
Programming in C and C++

Lecture 7: Reference Counting and Garbage Collection

Neel Krishnaswami and Alan Mycroft

1 / 30



The C API for Dynamic Memory Allocation

• In the previous lecture, we saw how to use arenas and ad-hoc

graph traversals to manage memory when pointer graphs

contain aliasing or cycles

• These are not the only idioms for memory management in C!

• Two more common patterns are reference counting and

type-specific garbage collectors.

2 / 30



A Tree Data Type

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 };

6 typedef struct node Tree;

• This is still the tree type from Lab 4.

• It has a value, a left subtree, and a right subtree

• An empty tree is a NULL pointer.

3 / 30



Construct Nodes of a Tree

1 Tree *node(int value, Tree *left, Tree *right) {

2 Tree *t = malloc(sizeof(tree));

3 t->value = value;

4 t->right = right;

5 t->left = left;

6 return t;

7 }

1. Allocate a pointer to a tree struct

2. Initialize the value field

3. Initialize the right field

4. Initialize the left field

5. Return the initialized pointer!

4 / 30



A Directed Acyclic Graph (DAG)

1 Tree *n = node(2, NULL, NULL);

2 Tree *n2 =

3 node(1, n, n); // n repeated!

1. We allocate n on line 1

2. On line 2, we create n2 whose left and right fields are n.

3. Hence n2->left and n2->right are said to alias – they are

two pointers aimed at the same block of memory.

5 / 30



The shape of the graph

n2

n

Null Null

left right

left right

• node1 has two pointers to

node2

• This is a directed acyclic

graph, not a tree.

• A recursive free of the tree

n2 will try to free n twice.

6 / 30



The Idea of Reference Counting

n2: k

n: 2

Null Null

left right

left right

1. The problem: freeing things

with two pointers to them

twice

2. Solution: stop doing that

3. Keep track of the number of

pointers to an object

4. Only free when the count

reaches zero

7 / 30



How Reference Counting Works

n2: k

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 1

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30



The Reference Counting API

1 struct node {

2 unsigned int rc;

3 int value;

4 struct node *left;

5 struct node *right;

6 };

7 typedef struct node Node;

8

9 const Node *empty = NULL;

10 Node *node(int value,

11 Node *left,

12 Node *right);

13 void inc_ref(Node *node);

14 void dec_ref(Node *node);

• We add a field rc to keep

track of the references.

• We keep the same node

constructor interface.

• We add a procedure

inc_ref to increment the

reference count of a node.

• We add a procedure

dec_ref to decrement the

reference count of a node.

9 / 30



Reference Counting Implementation: node()

1 Node *node(int value,

2 Node *left,

3 Node *right) {

4 Node *r = malloc(sizeof(Node));

5 r->rc = 1;

6 r->value = value;

7

8 r->left = left;

9 inc_ref(left);

10

11 r->right = right;

12 inc_ref(right);

13 return r;

14 }

• On line 4, we initialize the

rc field to 1. (Annoyingly,

this is a rather delicate

point!)

• On line 8-9, we set the left

field, and increment the

reference count of the

pointed-to node.

• On line 11-12, we do the

same to right

10 / 30



Reference Counting Implementation: inc ref()

1 void inc_ref(Node *node) {

2 if (node != NULL) {

3 node->rc += 1;

4 }

5 }

• On line 3, we increment the rc field (if nonnull)

• That’s it!

11 / 30



Reference Counting Implementation: dec ref()

1 void dec_ref(Node *node) {

2 if (node != NULL) {

3 if (node->rc > 1) {

4 node->rc -= 1;

5 } else {

6 dec_ref(node->left);

7 dec_ref(node->right);

8 free(node);

9 }

10 }

11 }

• When we decrement a

reference count, we check to

see if we are the last

reference (line 3)

• If not, we just decrement

the reference count (line 4)

• If so, then decrement the

reference counts of the

children (lines 6-7)

• Then free the current

object. (line 8)

12 / 30



Example 1

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 Node *sub = complete(n-1);

6 Node *result =

7 node(n, sub, sub);

8 dec_ref(sub);

9 return result;

10 }

11 }

• complete(n) builds a

complete binary tree of

depth n

• Sharing makes memory

usage O(n)

• On line 5, makes a recursive

call to build subtree.

