^{\prime}[\alpha]$
$\alpha \in[\Omega] \Delta \quad$ Follows from definition of context application
$[\Omega] \Delta \vdash \alpha \leq \alpha \quad$ By $\leq \operatorname{Var}$
$[\Omega] \Delta \vdash[\Omega] \alpha \leq[\Omega] \alpha \quad$ By def. of substitution
- Case < : Unit: Similar to the <:Var case, applying rule \leq Unit instead of \leq Var.
- Case
$\overline{\Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}} \vdash \hat{\alpha}<: \hat{\alpha} \dashv \Gamma_{\mathrm{L}}, \hat{\alpha}, \Gamma_{\mathrm{R}}}<:$ Exvar
$[\Omega] \hat{\alpha}$ defined Follows from definition of context application
$[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \quad$ Assumption that $[\Omega] \Delta$ is well-formed
$[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \hat{\alpha} \quad$ By Lemma 3 Reflexivity of Declarative Subtyping)
- Case

$$
\begin{aligned}
& \frac{\Gamma \vdash B_{1}<: A_{1} \dashv \Theta \quad \Theta \vdash[\Theta] A_{2}<:[\Theta] B_{2} \dashv \Delta}{\Gamma \vdash \underbrace{A_{1} \rightarrow A_{2}}_{A}<: \underbrace{B_{1} \rightarrow B_{2}}_{B} \dashv \Delta}<: \rightarrow \\
& \Gamma \vdash B_{1}<: A_{1} \dashv \Theta \quad \text { Subderivation } \\
& \Delta \longrightarrow \Omega \\
& \Theta \longrightarrow \Omega \\
& {[\Omega] \Theta \vdash[\Omega] B_{1} \leq[\Omega] A_{1}} \\
& {[\Omega] \Delta \vdash[\Omega] B_{1} \leq[\Omega] A_{1}} \\
& \Theta \vdash[\Theta] A_{2}<:[\Theta] B_{2} \dashv \Delta \\
& {[\Omega] \Delta \vdash[\Omega][\Theta] A_{2} \leq[\Omega][\Theta] \mathrm{B}_{2}} \\
& {[\Omega][\Theta] A_{2}=[\Omega] A_{2}} \\
& {[\Omega][\Theta] \mathrm{B}_{2}=[\Omega] \mathrm{B}_{2}} \\
& {[\Omega] \Delta \vdash[\Omega] A_{2} \leq[\Omega] B_{2}} \\
& \text { Given } \\
& \text { By Lemma } 21 \text { Transitivity) } \\
& \text { By i.h. } \\
& \text { By Lemma } 52 \text { Confluence of Completeness, } \\
& \text { Subderivation } \\
& \text { By i.h. } \\
& \text { By Lemma } 18 \text { Substitution Extension Invariance } \\
& \text { By Lemma } \overline{18} \text { Substitution Extension Invariance } \\
& \text { Above equations } \\
& {[\Omega] \Delta \vdash\left([\Omega] A_{1}\right) \rightarrow\left([\Omega] A_{2}\right) \leq\left([\Omega] \mathrm{B}_{1}\right) \rightarrow\left([\Omega] \mathrm{B}_{2}\right) \quad \mathrm{By} \leq \rightarrow} \\
& {[\Omega] \Delta \vdash[\Omega]\left(A_{1} \rightarrow A_{2}\right) \leq[\Omega]\left(B_{1} \rightarrow B_{2}\right)} \\
& \text { By def. of substitution }
\end{aligned}
$$

- Case

$$
\frac{\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A_{0}<: B \dashv \Delta, \Delta \hat{\alpha}, \Theta}{\Gamma \vdash \forall \alpha . A_{0}<: B \dashv \Delta}<: \forall \mathrm{L}
$$

Let $\Omega^{\prime}=\left(\Omega,\left|{ }_{\hat{\alpha}}, \Theta\right|\right)$.
$\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A_{0}<: B \dashv \Delta, \hat{\alpha}, \Theta \quad$ Subderivation
$\Delta \longrightarrow \Omega$
$(\Delta,>\hat{\alpha}, \Theta) \longrightarrow \Omega^{\prime}$
$\left[\Omega^{\prime}\right](\Delta, \hat{\alpha}, \Theta) \vdash\left[\Omega^{\prime}\right][\hat{\alpha} / \alpha] A_{0} \leq\left[\Omega^{\prime}\right] B$
$\left[\Omega^{\prime}\right](\Delta, \hat{\alpha}, \Theta) \vdash\left[\Omega^{\prime}\right][\hat{\alpha} / \alpha] A_{0} \leq[\Omega] B$
$\left[\Omega^{\prime}\right](\Delta, \hat{\alpha}, \Theta) \vdash\left[\left[\Omega^{\prime}\right] \hat{\alpha} / \alpha\right]\left[\Omega^{\prime}\right] A_{0} \leq[\Omega] B$
$\Gamma, \hat{\alpha}, \hat{\alpha} \vdash \hat{\alpha}$
$\Gamma, \hat{\alpha}, \hat{\alpha} \longrightarrow \Delta, \hat{\alpha}, \Theta$
$\Delta, \stackrel{\alpha}{\alpha}, \Theta \vdash \hat{\alpha}$
$(\Delta, \downarrow \hat{\alpha}, \Theta) \longrightarrow \Omega^{\prime}$
$\left[\Omega^{\prime}\right] \Omega^{\prime} \vdash\left[\Omega^{\prime}\right] \hat{\alpha}$
$\left[\Omega^{\prime}\right](\Delta, \stackrel{\alpha}{\alpha}, \Theta) \vdash\left[\Omega^{\prime}\right] \hat{\alpha}$
$\left[\Omega^{\prime}\right](\Delta, \hat{\alpha}, \Theta) \vdash \forall \alpha .\left[\Omega^{\prime}\right] A_{0} \leq[\Omega] \mathrm{B}$
$\left[\Omega^{\prime}\right](\Delta, \hat{\alpha}, \Theta) \vdash \forall \alpha .[\Omega, \alpha] A_{0} \leq[\Omega] \mathrm{B}$
$[\Omega] \Delta \vdash \forall \alpha .[\Omega, \alpha] A_{0} \leq[\Omega] B$
$[\Omega] \Delta \vdash \forall \alpha .[\Omega] A_{0} \leq[\Omega] \mathrm{B}$
$[\Omega] \Delta \vdash[\Omega]\left(\forall \alpha . A_{0}\right) \leq[\Omega] B$

Given
By Lemma 48 (Filling Completes)
By i.h.
By $\left[\Omega^{\prime}\right]$ B $=[\Omega]$ B (Lemma 45 (Substitution Stability) $)$
By distributivity of substitution
By EvarWF
By Lemma 33 Subtyping Extension)
By Lemma 25 (Extension Weakening)
Above
By Lemma 44 (Substitution for Well-Formedness)
By Lemma 49 Stability of Complete Contexts)
By $\leq \forall \mathrm{L}$
By Lemma 45 (Substitution Stability)
By Lemma $\overline{46}$ (Context Partitioning) and thinning
By def. of substitution
By def. of substitution

- Case

$$
\frac{\Gamma, \alpha \vdash A<: \mathrm{B}_{0} \dashv \Delta, \alpha, \Theta}{\Gamma \vdash A<: \forall \alpha . \mathrm{B}_{0} \dashv \Delta}<: \forall \mathrm{R}
$$

$$
\begin{array}{rlrl}
\Gamma, \alpha \vdash A<: \mathrm{B}_{0} \dashv \Delta, \alpha, \Theta & \text { Subderivation } \\
\text { Let } \Omega_{Z}=|\Theta| . & \\
\text { Let } \Omega^{\prime} & =\left(\Omega, \alpha, \Omega_{Z}\right) . & \\
(\Delta, \alpha, \Theta) \longrightarrow \Omega^{\prime} & \text { By Lemma } 48 \text { Filling Completes } \\
{\left[\Omega^{\prime}\right](\Delta, \alpha, \Theta) \vdash\left[\Omega^{\prime}\right] A \leq\left[\Omega^{\prime}\right] \mathrm{B}_{0}} & \text { By i.h. } \\
{[\Omega, \alpha](\Delta, \alpha) \vdash[\Omega, \alpha] A \leq[\Omega, \alpha] \mathrm{B}_{0}} & \text { By Lemma } 45 \text { Substitution Stability) } \\
{[\Omega, \alpha](\Delta, \alpha) \vdash[\Omega] A \leq[\Omega] \mathrm{B}_{0}} & \text { By def. of substitution } \\
[\Omega] \Delta \vdash[\Omega] A \leq \forall \alpha][\Omega] \mathrm{B}_{0} & \text { By } \leq \forall \mathrm{R} \\
{[\Omega] \Delta \vdash[\Omega] A \leq[\Omega]\left(\forall \alpha . \mathrm{B}_{0}\right)} & \text { By def. of substitution }
\end{array}
$$

- Case

$$
\begin{aligned}
& \text { Case } \frac{\hat{\alpha} \notin \mathrm{FV}(\mathrm{~B})}{\underbrace{\Gamma}_{\Gamma_{0}[\hat{\alpha}]} \vdash \hat{\alpha}<: \mathrm{B} \dashv \Delta} \quad \Gamma \vdash \hat{\alpha}: \leqq \mathrm{B} \dashv \Delta \\
& \Gamma \vdash \text { : InstantiateL } \\
& {[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B} } \text { Subderivation } \\
& \text { By Theorem } 10
\end{aligned}
$$

- Case <: InstantiateR: Similar to the case for < : InstantiateL.

Corollary 53 (Soundness, Pretty Version). If $\Psi \vdash A<: B \dashv \Delta$, then $\Psi \vdash A \leq B$.
Proof. By reflexivity (Lemma 20 (Reflexivity)), $\Psi \longrightarrow \Psi$.
Since Ψ has no existential variables, it is a complete context Ω.
By Theorem $11,[\Psi] \Psi \vdash[\Psi] A \leq[\Psi]$ B.
Since Ψ has no existential variables, $[\Psi] \Psi=\Psi$, and $[\Psi] A=A$, and $[\Psi] B=B$.
Therefore $\Psi \vdash A \leq B$.

I' Typing Extension

Lemma 54 (Typing Extension).
If $\Gamma \vdash e \Leftarrow A \dashv \Delta$ or $\Gamma \vdash e \Rightarrow A \dashv \Delta$ or $\Gamma \vdash A \bullet e \Rightarrow C \dashv \Delta$ then $\Gamma \longrightarrow \Delta$.
Proof. By induction on the given derivation.

- Cases Var, $11,11 \Rightarrow$:

Since $\Delta=\Gamma$, the result follows by Lemma 20 Reflexivity).

- Case

$$
\frac{\Gamma \vdash e \Rightarrow \mathrm{~B} \dashv \Theta \quad \Theta \vdash[\Theta] \mathrm{B}<:[\Theta] A \dashv \Delta}{\Gamma \vdash e \Leftarrow \mathrm{~A} \dashv \mathrm{~A}} \mathrm{Su}
$$

$\Gamma \longrightarrow \Theta \quad$ By i.h.
$\Theta \longrightarrow \Delta \quad$ By Lemma 33 (Subtyping Extension)
$\Gamma \longrightarrow \Delta \quad$ By Lemma 21 Transitivity

- Case

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash e \Leftarrow A \dashv \Delta}{\Gamma \vdash(e: A) \Rightarrow A \dashv \Delta} \text { Anno }
$$

$\Gamma \longrightarrow \Delta \quad$ By i.h.

- Case

$$
\begin{aligned}
\text { Case } & \frac{\Gamma, \alpha \vdash e \Leftarrow A_{0} \dashv \Delta, \alpha, \Theta}{\Gamma \vdash e \Leftarrow \forall \alpha . A_{0} \dashv \Delta} \forall I \\
& \Gamma, \alpha \longrightarrow \Delta, \alpha, \Theta \quad \text { By i.h. } \\
\Gamma \longrightarrow \Delta & \text { By Lemma } 24 \text { Extension Order) (i) }
\end{aligned}
$$

- Case $\frac{\Gamma, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A_{0} \cdot e \Rightarrow C \dashv \Delta}{\Gamma \vdash \forall \alpha . A_{0} \cdot e \Longrightarrow C \dashv \Delta} \forall A p p$

$$
\begin{array}{ll}
\Gamma, \hat{\alpha} \longrightarrow \Delta & \text { By i.h. } \\
\Gamma \longrightarrow \Gamma, \hat{\alpha} & \text { By } \longrightarrow \text { Add } \\
\Gamma \longrightarrow \Delta & \text { By Lemma 21 Transitivity) }
\end{array}
$$

- Case

$$
\frac{\Gamma, x: A_{1} \vdash e \Leftarrow A_{2} \dashv \Delta, x: A_{1}, \Theta}{\Gamma \vdash \lambda x \cdot e \Leftarrow A_{1} \rightarrow A_{2} \dashv \Delta} \rightarrow I
$$

$$
\Gamma, x: A_{1} \longrightarrow \Delta, x: A_{1}, \Theta \quad \text { By i.h. }
$$

-

$$
\Gamma \longrightarrow \Delta \quad \text { By Lemma } 24 \text { Extension Order (v) }
$$

- Case

$$
\frac{\Gamma \vdash e_{1} \Rightarrow \mathrm{~B} \dashv \Theta \quad \Theta \vdash[\Theta] \mathrm{B} \bullet \mathrm{e}_{2} \Rightarrow \mathrm{~A} \dashv \Delta}{\Gamma \vdash \mathrm{e}_{1} \mathrm{e}_{2} \Rightarrow \mathrm{~A} \dashv \Delta} \rightarrow \mathrm{E}
$$

By the i.h. on each premise, then Lemma 21 (Transitivity).

