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Undefined and Unspecified Behaviour

e We have seen that C is an unsafe language

Programming errors can arbitrarily corrupt runtime data
structures. . .

... leading to undefined behaviour

e Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

What can we do about it?


https://blog.regehr.org/archives/1520

Tooling and Instrumentation

Add instrumentation to detect unsafe behaviour!

We will look at 4 tools:

e ASan (Address Sanitizer)

e MSan (Memory Sanitizer)

e UBSan (Undefined Behaviour Sanitizer)
e Valgrind



ASan: Address Sani

One of the leading causes of errors in C is memory corruption:
e Out-of-bounds array accesses
e Use pointer after call to free()
e Use stack variable after it is out of scope
e Double-frees or other invalid frees
e Memory leaks

AddressSanitizer instruments code to detect these errors

Need to recompile

Adds runtime overhead

Use it while developing

Built into gcc and clang!



ASan Example #1

1 #include <stdlib.h>
2  #include <stdio.h>

+ ¥#define ¥ 10 e Loop bound goes past the
end of the array

6 int main(void) { . )
e Undefined behaviour

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++) © Compile with

. printf ("%c", s[il); -fsanitize=address
10 printf ("\n");

11 return O;

12}



ASan Example #2

1 #include <stdlib.h>

s int main(void) { 1. array is allocated

4 int *a = 2. array is freed

5 malloc(sizeof (int) * 100); 3. array is dereferenced! (aka
6 free(a); use-after-free)

7 return al[5]; // DOOM!

s}



ASan Example #3

1 #include <stdlib.h>

3 int main(void) {

. char *s = 1. array is allocated
5 malloc(sizeof (char) * 10); .
2. array is freed
6 free(s); .
; free(s); 3. array is double-freed

8 printf ("%s", s);

9 return O;



ASan Limitations

Must recompile code

Adds considerable runtime overhead

e Typical slowdown 2x

Does not catch all memory errors

e NEVER catches uninitialized memory accesses

Still: a must-use tool during development



MSan: Memory Sanitizer

e Both local variable declarations and dynamic memory
allocation via malloc() do not initialize memory:
1 #include <stdio.h>

3 int main(void) {
4 int x[10];
5 printf ("%d\n", x[0]); // uninitialized
6 return O;
7}
e Accesses to uninitialized variables are undefined
e This does NOT mean that you get some unspecified value

e |t means that the compiler is free to do anything it likes

e ASan does not catch wuninitialized memory accesses



MSan: Memory Sanitizer

#include <stdio.h>

int main(void) {
int x[10];
printf ("%d\n", x[0]); // uninitialized

return O;

e Memory sanitizer (MSan) does check for uninitialized memory
accesses

e Compile with ~-fsanitize=memory
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MSan Example #1: Stack Allocation

1 #include <stdio.h>

2 #include <stdlib.h> | Gk sllleste array

on line 5
4 int main(int argc, char** argv) {

5 int al[10];
6 al[2] = 0;
7 if (alargcl)

2. Partially initialize it
on line 6

3. Access it on line 7

8 printf ("print something\n"); 4. This might or might
9 return 0; not be initialized
0 r
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MSan Example #2: Heap Allocation

1 #include <stdio.h>

2 #include <stdlib.h>
1. Heap allocate array

4+ int main(int argc, char** argv) { on line 5

5 int *a = malloc(sizeof(int) * 10); 2. Partially initialize it
6 al2] = 0; on line 6

7 if (aflargcel) 3. Access it on line 7

8 printf ("print something\n"); 4. This might or might
o dealels not be initialized

10 return O;

11 }
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MSan Limitations

e MSan just checks for memory initialization errors
e |t is very expensive

e 2-3x slowdowns, on top of anything else

e Currently only available on clang, and not gcc
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UBSan: Undefined Behaviour Sanitizer

e There is lots of non-memory-related undefined behaviour in C:
e Signed integer overflow
e Dereferencing null pointers
e Pointer arithmetic overflow
e Dynamic arrays whose size is non-positive

Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

Need to recompile
e Adds runtime overhead

e Typical overhead of 20%

Use it while developing, maybe even in production

Built into gcc and clang!
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UBSan Example #1

1 #include <limits.h>

) 1. Signed integer overflow is
3 int main(void) { undefined

4 int n = INT_MAX; 2. So value of m is undefined
5 intm=n+ 13 3. Compile with

6 return O;

—-fsanitize=undefined

ii5)



UBSan Example #2

#include <limits.h>

int main(void) {
int n = 65
intm=n/ (n - n);

return O;

1. Division-by-zero is undefined
2. So value of m is undefined

3. Any possible behaviour is
legal!
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UBSan Example #3

#include <stdlib.h>

struct foo {
int a, b;

};

int main(void) {
struct foo *x = NULL;
int m = x->a;

return O;

. Accessing a null pointer is

undefined

. So accessing fields of x is

undefined

. Any possible behaviour is

legal!
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UBSan Limitations

Must recompile code
e Adds modest runtime overhead

Does not catch all undefined behaviour

Still: a must-use tool during development

Seriously consider using it in production
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Valgrind

UBSan, MSan, and ASan require recompiling

UBSan and ASan don't catch accesses to uninitialized memory

Enter Valgrind!

Instruments binaries to detect numerous errors
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Valgrind Example

#include <stdio.h>

int main(void) {
char s[10];
for (int i = 0; i < 10;
printf ("Yc", s[il);
printf("\n");

return O;

i++)

. Accessing elements of s is

undefined

. Program prints uninitialized

memory

3. Any possible behaviour is

legal!

. Invoke valgrind with

binary name
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Valgrind Limitations

Adds very substantial runtime overhead

Not built into GCC/clang (plus or minus?)

As usual, does not catch all undefined behaviour

Still: a must-use tool during testing

21



Tool Slowdown Source/Binary Tool
ASan Big Source GCC/Clang
MSan Big Source Clang
UBSan Small Source GCC/Clang
Valgrind ~ Very big Binary Standalone
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