Programming in C and C++

Lecture 5: Tooling

Neel Krishnaswami and Alan Mycroft



Undefined and Unspecified Behaviour

e We have seen that C is an unsafe language

Programming errors can arbitrarily corrupt runtime data
structures. . .

... leading to undefined behaviour

e Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

What can we do about it?


https://blog.regehr.org/archives/1520

Tooling and Instrumentation

Add instrumentation to detect unsafe behaviour!

We will look at 4 tools:

e ASan (Address Sanitizer)

e MSan (Memory Sanitizer)

e UBSan (Undefined Behaviour Sanitizer)
e Valgrind



ASan: Address Sani

One of the leading causes of errors in C is memory corruption:
e Out-of-bounds array accesses
e Use pointer after call to free()
e Use stack variable after it is out of scope
e Double-frees or other invalid frees
e Memory leaks

AddressSanitizer instruments code to detect these errors

Need to recompile

Adds runtime overhead

Use it while developing

Built into gcc and clang!



ASan Example #1

1 #include <stdlib.h>
2  #include <stdio.h>

+ ¥#define ¥ 10 e Loop bound goes past the
end of the array

6 int main(void) { . )
e Undefined behaviour

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++) © Compile with

. printf ("%c", s[il); -fsanitize=address
10 printf ("\n");

11 return O;

12}



ASan Example #2

1 #include <stdlib.h>

s int main(void) { 1. array is allocated

4 int *a = 2. array is freed

5 malloc(sizeof (int) * 100); 3. array is dereferenced! (aka
6 free(a); use-after-free)

7 return al[5]; // DOOM!

s}



ASan Example #3

1 #include <stdlib.h>

3 int main(void) {

. char *s = 1. array is allocated
5 malloc(sizeof (char) * 10); .
2. array is freed
6 free(s); .
; free(s); 3. array is double-freed

8 printf ("%s", s);

9 return O;



ASan Limitations

Must recompile code

Adds considerable runtime overhead

e Typical slowdown 2x

Does not catch all memory errors

e NEVER catches uninitialized memory accesses

Still: a must-use tool during development



MSan: Memory Sanitizer

e Both local variable declarations and dynamic memory
allocation via malloc() do not initialize memory:
1 #include <stdio.h>

3 int main(void) {
4 int x[10];
5 printf ("%d\n", x[0]); // uninitialized
6 return O;
7}
e Accesses to uninitialized variables are undefined
e This does NOT mean that you get some unspecified value

e |t means that the compiler is free to do anything it likes

e ASan does not catch wuninitialized memory accesses



MSan: Memory Sanitizer

#include <stdio.h>

int main(void) {
int x[10];
printf ("%d\n", x[0]); // uninitialized

return O;

e Memory sanitizer (MSan) does check for uninitialized memory
accesses

e Compile with ~-fsanitize=memory

10



MSan Example #1: Stack Allocation

1 #include <stdio.h>

2 #include <stdlib.h> | Gk sllleste array

on line 5
4 int main(int argc, char** argv) {

5 int al[10];
6 al[2] = 0;
7 if (alargcl)

2. Partially initialize it
on line 6

3. Access it on line 7

8 printf ("print something\n"); 4. This might or might
9 return 0; not be initialized
0 r

11



MSan Example #2: Heap Allocation

1 #include <stdio.h>

2 #include <stdlib.h>
1. Heap allocate array

4+ int main(int argc, char** argv) { on line 5

5 int *a = malloc(sizeof(int) * 10); 2. Partially initialize it
6 al2] = 0; on line 6

7 if (aflargcel) 3. Access it on line 7

8 printf ("print something\n"); 4. This might or might
o dealels not be initialized

10 return O;

11 }

12



MSan Limitations

e MSan just checks for memory initialization errors
e |t is very expensive

e 2-3x slowdowns, on top of anything else

e Currently only available on clang, and not gcc

13



UBSan: Undefined Behaviour Sanitizer

e There is lots of non-memory-related undefined behaviour in C:
e Signed integer overflow
e Dereferencing null pointers
e Pointer arithmetic overflow
e Dynamic arrays whose size is non-positive

Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

Need to recompile
e Adds runtime overhead

e Typical overhead of 20%

Use it while developing, maybe even in production

Built into gcc and clang!

14



UBSan Example #1

1 #include <limits.h>

) 1. Signed integer overflow is
3 int main(void) { undefined

4 int n = INT_MAX; 2. So value of m is undefined
5 intm=n+ 13 3. Compile with

6 return O;

—-fsanitize=undefined

ii5)



UBSan Example #2

#include <limits.h>

int main(void) {
int n = 65
intm=n/ (n - n);

return O;

1. Division-by-zero is undefined
2. So value of m is undefined

3. Any possible behaviour is
legal!

16



UBSan Example #3

#include <stdlib.h>

struct foo {
int a, b;

};

int main(void) {
struct foo *x = NULL;
int m = x->a;

return O;

. Accessing a null pointer is

undefined

. So accessing fields of x is

undefined

. Any possible behaviour is

legal!

17



UBSan Limitations

Must recompile code
e Adds modest runtime overhead

Does not catch all undefined behaviour

Still: a must-use tool during development

Seriously consider using it in production

18



Valgrind

UBSan, MSan, and ASan require recompiling

UBSan and ASan don't catch accesses to uninitialized memory

Enter Valgrind!

Instruments binaries to detect numerous errors

19



Valgrind Example

#include <stdio.h>

int main(void) {
char s[10];
for (int i = 0; i < 10;
printf ("Yc", s[il);
printf("\n");

return O;

i++)

. Accessing elements of s is

undefined

. Program prints uninitialized

memory

3. Any possible behaviour is

legal!

. Invoke valgrind with

binary name

20



Valgrind Limitations

Adds very substantial runtime overhead

Not built into GCC/clang (plus or minus?)

As usual, does not catch all undefined behaviour

Still: a must-use tool during testing

21



Tool Slowdown Source/Binary Tool
ASan Big Source GCC/Clang
MSan Big Source Clang
UBSan Small Source GCC/Clang
Valgrind ~ Very big Binary Standalone

22