- Case

$$
\begin{aligned}
& \frac{\Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \vdash e \Leftarrow \hat{\beta} \dashv \Delta, x: \hat{\alpha}, \Theta}{\Gamma \vdash \lambda x . e \Rightarrow \hat{\alpha} \rightarrow \hat{\beta} \dashv \Delta} \rightarrow I \Rightarrow \\
& \Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \longrightarrow \Delta, x: \hat{\alpha}, \Theta \\
& \Gamma, \hat{\alpha}, \hat{\beta} \longrightarrow \Delta \\
& \Gamma \longrightarrow \Gamma, \hat{\alpha}, \hat{\beta} \\
& \\
& \Gamma \longrightarrow \Delta \\
& \text { By Lemma } \\
& \Gamma \longrightarrow \text { By } \longrightarrow \text { Add (twice) } \\
&
\end{aligned}
$$

Hoser

- Case

$$
\frac{\Gamma \vdash e \Leftarrow A \dashv \Delta}{\Gamma \vdash A \rightarrow C \bullet e \Rightarrow C \dashv \Delta} \rightarrow A p p
$$

$\Gamma \longrightarrow \Delta \quad$ By i.h.

- Case

$$
\frac{\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash e \Leftarrow \hat{\alpha}_{1} \dashv \Delta}{\Gamma[\hat{\alpha}] \vdash \hat{\alpha} \bullet e \Rightarrow \hat{\alpha}_{2} \dashv \Delta} \hat{\alpha} A p p
$$

$\Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \longrightarrow \Delta \quad$ By i.h.
$\Gamma[\hat{\alpha}] \longrightarrow \Gamma\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \quad$ By Lemma 27 (Solved Variable Addition for Extension) then Lemma 29 (Parallel Admissibility) (ii)
$\Gamma \longrightarrow \Delta$
By Lemma 21 Transitivity

\mathbf{J}^{\prime} Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given $\Delta \longrightarrow \Omega$:
(i) If $\Gamma \vdash e \Leftarrow A \dashv \Delta$ then $[\Omega] \Delta \vdash e \Leftarrow[\Omega] A$.
(ii) If $\Gamma \vdash e \Rightarrow A \dashv \Delta$ then $[\Omega] \Delta \vdash e \Rightarrow[\Omega] A$.
(iii) If $\Gamma \vdash A \bullet e \Longrightarrow C \dashv \Delta$ then $[\Omega] \Delta \vdash[\Omega] A \bullet e \Longrightarrow[\Omega] C$.

Proof. By induction on the given algorithmic typing derivation.

- Case

$$
\frac{(x: A) \in \Gamma}{\Gamma \vdash x \Rightarrow A \dashv \Gamma} \mathrm{Var}
$$

$$
\begin{array}{rlrl}
& (x: A) \in \Gamma & & \text { Premise } \\
(x: A) \in \Delta & & \text { By } \Gamma=\Delta \\
\Delta \longrightarrow \Omega & & \text { Given } \\
& (x:[\Omega] A) \in[\Omega] \Gamma & & \text { By Lemma 42 Variable Preservation) } \\
& {[\Omega] \Gamma \vdash x \Rightarrow[\Omega] A} & & \text { By DeclVar }
\end{array}
$$

- Case

$$
\begin{aligned}
& \frac{\Gamma \vdash e \Rightarrow A \dashv \Theta \quad \Theta \vdash[\Theta] A<:[\Theta] B \dashv \Delta}{\Gamma \vdash e \Leftarrow B \dashv \Delta} \text { Sub } \\
& \Gamma \vdash e \Rightarrow A \dashv \Theta \quad \text { Subderivation } \\
& \Theta \vdash[\Theta] A<:[\Theta] B \dashv \Delta \quad \text { Subderivation } \\
& \Theta \longrightarrow \Delta \\
& \Delta \longrightarrow \Omega \quad \text { Given } \\
& \Theta \longrightarrow \Omega \quad \text { By Lemma } 21 \text { Transitivity } \\
& {[\Omega] \Theta \vdash e \Rightarrow[\Omega] A} \\
& {[\Omega] \Theta=[\Omega] \Delta} \\
& {[\Omega] \Delta \vdash e \Rightarrow[\Omega] A} \\
& \text { By i.h. } \\
& \text { By Lemma } 52 \text { Confluence of Completeness) } \\
& \Theta \vdash[\Theta] A<:[\Theta] B \dashv \Delta \\
& \text { Subderivation } \\
& {[\Omega] \Delta \vdash[\Omega][\Theta] A \leq[\Omega][\Theta] B \quad \text { By Theorem } 11} \\
& {[\Omega][\Theta] A=[\Omega] A} \\
& \text { By Lemma } 18 \text { (Substitution Extension Invariance) } \\
& {[\Omega][\Theta] \mathrm{B}=[\Omega] \mathrm{B}} \\
& \text { By Lemma } \overline{18} \text { (Substitution Extension Invariance) } \\
& {[\Omega] \Delta \vdash[\Omega] \mathrm{A} \leq[\Omega] \mathrm{B}} \\
& {[\Omega] \Delta \vdash e \Leftarrow[\Omega] \text { В }} \\
& \text { By above equalities } \\
& \text { By DeclSub }
\end{aligned}
$$

- Case
$\frac{\Gamma \vdash A \quad \Gamma \vdash e_{0} \Leftarrow A \dashv \Delta}{\Gamma \vdash\left(e_{0}: A\right) \Rightarrow A \dashv \Delta}$ Anno
$\Gamma \vdash e_{0} \Leftarrow A \dashv \Delta \quad$ Subderivation
$[\Omega] \Delta \vdash e_{0} \Leftarrow[\Omega] A$
$\Gamma \vdash A$
$\Gamma \longrightarrow \Delta$
$\Delta \longrightarrow \Omega$
$\Gamma \longrightarrow \Omega$
$\Omega \vdash A$
$[\Omega] \Omega \vdash[\Omega] A$
$[\Omega] \Delta=[\Omega] \Omega$
$[\Omega] \Delta \vdash[\Omega] A$
$[\Omega] \Delta \vdash\left(e_{0}:[\Omega] A\right) \Rightarrow[\Omega] A$
A contains no existential variables
$[\Omega] A=A$
$[\Omega] \Delta \vdash\left(e_{0}: A\right) \Rightarrow[\Omega] A$

By i.h.
Subderivation
By Lemma 54 (Typing Extension)
Given
By Lemma 21 Transitivity)
By Lemma 25 Extension Weakening,
By Lemma 44 Substitution for Well-Formedness)
By Lemma 49 (Stability of Complete Contexts)
By above equality
By DeclAnno
Assumption about source programs
From definition of substitution
By above equality

- Case
$\overline{\Gamma \vdash() \Leftarrow 1 \dashv \underbrace{\Gamma}_{\Delta}} 1$
$[\Omega] \Delta \vdash() \Leftarrow 1 \quad$ By Decl11
- $[\Omega] \Delta \vdash() \Leftarrow[\Omega] 1 \quad$ By definition of substitution
- Case
$\frac{\Gamma, x: A_{1} \vdash e_{0} \Leftarrow A_{2} \dashv \Delta, x: A_{1}, \Theta}{\Gamma \vdash \lambda x . e \Leftarrow A_{1} \rightarrow A_{2} \dashv \Delta} \rightarrow l$

$$
\begin{aligned}
& \begin{array}{rlrl}
\Delta & \longrightarrow \Omega & & \text { Given } \\
\Delta, x: A_{1} \longrightarrow \Omega, x:[\Omega] A_{1} & & \text { By } \longrightarrow \operatorname{Var}
\end{array} \\
& \Gamma, x: A_{1} \longrightarrow \Delta, x: A_{1}, \Theta \\
& \Theta \text { is soft } \\
& \text { By Lemma } 54 \text { Typing Extension, } \\
& \text { By Lemma } 24 \text { Extension Order) (v) } \\
& \text { (with } \Gamma_{\mathrm{R}}=\cdot, \text { which is soft) } \\
& \underbrace{\Delta, x: A_{1}, \Theta}_{\Delta^{\prime}} \longrightarrow \underbrace{\Omega, x:[\Omega] A_{1},|\Theta|}_{\Omega^{\prime}} \text { By Lemma 48 (Filling Completes) } \\
& \Gamma, x: A_{1} \vdash e_{0} \Leftarrow A_{2} \dashv \Delta^{\prime} \quad \text { Subderivation } \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime} \vdash e_{0} \Leftarrow\left[\Omega^{\prime}\right] A_{2} \quad \text { By i.h. }} \\
& {\left[\Omega^{\prime}\right] A_{2}=[\Omega] A_{2}} \\
& \text { By Lemma } 45 \text { Substitution Stability) } \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime} \vdash e_{0} \Leftarrow[\Omega] A_{2} \quad \text { By above equality }} \\
& \underbrace{\Delta, x: A_{1}, \Theta}_{\Delta^{\prime}} \longrightarrow \underbrace{\Omega, x:[\Omega] A_{1},|\Theta|}_{\Omega^{\prime}} \text { Above } \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime}=[\Omega] \Delta, x:[\Omega] A_{1} \quad \text { By Lemma } 47 \text { Softness Goes Away) }} \\
& {[\Omega] \Delta, x:[\Omega] A_{1} \vdash e_{0} \Leftarrow[\Omega] A_{2} \quad \text { By above equality }} \\
& {[\Omega] \Delta \vdash \lambda x . e_{0} \Leftarrow\left([\Omega] A_{1}\right) \rightarrow\left([\Omega] A_{2}\right) \quad \text { By Decl } \rightarrow 1} \\
& {[\Omega] \Delta \vdash \lambda x . e_{0} \Leftarrow[\Omega]\left(A_{1} \rightarrow A_{2}\right) \quad \text { By definition of substitution }}
\end{aligned}
$$

- Case

$$
\begin{aligned}
& \frac{\Gamma \vdash e_{1} \Rightarrow A_{1} \dashv \Theta \quad \Theta \vdash A_{1} \bullet e_{2} \Rightarrow A_{2} \dashv \Delta}{\Gamma \vdash e_{1} e_{2} \Rightarrow A_{2} \dashv \Delta} \rightarrow \mathrm{E} \\
& \Gamma \vdash e_{1} \Rightarrow A_{1} \dashv \Theta \quad \text { Subderivation } \\
& \Theta \vdash A_{1}<: B \dashv \Delta \quad \text { Subderivation } \\
& \Theta \longrightarrow \Delta \quad \text { By Lemma } 54 \text { Typing Extension } \\
& \Delta \longrightarrow \Omega \quad \text { Given } \\
& \Theta \longrightarrow \Omega \quad \text { By Lemma } 21 \text { Transitivity) } \\
& {[\Omega] \Theta \vdash e_{1} \Rightarrow[\Omega] A_{1} \quad \text { By i.h. }} \\
& {[\Omega] \Theta=[\Omega] \Delta \quad \text { By Lemma } 52 \text { Confluence of Completeness, }} \\
& {[\Omega] \Delta \vdash e_{1} \Rightarrow[\Omega] A_{1} \quad \text { By above equality }} \\
& \Theta \vdash A_{1} \bullet e_{2} \Longrightarrow A_{2} \dashv \Delta \quad \text { Subderivation } \\
& \Delta \longrightarrow \Omega \quad \text { Given } \\
& {[\Omega] \Delta \vdash[\Omega] A_{1} \bullet e_{2} \Rightarrow[\Omega] A_{2} \quad \text { By i.h. }} \\
& \text { - }[\Omega] \Delta \vdash e_{1} e_{2} \Rightarrow[\Omega] A_{2} \quad \text { By Decl } \rightarrow \mathrm{E}
\end{aligned}
$$

- Case

$$
\frac{\Gamma, \alpha \vdash e \Leftarrow A_{0} \dashv \Delta, \alpha, \Theta}{\Gamma \vdash e \Leftarrow \forall \alpha . A_{0} \dashv \Delta} \forall I
$$

(Similar to $\rightarrow \mathrm{I}$, using a different subpart of Lemma 24 (Extension Order) and applying Decl $\forall \mathrm{I}$; written out anyway.)

$$
\begin{aligned}
& \Delta \longrightarrow \Omega \quad \text { Given } \\
& \Delta, \alpha \longrightarrow \Omega, \alpha \\
& \Gamma, \alpha \longrightarrow \Delta, \alpha, \Theta \\
& \Theta \text { is soft } \\
& \underbrace{\Delta, \alpha, \Theta}_{\Delta^{\prime}} \longrightarrow \underbrace{\Omega, \alpha,|\Theta|}_{\Omega^{\prime}} \\
& \Gamma, \alpha \vdash e \Leftarrow A_{0} \dashv \Delta^{\prime} \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime} \vdash e \Leftarrow\left[\Omega^{\prime}\right] A_{0}} \\
& {\left[\Omega^{\prime}\right] A_{0}=[\Omega] A_{0}} \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime} \vdash e \Leftarrow[\Omega] A_{0}} \\
& \text { By } \longrightarrow \text { Uvar } \\
& \text { By Lemma } 54 \text { Typing Extension) } \\
& \text { By Lemma } 24 \text { Extension Order) (i) (with } \Gamma_{\mathrm{R}}=\cdot \text {, which is soft) } \\
& \text { By Lemma } \overline{\overline{48}} \text { (Filling Completes) } \\
& \underbrace{\Delta, \alpha, \Theta}_{\Delta^{\prime}} \longrightarrow \underbrace{\Omega, \alpha,|\Theta|}_{\Omega^{\prime}} \\
& \Theta \text { is soft } \\
& {\left[\Omega^{\prime}\right] \Delta^{\prime}=[\Omega] \Delta, \alpha} \\
& {[\Omega] \Delta, \alpha \vdash e \Leftarrow[\Omega] A_{0}} \\
& {[\Omega] \Delta \vdash e \Leftarrow \forall \alpha .[\Omega] A_{0}} \\
& {[\Omega] \Delta \vdash e \Leftarrow[\Omega]\left(\forall \alpha . A_{0}\right)} \\
& \text { By Decl } \forall \mathrm{I} \\
& \text { By definition of substitution }
\end{aligned}
$$

