
Programming in C and C++

Lecture 2: Functions and the Preprocessor

Neel Krishnaswami and Alan Mycroft

Functions

• C does not have objects with methods, but does have

functions

• A function definition has a return type, parameter

specification, and a body or statement; for example:

int power(int base, int n) { stmt }

• A function declaration has a return type and parameter

specification followed by a semicolon; for example:

int power(int base, int n);

1

Functions, continued

• Functions can be declared or defined extern or static.

• All arguments to a function are copied, i.e. passed-by-value;

modification of the local value does not affect the original

• Just as for variables, a function must have exactly one

definition and can have multiple declarations

• A function which is used but only has a declaration, and no

definition, results in a link error (more on this later)

• Functions cannot be nested

2

Function Type Gotchas

• A function declaration with no values (e.g. int power();) is

not an empty parameter specification, rather it means that its

arguments should not be type-checked! (luckily, this is not the

case in C++)

• Instead, a function with no arguments is declared using void

(e.g., int power(void);)

• An ellipsis (...) can be used for optional (or varying)

parameter specification, for example:

int printf(char* fmt,...) { stmt }

• The ellipsis is useful for defining functions with variable length

arguments, but leaves a hole in the type system (stdarg.h)

3

Recursion

• Functions can call themselves recursively

• On each call, a new set of local variables is created

• Therefore, a function recursion of depth n has n sets of

variables

• Recursion can be useful when dealing with recursively defined

data structures, like trees (more on such data structures later)

• Recursion can also be used as you would in ML:

1 unsigned int fact(unsigned int n) {

2 return n ? n * fact(n-1) : 1;

3 }

4

Compilation

• A compiler transforms a C source file or execution unit into an

object file

• An object file consists of machine code, and a list of:

• defined or exported symbols representing defined function

names and global variables

• undefined or imported symbols for functions and global

variables which are declared but not defined

• A linker combines several object files into an executable by:

• combining all object code into a single file

• adjusting the absolute addresses from each object file

• resolving all undefined symbols

The Part 1b Compiler Course describes how to build a compiler

and linker in more detail

5

Handling Code in Multiple Files in C

• C separates declaration from definition for both variables and

functions

• This allows portions of code to be split across multiple files
• Code in different files can then be compiled at different times

• This allows libraries to be compiled once, but used many times

• It also allows companies to sell binary-only libraries

• In order to use code written in another file we still need a

declaration
• A header file can be used to:

• supply the declarations of function and variable definitions in

another file

• provide preprocessor macros (more on this later)

• avoid duplication (and ∴ errors) that would otherwise occur

• You might find the Unix tool nm useful for inspecting symbol

tables
6

Multiple Source File Example

example4.h

/* reverse s in place */

void reverse(char str[]);

example4a.c

#include <string.h>

#include "example4.h"

void reverse(char s[]) {

for (int i=0, j=strlen(s)-1;

i < j; i++, j--) {

char c=s[i];

s[i]=s[j], s[j]=c;

}

}

example4b.c

#include <stdio.h>

#include "example4.h"

int main(void) {

char s[] = "Reverse me";

reverse(s);

printf("%s\n", s);

return 0;

}

7

Variable and Function Scope with static

• The static keyword limits the scope of a variable or function

• In the global scope, static does not export the function or
variable symbol

• This prevents the variable or function from being called

externally

• BEWARE: extern is the default, not static This is also the

case for global variables.

• In the local scope, a static variable retains its value between
function calls

• A single static variable exists even if a function call is

recursive

• Note: auto is the default, not static

8

Address Space Layout

A typical x86 32-bit address-space layout:

Description Address

Top of address space 0xffff ffff

. . .

Stack (downwards-growing) typical start 0x7fff ffff

. . .

Heap (upwards-growing) typical start 0x0020 0000

. . .

Static variables typical start 0x0010 0000

C binary code typical start 0x0000 8000

. . .