• On line 6, builds the tree

• On line 8, call

dec_ref(sub) to drop the

stack reference sub

• On line 9, don’t call

dec_ref(result)

13 / 30



Example 1 – mistake 1

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 Node *sub = complete(n-1);

6 Node *result =

7 node(n, sub, sub);

8 // dec_ref(sub);

9 return result;

10 }

11 }

• If we forget to call

dec_ref(sub), we get a

memory leak!

• sub begins with a refcount

of 1

• node(sub, sub) bumps it

to 3

• If we call

dec_ref(complete(n)),

the outer node will get freed

• But the children will end up

with an rc field of 1

14 / 30



Example 1 – mistake 2

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 return node(n,

6 complete(n-1),

7 complete(n-1));

8 }

9 }

• This still leaks memory!

• complete(n-1) begins with

a refcount of 1

• The expression on lines 5-7

bumps each subtree to a

refcount of 2

• If we call

free(complete(n)), the

outer node will get freed

• But the children will end up

with an rc field of 1

15 / 30



Design Issues with Reference Counting APIs

• The key problem: who is responsible for managing reference

counts?

• Two main options: sharing references vs transferring

references

• Both choices work, but must be made consistently

• To make this work, API must be documented very carefully

• Good example: Python C API

• https://docs.python.org/3/c-api/intro.html#

objects-types-and-reference-counts

16 / 30

https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts
https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts


Mitigations: Careful Use of Getters and Setters

1 Node *get_left(Node *node) {

2 inc_ref(node->left);

3 return(node->left);

4 }

5

6 void set_left(Node *node,

7 Node *newval) {

8 inc_ref(newval);

9 dec_ref(node->left);

10 node->left = newval;

11 }

• The get_left() function

returns the left subtree, but

also increments the

reference count

• The set_left() function

updates the left subtree,

incrementing the reference

count to the new value and

decrementing the reference

17 / 30



Cycles: A Fundamental Limitation on Reference Counting

1 Node *foo() {

2 Node *n1 = node(1, NULL, NULL);

3 Node *n2 = node(2, NULL, NULL);

4 set_left(node1, node2);

5 set_left(node2, node1);

6 dec_ref(n2);

7 return node1;

8 }

What does a call to foo() build?

18 / 30



A Cyclic Object Graph

n1: 2

n2: 1

Nullleft

right

left

right

• n1->rc is 2, since n2 points

to it

• n2->rc is 1, since n1 points

to it

• This is a cyclic graph

• Even though there is only 1

external reference to n1,

n1->rc is 2.

• Hence dec_ref(foo()) will

not free memory!

• Reference counting cannot

collect cycles

19 / 30



Garbage Collection: Dealing with Cycles

• In ML or Java, we don’t have to worry about cycles or

managing reference counts explicitly

• We rely on a garbage collector to manage memory

automatically

• In C, we can implement garbage collection to manage memory

20 / 30



GC API – Data structures

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 bool mark;

6 struct node *next;

7 };

8 typedef struct node Node;

9

10 struct root {

11 Node *start;

12 struct root *next;

13 };

14 typedef struct root Root;

15

16 struct alloc {

17 Node *nodes;

18 Root *roots;

19 };

20 typedef struct alloc Alloc;

• Node * are node objects,

but augmented with a mark

bit (Lab 5) and a next link

connecting all allocated

nodes

• A Root * is a node we don’t

want to garbage collect.

Roots are also in a linked list

• An allocator Alloc * holds

the head of the lists of

nodes and roots

21 / 30



GC API – Procedures

1 Alloc *make_allocator(void);

2 Node *node(int value,

3 Node *left,

4 Node *right,

5 Alloc *a);

6 Root *root(Node *node, Alloc *a);

7 void gc(Alloc *a);

• make_allocator creates a

fresh allocator

• node(n, l, r, a) creates

a fresh node in allocator a

(as in the arena API)

• root(n) creates a new root

object rooting the node n

• gc(a) frees all nodes

unreachable from the roots

22 / 30



Creating a Fresh Allocator

1 Alloc *make_allocator(void) {

2 Alloc *a = malloc(sizeof(Alloc));

3 a->roots = NULL;

4 a->nodes = NULL;

5 return a;

6 }

• Creates a fresh allocator with empty set of roots and nodes

• Invariant: no root or node is part of two allocators!