- Case

$$
\begin{array}{cl}
\frac{\Gamma, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A_{0} \cdot e \Rightarrow C \dashv \Delta}{\Gamma \vdash \forall \alpha . A_{0} \bullet e \Rightarrow C \dashv \Delta} \forall A p p & \\
\Gamma, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A_{0} \bullet e \Rightarrow C \dashv \Delta & \text { Subderivation } \\
\Delta \longrightarrow \Omega & \text { Given } \\
{[\Omega] \Delta \vdash[\Omega][\hat{\alpha} / \alpha] A_{0} \bullet e \Longrightarrow[\Omega] C} & \text { By i.h. }
\end{array}
$$

$[\Omega] \Delta \vdash[[\Omega] \hat{\alpha} / \alpha][\Omega] A_{0} \bullet e \Rightarrow[\Omega] C$
By distributivity of substitution
$\Gamma, \hat{\alpha} \longrightarrow \Delta$
$\Gamma, \hat{\alpha} \longrightarrow \Omega$
$\Gamma, \hat{\alpha} \vdash \hat{\alpha}$
$\Omega \vdash \hat{\alpha}$
$[\Omega] \Omega \vdash[\Omega] \hat{\alpha}$
$[\Omega] \Omega=[\Omega] \Delta$
$[\Omega] \Delta \vdash[\Omega] \hat{\alpha}$

| By Lemma | 54 | Typing Extension |
| :--- | :--- | :--- | :--- |
| By Lemma | 21 | Transitivity) |
| By EvarWF | | |

By Lemma 25 Extension Weakening,
By Lemma 44 Substitution for Well-Formedness)
By Lemma $\overline{49}$ (Stability of Complete Contexts)
By above equality
By Decl $\forall \mathrm{App}$
By definition of substitution

- Case

$$
\begin{array}{ll}
\frac{\Gamma \vdash e \Leftarrow \mathrm{~B} \dashv \Delta}{\Gamma \vdash \mathrm{~B} \rightarrow \mathrm{C} \bullet \mathrm{e} \Rightarrow \mathrm{C} \dashv \Delta} \rightarrow \mathrm{App} & \\
& \Gamma \vdash \mathrm{e} \Leftarrow \mathrm{~B} \dashv \Delta \\
\Delta \longrightarrow \Omega & \\
{[\Omega] \Delta \vdash \mathrm{e} \Leftarrow[\Omega] \mathrm{B}} & \text { Subderivation } \\
{[\Omega] \Delta \vdash([\Omega] \mathrm{B}) \rightarrow([\Omega] \mathrm{C}) \bullet \mathrm{e} \Rightarrow[\Omega] \mathrm{C}} & \text { By i.h. } \\
{[\Omega] \Delta \vdash[\Omega](\mathrm{B} \rightarrow \mathrm{C}) \bullet \mathrm{e} \Rightarrow[\Omega] \mathrm{C}} & \text { By definition of substitution }
\end{array}
$$

- Case
$\frac{\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right] \vdash e \Leftarrow \hat{\alpha}_{1} \dashv \Delta}{\underbrace{\Gamma_{0}[\hat{\alpha}]}_{\Gamma} \vdash \hat{\alpha} \bullet e \Rightarrow \hat{\alpha}_{2} \dashv \Delta} \hat{\alpha} \mathrm{App}$

$$
\begin{array}{rll}
\overbrace{\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]}^{\Gamma^{\prime}} \vdash e \Leftarrow \hat{\alpha}_{1} \dashv \Delta & & \text { Subderivation } \\
\Delta \longrightarrow \Omega & \text { Given } \\
{[\Omega] \Delta \vdash e \Leftarrow[\Omega] \hat{\alpha}_{1}} & \text { By i.h. } \\
{[\Omega] \Delta \vdash\left([\Omega] \hat{\alpha}_{1}\right) \rightarrow\left([\Omega] \hat{\alpha}_{2}\right) \bullet e \Rightarrow[\Omega] \hat{\alpha}_{2}} & \text { By Decl } \rightarrow \text { App } \\
\Gamma^{\prime} \longrightarrow \Delta & \text { By Lemma } 54 \text { Typing Extension }) \\
\Delta \longrightarrow \Omega & & \text { Given } \\
\Gamma^{\prime} \longrightarrow \Omega & & \text { By Lemma } 21 \text { Transitivity }) \\
{\left[\Gamma^{\prime}\right] \hat{\alpha}=\left[\Gamma^{\prime}\right]\left(\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right)} & \text { By definition of }\left[\Gamma^{\prime}\right](-) \\
{[\Omega]\left[\Gamma^{\prime}\right] \hat{\alpha}=[\Omega]\left[\Gamma^{\prime}\right]\left(\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right)} & \text { Applying } \Omega \text { to both sides } \\
{[\Omega] \hat{\alpha}=[\Omega]\left(\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right)} & \text { By Lemma 18 Substitution Extension Invariance }), \text { twice } \\
& =\left([\Omega] \hat{\alpha}_{1}\right) \rightarrow\left([\Omega] \hat{\alpha}_{2}\right) & \\
\text { By definition of substitution } \\
{[\Omega] \Delta \vdash[\Omega] \hat{\alpha} \bullet e \Rightarrow[\Omega] \hat{\alpha}_{2}} & & \text { By above equality }
\end{array}
$$

- Case

* $[\Omega] \Delta \vdash() \Rightarrow[\Omega] 1 \quad$ By Decl11 \Rightarrow and definition of substitution
- Case

$$
\frac{\Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \vdash e_{0} \Leftarrow \hat{\beta} \dashv \Delta, x: \hat{\alpha}, \Theta}{\Gamma \vdash \lambda x \cdot e_{0} \Rightarrow \hat{\alpha} \rightarrow \hat{\beta} \dashv \Delta} \rightarrow \Rightarrow
$$

Θ is soft By Lemma 24 Extension Order (v) (with $\Gamma_{R}=\cdot$, which is soft)
$\Gamma, \hat{\alpha}, \widehat{\beta} \longrightarrow \Delta$
$\Delta \longrightarrow \Omega$
$\Delta, x: \hat{\alpha} \longrightarrow \Omega, x:[\Omega] \hat{\alpha} \quad$ By $\longrightarrow \operatorname{Var}$
$\underbrace{\Delta, x: \hat{\alpha}, \Theta}_{\Delta^{\prime}} \longrightarrow \underbrace{\Omega, x:[\Omega] \hat{\alpha},|\Theta|}_{\Omega^{\prime}} \quad$ By Lemma 48 Filling Completes)
$\Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \vdash e \Leftarrow \hat{\beta} \dashv \Delta, x: \hat{\alpha}, \Theta$
$\left[\Omega^{\prime}\right] \Delta^{\prime} \vdash e_{0} \Leftarrow\left[\Omega^{\prime}\right] \hat{\beta} \quad$ By i.h.
$\left[\Omega^{\prime}\right] \hat{\beta}=[\Omega, x:[\Omega] \hat{\alpha}] \hat{\beta}$

$$
\text { By Lemma } 45 \text { Substitution Stability }
$$

$=[\Omega] \widehat{\beta}$
$\left[\Omega^{\prime}\right] \Delta^{\prime}=[\Omega, x:[\Omega] \hat{\alpha}](\Delta, x: \hat{\alpha})$
$=[\Omega] \Delta, x:[\Omega] \hat{\alpha}$
$[\Omega] \Delta, x:[\Omega] \hat{\alpha} \vdash e_{0} \Leftarrow[\Omega] \hat{\beta}$
$\Gamma, \hat{\alpha}, \widehat{\beta} \longrightarrow \Delta$
$\Gamma, \hat{\alpha}, \widehat{\beta} \longrightarrow \Omega$
$\Gamma, \hat{\alpha}, \hat{\beta} \vdash \hat{\alpha}$
$\Omega \vdash \hat{\alpha}$
$[\Omega] \Delta \vdash[\Omega] \hat{\alpha}$
$[\Omega] \Delta \vdash[\Omega] \widehat{\beta}$
$[\Omega] \Delta \vdash([\Omega] \hat{\alpha}) \rightarrow([\Omega] \hat{\beta})$
$[\Omega] \hat{\alpha},[\Omega] \hat{\beta}$ monotypes
$[\Omega] \Delta \vdash \lambda x \cdot e_{0} \Rightarrow([\Omega] \hat{\alpha}) \rightarrow([\Omega] \widehat{\beta})$
-

$$
[\Omega] \Delta \vdash \lambda x \cdot e_{0} \Rightarrow[\Omega](\hat{\alpha} \rightarrow \hat{\beta})
$$

By definition of substitution
By Lemma 47 (Softness Goes Away)
By definition of context substitution
By above equalities

Above

By Lemma 21 Transitivity)
By EvarWF
By Lemma 25 Extension Weakening,

By similar reasoning
By DeclArrowWF
Ω predicative
By Decl $\rightarrow \mathrm{I} \Rightarrow$
By definition of substitution

By Lemma $\overline{44}$ (Substitution for Well-Formedness) and Lemma 49 (Stability of Complete Contexts)

K^{\prime} Completeness

$\mathrm{K}^{\prime} .1$ Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given $\Gamma \longrightarrow \Omega$ and $A=[\Gamma] A$ and $\hat{\alpha} \in \operatorname{unsolved}(\Gamma)$ and $\hat{\alpha} \notin \operatorname{FV}(A)$:
(1) If $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathcal{A}$
then there are Δ, Ω^{\prime} such that $\Omega \longrightarrow \Omega^{\prime}$ and $\Delta \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash \hat{\alpha}: \leqq A \dashv \Delta$.
(2) If $[\Omega] \Gamma \vdash[\Omega] A \leq[\Omega] \hat{\alpha}$
then there are Δ, Ω^{\prime} such that $\Omega \longrightarrow \Omega^{\prime}$ and $\Delta \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash A \leqq: \hat{\alpha} \dashv \Delta$.
Proof. By mutual induction on the given declarative subtyping derivation.
(1) We have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega]$ A. We now case-analyze the shape of A.

- Case $A=\hat{\beta}$:

It is given that $\hat{\alpha} \notin \mathrm{FV}(\hat{\beta})$, so $\hat{\alpha} \neq \hat{\beta}$.
Since $A=\widehat{\beta}$, we have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \widehat{\beta}$.
Since Ω is predicative, $[\Omega] \hat{\alpha}=\tau_{1}$ and $[\Omega] \hat{\beta}=\tau_{2}$, so we have $[\Omega] \Gamma \vdash \tau_{1} \leq \tau_{2}$. By Lemma 9 (Monotype Equality), $\tau_{1}=\tau_{2}$.
We have $A=\widehat{\beta}$ and $[\Gamma] A=A$, so $[\Gamma] \widehat{\beta}=\widehat{\beta}$. Thus $\widehat{\beta} \in \operatorname{unsolved}(\Gamma)$.
Let Ω^{\prime} be Ω. By Lemma 20 (Reflexivity), $\Omega \longrightarrow \Omega$.
Now consider whether $\widehat{\alpha}$ is declared to the left of $\widehat{\beta}$, or vice versa.

- Case $\Gamma=\left(\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \hat{\beta}, \Gamma_{2}\right)$:

Let Δ be $\Gamma_{0}, \hat{\alpha}, \Gamma_{1}, \widehat{\beta}=\hat{\alpha}, \Gamma_{2}$.
By rule InstLReach, $\Gamma \vdash \hat{\alpha}: \leqq \hat{\beta} \dashv \Delta$.
It remains to show that $\Delta \longrightarrow \Omega$.
We have $[\Omega] \hat{\alpha}=[\Omega] \widehat{\beta}$. Then by Lemma 30 Parallel Extension Solution, $\Delta \longrightarrow \Omega$.

- Case $\left(\Gamma=\Gamma_{0}, \hat{\beta}, \Gamma_{1}, \hat{\alpha}, \Gamma_{2}\right)$:

Let Δ be $\Gamma_{0}, \widehat{\beta}, \Gamma_{1}, \hat{\alpha}=\widehat{\beta}, \Gamma_{2}$.
By rule InstLSolve, $\Gamma \vdash \hat{\alpha}: \leq \hat{\beta} \dashv \Delta$.
It remains to show that $\Delta \longrightarrow \Omega$.
We have $[\Omega] \widehat{\beta}=[\Omega]$. Then by Lemma 30 Parallel Extension Solution, $\Delta \longrightarrow \Omega$.

- Case $A=\alpha$:

Since $A=\alpha$, we have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \alpha$.
Since $[\Omega] \alpha=\alpha$, we have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq \alpha$.
By inversion, \leq Var was used, so $[\Omega] \hat{\alpha}=\alpha$; therefore, since Ω is well-formed, α is declared to the left of $\hat{\alpha}$ in Ω.
We have $\Gamma \longrightarrow \Omega$.
By Lemma 17 (Reverse Declaration Order Preservation), we know that α is declared to the left of $\hat{\alpha}$ in Γ; that is, $\Gamma=\Gamma_{0}[\alpha][\hat{\alpha}]$.
Let $\Delta=\Gamma_{0}[\alpha][\hat{\alpha}=\alpha]$ and $\Omega^{\prime}=\Omega$.
By InstLSolve, $\Gamma_{0}[\alpha][\hat{\alpha}] \vdash \hat{\alpha}: \leqq \alpha \dashv \Delta$.
By Lemma 30 Parallel Extension Solution, $\Gamma_{0}[\alpha][\hat{\alpha}=\alpha] \longrightarrow \Omega$.