Null – often trapped 0x000 0000

(64 bit is messier, but not fundamentally different: see layout.c)
9

C Preprocessor

• The preprocessor executes before any compilation takes place

• It manipulates the text of the source file in a single pass

• Amongst other things, the preprocessor:

• deletes each occurrence of a backslash followed by a newline;

• replaces comments by a single space;

• replaces definitions, obeys conditional preprocessing directives

and expands macros; and

• it replaces escaped sequences in character constants and string

literals and concatenates adjacent string literals

10

Controlling the Preprocessor Programmatically

• The preprocessor can be used by the programmer to rewrite

source code

• This is a powerful (and, at times, useful) feature, but can be

hard to debug (more on this later)

• The preprocessor interprets lines starting with # with a

special meaning

• Two text substitution directives: #include and #define

• Conditional directives: #if , #elif , #else and #endif

11

The #include Directive

• The #include directive performs text substitution

• It is written in one of two forms:

#include "filename"

#include <filename>

• Both forms replace the #include ... line in the source file

with the contents of filename

• The quote (”) form searches for the file in the same location

as the source file, then searches a predefined set of directories

• The angle (<) form searches a predefined set of directories

• When a #include-d file is changed, all source files which

depend on it should be recompiled (easily managed via a

Makefile)

12

The #define Directive

• The #define directive has the form:

#define name replacement-text

• The directive performs a direct text substitution of all future

examples of name with the replacement-text for the remainder

of the source file

• The name has the same constraints as a standard C variable

name

• Replacement does not take place if name is found inside a

quoted string

• By convention, name tends to be written in upper case to

distinguish it from a normal variable name

13

Defining Macros

• The #define directive can be used to define macros; e.g.:

#define MAX(A,B)((A)>(B)?(A):(B))

• In the body of the macro:
• prefixing a parameter in the replacement text with ‘#’ places

the parameter value inside string quotes (”)

• placing ‘##’ between two parameters in the replacement text

removes any whitespace between the variables in generated

output

• Remember: the preprocessor only performs text substitution!
• Syntax analysis and type checking dont occur until compilation

• This can result in confusing compiler warnings on line numbers

where the macro is used, rather than when it is defined; e.g.

#define JOIN(A,B) (A B))

• Beware:

#define TWO 1+1

#define WHAT TWO*TWO 14

Example

1 #include <stdio.h>

2

3 #define PI 3.141592654

4 #define MAX(A,B) ((A)>(B)?(A):(B))

5 #define PERCENT(D) (100*D) /* Wrong? */

6 #define DPRINT(D) printf(#D " = %g\n",D)

7 #define JOIN(A,B) (A ## B)

8

9 int main(void) {

10 const unsigned int a1=3;

11 const unsigned int i = JOIN(a,1);

12 printf("%u %g\n",i, MAX(PI,3.14));

13 DPRINT(MAX(PERCENT(0.32+0.16),PERCENT(0.15+0.48)));

14

15 return 0;

16 } 15

Conditional Preprocessor Directives

Conditional directives: #if , #ifdef , #ifndef , #elif and

#endif

• The preprocessor can use conditional statements to include or

exclude code in later phases of compilation

• #if accepts an integer expression as an argument and retains

the code between #if and #endif (or #elif) if it evaluates

to a non-zero value; for example:

#if SOME_DEF > 8 && OTHER_DEF != THIRD_DEF

• The preprocessor built-in defined takes a name as its

argument and gives 1L if it is #define-d; 0L otherwise

• #ifdef N and #ifndef N are equivalent to #if defined(N)

and #if !defined(N) respectively

• #undef can be used to remove a #define-d name from the

preprocessor macro and variable namespace.
16

Preprocessor Example

Conditional directives have several uses, including preventing

double definitions in header files and enabling code to function on

several different architectures; for example:

1 #if SYSTEM_SYSV

2 #define HDR "sysv.h"

3 #elif SYSTEM_BSD

4 #define HDR "bsd.h"

5 #else

6 #define HDR "default.h"

7 #endif

8 #include HDR

1 #ifndef MYHEADER_H

2 #define MYHEADER_H 1

3 ...

4 /* declarations & defns */

5 ...

6 #endif /* !MYHEADER_H */

17

Error control

• To help other compilers which generate C code (rather than

machine code) as output, compiler line and filename warnings

can be overridden with:

#line constant "filename"

• The compiler then adjusts its internal value for the next line in

the source file as constant and the current name of the file

being processed as “filename” (“filename” may be omitted)

• The statement #error some-text causes the preprocessor to

write a diagnostic message containing some-text

• There are several predefined identifiers that produce special

information: __LINE__ , __FILE__ , __DATE__ , and

__TIME__

18