• (Could use global variables, but thread-unfriendly)

23 / 30



Creating a Node

1 Node *node(int value,

2 Node *left,

3 Node *right,

4 Alloc *a) {

5 Node *r = malloc(sizeof(Node));

6 r->value = value;

7 r->left = left;

8 r->right = right;

9 //

10 r->mark = false;

11 r->next = a->nodes;

12 a->nodes = r;

13 return r;

14 }

• Lines 5-9 perform familiar

operations: allocate memory

(line 5) and initialize data

fields (6-8)

• Line 10 initializes mark to

false

• Lines 11-12 add new node

to a->nodes

24 / 30



Creating a Root

1 Root *root(Node *node,

2 Alloc *a) {

3 Root *g =

4 malloc(sizeof(Root));

5 g->start = node;

6 g->next = a->roots;

7 a->roots = g;

8 return g;

9 }

• On line 4, allocate a new

Root struct g

• On line 5, set the start

field to the node argument

• On lines 6-7, attach g to the

roots of the allocator a

• Now the allocator knows to

treat the root as always

reachable

25 / 30



Implementing a Mark-and-Sweep GC

• Idea: split GC into two phases, mark and sweep

• In mark phase:

• From each root, mark the nodes reachable from that root

• I.e., set the mark field to true

• So every reachable node will have a true mark bit, and every

unreachable one will be set to false

• In sweep phase:

• Iterate over every allocated node

• If the node is unmarked, free it

• If the node is marked, reset the mark bit to false

26 / 30



Marking

1 void mark_node(Node *node) {

2 if (node != NULL && !node->mark) {

3 node->mark = true;

4 mark_node(node->left);

5 mark_node(node->right);

6 }

7 }

8

9 void mark(Alloc *a) {

10 Root *g = a->roots;

11 while (g != NULL) {

12 mark_node(g->start);

13 g = g->next;

14 }

15 }

• mark_node() function

marks a node if unmarked,

and then recursively marks

subnodes

• Just like in lab 6!

• mark() procedure iterates

over the roots, marking the

nodes reachable from it.

• If a node is not reachable

from the a->roots pointer,

it will stay false

27 / 30



Sweeping

1 void sweep(Alloc *a) {

2 Node *n = a->nodes;

3 Node *live = NULL;

4 while (n != NULL) {

5 Node *tl = n->next;

6 if (!(n->mark)) {

7 free(n);

8 } else {

9 n->mark = false;

10 n->next = live;

11 live = n;

12 }

13 n = tl;

14 }

15 a->nodes = live;

16 }

• On line 2, get a pointer to all

allocated nodes via a->nodes

• On line 3, create a new empty

list of live nodes

• On lines 4-14, iterate over each

allocated node

• On line 6, check to see if the

node is unmarked

• If unmarked, free it (line 8)

• If marked, reset the mark bit

and add it to the live list

(9-11)

• On line 15, update a->nodes

to the still-live live nodes
28 / 30



The gc() routine

void gc(Alloc *a) {

mark(a);

sweep(a);

}

• gc(a) just marks and sweeps!

• To use the gc, we allocate nodes as normal

• Periodically, invoke gc(a) to clear out unused nodes

• That’s it!

29 / 30



Design Considerations

• This kind of custom GC is quite slow relative to ML/Java gcs

• However, simple and easy to implement (only 50 lines of

code!)

• No worries about cycles or managing reference counts

• Worth considering using the Boehm gc if gc in C/C++ is
needed:

• https://www.hboehm.info/gc/

• Drop-in replacement for malloc!

• Still useful when dealing with interop between gc’d and

manually-managed languages (eg, DOM nodes in web

browsers)

30 / 30

https://www.hboehm.info/gc/