- Case $A=A_{1} \rightarrow A_{2}$:

By the definition of substitution, $[\Omega] A=\left([\Omega] A_{1}\right) \rightarrow\left([\Omega] A_{2}\right)$.
Therefore $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq\left([\Omega] A_{1}\right) \rightarrow\left([\Omega] A_{2}\right)$.
Since we have an arrow as the supertype, only $\leq \forall \mathrm{L}$ or $\leq \rightarrow$ could have been used, and the subtype $[\Omega] \hat{\alpha}$ must be either a quantifier or an arrow. But Ω is predicative, so $[\Omega] \hat{\alpha}$ cannot be a quantifier. Therefore, it is an arrow: $[\Omega] \hat{\alpha}=\tau_{1} \rightarrow \tau_{2}$, and $\leq \rightarrow$ concluded the derivation. Inverting $\leq \rightarrow$ gives $[\Omega] \Gamma \vdash[\Omega] A_{2} \leq \tau_{2}$ and $[\Omega] \Gamma \vdash \tau_{1} \leq[\Omega] A_{1}$.

Since $\hat{\alpha} \in$ unsolved (Γ), we know that Γ has the form $\Gamma_{0}[\hat{\alpha}]$.
By Lemma 28 Unsolved Variable Addition for Extension) twice, inserting unsolved variables
$\hat{\alpha}_{2}$ and $\hat{\alpha}_{1}$ into the middle of the context extends it, that is: $\Gamma_{0}[\hat{\alpha}] \longrightarrow \Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}\right]$.
Clearly, $\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}$ is well-formed in $\left(\ldots, \hat{\alpha}_{2}, \hat{\alpha}_{1}\right)$, so by Lemma 26 Solution Admissibility for Extension), solving $\hat{\alpha}$ extends the context: $\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}\right] \longrightarrow \Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]$. Then by Lemma 21 Transitivity , $\Gamma_{0}[\hat{\alpha}] \longrightarrow \Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]$.
Since $\hat{\alpha} \in$ unsolved (Γ) and $\Gamma \longrightarrow \Omega$, we know that Ω has the form $\Omega_{0}\left[\hat{\alpha}=\tau_{0}\right]$. To show that we can extend this context, we apply Lemma 27 Solved Variable Addition for Extension) twice to introduce $\hat{\alpha}_{2}=\tau_{2}$ and $\hat{\alpha}_{1}=\tau_{1}$, and then Lemma 26 (Solution Admissibility for Extension) to overwrite τ_{0} :

$$
\underbrace{\Omega_{0}\left[\hat{\alpha}=\tau_{0}\right]}_{\Omega} \longrightarrow \Omega_{0}\left[\hat{\alpha}_{2}=\tau_{2}, \hat{\alpha}_{1}=\tau_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]
$$

We have $\Gamma \longrightarrow \Omega$, that is,

$$
\Gamma_{0}[\hat{\alpha}] \longrightarrow \Omega_{0}\left[\hat{\alpha}=\tau_{0}\right]
$$

By Lemma 29 (Parallel Admissibility) (i) twice, inserting unsolved variables $\hat{\alpha}_{2}$ and $\hat{\alpha}_{1}$ on both contexts in the above extension preserves extension:

$$
\underbrace{\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]}_{\Gamma_{1}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}\right]} \longrightarrow \underbrace{\Omega_{0}\left[\hat{\alpha}_{2}=\tau_{2}, \hat{\alpha}_{1}=\tau_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]}_{\Omega_{1}\left[\hat{\alpha}_{2}=\tau_{2}, \hat{\alpha}_{1}=\tau_{1}, \hat{\alpha}=\tau_{0}\right]} \quad \begin{aligned}
& \text { By Lemma } \\
& \text { By Lemma } \\
& \hline 31
\end{aligned}\left(\begin{array}{l}
\text { Parallel Admissibility }) \text { (ii) twice }
\end{array}\right.
$$

Since $\hat{\alpha} \notin F V(A)$, it follows that $\left[\Gamma_{1}\right] A=[\Gamma] A=A$.
Therefore $\hat{\alpha}_{1} \notin \operatorname{FV}\left(A_{1}\right)$ and $\hat{\alpha}_{1}, \hat{\alpha}_{2} \notin \mathrm{FV}\left(A_{2}\right)$.
By Lemma 51 (Finishing Completions) and Lemma 50 (Finishing Types), $\left[\Omega_{1}\right] \Gamma_{1}=[\Omega] \Gamma$ and $\left[\Omega_{1}\right] \hat{\alpha}_{1}=\tau_{1}$.
By i.h., there are Δ_{2} and Ω_{2} such that $\Gamma_{1} \vdash A_{1} \leqq: \hat{\alpha}_{1} \dashv \Delta_{2}$ and $\Delta_{2} \longrightarrow \Omega_{2}$ and $\Omega_{1} \longrightarrow \Omega_{2}$.
Next, note that $\left[\Delta_{2}\right]\left[\Delta_{2}\right] A_{2}=\left[\Delta_{2}\right] A_{2}$.
By Lemma 34 (Left Unsolvedness Preservation), we know that $\hat{\alpha}_{2} \in$ unsolved $\left(\Delta_{2}\right)$.
By Lemma 35 Left Free Variable Preservation), we know that $\hat{\alpha}_{2} \notin \mathrm{FV}\left(\left[\Delta_{2}\right] A_{2}\right)$.
By Lemma 21 Transitivity), $\Omega \longrightarrow \Omega_{2}$.
We know $\left[\Omega_{2}\right] \Delta_{2}=[\Omega] \Gamma$ because:

$$
\begin{array}{rll}
{\left[\Omega_{2}\right] \Delta_{2}} & =\left[\Omega_{2}\right] \Omega_{2} & \text { By Lemma } 49 \\
& =[\Omega] \Omega & \text { By Lemma } 51 \\
& =[\Omega] \Gamma & \text { By Lemma } 49
\end{array}\left(\begin{array}{l}
\text { Stability of Complete Contexts }) \\
\end{array}\right.
$$

By Lemma 50 Finishing Types , we know that $\left[\Omega_{2}\right] \hat{\alpha}_{2}=\left[\Omega_{1}\right] \hat{\alpha}_{2}=\tau_{2}$.
By Lemma 50 Finishing Types , we know that $\left[\Omega_{2}\right] A_{2}=[\Omega] A_{2}$.
Hence we know that $\left[\Omega_{2}\right] \Delta_{2} \vdash\left[\Omega_{2}\right] \hat{\alpha}_{2} \leq\left[\Omega_{2}\right] A_{2}$.
By i.h., we have Δ and Ω^{\prime} such that $\Delta_{2} \vdash \hat{\alpha}_{2}: \leqq\left[\Delta_{2}\right] A_{2} \dashv \Delta$ and $\Omega_{2} \longrightarrow \Omega^{\prime}$ and $\Delta \longrightarrow \Omega^{\prime}$.
By rule InstLArr, $\Gamma \vdash \hat{\alpha}: \leqq A \dashv \Delta$.
By Lemma 21 Transitivity), $\Omega \longrightarrow \Omega^{\prime}$.

- Case $A=1$:

We have $A=1$, so $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] 1$.
Since $[\Omega] 1=1$, we have $[\Omega] \Gamma \vdash[\Omega] \widehat{\alpha} \leq 1$.
The only declarative subtyping rules that can have 1 as the supertype in the conclusion are $\leq \forall \mathrm{L}$ and \leq Unit. However, since Ω is predicative, $[\Omega] \hat{\alpha}$ cannot be a quantifier, so $\leq \forall \mathrm{L}$ cannot have been used. Hence \leq Unit was used and $[\Omega] \hat{\alpha}=1$.
Let $\Delta=\Gamma[\hat{\alpha}=1]$ and $\Omega^{\prime}=\Omega$.
By InstLSolve, $\Gamma[\hat{\alpha}] \vdash \hat{\alpha}: \leqq 1 \dashv \Delta$.
By Lemma 30 Parallel Extension Solution,$\Gamma[\hat{\alpha}=1] \longrightarrow \Omega$.

- Case $A=\forall \beta$. B:

We have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega](\forall \beta$. B).
By definition of substitution, $[\Omega](\forall \beta . \mathrm{B})=\forall \beta$. $[\Omega]$ B, so we have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq \forall \beta$. $[\Omega]$ B. The only declarative subtyping rules that can have a quantifier as supertype are $\leq \forall \mathrm{L}$ and $\leq \forall R$. However, since Ω is predicative, $[\Omega] \hat{\alpha}$ cannot be a quantifier, so $\leq \forall \mathrm{L}$ cannot have been used. Hence $\leq \forall \mathrm{R}$ was used, and we have a subderivation of $[\Omega] \Gamma, \beta \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B}$.

Let $\Omega_{1}=(\Omega, \beta)$ and $\Gamma_{1}=(\Gamma, \beta)$.
By \longrightarrow Uvar, $\Gamma_{1} \longrightarrow \Omega_{1}$.
By the definition of substitution, $\left[\Omega_{1}\right] \mathrm{B}=[\Omega] \mathrm{B}$ and $\left[\Omega_{1}\right] \hat{\alpha}=[\Omega] \hat{\alpha}$.
Note that $\left[\Omega_{1}\right] \Gamma_{1}=[\Omega] \Gamma, \beta$.
Since $\hat{\alpha} \in$ unsolved (Γ), we have $\hat{\alpha} \in \operatorname{unsolved}\left(\Gamma_{1}\right)$.
Since $\hat{\alpha} \notin F V(A)$ and $A=\forall \beta$. B, we have $\hat{\alpha} \notin F V(B)$.
By i.h., there are Ω_{2} and Δ_{2} such that $\Gamma, \beta \vdash \hat{\alpha}: \leqq B \dashv \Delta_{2}$ and $\Delta_{2} \longrightarrow \Omega_{2}$ and $\Omega_{1} \longrightarrow \Omega_{2}$.
By Lemma 32 (Instantiation Extension), $\Gamma_{1} \longrightarrow \Delta_{2}$, that is, $\Gamma, \beta \longrightarrow \Delta_{2}$.
Therefore by Lemma 24 (Extension Order), $\Delta_{2}=\left(\Delta^{\prime}, \beta, \Omega^{\prime \prime}\right)$ where $\Gamma \longrightarrow \Delta^{\prime}$.
By equality, we know $\Delta^{\prime}, \beta, \Delta^{\prime \prime} \longrightarrow \Omega_{2}$.
By Lemma 24 (Extension Order), $\Omega_{2}=\left(\Omega^{\prime}, \beta, \Omega^{\prime \prime}\right)$ where $\Delta^{\prime} \longrightarrow \Omega^{\prime}$.
We have $\Omega_{1} \longrightarrow \Omega_{2}$, that is, $\Omega, \beta \longrightarrow \Omega^{\prime}, \beta, \Omega^{\prime \prime}$, so Lemma 24 (Extension Order) gives $\Omega \longrightarrow \Omega^{\prime}$.
By rule InstLAIIR, $\Gamma \vdash \hat{\alpha}: \leqq \forall \beta$. $\mathrm{B} \dashv \Delta^{\prime}$.
$[\Omega] \Gamma \vdash[\Omega] A \leq[\Omega] \hat{\alpha}$
These cases are mostly symmetric. The one exception is the one connective that is not treated symmetrically in the declarative subtyping rules:

- Case $A=\forall \alpha$. B:

Since $A=\forall \alpha$. B, we have $[\Omega] \Gamma \vdash[\Omega] \forall \beta$. $B \leq[\Omega] \hat{\alpha}$.
By symmetric reasoning to the previous case (the last case of part (1) above), $\leq \forall \mathrm{L}$ must have been used, with a subderivation of $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\tau / \beta][\Omega]$ B.
Since $[\Omega] \Gamma \vdash \tau$, the type τ has no existential variables and is therefore invariant under substitution: $\tau=[\Omega] \tau$. Therefore $[\tau / \beta][\Omega] B=[[\Omega] \tau / \beta][\Omega] B$.
By distributivity of substitution, this is $[\Omega][\tau / \beta] B$. Interposing $\hat{\beta}$, this is equal to $[\Omega][\tau / \hat{\beta}][\hat{\beta} / \beta] B$. Therefore $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega][\tau / \hat{\beta}][\hat{\beta} / \beta] B$.
Let Ω_{1} be $\Omega, \hat{\beta}, \hat{\beta}=\tau$ and let Γ_{1} be $\Gamma, \hat{\beta}, \hat{\beta}$.

- By the definition of context application, $\left[\Omega_{1}\right] \Gamma_{1}=[\Omega] \Gamma$.
- From the definition of substitution, $\left[\Omega_{1}\right] \hat{\alpha}=[\Omega] \hat{\alpha}$.
- It follows from the definition of substitution that $[\Omega][\tau / \hat{\beta}] C=\left[\Omega_{1}\right] C$ for all C. Therefore $[\Omega][\tau / \hat{\beta}][\hat{\beta} / \beta] B=\left[\Omega_{1}\right][\hat{\beta} / \beta] B$.
Applying these three equalities, $\left[\Omega_{1}\right] \Gamma_{1} \vdash\left[\Omega_{1}\right] \hat{\alpha} \leq\left[\Omega_{1}\right][\hat{\beta} / \beta] \mathrm{B}$.
By the definition of substitution, $[\Gamma, \hat{\beta}, \widehat{\beta}] B=[\Gamma] \bar{B}=B$, so $\hat{\alpha} \notin \mathrm{FV}\left(\left[\Gamma_{1}\right] \mathrm{B}\right)$.
Since $\hat{\alpha} \in \operatorname{unsolved}(\Gamma)$, we have $\hat{\alpha} \in \operatorname{unsolved}\left(\Gamma_{1}\right)$.
By i.h., there exist Δ_{2} and Ω_{2} such that $\Gamma_{1} \vdash \mathrm{~B} \leqq: \hat{\alpha} \dashv \Delta_{2}$ and $\Omega_{1} \longrightarrow \Omega_{2}$ and $\Delta_{2} \longrightarrow \Omega_{2}$. By Lemma 32 (Instantiation Extension), $\Gamma_{1} \longrightarrow \Delta_{2}$, which is, $\Gamma, \hat{\beta}, \hat{\beta} \longrightarrow \Delta_{2}$.
By Lemma 24 Extension Order), $\Delta_{2}=\left(\Delta^{\prime}, \hat{\beta}, \Delta^{\prime \prime}\right)$ and $\Gamma \longrightarrow \Delta^{\prime}$.
By equality, $\Delta^{\prime}, \hat{\mathrm{B}}^{\prime \prime}, \Delta^{\prime \prime} \longrightarrow \Omega_{2}$.
By Lemma 24 Extension Order , $\Omega_{2}=\left(\Omega^{\prime}, \hat{\beta}, \Omega^{\prime \prime}\right)$ and $\Delta^{\prime} \longrightarrow \Omega^{\prime}$.
By equality, $\Omega, \widehat{\hat{\beta}}, \hat{\beta}=\tau \longrightarrow \Omega^{\prime}, \widehat{\hat{\beta}}, \Omega^{\prime \prime}$.
- By Lemma 24 (Extension Order), $\Omega \longrightarrow \Omega^{\prime}$.

By InstRAIIL, $\Gamma \vdash \forall \beta$. $\mathrm{B} \leqq: \widehat{\alpha} \dashv \Delta^{\prime}$.

$K^{\prime} .2$ Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If $\Gamma \longrightarrow \Omega$ and $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Omega] \Gamma \vdash$ $[\Omega] A \leq[\Omega] \mathrm{B}$ then there exist Δ and Ω^{\prime} such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash[\Gamma] A<:[\Gamma] B \dashv \Delta$.

Proof. By induction on the derivation of $[\Omega] \Gamma \vdash[\Omega] A \leq[\Omega] B$.
We distinguish cases of $[\Gamma] B$ and $[\Gamma] A$ that are impossible, fully written out, and similar to fully-written-out cases.

		[Г]B				
		$\forall \beta . \mathrm{B}^{\prime}$	1	α	$\hat{\beta}$	$\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}$
[Г]A	$\forall \alpha . A^{\prime}$	1 (B poly)	2.Poly	2.Poly	2.Poly	2.Poly
	1	1 (B poly)	2.Units	impossible	2.BEx.Unit	impossible
	α	1 (B poly)	impossible	2.Uvars	2.BEx.Uvar	impossible
	$\hat{\alpha}$	1 (B poly)	2.AEx.Unit	2.AEx.Uvar	2.AEx.SameEx 2.AEx.OtherEx	2.AEx.Arrow
	$A_{1} \rightarrow A_{2}$	1 (B poly)	impossible	impossible	2.BEx.Arrow	2.Arrows

The impossibility of the "impossible" entries follows from inspection of the declarative subtyping rules.

We first split on $[\Gamma] B$.

- Case 1 (B poly): [$\Gamma] B$ polymorphic: $[\Gamma] B=\forall \beta$. B^{\prime} :

	$B=\forall \beta . B_{0}$	Γ predicative
	$\mathrm{B}^{\prime}=[\Gamma] \mathrm{B}_{0}$	Γ predicative
	$[\Omega] \mathrm{B}=[\Omega]\left(\forall \beta . \mathrm{B}_{0}\right)$	Applying Ω to both sides
	$=\forall \beta .[\Omega] \mathrm{B}_{0}$	By definition of substitution
$\mathcal{D}::$	$[\Omega] \Gamma \vdash[\Omega]$ A $\leq[\Omega] \mathrm{B}$	Given
$\mathcal{D}:$:	$[\Omega] \Gamma \vdash[\Omega] A \leq \forall \beta .[\Omega] \mathrm{B}_{0}$	By above equality
$\mathcal{D}^{\prime}::$	$\begin{gathered} {[\Omega] \Gamma, \beta \vdash[\Omega] A \leq[\Omega] \mathrm{B}_{0}} \\ \mathcal{D}^{\prime}<\mathcal{D} \end{gathered}$	By Lemma 7 Invertibility
$\mathcal{D}^{\prime}::$	$[\Omega, \beta](\Gamma, \beta) \vdash[\Omega, \beta] A \leq[\Omega, \beta] B_{0}$	By definitions of substitution
	$\Gamma, \beta \vdash[\Gamma, \beta] A<:[\Gamma, \beta] B_{0} \dashv \Delta^{\prime}$	By i.h.
	$\Delta^{\prime} \longrightarrow \Omega_{0}^{\prime}$	/
	$\Omega, \beta \longrightarrow \Omega_{0}^{\prime}$	"
	$\Gamma, \beta \vdash[\Gamma] A<:[\Gamma] \mathrm{B}_{0} \dashv \Delta^{\prime}$	By definition of substitution
	$\Gamma, \beta \longrightarrow \Delta^{\prime}$	By Lemma 32 Instantiation Extension,
	$\Delta^{\prime}=\Delta, \beta, \Theta$	By Lemma 24 Extension Order) (i)
	$\Gamma \longrightarrow \Delta$	
	$\Delta, \beta, \Theta \longrightarrow \Omega_{0}^{\prime}$	By $\Delta^{\prime} \longrightarrow \Omega_{0}^{\prime}$ and above equality
	$\Omega_{0}^{\prime}=\Omega^{\prime}, \beta, \Omega_{R}$	By Lemma 24 Extension Order) (i)
4	$\Delta \longrightarrow \Omega^{\prime}$	"
	$\Gamma, \beta \vdash[\Gamma] A<:[\Gamma] \mathrm{B}_{0} \dashv \Delta, \beta, \Theta$	By above equality
	$\Omega, \beta \longrightarrow \Omega^{\prime}, \beta, \Omega_{R}$	By above equality
18	$\Omega \longrightarrow \Omega^{\prime}$	By Lemma 21 Transitivity
	$\Gamma \vdash[\Gamma] A<: \forall \beta .[\Gamma] \mathrm{B}_{0} \dashv \Delta$	By $<: \forall \mathrm{R}$
-	$\Gamma \vdash[\Gamma] A<: \forall \beta . B^{\prime} \dashv \Delta$	By above equality

- Cases 2.*: [Г]B not polymorphic:

We split on the form of $[\Gamma] A$.

- Case 2.Poly: $[\Gamma] A$ is polymorphic: $[\Gamma] A=\forall \alpha . A^{\prime}$:

$$
\begin{array}{rlrl}
A & =\forall \alpha \cdot A_{0} & & \Gamma \text { predicative } \\
A^{\prime} & =[\Gamma] A_{0} & & \Gamma \text { predicative } \\
{[\Omega] A} & =[\Omega]\left(\forall \alpha \cdot A_{0}\right) & & \text { Applying } \Omega \text { to both sides } \\
{[\Omega] A=\forall \alpha .[\Omega] A_{0}} & & \text { By definition of substitution } \\
{[\Omega] \Gamma \vdash[\Omega] A \leq[\Omega] \mathrm{B}} & & \text { Given } \\
{[\Omega] \Gamma \vdash \forall \alpha .[\Omega] A_{0} \leq[\Omega] \mathrm{B}} & & \text { By above equality } \\
{[\Gamma] \mathrm{B} \neq(\forall \beta . \cdots)} & & \text { We are in the "[Г]B not polymorphic" subcase } \\
\mathrm{B} \neq(\forall \beta \ldots) & & \Gamma \text { predicative } \\
{[\Omega] \Gamma \vdash[\tau / \alpha][\Omega] A_{0} \leq[\Omega] \mathrm{B}} & & \text { By inversion on } \leq \forall \mathrm{L} \\
{[\Omega] \Gamma \vdash \tau} & \text { " }
\end{array}
$$

$[\Omega] \vdash[\tau / \alpha][\Omega] A_{0} \leq[\Omega] \mathrm{B}$	Above
$\left[\Omega_{0}\right](\Gamma, \hat{\alpha}, \hat{\alpha}) \vdash[\tau / \alpha][\Omega] A_{0} \leq[\Omega] \mathrm{B}$	By above equality
$\left[\Omega_{0}\right](\Gamma, \hat{\alpha}, \hat{\alpha}) \vdash\left[\left[\Omega_{0}\right] \hat{\alpha} / \alpha\right][\Omega] A_{0} \leq[\Omega] \mathrm{B}$	By definition of substitution
$\left[\Omega_{0}\right](\Gamma, \hat{\alpha}, \hat{\alpha}) \vdash\left[\left[\Omega_{0}\right] \hat{\alpha} / \alpha\right]\left[\Omega_{0}\right] A_{0} \leq\left[\Omega_{0}\right] \mathrm{B}$	By definition of substitution
$\left[\Omega_{0}\right](\Gamma, \hat{\alpha}, \hat{\alpha}) \vdash\left[\Omega_{0}\right][\hat{\alpha} / \alpha] A_{0} \leq\left[\Omega_{0}\right] \mathrm{B}$	By distributivity of substitution

$\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\Gamma, \hat{\alpha}, \hat{\alpha}][\hat{\alpha} / \alpha] A_{0}<:[\Gamma, \hat{\alpha}, \hat{\alpha}] B \dashv \Delta_{0} \quad$ By i.h.
$\Delta_{0} \longrightarrow \Omega^{\prime \prime}$
$\Omega_{0} \longrightarrow \Omega^{\prime \prime}$
$\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\Gamma][\hat{\alpha} / \alpha] A_{0}<:[\Gamma] \mathrm{B} \dashv \Delta_{0}$
$\Gamma, \hat{\alpha}, \hat{\alpha} \longrightarrow \Delta_{0}$
$\Delta_{0}=\left(\Delta, \wedge_{\alpha}, \Theta\right)$
$\Gamma \longrightarrow \Delta$
$\Omega^{\prime \prime}=\left(\Omega^{\prime}, \wedge_{\hat{\alpha}}, \Omega_{Z}\right)$
$\Delta \longrightarrow \Omega^{\prime}$
$\Omega_{0} \longrightarrow \Omega^{\prime \prime}$
$\Omega, \hat{\alpha}, \hat{\alpha}=\tau \longrightarrow \Omega^{\prime}, \hat{\alpha}, \Omega_{Z}$
$\Omega \longrightarrow \Omega^{\prime}$
res

4

$$
\begin{gathered}
\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\Gamma][\hat{\alpha} / \alpha] A_{0}<:[\Gamma] B \dashv \Delta, \otimes \hat{\alpha}, \Theta \\
\Gamma, \hat{\alpha}, \hat{\alpha} \vdash[\hat{\alpha} / \alpha][\Gamma] A_{0}<:[\Gamma] \mathrm{B} \dashv \Delta, \Delta \hat{\alpha}, \Theta \\
\Gamma \vdash \forall \alpha .[\Gamma] A_{0}<:[\Gamma] \mathrm{B} \dashv \Delta \\
\Gamma \vdash \forall \alpha . A^{\prime}<:[\Gamma] \mathrm{B} \dashv \Delta
\end{gathered}
$$

"
"
By definition of substitution
By Lemma 33 Subtyping Extension)
By Lemma 24 (Extension Order) (ii)
"
By Lemma 24 Extension Order) (ii)
"
Above
By above equalities
Above
By above equality
By definition of substitution
By definition of substitution
By distributivity of substitution
"

By Lemma 24 (Extension Order) (ii)
By above equality $\Delta_{0}=\left(\Delta,{ }_{\hat{\alpha}}, \Theta\right)$
By def. of subst. $([\Gamma] \hat{\alpha}=\hat{\alpha}$ and $[\Gamma] \alpha=\alpha)$
By <: $\forall \mathrm{L}$
By above equality

- Case 2.AEx: A is an existential variable $[\Gamma] A=\hat{\alpha}$:

We split on the form of [Γ]B.

* Case 2.AEx.SameEx: $[\Gamma] B$ is the same existential variable $[\Gamma] B=\hat{\alpha}$:

$$
\begin{array}{lll}
& \Gamma \vdash \hat{\alpha}<: \hat{\alpha} \dashv \Gamma & \\
& \Gamma \vdash<: \text { Exvar } \\
& \Gamma \vdash[\Gamma] A<:[\Gamma] \mathrm{B} \dashv \Gamma & B y[\Gamma] A=[\Gamma] \mathrm{B}=\hat{\alpha} \\
\Omega \longrightarrow \Omega & \Delta=\Gamma \\
\Omega \longrightarrow \Omega^{\prime} & & \text { By Lemma } 20 \text { Reflexivity) and } \Omega^{\prime}=\Omega
\end{array}
$$

* Case 2.AEx.OtherEx: $[\Gamma] B$ is a different existential variable $[\Gamma] B=\hat{\beta}$ where $\hat{\beta} \neq \hat{\alpha}$: Either $\hat{\alpha} \in \operatorname{FV}([\Gamma] \hat{\beta})$, or $\hat{\alpha} \notin \operatorname{FV}([\Gamma] \hat{\beta})$.
- $\hat{\alpha} \in \operatorname{FV}([\Gamma] \hat{\beta}):$

We have $\hat{\alpha} \preceq[\Gamma] \widehat{\beta}$.
Therefore $\hat{\alpha}=[\Gamma] \hat{\beta}$, or $\hat{\alpha} \prec[\Gamma] \hat{\beta}$.
But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, $\hat{\alpha} \prec[\Gamma] \hat{\beta}$.
Since Γ is predicative, $[\Gamma] \hat{\beta}$ cannot have the form $\forall \beta$. \cdots, so the only way that $\hat{\alpha}$ can be a proper subterm of $[\Gamma] \hat{\beta}$ is if $[\Gamma] \hat{\beta}$ has the form $B_{1} \rightarrow B_{2}$ such that $\hat{\alpha}$ is a subterm of B_{1} or B_{2}, that is: $\hat{\alpha} \supsetneq[\Gamma] \hat{\beta}$.
Then by a property of substitution, $[\Omega] \hat{\alpha} \gtrless[\Omega][\Gamma] \hat{\beta}$.
By Lemma 18 Substitution Extension Invariance , $[\Omega][\Gamma] \hat{\beta}=[\Omega] \hat{\beta}$, so $[\Omega] \hat{\alpha} \supsetneq[\Omega] \widehat{\beta}$. We have $[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \hat{\beta}$, and we know that $[\Omega] \hat{\alpha}$ is a monotype, so we can use Lemma 8 Occurrence) (ii) to show that $[\Omega] \hat{\alpha} \nprec[\Omega] \widehat{\beta}$, a contradiction.
$\hat{\alpha} \notin \mathrm{FV}([\Gamma] \hat{\beta}):$

$$
\begin{array}{lll}
& \Gamma \vdash \hat{\alpha}: \leq[\Gamma] \hat{\beta} \dashv \Delta & \\
& \Gamma \vdash \text { Theorem } 13 \\
& \Gamma \vdash \hat{\alpha}<: \widehat{\beta} \dashv \Delta & \\
\text { By }<: \text { InstantiateL } \\
\Delta \longrightarrow \Omega^{\prime} & \prime \prime \\
\Omega \longrightarrow \Omega^{\prime} & \prime \prime
\end{array}
$$

* Case 2.AEx.Unit: $[\Gamma] \mathrm{B}=1$:

$$
\begin{array}{rlrl}
\Gamma \longrightarrow \Omega & & \text { Given } \\
1=[\Omega] 1 & & \text { By definition of substitution } \\
\hat{\alpha} \notin \mathrm{FV}(1) & & \text { By definition of } \mathrm{FV}(-) \\
{[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] 1} & & \text { Given } \\
\Gamma \vdash \hat{\alpha}: \leqq 1 \dashv \Delta & & \text { By Theorem } 13 \text { (1) } \\
\Omega \longrightarrow \Omega^{\prime} & \prime \prime \\
\Delta \longrightarrow \Omega^{\prime} & \prime \prime \\
1=[\Gamma] 1 & & \text { By definition of substitution } \\
\hat{\alpha} \notin \mathrm{FV}(1) & & \text { By definition of FV(-) } \\
\Gamma \vdash \hat{\alpha}<: 1 \dashv \Delta & & \text { By }<: \text { InstantiateL }
\end{array}
$$

$$
\Omega \longrightarrow \Omega^{\prime}
$$

* Case 2.AEx.Uvar: $[\Gamma] B=\beta$:

Similar to Case 2.AEx.Unit, using $\beta=[\Omega] \beta=[\Gamma] \beta$ and $\hat{\alpha} \notin \mathrm{FV}(\beta)$.

* Case 2.AEx.Arrow: $[\Gamma] B=B_{1} \rightarrow B_{2}$:

Since [Γ]B is an arrow, it cannot be exactly $\hat{\alpha}$.
Suppose, for a contradiction, that $\hat{\alpha} \in \operatorname{FV}([\Gamma] B)$.

$$
\begin{aligned}
& \hat{\alpha} \preceq[\Gamma] B \quad \hat{\alpha} \in \mathrm{FV}([\Gamma] \mathrm{B}) \\
& {[\Omega] \hat{\alpha} \preceq[\Omega][\Gamma] \mathrm{B} \quad \text { By a property of substitution }} \\
& \Gamma \longrightarrow \Omega \\
& {[\Omega][\Gamma] \mathrm{B}=[\Omega] \mathrm{B}} \\
& {[\Omega] \hat{\alpha} \preceq[\Omega] B} \\
& {[\Gamma] \mathrm{B} \neq \hat{\alpha}} \\
& {[\Omega][\Gamma] B \neq[\Omega] \hat{\alpha}} \\
& {[\Omega] B \neq[\Omega] \hat{\alpha}} \\
& {[\Omega] \hat{\alpha} \prec[\Omega] B} \\
& {[\Omega] \hat{\alpha} \mathfrak{Z}[\Omega] B} \\
& {[\Omega] \Gamma \vdash[\Omega] \hat{\alpha} \leq[\Omega] \mathrm{B}} \\
& {[\Omega] B \text { is a monotype }} \\
& {[\Omega] \hat{\alpha} \nless[\Omega] B} \\
& \Rightarrow \Leftarrow \\
& \hat{\alpha} \notin \mathrm{FV}([\Gamma] \mathrm{B}) \\
& \text { Given } \\
& \text { By Lemma } 18 \text { Substitution Extension Invariance, } \\
& \text { By above equality } \\
& \text { Given (2.AEx.Arrow) } \\
& \text { By a property of substitution } \\
& \text { By Lemma } 18 \text { Substitution Extension Invariance } \\
& \text { Follows from } \preceq \text { and } \neq \\
& {[\Omega] \text { A has the form } \cdots \rightarrow \cdots} \\
& \text { Given } \\
& \Omega \text { is predicative } \\
& \text { By Lemma } 8 \text { (Occurrence) (ii) } \\
& \text { By contradiction } \\
& \Gamma \vdash \hat{\alpha}: \leqq[\Gamma] \mathrm{B} \dashv \Delta \quad \text { By Theorem } 13 \text { (1) } \\
& \text { \& } \Delta \longrightarrow \Omega^{\prime} \quad{ }^{\prime} \\
& \text { - } \Omega \longrightarrow \Omega^{\prime} \\
& \text { " } \\
& \text {. } \Gamma \vdash \hat{\alpha}<: \underbrace{[\Gamma] \mathrm{B}}_{\mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}} \dashv \Delta \quad \mathrm{By}<\text { : InstantiateL }
\end{aligned}
$$

- Case 2.BEx: $[\Gamma] A$ is not polymorphic and $[\Gamma] B$ is an existential variable: $[\Gamma] B=\widehat{\beta}$ We split on the form of $[\Gamma] A$.
* Case 2.BEx.Unit ($[\Gamma] A=1$),

Case 2.BEx.Uvar $([\Gamma] A=\alpha)$,
Case 2.BEx.Arrow ($[\Gamma] A=A_{1} \rightarrow A_{2}$):
Similar to Cases 2.AEx.Unit, 2.AEx.Uvar and 2.AEx.Arrow, but using part (2) of Theorem 13 instead of part (1), and applying <:InstantiateR instead of <:InstantiateL as the final step.

- Case 2.Units: $[\Gamma] A=[\Gamma] B=1$:
*

$$
\Gamma \vdash 1<: 1 \dashv \Gamma \quad \text { By }<: \text { Unit }
$$

$\Gamma \longrightarrow \Omega \quad$ Given
$\Delta \longrightarrow \Omega \quad \Delta=\Gamma$
$\Omega \longrightarrow \Omega^{\prime} \quad$ By Lemma 20 (Reflexivity) and $\Omega^{\prime}=\Omega$

- Case 2.Uvars: $[\Gamma] A=[\Gamma] B=\alpha$:

$$
\alpha \in \Omega \quad \text { By inversion on } \leq \text { Var }
$$

$\Gamma \longrightarrow \Omega \quad$ Given
$\alpha \in \Gamma \quad$ By Lemma 24 (Extension Order)

- $\quad \Gamma \vdash \alpha<: \alpha \dashv \Gamma \quad$ By $<:$ Var
- $\Delta \longrightarrow \Omega \quad \Delta=\Gamma$
- $\Omega \longrightarrow \Omega^{\prime} \quad$ By Lemma 20 (Reflexivity) and $\Omega^{\prime}=\Omega$
- Case 2.Arrows: $\mathcal{A}=A_{1} \rightarrow A_{2}$ and $B=B_{1} \rightarrow B_{2}$:

Only rule $\leq \rightarrow$ could have been used.

```
        \([\Omega] \Gamma \vdash[\Omega] \mathrm{B}_{1} \leq[\Omega] A_{1} \quad\) Subderivation
            \(\Gamma \vdash[\Gamma] B_{1}<:[\Gamma] A_{1} \dashv \Theta \quad\) By i.h.
            \(\Theta \longrightarrow \Omega_{0}\)
            \(\Omega \longrightarrow \Omega_{0}\)
            \(\Gamma \longrightarrow \Omega\)
            \(\Gamma \longrightarrow \Omega_{0}\)
            \(\Theta \longrightarrow \Omega_{0}\)
            \([\Omega] \Gamma=[\Omega] \Theta\)
            \([\Omega] \Gamma \vdash[\Omega] A_{2} \leq[\Omega] B_{2}\)
            \([\Omega] \Theta \vdash[\Omega] A_{2} \leq[\Omega] \mathrm{B}_{2}\)
        \([\Omega] A_{2}=[\Omega][\Gamma] A_{2}\)
        \([\Omega] \mathrm{B}_{2}=[\Omega][\Gamma] \mathrm{B}_{2}\)
    \([\Omega] \Theta \vdash[\Omega][\Gamma] A_{2} \leq[\Omega][\Gamma] \mathrm{B}_{2}\)
            \(\Theta \vdash[\Theta][\Gamma] A_{2}<:[\Theta][\Gamma] B_{2} \dashv \Delta\)
\(\Delta \quad \Delta \longrightarrow \Omega^{\prime}\)
    \(\Omega_{0} \longrightarrow \Omega^{\prime}\)
"
"
Given
By Lemma 21 Transitivity)
Above
By Lemma 52 Confluence of Completeness
Subderivation
By above equality
By Lemma 18 Substitution Extension Invariance,
By Lemma 18 (Substitution Extension Invariance)
                                    By above equalities
By i.h.
"
"
```

```
            \(\Gamma \vdash\left([\Gamma] A_{1}\right) \rightarrow\left([\Gamma] A_{2}\right)<:\left([\Gamma] \mathrm{B}_{1}\right) \rightarrow\left([\Gamma] \mathrm{B}_{2}\right) \dashv \Delta \quad \mathrm{By}<: \rightarrow\)
```

 \(\Gamma \vdash\left([\Gamma] A_{1}\right) \rightarrow\left([\Gamma] A_{2}\right)<:\left([\Gamma] \mathrm{B}_{1}\right) \rightarrow\left([\Gamma] \mathrm{B}_{2}\right) \dashv \Delta \quad \mathrm{By}<: \rightarrow\)
 \(\Gamma \vdash[\Gamma]\left(A_{1} \rightarrow A_{2}\right)<:[\Gamma]\left(B_{1} \rightarrow B_{2}\right) \dashv \Delta\)
 \(\Gamma \vdash[\Gamma]\left(A_{1} \rightarrow A_{2}\right)<:[\Gamma]\left(B_{1} \rightarrow B_{2}\right) \dashv \Delta\)
 -
-

$\Omega \longrightarrow \Omega^{\prime}$
$\Omega \longrightarrow \Omega^{\prime}$

```
                    By definition of substitution
```

 By definition of substitution
 By Lemma 21 (Transitivity)
    ```
                        By Lemma 21 (Transitivity)
```

Corollary 55 (Completeness of Subtyping). If $\Psi \vdash A \leq B$ then there is a Δ such that $\Psi \vdash A<: B \dashv \Delta$.
Proof. Let $\Omega=\Psi$ and $\Gamma=\Psi$.
By Lemma 20 (Reflexivity), $\Psi \longrightarrow \Psi$, so $\Gamma \longrightarrow \Omega$.
By Lemma 4(Well-Formedness), $\Psi \vdash A$ and $\Psi \vdash \mathrm{B}$; since $\Gamma=\Psi$, we have $\Gamma \vdash A$ and $\Gamma \vdash \mathrm{B}$. By Theorem 14, there exists Δ such that $\Gamma \vdash[\Gamma] A<:[\Gamma] B \dashv \Delta$.
Since $\Gamma=\Psi$ and Ψ is a declarative context with no existentials, $[\Psi] C=C$ for all C, so we actually have $\Psi \vdash A<: \mathrm{B} \dashv \Delta$, which was to be shown.

$\mathbf{L}^{\prime} \quad$ Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given $\Gamma \longrightarrow \Omega$ and $\Gamma \vdash A$:
(i) If $[\Omega] \Gamma \vdash e \Leftarrow[\Omega] A$
then there exist Δ and Ω^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash e \Leftarrow[\Gamma] A \dashv \Delta$.
(ii) If $[\Omega] \Gamma \vdash e \Rightarrow A$
then there exist Δ, Ω^{\prime}, and A^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash e \Rightarrow A^{\prime} \dashv \Delta$ and $A=\left[\Omega^{\prime}\right] A^{\prime}$.
(iii) If $[\Omega] \Gamma \vdash[\Omega] A \bullet e \Rightarrow C$
then there exist Δ, Ω^{\prime}, and C^{\prime}
such that $\Delta \longrightarrow \Omega^{\prime}$ and $\Omega \longrightarrow \Omega^{\prime}$ and $\Gamma \vdash[\Gamma] A \bullet e \Rightarrow C^{\prime} \dashv \Delta$ and $C=\left[\Omega^{\prime}\right] C^{\prime}$.
Proof. By induction on the given declarative derivation.

- Case
$\frac{(x: A) \in[\Omega] \Gamma}{[\Omega] \Gamma \vdash x \Rightarrow A}$ DeclVar
$(x: A) \in[\Omega] \Gamma \quad$ Premise
$\Gamma \longrightarrow \Omega$
Given
$\left(x: A^{\prime}\right) \in \Gamma$ where $[\Omega] A^{\prime}=[\Omega] A$
From definition of context application
Let $\Delta=\Gamma$.
Let $\Omega^{\prime}=\Omega$.
- $\quad \Gamma \longrightarrow \Omega$
- $\quad \Omega \longrightarrow \Omega$
* $\quad \Gamma \vdash x \Rightarrow A^{\prime} \dashv \Gamma$

Given
By Lemma 20 Reflexivity
By Var
$[\Omega] A^{\prime}=[\Omega] A \quad$ Above
$=A \quad \operatorname{FEV}(A)=\emptyset$

- Case

- Case $\frac{[\Omega] \Gamma \vdash A \quad[\Omega] \Gamma \vdash e_{0} \Leftarrow A}{[\Omega] \Gamma \vdash\left(e_{0}: A\right) \Rightarrow A}$ DeclAnno

$$
\begin{array}{rlrl}
A & =[\Omega] A & & \text { Source type annotations cannot contain evars } \\
& =[\Gamma] A & & \text { Subderivation } \\
{[\Omega] \Gamma \vdash e_{0} \Leftarrow A} & & \text { By above equality } \\
{[\Omega] \Gamma \vdash e_{0} \Leftarrow[\Omega] A} & & \text { By i.h. } \\
\Gamma \vdash e_{0} \Leftarrow[\Gamma] A \dashv \Delta & \prime \prime \\
\Delta \longrightarrow \Omega & & \text { Given } \\
\Omega \longrightarrow \Omega^{\prime} & & \text { By Anno } \\
\Gamma \vdash A & & \text { Source type annotations cannot contain evars } \\
\Gamma \vdash\left(e_{0}: A\right) \Rightarrow A \dashv \Delta & & =\left[\Omega^{\prime}\right] A & \\
& \vdash\left(e_{0}:\left[\Omega^{\prime}\right] A\right) \Rightarrow\left[\Omega^{\prime}\right] A \dashv \Delta & \text { By above equality }
\end{array}
$$

- Case

$$
\overline{[\Omega] \Gamma \vdash() \Leftarrow 1} \text { Decl1। }
$$

We have $[\Omega] A=1$. Either $[\Gamma] A=1$ or $[\Gamma] A=\hat{\alpha} \in$ unsolved (Γ).
In the former case:

$$
\text { Let } \Delta=\Gamma \text {. }
$$

$$
\text { Let } \Omega^{\prime}=\Omega \text {. }
$$

$$
\begin{array}{rlrl}
\Gamma & & \text { Given } \\
\Omega & & \text { By Lemma 20 Reflexivity) } \\
& \Gamma \vdash() \Leftarrow 1 \dashv \Gamma & & \text { By 1I } \\
& \Gamma \vdash() \Leftarrow[\Gamma] 1 \dashv \Gamma & 1=[\Gamma] 1
\end{array}
$$

In the latter case:

```
            \(\Gamma \vdash() \Rightarrow 1 \dashv \Gamma \quad\) By \(1 \mathrm{l} \Rightarrow\)
    \([\Omega] \Gamma \vdash 1 \leq 1 \quad\) By \(\leq\) Unit
        \(1=[\Omega] 1 \quad\) By definition of substitution
            \(=[\Omega][\Gamma] \hat{\alpha} \quad\) By \([\Omega] A=1\)
            \(=[\Omega] \hat{\alpha}\)
                            By Lemma 18 Substitution Extension Invariance
\([\Omega] \Gamma \vdash[\Omega] 1 \leq[\Omega] \hat{\alpha} \quad\) By above equalities
            \(\Gamma \vdash 1<: \hat{\alpha} \dashv \Delta \quad\) By Theorem 13 (1)
            \(1=[\Gamma] 1 \quad\) By definition of substitution
            \(\hat{\alpha}=[\Gamma] \hat{\alpha} \quad \hat{\alpha} \in\) unsolved \((\Gamma)\)
            \(\Gamma \vdash[\Gamma] 1<:[\Gamma] \hat{\alpha} \dashv \Delta \quad\) By above equalities
- \(\Omega \longrightarrow \Omega\)
* \(\Delta \longrightarrow \Omega^{\prime} \quad \prime\)
            \(\Gamma \vdash() \Leftarrow \hat{\alpha} \dashv \Delta \quad\) By Sub
- \(\Gamma \vdash() \Leftarrow[\Gamma] A \dashv \Delta \quad\) Ву \([\Gamma] A=\hat{\alpha}\)
```

- Case

$$
\frac{[\Omega] \Gamma, \alpha \vdash e \Leftarrow A_{0}}{[\Omega] \Gamma \vdash e \Leftarrow \forall \alpha . A_{0}} \text { Decl } \forall \mathrm{I}
$$

$$
\begin{align*}
& {[\Omega] A=\forall \alpha . A_{0} \quad \text { Given }} \\
& =\forall \alpha .[\Omega] A^{\prime} \quad \text { By def. of subst. and predicativity of } \Omega \\
& A_{0}=[\Omega] A^{\prime} \quad \text { Follows from above equality } \\
& {[\Omega] \Gamma, \alpha \vdash e \Leftarrow[\Omega] A^{\prime} \quad \text { Subderivation and above equality }} \\
& \Gamma \longrightarrow \Omega \quad \text { Given } \\
& \Gamma, \alpha \longrightarrow \Omega, \alpha \quad \text { By } \longrightarrow \text { Uvar } \\
& {[\Omega] \Gamma, \alpha=[\Omega, \alpha](\Gamma, \alpha) \quad \text { By definition of context substitution }} \\
& {[\Omega, \alpha](\Gamma, \alpha) \vdash e \Leftarrow[\Omega] A^{\prime} \quad \text { By above equality }} \\
& {[\Omega, \alpha](\Gamma, \alpha) \vdash e \Leftarrow[\Omega, \alpha] A^{\prime} \quad \text { By definition of substitution }} \\
& \Gamma, \alpha \vdash e \Leftarrow[\Gamma, \alpha] A^{\prime} \dashv \Delta^{\prime} \quad \text { By i.h. } \\
& \Delta^{\prime} \longrightarrow \Omega_{0}^{\prime} \\
& \Omega, \alpha \longrightarrow \Omega_{0}^{\prime} \\
& \Gamma, \alpha \longrightarrow \Delta^{\prime} \\
& \Delta^{\prime}=\Delta, \alpha, \Theta \\
& \Delta, \alpha, \Theta \longrightarrow \Omega_{0}^{\prime} \\
& \Omega_{0}^{\prime}=\Omega^{\prime}, \alpha, \Omega_{Z} \\
& \Delta \longrightarrow \Omega^{\prime} \\
& \text { ↔ } \quad \Omega \longrightarrow \Omega^{\prime} \\
& \text { " } \\
& \text { By Lemma } 54 \text { Typing Extension } \\
& \text { By Lemma } 24 \text { (Extension Order) (i) } \\
& \text { By above equality } \\
& \text { By Lemma } 24 \text { (Extension Order) (i) } \\
& \text { " } \\
& \text { By Lemma } 24 \text { Extension Order on } \Omega, \alpha \longrightarrow \Omega_{0}^{\prime} \\
& \Gamma, \alpha \vdash e \Leftarrow[\Gamma, \alpha] A^{\prime} \dashv \Delta, \alpha, \Theta \quad \text { By above equality } \\
& \Gamma, \alpha \vdash e \Leftarrow[\Gamma] A^{\prime} \dashv \Delta, \alpha, \Theta \quad \text { By definition of substitution } \\
& \Gamma \vdash e \Leftarrow \forall \alpha .[\Gamma] A^{\prime} \dashv \Delta \quad \text { By } \forall I \\
& \Gamma \vdash e \Leftarrow[\Gamma]\left(\forall \alpha . A^{\prime}\right) \dashv \Delta \quad \text { By definition of substitution } \\
& \text { - Case } \\
& \frac{[\Omega] \Gamma \vdash \tau \quad[\Omega] \Gamma \vdash[\tau / \alpha] A_{0} \bullet e \Rightarrow C}{[\Omega] \Gamma \vdash \underbrace{\forall \alpha \cdot A_{0}}_{[\Omega] \mathrm{A}} \bullet e \Rightarrow \mathrm{C}} \text { Decl } \forall \mathrm{App} \\
& {[\Omega] A=\forall \alpha . A_{0}} \\
& =\forall \alpha .[\Omega] A^{\prime} \\
& {[\Omega] \Gamma \vdash[\tau / \alpha][\Omega] A^{\prime} \cdot e \Rightarrow C} \\
& \Gamma \longrightarrow \Omega \\
& \Gamma, \hat{\alpha} \longrightarrow \Omega, \hat{\alpha}=\tau \\
& {[\Omega] \Gamma=[\Omega, \hat{\alpha}=\tau](\Gamma, \hat{\alpha})} \\
& \text { Given } \\
& \text { By def. of subst. and predicativity of } \Omega \\
& \text { Subderivation and above equality } \\
& \text { Given } \\
& \text { By } \longrightarrow \text { Solve } \\
& \text { By definition of context application } \\
& {[\Omega, \hat{\alpha}=\tau](\Gamma, \hat{\alpha}) \vdash[\tau / \alpha][\Omega] A^{\prime} \bullet e \Rightarrow C} \\
& \text { By above equality } \\
& {[\Omega, \hat{\alpha}=\tau](\Gamma, \hat{\alpha}) \vdash[\tau / \alpha][\Omega, \hat{\alpha}=\tau] A^{\prime} \cdot e \Rightarrow C \quad \text { By def. of subst. }} \\
& \begin{aligned}
\left([[\Omega] \tau / \alpha][\Omega, \hat{\alpha}=\tau] A^{\prime}\right) & =\left([\Omega, \hat{\alpha}=\tau][\hat{\alpha} / \alpha] A^{\prime}\right) \\
\tau & =[\Omega] \tau
\end{aligned} \\
& \text { By distributivity of substitution } \\
& \operatorname{FEV}(\tau)=\emptyset \\
& \left([\tau / \alpha][\Omega, \hat{\alpha}=\tau] A^{\prime}\right)=\left([\Omega, \hat{\alpha}=\tau][\hat{\alpha} / \alpha] A^{\prime}\right) \\
& \text { By above equality } \\
& {[\Omega, \hat{\alpha}=\tau](\Gamma, \hat{\alpha}) \vdash[\Omega, \hat{\alpha}=\tau][\hat{\alpha} / \alpha] A^{\prime} \bullet e \Longrightarrow C \quad \text { By above equality }} \\
& \Gamma, \hat{\alpha} \vdash[\hat{\alpha} / \alpha] A^{\prime} \cdot e \Rightarrow C^{\prime} \dashv \Delta \quad \text { By i.h. } \\
& C=[\Omega] C^{\prime} \\
& \text { " } \\
& \Delta \longrightarrow \Omega^{\prime} \\
& \Omega \longrightarrow \Omega^{\prime} \\
& \text { - } \quad \Gamma \vdash \forall \alpha . A^{\prime} \cdot e \nRightarrow C^{\prime} \dashv \Delta \quad \text { By } \forall A p p
\end{align*}
$$

- Case $\frac{[\Omega] \Gamma, x: A_{1}^{\prime} \vdash e_{0} \Leftarrow A_{2}^{\prime}}{[\Omega] \Gamma \vdash \lambda x \cdot e_{0} \Leftarrow A_{1}^{\prime} \rightarrow A_{2}^{\prime}}$ Decl \rightarrow I

We have $[\Omega] A=A_{1}^{\prime} \rightarrow A_{2}^{\prime}$. Either $[\Gamma] A=A_{1} \rightarrow A_{2}$ where $A_{1}^{\prime}=[\Omega] A_{1}$ and $A_{2}^{\prime}=[\Omega] A_{2}$-or $[\Gamma] A=\hat{\alpha}$ and $[\Omega] \hat{\alpha}=A_{1}^{\prime} \rightarrow A_{2}^{\prime}$.
In the former case:

$$
\begin{aligned}
{[\Omega] \Gamma, x: A_{1}^{\prime} } & \vdash e_{0} \Leftarrow A_{2}^{\prime} \\
A_{1}^{\prime} & =[\Omega] A_{1} \\
& =[\Omega][\Gamma] A_{1} \\
{[\Omega] A_{1}^{\prime} } & =[\Omega][\Omega][\Gamma] A_{1} \\
& =[\Omega][\Gamma] A_{1}
\end{aligned}
$$

$[\Omega] \Gamma, x: A_{1}^{\prime}=\left[\Omega, x: A_{1}^{\prime}\right]\left(\Gamma, x:[\Gamma] A_{1}\right)$

$$
\left[\Omega, x: A_{1}^{\prime}\right]\left(\Gamma, x:[\Gamma] A_{1}\right) \vdash e_{0} \Leftarrow A_{2}^{\prime}
$$

$$
\Gamma \longrightarrow \Omega
$$

$$
\Gamma, x:[\Gamma] A_{1} \longrightarrow \Omega, x: A_{1}^{\prime}
$$

$$
\Gamma, x:[\Gamma] A_{1} \vdash e_{0} \Leftarrow A_{2} \dashv \Delta^{\prime}
$$

$$
\Delta^{\prime} \longrightarrow \Omega_{0}^{\prime}
$$

$$
\Omega, x: A_{1}^{\prime} \longrightarrow \Omega_{0}^{\prime}
$$

$$
\Omega_{0}^{\prime}=\Omega^{\prime}, x: A_{1}^{\prime}, \Theta
$$

$$
\Omega \longrightarrow \Omega^{\prime}
$$

$$
\Gamma, x:[\Gamma] A_{1} \longrightarrow \Delta^{\prime}
$$

$$
\Delta^{\prime}=\Delta, x: \cdots, \Theta
$$

$$
\Delta, x: \cdots, \Theta \longrightarrow \Omega^{\prime}, x: A_{1}^{\prime}, \Theta
$$

$$
\Delta \longrightarrow \Omega^{\prime}
$$

$$
\begin{aligned}
\Gamma, x:[\Gamma] A_{1} & \vdash e_{0} \Leftarrow[\Gamma] A_{2} \dashv \Delta, \alpha, \Theta \\
& \Gamma \vdash \lambda x \cdot e_{0} \Leftarrow\left([\Gamma] A_{1}\right) \rightarrow\left([\Gamma] A_{2}\right) \dashv \Delta
\end{aligned}
$$

$$
\Gamma \vdash \lambda x . e_{0} \Leftarrow[\Gamma]\left(A_{1} \rightarrow A_{2}\right) \dashv \Delta \quad \text { By definition of substitution }
$$

Subderivation

Known in this subcase
By Lemma 18 Substitution Extension Invariance,
Applying Ω on both sides
By idempotence of substitution
By definition of context application
By above equality
Given
By \longrightarrow Var
By i.h.
"
"
By Lemma 24 Extension Order (v)
"
By Lemma 54 Typing Extension)
By Lemma 24 Extension Order) (v)
By above equalities
By Lemma 24 Extension Order) (v)
By above equality
By \rightarrow I

In the latter case:

$$
\begin{gathered}
{[\Omega] \hat{\alpha}=A_{1}^{\prime} \rightarrow A_{2}^{\prime}} \\
{[\Omega] \Gamma, x: A_{1}^{\prime} \vdash e_{0} \Leftarrow A_{2}^{\prime}} \\
\Gamma \longrightarrow \Omega \\
\Gamma, \hat{\alpha}, \widehat{\beta} \longrightarrow \Omega, \hat{\alpha}=A_{1}^{\prime}, \hat{\beta}=A_{2}^{\prime} \\
{[\Omega] \hat{\alpha}=[\Omega] A_{1}^{\prime}} \\
\Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \longrightarrow \Omega, \hat{\alpha}=A_{1}^{\prime}, \hat{\beta}=A_{2}^{\prime}, x: A_{1}^{\prime} \\
{[\Omega] \Gamma, x: A_{1}^{\prime}=\left[\Omega, \hat{\alpha}=A_{1}^{\prime}, \hat{\beta}=A_{2}^{\prime}, x: A_{1}^{\prime}\right](\Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha})} \\
L e t \Omega_{0}=\left(\Omega, \hat{\alpha}=A_{1}^{\prime}, \widehat{\beta}=A_{2}^{\prime}, x: A_{1}^{\prime}\right) . \\
{\left[\Omega_{0}\right](\Gamma, \hat{\alpha}, \widehat{\beta}, x: \hat{\alpha}) \vdash e_{0} \Leftarrow A_{2}^{\prime}} \\
\Gamma, \hat{\alpha}, \widehat{\beta}, x: \widehat{\alpha} \vdash e_{0} \Leftarrow \widehat{\beta} \dashv \Delta^{\prime} \\
\Delta^{\prime} \longrightarrow \Omega_{0}^{\prime} \\
\Omega_{0} \longrightarrow \Omega_{0}^{\prime}
\end{gathered}
$$

Known in this subcase
Subderivation

Given

By \longrightarrow Solve twice
By definition of substitution
By \longrightarrow Var
By definition of context application
By above equality
By i.h. with Ω_{0}
"
"

- Case

$$
\frac{[\Omega] \Gamma \vdash e \Leftarrow \mathrm{~B}}{[\Omega] \Gamma \vdash \underbrace{\mathrm{B} \rightarrow \mathrm{C}}_{[\Omega] \mathrm{A}} \cdot \mathrm{e} \Rightarrow \mathrm{C}} \mathrm{Decl} \rightarrow \mathrm{App}
$$

We have $[\Omega] A=B \rightarrow C$. Either $[\Gamma] A=B_{0} \rightarrow C_{0}$ where $B=[\Omega] B_{0}$ and $C=[\Omega] C_{0}-$ or $[\Gamma] A=\hat{\alpha}$ where $\hat{\alpha} \in$ unsolved (Γ) and $[\Omega] \hat{\alpha}=B \rightarrow C$.

In the former case:

```
            \([\Omega] \Gamma \vdash \mathrm{e} \Leftarrow \mathrm{B} \quad\) Subderivation
            \(B=[\Omega] B_{0}\)
            \(\Gamma \longrightarrow \Omega\)
            \(\Gamma \vdash e \Leftarrow[\Gamma] \mathrm{B}_{0} \dashv \Delta\)
            \(\Gamma \vdash\left([\Gamma] \mathrm{B}_{0}\right) \rightarrow\left([\Gamma] \mathrm{C}_{0}\right) \bullet e \nRightarrow[\Gamma] \mathrm{C}_{0} \dashv \Delta\)
                \(\Delta \longrightarrow \Omega^{\prime}\)
\(\Perp \quad \Omega \longrightarrow \Omega\)
    Let \(C^{\prime}=[\Gamma] \mathrm{C}_{0}\).
            \(\mathrm{C}=[\Omega] \mathrm{C}_{0}\)
                    \(=[\Omega][\Gamma] \mathrm{C}_{0}\)
                        \(=[\Omega] \mathrm{C}^{\prime}\)
- \(\Gamma \vdash[\Gamma]\left(B_{0} \rightarrow C_{0}\right) \cdot e \Rightarrow[\Gamma] C_{0} \dashv \Delta\)
                                    Known in this subcase
                                    Given
                                    By i.h.
                                    By \(\rightarrow\) App
                                    /"
                                    Known in this subcase
                                    By Lemma 18 Substitution Extension Invariance)
\& \(\quad=[\Omega] \mathrm{C}^{\prime}\)
\([\Gamma] \mathrm{C}_{0}=\mathrm{C}^{\prime}\)
```

In the latter case, $\hat{\alpha} \in$ unsolved (Γ), so the context Γ must have the form $\Gamma_{0}[\hat{\alpha}]$.

```
    \(\Gamma \longrightarrow \Omega\)
                                    Given
\(\Gamma_{0}[\hat{\alpha}] \longrightarrow \Omega\)
\(\Gamma=\Gamma_{0}[\widehat{\alpha}]\)
\([\Omega] A=B \rightarrow C\)
Above
\([\Omega] \hat{\alpha}=\mathrm{B} \rightarrow \mathrm{C}\)
\(A=\hat{\alpha}\)
\(\Omega=\Omega_{0}\left[\hat{\alpha}=A_{0}\right]\) and \([\Omega] A_{0}=B \rightarrow C\)
Follows from \([\Omega] \hat{\alpha}=B \rightarrow C\)
Let \(\Gamma^{\prime}=\Gamma_{0}\left[\hat{\alpha}_{2}, \hat{\alpha}_{1}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]\).
Let \(\Omega_{0}^{\prime}=\Omega_{0}\left[\hat{\alpha}_{2}=[\Omega] \mathrm{C}, \hat{\alpha}_{1}=[\Omega] \mathrm{B}, \hat{\alpha}=\hat{\alpha}_{1} \rightarrow \hat{\alpha}_{2}\right]\).
\(\Gamma^{\prime} \longrightarrow \Omega_{0}^{\prime} \quad\) By Lemma 29 Parallel Admissibility) (ii) twice
    \([\Omega] \Gamma \vdash e \Leftarrow \mathrm{~B} \quad\) Subderivation
    \(\Omega \longrightarrow \Omega_{0}^{\prime} \quad\) By Lemma 27 Solved Variable Addition for Extension
                                    then Lemma 29 (Parallel Admissibility) (iii)
        \([\Omega] \Gamma=[\Omega] \Omega \quad\) By Lemma 49 Stability of Complete Contexts)
            \(=\left[\Omega_{0}^{\prime}\right] \Omega_{0}^{\prime} \quad\) By Lemma 51 Finishing Completions
            \(=\left[\Omega_{0}^{\prime}\right] \Gamma^{\prime} \quad\) By Lemma 52 Confluence of Completeness
            \(B=\left[\Omega_{0}^{\prime}\right] \hat{\alpha}_{1} \quad\) By definition of \(\Omega_{0}^{\prime}\)
    \(\left[\Omega_{0}^{\prime}\right] \Gamma^{\prime} \vdash e \Leftarrow\left[\Omega_{0}^{\prime}\right] \hat{\alpha}_{1} \quad\) By above equalities
            \(\Gamma^{\prime} \vdash e \Leftarrow\left[\Gamma^{\prime}\right] \hat{\alpha}_{1} \dashv \Delta \quad\) By i.h.
\& \(\Delta \longrightarrow \Omega^{\prime} \quad\) "
    \(\Omega_{0}^{\prime} \longrightarrow \Omega^{\prime} \quad \prime \prime\)
- \(\Omega \longrightarrow \Omega^{\prime} \quad\) By Lemma 21 Transitivity
    \(\left[\Gamma^{\prime}\right] \hat{\alpha}_{1}=\hat{\alpha}_{1} \quad \hat{\alpha}_{1} \in \operatorname{unsolved}\left(\Gamma^{\prime}\right)\)
        \(\Gamma^{\prime} \vdash e \Leftarrow \hat{\alpha}_{1} \dashv \Delta \quad\) By above equality
```

- Case

| $\overline{[\Omega] \Gamma \vdash() \Rightarrow 1}$ Decl1 \Rightarrow | | |
| :---: | :---: | :---: |
| | $1=A$ | Given |
| | $\Gamma \vdash() \Rightarrow 1 \dashv \Gamma$ | By $11 \Rightarrow$ |
| Let $\Delta=\Gamma$. | | |
| Let $\Omega^{\prime}=\Omega$. | | |
| | $\Gamma \longrightarrow \Omega$ | Given |
| - | $\Delta \longrightarrow \Omega$ | By above equality |
| - | $\Omega \longrightarrow \Omega^{\prime}$ | By Lemma 20 Reflexivity, |
| Let $A^{\prime}=1$. | | |
| \% | $\Gamma \vdash() \Rightarrow A^{\prime} \dashv \Delta$ | By above equalities |
| \% | $1=[\Omega] A^{\prime}$ | By definition of substitution |

- Case

$$
\begin{aligned}
& \frac{[\Omega] \Gamma \vdash \sigma \rightarrow \tau \quad[\Omega] \Gamma, x: \sigma \vdash e_{0} \Leftarrow \tau}{[\Omega] \Gamma \vdash \lambda x . e_{0} \Rightarrow \sigma \rightarrow \tau} \text { Decl } \rightarrow I \Rightarrow \\
& (\sigma \rightarrow \tau)=A \\
& {[\Omega] \Gamma, \chi: \sigma \vdash e_{0} \Leftarrow \tau} \\
& \text { Let } \Gamma^{\prime}=(\Gamma, \hat{\alpha}, \widehat{\beta}, x: \hat{\alpha}) \text {. } \\
& \text { Let } \Omega_{0}=(\Omega, \hat{\alpha}=\sigma, \widehat{\beta}=\tau, x: \sigma) \text {. } \\
& \Gamma \longrightarrow \Omega \\
& \Gamma^{\prime} \longrightarrow \Omega_{0} \\
& {\left[\Omega_{0}\right] \Gamma^{\prime}=([\Omega] \Gamma, x: \sigma)} \\
& \tau=\left[\Omega_{0}\right] \hat{\beta} \\
& {\left[\Omega_{0}\right] \Gamma^{\prime} \vdash e_{0} \Leftarrow\left[\Omega_{0}\right] \hat{\beta}} \\
& \Gamma^{\prime} \vdash e_{0} \Leftarrow \widehat{\beta} \dashv \Delta^{\prime} \\
& \Delta^{\prime} \longrightarrow \Omega_{0}^{\prime} \\
& \Omega_{0} \longrightarrow \Omega_{0}^{\prime} \\
& \Delta^{\prime}=(\Delta, x: \hat{\alpha}, \Theta) \\
& \Gamma, \hat{\alpha}, \hat{\beta}, x: \hat{\alpha} \vdash e_{0} \Leftarrow \widehat{\beta} \dashv \Delta, x: \hat{\alpha}, \Theta \\
& (\Delta, x: \widehat{\alpha}, \Theta) \longrightarrow \Omega_{0}^{\prime} \\
& \Omega_{0}^{\prime}=\Omega^{\prime}, x: \sigma, \Omega_{Z} \\
& \Delta \longrightarrow \Omega^{\prime} \\
& \Gamma \vdash \lambda x . e_{0} \Rightarrow \hat{\alpha} \rightarrow \hat{\beta} \dashv \Delta \\
& \text { Subderivation } \\
& \text { By } \longrightarrow \text { Solve twice, then } \longrightarrow \text { Var } \\
& \text { By definition of context application } \\
& \text { By definition of } \Omega_{0} \\
& \text { By above equalities } \\
& \text { By i.h. } \\
& \text { " } \\
& \text { " } \\
& \text { By Lemma } 24 \text { Extension Order) (v) } \\
& \text { By above equalities } \\
& \text { By above equality } \\
& \text { By Lemma } 24 \text { (Extension Order) (v) } \\
& \text { " } \\
& \text { By } \rightarrow \mathrm{I} \Rightarrow
\end{aligned}
$$

Let $A^{\prime}=(\hat{\alpha} \rightarrow \widehat{\beta})$.

| Γ | $\Gamma \vdash \lambda \cdot e_{0} \Rightarrow A^{\prime} \dashv \Delta$ | | By above equality |
| ---: | :--- | ---: | :--- |
| $\sigma \rightarrow \tau$ | $=\left(\left[\Omega_{0}\right] \hat{\alpha}\right) \rightarrow\left(\left[\Omega_{0}\right] \hat{\beta}\right)$ | | By definition of Ω_{0} |
| $\sigma \rightarrow \tau$ | $=\left[\Omega_{0}\right](\hat{\alpha} \rightarrow \widehat{\beta})$ | | By definition of substitution |
| A | $=\left[\Omega_{0}\right] A^{\prime}$ | | By above equalities |
| A | $=\left[\Omega^{\prime}\right] A^{\prime}$ | | By Lemma 50 (Finishing Types |
| $\Gamma^{\prime} \longrightarrow \Delta^{\prime}$ | | By Lemma 54 (Typing Extension | |
| $\Omega \longrightarrow \Omega^{\prime}$ | | By Lemma 21 Transitivity | |

References

Frank Pfenning. Structural cut elimination. In LICS, 1995.

[^0]: *Recompiled in 2021.

